

MACHAKOS UNIVERSITY

University Examinations for 2020/2021 Academic Year

SCHOOL OF AGRICULTURAL SCIENCES

DEPARTMENT OF AGRIBUSINESS MANAGEMENT AND TRADE SECOND YEAR SPECIAL/ SUPPLEMENTARY EXAMINATION FOR BACHELOR OF SCIENCE AGRIBUSINESS MANAGEMENT AND TRADE

AGB 202: STATISTICS FOR AGRIBUSINESS

DATE: 22/03/2021 TIME: 2.00-4.00 PM

INSTRUCTIONS;

a)

Answer **Question one** and **ANY TWO** other questions.

QUESTION ONE (30 MARKS)

,		· ·	
	i.	A statistic and a parameter	(2 marks)

Differentiate between the following terms as used in statistics

- ii. A population and a sample (2 marks)
- iii. A discrete variable and continuous variable (2 marks)
- iv. Type I error and Type II error (2 marks)
- v.Sampling error and coefficient of variation (2 marks)
- b) An agribusiness firm intends to promote its new products through giving gifts to its potential customers. How many unique gift packs, each containing 4 different products, can the firm make from its portfolio of 10 products? (2 marks)
- c) A country's agriculture sector growth rate in six consecutive years was 5%, 3.5%, -0.8%, 2.7%, -2.1% and 3.4%. Find the geometric mean GDP growth rate (2 marks)
- d) A poultry farmer sold 250 small eggs at Ksh 10 each, 115 medium eggs at Ksh 12 each, and 40 large eggs at Ksh 15 each. Find the weighted mean price of the eggs (2 marks).
- e) The following data shows the number of dairy goats kept by a sample of farmers: 3, 2, 36, 4, 2, 1, 45, 5 and 3.
 - i. Compute the mean of the data (1 mark)
 - ii. Find the mode of the data (1 mark)
 - iii. Explain why you may not use the mean or mode to summarize the data (2 marks)

- f) The weight of a packet of maize seeds follows a normal distribution with a mean of 2.0kg and standard deviation of 0.075 kg. Find the probability that a random packet weighs:
 - i. More than 2.105 kg (2 marks)
 - ii. Between 1.855 and 2.107 kg (3 marks)
- g) The table below shows average weekly household expenditures from a recent survey.

 Present the data in a pie chart (5 marks)

Expenditure item	Milk	Sugar	Maize	Beef	Vegetables
Amount spent (KSh)	12	15	29	90	36

QUESTION TWO (20 MARKS)

- a) A sample of 34 flower stems gave a mean stem length of 42.5cm while a second sample of 42 stems gave a mean stem length of 40.8cm. The population standard deviation of sample one stems is 2.3cm while that of sample two stems is 1.9cm. Test whether the two samples are from different populations (8 marks)
- b) The marketing manager of Maziwa Ltd is interested in knowing daily demand for milk produced by their firm. A sample of customers reveals the following quantities (litres) purchased per customer: 4, 4, 3, 5, 2, 4, 8, 5, 4, 3, 5, 2, 6, 3, 5.
 - i. What is the best estimate of the population mean (2 marks)
 - ii. Determine a 95 percent confidence interval for the mean (8 marks)
 - iii. Explain whether the manager can reasonably conclude that the population mean is Ksh 5. (2 marks)

QUESTION THREE (20 MARKS)

a) The data below shows sales revenue at each level of advertising cost incurred by Kilimo Ltd.

Fertilizer used (bags)	2	1	3	4
Crop output (Tons)	5	3	7	9

- i. Compute the regression equation for estimating the relationship between fertilizer usage and crop output (10 marks)
- ii. Use the equation in (i) above to predict crop output if fertilizer used was increased to 8 bags (2 marks)

b) From a sample of 105 workers, a statistician obtained a mean overtime of 7.8 hours, with standard deviation 4.1 hours. Test whether the mean overtime is different from 5 hours.

