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Abstract The diffusion of biodigester technology can

contribute support towards the achievement of the global
goals brokered under the auspices of the United Na-

tions. They have been promoted among farmers but low

adoption remains a challenge. Meanwhile, since biodi-

gesters come in different technical designs, they have

corresponding performance attributes. While theory sug-
gests that potential adopters trade off these attributes,

information about these tradeoffs is currently unavail-

able. Developing an understanding of how a potential

adopter trades-off these attributes can reveal impor-

tant information which technology developers and in-

formation providers should consider when promoting

the technology.

After presenting the underlying random utility frame-
work, a choice experiment (CE) was designed. Six at-
tributes in the CE describing the technology included
its installation cost, reliability, durability, maintenance
cost, movability, and ease of defect identification. Based
on the modified Fedorov algorithm, an efficient design
was constructed. This resulted in 64 hypothetical al-
ternatives in total, split into 2 blocks and presented as
a series of 8 choice tasks per respondent. Each choice
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situation had an opt-out alternative and three generic
choice profiles.

A random sample of 455 coffee farmers from Ki-
ambu and Machakos provided data used in the analysis.
Estimation was implemented through application of a
mixed logit model. Results suggested that respondents
were willing to forego a cost of 8,400KES for easy de-
fect identification. This suggests the desirability of cou-
pling individual biodigester units with IoT-based sensor
instrumentation. This can enhance the continued func-
tioning of biodigesters and stimulate the adoption of the
technology leading to reductions in on-farm methane
emissions.

Keywords Choice experiment, -
adoption - biodigester defects

mixed logit -

1 Introduction

Small scale domestic biodigesters appeal as options for
reducing the reliance by farmers on biomass fuels, re-
ducing health-related impacts of such fuels while at
the same time reducing GHG emissions (Somanathan
and Bluffstone, 2015; Van de Ven et al., 2019). De-
spite these embedded benefits, observed adoption of
the technology has been low. One of the main reasons
given for this low adoption have been credit and liquid-
ity constraints faced by potential adopters (Bond and
Templeton, 2011; Mwirigi et al., 2014; Muriuki, 2014).
This has prompted studies which assess biodigesters
for their economic feasibility. From studies conducted
in Ethiopia and Uganda, the general conclusion is the
biodigesters are economically feasible. Walekhwa et al.
(2014) is one such study which shows that biodigesters
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are economically feasible!. But economic feasibility is
only a necessary condition for adoption. To afford a
biodigester is always necessary, but not sufficient for
one to become an adopter. Other intrinsic considera-
tions such as preferences of the decision maker, their
attitudes, and perceptions towards the choice situation
also come into the decision making process (McFadden,
1999). Therefore, information about the technology is
at the core of creating beliefs and perceptions about
biodigesters, which are in turn important in the deci-
sion process.

Ten years ago, less than 2000 Kenyan households
used biodigesters for their energy requirements. Com-
paratively, there were over 30 million in China, 3.8 mil-
lion in India and 0.2 million in Nepal (Rajendran, et
al., 2012). Nepal, whose human population is about
three fifths the size of the Kenyan population had over
300,000 biodigesters by 2015 (Meeks et al., 2019). This
rose from 140,000 biodigesters which had been installed
by 2009 (Gautam et al., 2009). This is a coverage of
about 4% of the households compared to Kenya whose
comparative coverage is less than 0.2% (KNBS, 2018).
This difference can be attributed to the strong sup-
port provided by many of these Asian country gov-
ernments as well as accumulated technical knowledge
about biodigesters (Bond and Templeton, 2011).

The technology features a suite of different designs.
The fixed dome developed in China and floating drum
developed in India are among leading designs globally.
The plug flow biodigester is the third type of design and
unlike the former two, is built over the ground, mak-
ing it portable. This latter design features a reinforced
plastic digester bag, in place of the digester consist-
ing of masonry work in the other designs (Sovacool et
al., 2015). Generally, biodigesters have attributes which
distinguish them apart. Besides the operating param-
eters (pH, temperature, hydraulic retention time, or-
ganic loading rate and feeding mechanism), the type
of biodigester, including materials used determine bio-
gas (methane) yield (Obileke et al., 2020). For instance,
given the fluctuating temperatures above ground, de-
signs which feature underground construction may yield
more gas (Obileke et al., 2020). Some designs can be
fed with both fibrous and non-fibrous feedstock while
others can only suitable for non-fibrous feedstock. Oth-
ers have a longer lifespan while others (especially the
portable types) have a shorter lifespan. Nzila et al.
(2012) for example provide an overview where they con-

1 This study uses the NPV criterion and as an indivisible
technology with sufficient sunk costs, it is possible that a real
options investment approach (ROA) could suggest otherwise.
At least, studies applying the ROA in the USA and Canada
suggest that NPV is only a necessary but not a sufficient
condition to trigger adoption of biodigesters.

trast these designs against each other. From their multi
criteria sustaibnability assessment, they concluded that
the plug flow design was the most sustainable design for
Kenya despite its low score in terms of reliability.

