

MACHAKOS UNIVERSITY

University Examinations for 2019/2020 Academic Year
SCHOOL OF AGRICULTURAL SCIENCES
DEPARTMENT OF AGRIBUSINESS MANAGEMENT AND TRADE
SECOND YEAR SPECIAL/ SUPPLEMENTARY EXAMINATION FOR
BACHELOR OF SCIENCE IN AGRIBUSINESS MANAGEMENT
AGB 202: STATISTICS FOR AGRIBUSINESS

DATE: 21/01/2021 TIME: 8.30-10.30 AM

INSTRUCTIONS;

Answer **Question1** and **ANY TWO** other questions. Statistical tables are annexed.

QUESTION ONE (30 MARKS)

a)	Differentiate between the following terms as used in statistics

i. A statistic and a parameter (2 marks)ii. A population and a sample (2 marks)

iii. A discrete variable and continuous variable (2 marks)

iv. Type I error and Type II error (2 marks)

v. Sampling error and coefficient of variation (2 marks)

- b) An agribusiness firm intends to promote its new products through giving gifts to its potential customers. How many unique gift packs, each containing 3 different products, can the firm make from its portfolio of 8 products? (2 marks)
- c) A poultry farmer sold 125 small eggs at Ksh 10 each, 230 medium eggs at Ksh 12 each, and 80 large eggs at Ksh 15 each. Find the weighted mean price of the eggs (2 marks).
- d) The following data shows the number of dairy goats kept by a sample of farmers: 3, 2, 4, 2, 3, 5 and 35. Show why you may not use the following as measures to summarize the data.

i. Arithmetic mean (2 marks)

ii. Mode (2 marks)

- A country's GDP growth in six consecutive years was 10%, 8.5%, 11.2%, 9.7%, -2.1% and e) 3.4%. Find the geometric mean GDP growth rate (2 marks)
- The weight of a packet of maize seeds follows a normal distribution with a mean of 2.0kg f) and standard deviation of 0.075 kg. Find the probability that a random packet weighs:
 - i. More than 2.105 kg

(2 marks)

ii. Between 1.855 and 2.107 kg (3 marks)

The table below shows average weekly household expenditures from a recent survey. g) Present the data in a pie chart (5 marks)

Expenditure item	Milk	Sugar	Maize	Beef	Vegetables
Amount spent (KSh)	600	75	145	450	180

QUESTION TWO (20 MARKS)

- The earnings per share (KSh) for a sample of 12 listed companies for the year 2017 were: a) 16.4, 0.1, 3.5, 0.4, 8.9, 10.1, 1.2, 6.4, 1.1, 1.5, 7.8, 3.2
 - i) Find the interquartile range

(7 marks)

- ii) Using the mean and the median, comment on the symmetry of the data
 - (3 marks)
- A researcher assessing the age of coffee farmers in three counties obtained the following b) data. Test for the difference in mean farmer age across the counties (10 marks)

Month	County A	County B	County C
January	55	66	47
February	54	76	51
March	59	67	46
April	56	71	48

QUESTION THREE (20 MARKS)

The data below shows sales revenue at each level of advertising cost incurred by Kilimo a) Ltd.

Advertising costs (Ksh million)	2	1	3	4
Sales revenue (Ksh million)	5	3	7	9

- i. Compute the regression equation for estimating the relationship between sales revenue and advertising budget (8 marks)
- ii. Use the equation in (i) above to predict sales revenue for an advertisement budget of KSh 12 million (2 marks)
- b) Workers at ABC Company have complained that their overtime hours worked exceeded the 5 hours for which the company paid them. The management took a sample of 105 workers and found the average overtime hours worked in the previous week was 7.8, with standard deviation 4.1 hours. Test the validity of the workers' complaint (10 marks)

QUESTION FOUR (20 MARKS)

The frequency distribution below shows the number of employees in a sample of farms.