(8 marks)

QUESTION FOUR (20 MARKS)

- a) The earnings per share (KSh) for a sample of 12 listed companies for the year 2018 were: 16.4, 0.1, 3.5, 0.4, 8.9, 10.1, 1.2, 6.4, 1.1, 1.5, 7.8, 3.2
 - i. Find the interquartile range

(7 marks)

(3 marks)

- ii. Using the mean and the median, comment on the symmetry of the data
- b) A researcher assessing 4-month tea output (tons) in three counties obtained the following data. Test for the difference in mean tea output across the counties (10 marks)

Month	Tea output		
	County A	County B	County C
January	55	66	47
February	54	76	51
March	59	67	46
April	56	71	48

QUESTION FIVE (20 MARKS)

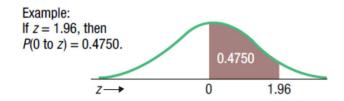
The frequency distribution below shows the number of employees in a sample of farms.

No. of	2 up to	6 up to	10	up	14	up	18	up	22	up	26	up	30	up
workers	6	10	to 14	4	to 1	8	to 2	2	to 2	6	to 3	0	to 3	4
Frequency	4	9	21		35		40		24		12		3	

a) Calculate the:

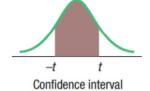
i. Median (4 marks)

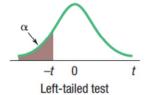
ii. Arithmetic mean (4 marks)

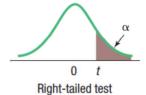

iii. Standard deviation (5 marks)

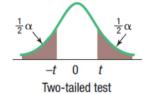
b) A tray of eggs contains 25 good eggs and 5 rotten ones. Three eggs are to be drawn sequentially from the tray randomly without replacement. Using a probability tree, compute the probability that:

i. All eggs drawn will be rotten (3 marks)

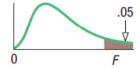

ii. At least two eggs will be good (4 marks)


B.1 Areas under the Normal Curve




z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0.0359
0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517
0.4	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736	0.1772	0.1808	0.1844	0.1879
0.5	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224
0.6	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549
0.7	0.2580	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852
0.8	0.2881	0.2910	0.2939	0.2967	0.2995	0.3023	0.3051	0.3078	0.3106	0.3133
0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389
1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.3531	0.3554	0.3577	0.3599	0.3621
1.1	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0.4441
1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633
1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.4706
1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4756	0.4761	0.4767
2.0	0.4772	0.4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4808	0.4812	0.4817
2.1	0.4821	0.4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4854	0.4857
2.2	0.4861	0.4864	0.4868	0.4871	0.4875	0.4878	0.4881	0.4884	0.4887	0.4890
2.3	0.4893	0.4896	0.4898	0.4901	0.4904	0.4906	0.4909	0.4911	0.4913	0.4916
2.4	0.4918	0.4920	0.4922	0.4925	0.4927	0.4929	0.4931	0.4932	0.4934	0.4936
2.5	0.4938	0.4940	0.4941	0.4943	0.4945	0.4946	0.4948	0.4949	0.4951	0.4952
2.6	0.4953	0.4955	0.4956	0.4957	0.4959	0.4960	0.4961	0.4962	0.4963	0.4964
2.7	0.4965	0.4966	0.4967	0.4968	0.4969	0.4970	0.4971	0.4972	0.4973	0.4974
2.8	0.4974	0.4975	0.4976	0.4977	0.4977	0.4978	0.4979	0.4979	0.4980	0.4981
2.9	0.4981	0.4982	0.4982	0.4983	0.4984	0.4984	0.4985	0.4985	0.4986	0.4986
3.0	0.4987	0.4987	0.4987	0.4988	0.4988	0.4989	0.4989	0.4989	0.4990	0.4990