Takama et al. (2012) in Ethiopia found that gen-
erally, the choice of cooking stove was also dependent
on product specific factors. These included the price
of the stove, its use costs, and their ability to reduce
indoor smoke. From a randomised controlled trial in
Bangladesh, Miller and Mobarak (2015) reported that
readily observable attributes of a cook stove may deter-
mine its eventual adoption. A recent study in India in-
dicates that fuel efficiency and ability to reduce indoor
smoke are attributes that attract potential adopters to
biodigesters (Talevi, et al., 2022, In Press) However,
the willingness to pay (mWTP) for biogas systems, like
many improved cook stoves is typically lower than their
market price. For instance, for the plug flow biodigester,
Kabyanga et al. (2018) in Uganda found that the cost
of installation was 10 times larger than the mWTP for
these systems. In Nepal, Thapa et al. (2021) estimated
mWTP values which were 0.8 times the size of the cost
of an installation of the fixed dome design.

In Kenya, authorities have disseminated a single de-
sign in the past (Laichena and Wafula, 1997). This has
mainly been the fixed dome design. Such standardiza-
tion has been recommended by others (e.g. Mwirigi et
al., 2014), arguing that it makes quality control eas-
ier. Meanwhile in Nepal, the Gobar Gas and Agricul-
tural Equipment Development Company (GGC) mod-
ified the Chinese fixed dome design and introduced it
as the accepted model in Gautam et al. (2009). This
was the GGC 2047, which consists of an underground
fermentation chamber atop which sits the dome for gas
storage. This is similar in many respects to the CAR-
MATEC design from Tanzania. Nontheless, in Kenya,
as in other African countries, there has not been much
structured and sustained analysis to provide scientifi-
cally backed recommendations about which attributes
are of great interest to users (Mulinda, et al., 2013).
While dissemination of biodigester technology operates
from the Energy Centres distributed across the coun-
try Laichena and Wafula (1997), empirical observations
are that their actual coverage is not enough for the en-
tire farmer population (Mwirigi et al., 2009). In fact,
in the Kenyan rural landscape, different designs coexist
(Muriuki, 2014). The presence of these different biodi-
gester designs suggests heterogeneity in the interests of
users in the attributes embedded in the different de-
signs. This is suggestive evidence that users have gone
ahead to adopt biodigesters which are in line with their
preferences.
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The flexi-biogas (a plug-flow design) was recently
piloted in Kenya. Through a project launced in 2011
by IFAD, at least 500 of such systems had been built in
Kenya (Sovacool et al., 2015). The design is credited for
its low cost, fast installation, portability and its appli-
cability in colder high altitude regions. In addition, to
encourage adoption, the Kenyan government, through
the Finance Act of 2015 exempted plastic digesters, bio-
gas and the lease of biogas producing equiplemt from
VAT. This tax break has been maintained in the most
recent amendments to the Finance Act by extending
the exemptions to prefabricated biodigesters (Republic
of Kenya, 2021). While prefabricated biodigesters do
not have a precise classification, they work though sim-
ilar principals as other “traditional” biodigester designs
(Cheng, et al., 2014). The only major difference is that
prefabs are constructed off site. Meanwhile, the fixed
dome design is still the most common biodigester design
in Kenya. The Akut and CAMARTEC models are by
far the most common fixed dome models (Nzila et al.,
2012). By 2017, an additional 13,200 fixed dome biodi-
gesters had been installed in Kenya (Clemens et al.,
2018). This was accomplished through support of the
African Biogas Partnership Programme, a Dutch gov-
ernment initiative operating in Ethiopia, Kenya, Tan-
zania, Uganda, and Burkina Faso. The ABPP ran until
2017. In Kenya, the ABPP also featured an improved
fixed dome model (KENBIM) which reportedly reduced
installation costs by 25% (Clemens et al., 2018). It is
difficult to be categorical about whether the growth in
biodigester installations through the ABPP was singly
a consequence of the subsidy offered for their construc-
tion. It is however probable that this may have been a
combination of subsidies and a lower cost of installa-
tion, the latter being a product specific characteristic.