No. of	2 up to	6 up to	10 ι	ıp	14	up	18	up	22	up	26	up	30	up
workers	6	10	to 14		to 1	8	to 2	2	to 2	6	to 3	0	to 3	4
Frequency	8	11	23		38		45		32		19		4	

a) Calculate the:

i. Median (4 marks)

ii. Arithmetic mean (4 marks)

iii. Standard deviation (5 marks)

b) A box contains 15 good oranges and 5 rotten ones. Three oranges are to be drawn sequentially from the box randomly without replacement. Using a probability tree, compute the probability that:

i. All oranges drawn will be rotten (3 marks)

ii. At least one orange will be good (4 marks)

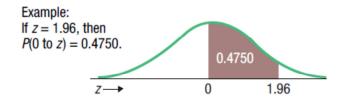
QUESTION FIVE (20 MARKS)

a) An exporter of cut flowers claims that roses from your two farms are not cut to the same length. As the production manager you sample 34 flower stems from one farm and 42 stems from the second farm and obtain mean stem lengths of 42.5cm and 40.8cm respectively. The population standard deviation of farm1 stems is 2.3cm while that of farm2 stems is 1.9cm. Show whether you find the exporter's claim statistically justified (8 marks)

b) The marketing manager of Maziwa Ltd is interested in knowing daily demand for milk produced by their firm. A sample of customers reveals the following quantities (litres) purchased per customer.

4	4	4	3	3
3	5	8	5	6
4	2	5	2	5

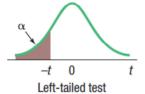
i. What is the best estimate of the population mean

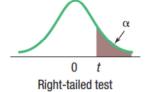

(2 marks)

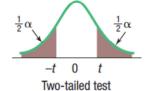
ii. Determine a 95 percent confidence interval for the mean

- (8 marks)
- iii. Explain whether the manager can reasonably conclude that the population mean is Ksh 6.

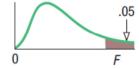
(2 marks)


B.1 Areas under the Normal Curve




Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0.0359
0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517
0.4	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736	0.1772	0.1808	0.1844	0.1879
0.5	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224
0.6	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549
0.7	0.2580	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852
8.0	0.2881	0.2910	0.2939	0.2967	0.2995	0.3023	0.3051	0.3078	0.3106	0.3133
0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389
1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.3531	0.3554	0.3577	0.3599	0.3621
1.1	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0.4441
1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633
1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.4706
1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4756	0.4761	0.4767
2.0	0.4772	0.4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4808	0.4812	0.4817
2.1	0.4821	0.4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4854	0.4857
2.2	0.4861	0.4864	0.4868	0.4871	0.4875	0.4878	0.4881	0.4884	0.4887	0.4890
2.3	0.4893	0.4896	0.4898	0.4901	0.4904	0.4906	0.4909	0.4911	0.4913	0.4916
2.4	0.4918	0.4920	0.4922	0.4925	0.4927	0.4929	0.4931	0.4932	0.4934	0.4936
2.5	0.4938	0.4940	0.4941	0.4943	0.4945	0.4946	0.4948	0.4949	0.4951	0.4952
2.6	0.4953	0.4955	0.4956	0.4957	0.4959	0.4960	0.4961	0.4962	0.4963	0.4964
2.7	0.4965	0.4966	0.4967	0.4968	0.4969	0.4970	0.4971	0.4972	0.4973	0.4974
2.8	0.4974	0.4975	0.4976	0.4977	0.4977	0.4978	0.4979	0.4979	0.4980	0.4981
2.9	0.4981	0.4982	0.4982	0.4983	0.4984	0.4984	0.4985	0.4985	0.4986	0.4986
3.0	0.4987	0.4987	0.4987	0.4988	0.4988	0.4989	0.4989	0.4989	0.4990	0.4990