B.2 Student's t Distribution



			Confidence	ce Intervals	C				Co	onfidence In	tervals, c					
	80%	90%	95%	98%	99%	99.9%		80%	90%	95%	98%	99%	99.9%			
		Level of	Significano	e for One-T	ailed Test, o	ı			Level of	Significand	e for One-T	ailed Test, α				
df	0.10	0.05	0.025	0.01	0.005	0.0005	df	0.10	0.05	0.025	0.01	0.005	0.0005			
		Level of	Significano	e for Two-T	ailed Test, o			Level of Significance for Two-Tailed Test, α								
	0.20	0.10			0.01	0.001		0.20	0.10	0.05	0.02	0.01	0.001			
1	3.078	6.314	12.706	31.821	63.657	636.619	36	1.306	1.688	2.028	2.434	2.719	3.582			
2	1.886	2.920	4.303	6.965	9.925	31.599	37	1.305	1.687	2.026	2.431	2.715	3.574			
3	1.638	2.353	3.182	4.541	5.841	12.924	38	1.304	1.686	2.024	2.429	2.712	3.566			
4	1.533	2.132	2.776	3.747	4.604	8.610	39	1.304	1.685	2.023	2.426	2.708	3.558			
5	1.476	2.015	2.571	3.365	4.032	6.869	40	1.303	1.684	2.021	2.423	2.704	3.551			
6	1.440	1.943	2.447	3.143	3.707	5.959	41	1.303	1.683	2.020	2.421	2.701	3.544			
7	1.415	1.895	2.365	2.998	3.499	5.408	42	1.302	1.682	2.018	2.418	2.698	3.538			
8	1.397	1.860	2.306	2.896	3.355	5.041	43	1.302	1.681	2.017	2.416	2.695	3.532			
9	1.383	1.833	2.262	2.821	3.250	4.781	44	1.301	1.680	2.015	2.414	2.692	3.526			
10	1.372	1.812	2.228	2.764	3.169	4.587	45	1.301	1.679	2.014	2.412	2.690	3.520			
11	1.363	1.796	2.201	2.718	3.106	4.437	46	1.300	1.679	2.013	2.410	2.687	3.515			
12	1.356	1.782	2.179	2.681	3.055	4.318	47	1.300	1.678	2.012	2.408	2.685	3.510			
13	1.350	1.771	2.160	2.650	3.012	4.221	48	1.299	1.677	2.011	2.407	2.682	3.505			
14	1.345	1.761	2.145	2.624	2.977	4.140	49	1.299	1.677	2.010	2.405	2.680	3.500			
15	1.341	1.753	2.131	2.602	2.947	4.073	50	1.299	1.676	2.009	2.403	2.678	3.496			
16	1.337	1.746	2.120	2.583	2.921	4.015	51	1.298	1.675	2.008	2.402	2.676	3.492			
17	1.333	1.740	2.110	2.567	2.898	3.965	52	1.298	1.675	2.007	2.400	2.674	3.488			
18	1.330	1.734	2.101	2.552	2.878	3.922	53	1.298	1.674	2.006	2.399	2.672	3.484			
19	1.328	1.729	2.093	2.539	2.861	3.883	54	1.297	1.674	2.005	2.397	2.670	3.480			
20	1.325	1.725	2.086	2.528	2.845	3.850	55	1.297	1.673	2.004	2.396	2.668	3.476			
21	1.323	1.721	2.080	2.518	2.831	3.819	56	1.297	1.673	2.003	2.395	2.667	3.473			
22	1.321	1.717	2.074	2.508	2.819	3.792	57	1.297	1.672	2.002	2.394	2.665	3.470			
23	1.319	1.714	2.069	2.500	2.807	3.768	58	1.296	1.672	2.002	2.392	2.663	3.466			
24	1.318	1.711	2.064	2.492	2.797	3.745	59	1.296	1.671	2.001	2.391	2.662	3.463			
25	1.316	1.708	2.060	2.485	2.787	3.725	60	1.296	1.671	2.000	2.390	2.660	3.460			
26	1.315	1.706	2.056	2.479	2.779	3.707	61	1.296	1.670	2.000	2.389	2.659	3.457			
27	1.314	1.703	2.052	2.473	2.771	3.690	62	1.295	1.670	1.999	2.388	2.657	3.454			
28	1.313	1.701	2.048	2.467	2.763	3.674	63	1.295	1.669	1.998	2.387	2.656	3.452			
29	1.311	1.699	2.045	2.462	2.756	3.659	64	1.295	1.669	1.998	2.386	2.655	3.449			
30	1.310	1.697	2.042	2.457	2.750	3.646	65	1.295	1.669	1.997	2.385	2.654	3.447			
31	1.309	1.696	2.040	2.453	2.744	3.633	66	1.295	1.668	1.997	2.384	2.652	3.444			
32	1.309	1.694	2.040	2.449	2.744	3.622	67	1.293	1.668	1.997	2.383	2.651	3.442			
33	1.309		2.037		2.738	3.622	68	1.294		1.996	2.383	2.650	3.442			
34	1.308	1.692	2.035	2.445 2.441	2.733	3.601		1.294	1.668	1.995	2.382	2.649				
		1.691					69		1.667				3.437			
35	1.306	1.690	2.030	2.438	2.724	3.591	70	1.294	1.667	1.994	2.381	2.648	3.435			