To the discerning observer, it is clear that most
of the biodigesters have been installed in zones where
significant dairying occurs. These constitute the high-
lands, zones above elevations of 1000m above sea level
(Bebe et al., 2003). The reason is partly explained by
the fact that the zero grazing (cut and carry) dairy sys-
tem implies ready availability of feedstock in the form
of cattle dung. It also suggests the presence of ade-
quate water. These are two important ingredients for
the biodigestion process. Generally, smallholder dairy-
ing occurs at altitudes above 1500m above sea level
(Staal et al., 2002). In such zones with a bimodal rain-
fall pattern, feed resources are heavily determined by
the amount of rainfall and temperature, where precip-
itation is usually above 800mm per annum (Bebe et
al., 2003). Major feed resources for these animals espe-
cially for the cut and carry system comes from Napier
grass (Pennisetum purpureum) and crop residues (Staal

et al., 2002; Jaetzold et al., 2010a; Ortiz-Gonzalo et
al., 2017). Characterized by population pressure and
resultant small land sizes, Napier has been adopted
widely. Napier grass has respectable dry matter yield
and is suitable as a cut and carry fodder. These are at-
tributes responsible for its widespread adoption. Dung
from these zero grazed ruminants is used as feedstock
for the biodigesters. Water (including grey water from
other household activities) as well as animal urine can
be used to dilute this feedstock (Bansal et al., 2017).
Therefore, in addition to socio-economic variables, char-
acteristics of the farming system are important drivers
for biodigester adoption (Qu et al., 2013; Sun et al.,
2014; Bakehe, 2021). However, while dairying explains
much of the spatial distribution of biodigesters in Kenya,
it is not enough to explain the inherent heterogeneity.
Not all farmers who practice dairy have installed biodi-
gesters.

It has been widely reported that not all installed
biodigesters end up being of benefit to their owners.
For instance, by 2016, of the ABPP installed plants,
23% had been abandoned. Major reasons for abandon-
ment were technical problems such as broken fixtures
and blocked inlets (Clemens, et al., 2018). Similarly,
the flexi-biogas design is itself not free from some of
these challenges (Sovacool et al., 2015). For example,
Nzila et al. (2012) report that the flexi biogas system
has a low reliability (40%) compared to the fixed dome
and floating drum designs. Here, reliability is the ability
of a biodigester to operate as designed, without failure.
These challenges however appear to be of similar nature
to those reported about three decades ago since often,
users do not possess sufficient knowledge on the oper-
ation and maitenance of biodigesters (Laichena, 1989).
As relatively complex technologies, such a characteristic
in turn may reduce its rate of adoption (Rogers, 1983).
In fact, Laichena and Wafula (1997) reported that only
25% of fixed dome biodigesters completed before the
1980s were operational.

Like most equipment, age is a significant factor in
the performance of biodigesters (Bond and Templeton,
2011). As biodigesters age, performance degrades and
they are bound to require maintenance service. It means
that for one to contact the Biodigester Construction
Enterprise (BCE) offering maintenance servicing, any
biodigester owner needs to identify the defects and com-
municate the same. The fixed dome biodigester features
a digester and gas holder made of masonry constructed
underground. Without special sealant, this dome is prone
to cracks and porosity. Such cracks reduce the amount
of accumulated gas and therefore fluctuating pressure
in the system. Unfortunately, detecting the presence of
cracks is normally difficult if not impossible. But in-
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strumenting the health monitoring of the biodigester
can help ease the early identification and reporting of
problems and hasten repairs.

An empirical application will suffice to quickly demon-

strate the point. In the Rwanda water sector, for exam-
ple, sensors relaying technical data to a central portal
were shown to reduce hand-pump downtime (Nagel et
al., 2015). This is accomplished by instrumenting the
detection and alerting technicians in real-time. This
prompts technicians to perform repairs much earlier.
They reduced pump downtime (time to repair) from 152
days to just 21 days. Essentially, these sensors improve
reliability of servicing. A reliable service is that which
has a high probability of being available in the right
quantity and quality when required. In Kitui, Kenya,
such instrumentation which improves the speed of ser-
vice was shown to increase willingness to pay (mWTP)
for water services (Koehler et al., 2015). This improve-
ment in service reduced downtime from 27 days to just
2 (Thomson, 2020). Meanwhile, in the biodigester sec-
tor, sensor prototypes have revealed their usefulness in
monitoring the functioning of digesters (Acharya et al.,
2017; Logan et al., 2019). This strongly suggests the
possibility of their deployment for improved servicing
and maintenance of biodigesters.