B.2 Student's t Distribution



			Confidence	e Intervals,	С				Co	onfidence In	tervals, c				
	80%	90%	95%	98%	99%	99.9%		80%	90%	95%	98%	99%	99.9%		
		Level of	Significanc	e for One-Ta	ailed Test, α				Level of	Significanc	e for One-T	ailed Test, α	ľ est, α		
df	0.10	0.05	0.025	0.01	0.005	0.0005	df	0.10	0.05	0.025	0.01	0.005	0.0005		
		Level of	Significanc	e for Two-T	ailed Test, α				Level of	Significanc	e for Two-T	ailed Test, α			
	0.20	0.10	0.05	0.02	0.01	0.001		0.20	0.10	0.05	0.02	0.01	0.001		
1	3.078	6.314	12.706	31.821	63.657	636.619	36	1.306	1.688	2.028	2.434	2.719	3.582		
2	1.886	2.920	4.303	6.965	9.925	31.599	37	1.305	1.687	2.026	2.431	2.715	3.574		
3	1.638	2.353	3.182	4.541	5.841	12.924	38	1.304	1.686	2.024	2.429	2.712	3.566		
4	1.533	2.132	2.776	3.747	4.604	8.610	39	1.304	1.685	2.023	2.426	2.708	3.558		
5	1.476	2.015	2.571	3.365	4.032	6.869	40	1.303	1.684	2.021	2.423	2.704	3.551		
6	1.440	1.943	2.447	3.143	3.707	5.959	41	1.303	1.683	2.020	2.421	2.701	3.544		
7	1.415	1.895	2.365	2.998	3.499	5.408	42	1.302	1.682	2.018	2.418	2.698	3.538		
8	1.397	1.860	2.306	2.896	3.355	5.041	43	1.302	1.681	2.017	2.416	2.695	3.532		
9	1.383	1.833	2.262	2.821	3.250	4.781	44	1.301	1.680	2.015	2.414	2.692	3.526		
10	1.372	1.812	2.228	2.764	3.169	4.587	45	1.301	1.679	2.014	2.412	2.690	3.520		
11	1.363	1.796	2.201	2.718	3.106	4.437	46	1.300	1.679	2.013	2.410	2.687	3.515		
12	1.356	1.782	2.179	2.681	3.055	4.318	47	1.300	1.678	2.012	2.408	2.685	3.510		
13	1.350	1.771	2.160	2.650	3.012	4.221	48	1.299	1.677	2.011	2.407	2.682	3.505		
14	1.345	1.761	2.145	2.624	2.977	4.140	49	1.299	1.677	2.010	2.405	2.680	3.500		
15	1.341	1.753	2.131	2.602	2.947	4.073	50	1.299	1.676	2.009	2.403	2.678	3.496		
16	1.337	1.746	2.120	2.583	2.921	4.015	51	1.298	1.675	2.008	2.402	2.676	3.492		
17	1.333	1.740	2.110	2.567	2.898	3.965	52	1.298	1.675	2.007	2.400	2.674	3.488		
18	1.330	1.734	2.101	2.552	2.878	3.922	53	1.298	1.674	2.006	2.399	2.672	3.484		
19	1.328	1.729	2.093	2.539	2.861	3.883	54	1.297	1.674	2.005	2.397	2.670	3.480		
20	1.325	1.725	2.086	2.528	2.845	3.850	55	1.297	1.673	2.004	2.396	2.668	3.476		
21	1.323	1.721	2.080	2.518	2.831	3.819	56	1.297	1.673	2.003	2.395	2.667	3.473		
22	1.321	1.717	2.074	2.508	2.819	3.792	57	1.297	1.672	2.002	2.394	2.665	3.470		
23	1.319	1.714	2.069	2.500	2.807	3.768	58	1.296	1.672	2.002	2.392	2.663	3.466		
24	1.318	1.711	2.064	2.492	2.797	3.745	59	1.296	1.671	2.001	2.391	2.662	3.463		
25	1.316	1.708	2.060	2.485	2.787	3.725	60	1.296	1.671	2.000	2.390	2.660	3.460		
26	1.315	1.706	2.056	2.479	2.779	3.707	61	1.296	1.670	2.000	2.389	2.659	3.457		
27	1.314	1.703	2.052	2.473	2.771	3.690	62	1.295	1.670	1.999	2.388	2.657	3.454		
28	1.313	1.701	2.048	2.467	2.763	3.674	63	1.295	1.669	1.998	2.387	2.656	3.452		
29	1.311	1.699	2.045	2.462	2.756	3.659	64	1.295	1.669	1.998	2.386	2.655	3.449		
30	1.310	1.697	2.042	2.457	2.750	3.646	65	1.295	1.669	1.997	2.385	2.654	3.447		
31	1.309	1.696	2.040	2.453	2.744	3.633	66	1.295	1.668	1.997	2.384	2.652	3.444		
32	1.309	1.694	2.037	2.449	2.738	3.622	67	1.294	1.668	1.996	2.383	2.651	3.442		
33	1.308	1.692	2.035	2.445	2.733	3.611	68	1.294	1.668	1.995	2.382	2.650	3.439		
34	1.307	1.691	2.032	2.441	2.728	3.601	69	1.294	1.667	1.995	2.382	2.649	3.437		
35	1.306	1.690	2.030	2.438	2.724	3.591	70	1.294	1.667	1.994	2.381	2.648	3.435		