B.4 Critical Values of the F Distribution at a 5 Percent Level of Significance

			Degrees of Freedom for the Numerator														
		1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40
	1	161	200	216	225	230	234	237	239	241	242	244	246	248	249	250	251
	2	18.5	19.0	19.2	19.2	19.3	19.3	19.4	19.4	19.4	19.4	19.4	19.4	19.4	19.5	19.5	19.5
	3	10.1	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.74	8.70	8.66	8.64	8.62	8.59
	4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.91	5.86	5.80	5.77	5.75	5.72
	5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.68	4.62	4.56	4.53	4.50	4.46
	6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	4.00	3.94	3.87	3.84	3.81	3.77
	7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.57	3.51	3.44	3.41	3.38	3.34
	8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.28	3.22	3.15	3.12	3.08	3.04
	9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.07	3.01	2.94	2.90	2.86	2.83
tor	10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.91	2.85	2.77	2.74	2.70	2.66
nina	11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85	2.79	2.72	2.65	2.61	2.57	2.53
5	12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.69	2.62	2.54	2.51	2.47	2.43
De	13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67	2.60	2.53	2.46	2.42	2.38	2.34
the	14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.53	2.46	2.39	2.35	2.31	2.27
Degrees of Freedom for the Denominator	15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.48	2.40	2.33	2.29	2.25	2.20
E OF	16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.42	2.35	2.28	2.24	2.19	2.15
ee	17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45	2.38	2.31	2.23	2.19	2.15	2.10
Ē	18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41	2.34	2.27	2.19	2.15	2.11	2.06
80	19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38	2.31	2.23	2.16	2.11	2.07	2.03
gree	20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35	2.28	2.20	2.12	2.08	2.04	1.99
De	21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.37	2.32	2.25	2.18	2.10	2.05	2.01	1.96
	22	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34	2.30	2.23	2.15	2.07	2.03	1.98	1.94
	23	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.32	2.27	2.20	2.13	2.05	2.01	1.96	1.91
	24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30	2.25	2.18	2.11	2.03	1.98	1.94	1.89
	25	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.28	2.24	2.16	2.09	2.01	1.96	1.92	1.87
	30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.16	2.09	2.01	1.93	1.89	1.84	1.79
	40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12	2.08	2.00	1.92	1.84	1.79	1.74	1.69
	60	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04	1.99	1.92	1.84	1.75	1.70	1.65	1.59
	120	3.92	3.07	2.68	2.45	2.29	2.18	2.09	2.02	1.96	1.91	1.83	1.75	1.66	1.61	1.55	1.50
	00	3.84	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1.88	1.83	1.75	1.67	1.57	1.52	1.46	1.39