Construction subsidies and strong product quality
oversight are some of the reasons credited for the strong
performance of the biodigestor sector in Nepal (Meeks
et al., 2019; Thapa et al., 2021). There, BCEs provided
offer to provide service and maintenance for at least
three years. In Kenya however, cases are reported of
biodigesters due for servicing and maintenance but were
not attended because BCEs did not show up (Clemens
et al., 2018). In fact, while ABPP trained over 600 ma-
sons on biodigester construction, less than 20% were
found to be active fulltime. Being masons, other com-
peting construction jobs may keep them away from
providing prompt maintenance service. Thus is unlike
the situation in Nepal where over 100 registered biodi-
gester companies provide the link through which sub-
sidies administered through a government entity; the
Alternative Energy Promotion Centre. These compa-
nies employed about 11,000 Nepalese directly (techni-
cal, administrative and promotional staff) and an addt-
tional 65,000 indirect jobs (Gautam et al., 2009). The
AEPC provided subsidies which covered 40% of instal-
lation costs and at the same time, enforced quality
standards guiding both installation and maintenance
(Meeks et al., 2019). A portion of carbon credits gener-
ated were used to sustain this biogas program (Thapa
et al., 2021). In the absence of such a structured biodi-
gester sector, adopters in Kenya may need to be assisted
to link with the small number of active BCEs. One way

through which this can be accomplished is through the
deployment of sensors which help link individual biodi-
gesters with BCEs. The mechanism is not fundamen-
tally different from the sensors on hand pumps. Biodi-
gesters can be retrofited with sensors which gather and
transmit temperature and pressure data in realtime.
This data can be sent via SMS to a central portal
manned by the BCE. Thus, the health of the biodi-
gester can be monitored remotely in realtime. This al-
lows BCEs to dispatch technicians on demand, when
their service is required: the so called “ambulance ser-
vice” (Nagel et al., 2015).

However, instrumentation alluded to above has not
been rolled out. Yet, its actual installation would entail
an extra cost to owners of biodigesters. Nor do many
in Kenya know of its existence. As with new introduc-
tions, the willingness to pay for this Internet of Things
(I0T) based solution has not been studied. Besides, the
different biodigester designs feature different attributes
(Nzila et al., 2012; Cheng et al., 2014). How potential
adopters trade-off these attributes has not been sub-
jected to critical study (Mulinda et al., 2013). Antici-
pating how potential adopters respond to these different
attributes may further guide policy making. Such infor-
mation is also important for technology developers. De-
signs can, where technically feasible incorporate or en-
hance those attributes preferred by potential adopters.

This paper adopts the discrete choice experiment
(DCE) method to investigate trade-offs among impor-
tant biodigester technology attributes among farmers.
Smallholder farmers are an important population con-
stituency targeted for adoption. The basis of DCE is
random utility theory (RUT) which strongly relies on
the work of McFadden (1974), which built on the Lan-
casterian approach: where utility is derived not from
the actual consumption of a good per se, but from the
properties or characteristics of the good (Lancaster,
1966). Generally, RUT provides a behavioural frame-
work explaining choice behavior of individuals (Lou-
viere et al., 2010). In this study, we use a mixed logit
analytical approach (McFadden and Train, 2000; Hen-
sher and Greene, 2003; Train and Sonnier, 2005; Hole
and Kolstad, 2012). The next section details the econo-
metric specification and data. Results are presented and
discussed. The paper concludes with what we believe
is an opportunity to both understand and incorporate
results in biodigester related work by technology devel-
opers and promoters in developing countries.
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2 Materials and methods
2.1 Stated preferences and discrete choice experiments