B.4 Critical Values of the *F* **Distribution at a 5 Percent Level of Significance**

							0	egrees o	f Freedo	m for the	Numera	itor					
		1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40
	1	161	200	216	225	230	234	237	239	241	242	244	246	248	249	250	251
	2	18.5	19.0	19.2	19.2	19.3	19.3	19.4	19.4	19.4	19.4	19.4	19.4	19.4	19.5	19.5	19.5
	3	10.1	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.74	8.70	8.66	8.64	8.62	8.59
	4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.91	5.86	5.80	5.77	5.75	5.72
	5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.68	4.62	4.56	4.53	4.50	4.46
	6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	4.00	3.94	3.87	3.84	3.81	3.77
	7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.57	3.51	3.44	3.41	3.38	3.34
	8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.28	3.22	3.15	3.12	3.08	3.04
	9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.07	3.01	2.94	2.90	2.86	2.83
jo	10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.91	2.85	2.77	2.74	2.70	2.66
inat	11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85	2.79	2.72	2.65	2.61	2.57	2.53
101	12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.69	2.62	2.54	2.51	2.47	2.43
Der	13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67	2.60	2.53	2.46	2.42	2.38	2.34
Je J	14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.53	2.46	2.39	2.35	2.31	2.27
Degrees of Freedom for the Denominator	15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.48	2.40	2.33	2.29	2.25	2.20
E E	16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.42	2.35	2.28	2.24	2.19	2.15
eq	17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45	2.38	2.31	2.23	2.19	2.15	2.10
듄	18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41	2.34	2.27	2.19	2.15	2.11	2.06
o of	19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38	2.31	2.23	2.16	2.11	2.07	2.03
ree.	20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35	2.28	2.20	2.12	2.08	2.04	1.99
Deg	21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.37	2.32	2.25	2.18	2.10	2.05	2.01	1.96
	22	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34	2.30	2.23	2.15	2.07	2.03	1.98	1.94
	23	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.32	2.27	2.20	2.13	2.05	2.01	1.96	1.91
	24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30	2.25	2.18	2.11	2.03	1.98	1.94	1.89
	25	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.28	2.24	2.16	2.09	2.01	1.96	1.92	1.87
	30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.16	2.09	2.01	1.93	1.89	1.84	1.79
	40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12	2.08	2.00	1.92	1.84	1.79	1.74	1.69
	60	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04	1.99	1.92	1.84	1.75	1.70	1.65	1.59
	120	3.92	3.07	2.68	2.45	2.29	2.18	2.09	2.02	1.96	1.91	1.83	1.75	1.66	1.61	1.55	1.50
	00	3.84	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1.88	1.83	1.75	1.67	1.57	1.52	1.46	1.39