While all the biodigester designs come at a different
cost, they also feature different attributes (Nzila et al.,
2012; Sovacool et al., 2015). A small number of stated
preference surveys have therefore been used to value
biodigester systems. The mWTP for biodigesters has
typically been below their actual cost (see for exam-
ple, Kabyanga et al., 2018; Thapa et al., 2021). Unlike
Takama et al. (2012), these studies employ the contin-
gent valuation method (CVM) to estimate the value
of biodigesters from the point of view of the respec-
tive population of potential adopters. While these val-
ues are generally useful, they cannot be used to elabo-
rate further how the potential adopters value individ-
ual attributes of the biodigesters. This is because the
CVM has various weaknesses, including the part-whole
bias problem. It is notable that CVM is suited for valu-
ing a change as a whole, rather than the small changes
which constitute the whole (Hanley et al., 1998; Han-
ley and Czajkowski, 2019). It is the different attributes
from which utility (satisfaction) is derived Lancaster,
(1966), rather than the biodigester itself. This is the
characteristics theory of value. Applying CVM at the
level of attributes rather than the technology to which
attributes are embedded is cumbersome. For policy rele-
vance, the method is less preferred than its stated pref-
erence choice modeling (CM) counterparts which in-
clude paired comparisons, contingent ranking, contin-
gent rating and choice experiment methods (Hanley et
al., 2001). As stressed by Louviere et al. (2010), choice
experiments are consistent with economic demand the-
ory unlike ranking and rating methods such as con-
joint analysis. Conjoint analysis relies on mathematical
proofs about mathematical representations of rank or-
derings, rather than actual human behavior. These CM
methods proceed in the stages i) selection of attributes
ii) assignment of levels iii) choice of experimental de-
sign iv) construction of chooice sets, v) measurement of
preferences and iv) estimation procedure (Hanley et al.,
2001). While CVM has a longer history, an early em-
pirical application of discrete choice experiments (DCE)
based on aggregate data appeared in the 1980s (Lou-
viere and Woodworth, 1983). In its basic form, DCEs
provide respondents with a series of alternative scenar-
ios which differ in terms of attributes and their levels
and are asked to choose the alternative of their prefer-
ence (Hanley et al., 2001).

Preferences over technology characteristics have been
investigated through various approaches, and the stated
Discrete Choice Experiment (DCE) approach is one of

the leading candidates that allows estimation of these
trade-offs. The other is conjoint analysis, a mathemat-
ical rather than a behavioral representation of choice
(Louviere et al., 2010). These help reveal the “indirect
decision utility”, which in “WTP-space” is the mone-
tized incremental utility gained by a change in an at-
tribute (Train and Weeks, 2005; Ben-Akiva et al., 2019).
The DCEs are widely used to study preferences in var-
ious contexts and fields among them including environ-
mental economics, health policy, marketing, and trans-
portation, where behaviors of interest involve discrete
responses or qualitative choices (Louviere et al., 2008;
Carson et al., 2009; Hanley and Czajkowski, 2019). As
an illustration, DCEs in Kenya have been used to study
trade-offs among insurance linked credit products (Shee
et al., 2021) maize variety traits, (Marenya, et al., 2021),
various livestock attributes (Makokha et al., 2007; Ruto
et al., 2008), disease-free zone attributes (Otieno et al.,
2011) and features of land leases (Otieno and Oluoch-
Kosura, 2019) among other applications.

2.2 Random utility theory and mixed logit

Given the expected heterogeneity in choices among the
population, modeling this heterogeneity would be im-
portant. To perform such modeling, DCE proceeds by
asking respondents to choose between cleverly designed
alternatives assuming that preferences would be revealed
through the choices made out of these alternatives. In
each choice situation, the respondent makes a choice
among J alternatives in a series of 1" choice occasions
(Hensher, et al., 2005). The basis for this approach is
the conditional logit model (McFadden, 1974). It is in
turn related to Lancaster’s theory of consumer choice
which is structured around objective consumer pref-
erences faced by consumers making a choice decision
over fixed characteristics (attributes) of a good. The
theory further assumes that in the presence of multi-
ple goods, in addition to making decisions about the
attributes represented by the good, the goods in the
choice set have more than one attribute, attributes that
can be shared by more than one good in set (Lancaster,
1966). Choices revealed are therefore RUT therefore,
combines basic economic theory with an econometric
specification that utilizes the extreme value distribu-
tion for practical purposes (Manski, 2001). In Random
Utility Theory, the probability that a random person q
choosing ¢ out of the J alternatives offered on occasion
t can be expressed as P(;) = Pt : us(i)us(4), jCt, 7]
with Cy representing the choice set where 7 is the utility-
maximizing alternative (McFadden, 1974; Manski, 2001;
Walker and Ben-Akiva, 2002).
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An individual ¢ drawn at random from the popula-
tion chooses a technology with a set of observed charac-
teristics of the attributes (and may include character-
istics of the chooser) represented by a vector € X. In
RUT modeling, an individual’s utility function can be
separated into deterministic and stochastic components
(McFadden, 1974). The choice made between two op-
tions reveals which choice provides greater unobserved
utility to the chooser (Greene, 2003). Assuming that
out of the J options, individual ¢ chooses ¢ (denoted as
Y;), then in this model, the individual’s utility function
and its related logit probabilities can be written as

Uiq = Viq + €iq, UFV, exiid (1)

Uig = Bxiq + €ig (2)

eBTiq

J
Z eﬁqu
r=1

The non-stochastic utility component v in Eq. 1 rep-
resents tastes represented by a vector of explanatory
variables observed by the analyst while the stochas-
tic component reflects idiosyncrasies of the individ-
ual q tastes revealed in how they make choices across
alternatives indexed j = 1...J and choice occasions in-
dexed t = 1...T (Louviere et al., 2000; Hensher and
Greene, 2003; Carlsson and Martinsson, 2008; Brouwer
et al., 2017). Representative utility is normally specified
as being linear in parameters, thus v;; = fz;4 as dis-
played in Eq.2. Now, if and only if the disturbances are
distributed iid type I extreme value (Gumbel) whose
cumulative density F'(;q) = exp|—exp(—;q)],> 0, this
results in the conditional logit model if x contains only
choice specific characteristics (Greene, 2003). This im-
plies that the error has a variance equal to ?/62 where
is the scale parameter (Swait and Louviere, 1993; Carls-
son et al., 2012). The estimating equation in the condi-
tional logit model (CLM) is shown in Eq. 3 which is es-
sentially the same as a multinomial logit model (MNL).
The expression shows that utility depends on x4; which
may include aspects specific to the individual as well as
those specific to the alternatives (Greene, 2003). The
only difference between CLM and MNL is that the for-
mer is applicable when data represent choice specific,
rather than individual specific characteristics (Greene,
2003).

The observed choice maximizes unobservable utility
and the choice made is only a manifestation of this la-
tent utility (McFadden, 1974; Walker and Ben-Akiva,
2002; Greene, 2003). The model arises because although
¢’s utility is observable to him/herself, it contains ran-
dom components that are unobservable to the analyst
(Hensher and Greene, 2003). Assuming a linear utility

Prob[Y; = |z1, zi2...75]=

function, the error term enters the function additively.
One of the terms in the matrix of coefficients of at-
tributes in the alternatives in the choice set, , is the
estimated coefficient of the cost attribute, , (marginal
utility of income). In many applications, this particu-
lar marginal utility is negative of the estimated coeffi-
cient (Brownstone and Train, 1999). In such a formu-
lation, the marginal rate of substitution 2 between two
attributes x; and =2 characterizing the good would then
be given by the expression dxi/dxs such that the ex-
pression dp/(0x2) = —f2/pp represents the mWTP or
the partworths for attribute 2 (Carlsson and Martins-
son, 2008; Train, 2009; Vermeulen et al., 2011; Kragt
and Bennett, 2012).

However, Eq. 3 is restrictive because the odds ratios
are independent of other alternatives where 2¢% is inde-
pendent of other probabilities, hence the Indeqf)endence
from Irrelevant Alternatives (IIA) property (Hensher
and Greene, 2003; Greene, 2003; Train, 2009). For in-
stance, in a repeated sequence of choices over attributes,
it is expected that the unobserved factors in one period
are carried over into subsequent periods. In other in-
stances, a universally beneficial attribute will attract a
strictly positive mWTP (mWTP € RT) estimate sug-
gesting a non-normally distributed unobserved factor
(Train, 2009). These represent instances in which the
standard logit is deficient in handling. For these rea-
sons, several reformulations including nested logit, het-
eroscedastic logit, and mixed logit (also called random
parameters logit) models have been suggested (Greene,
2003). In mixed logit, the parameters can be allowed
to vary randomly over the individuals, a procedure that
accounts for unobserved preference heterogeneity be-
tween individuals (Brownstone and Train, 1999; Hen-
sher and Greene, 2003; Hensher et al., 2005; Brouwer
et al., 2017).

Formally, this utility function in Eq. 1 can be rewrit-
ten as wjq = Tiq +1MqTiq + €iq such that the random 3,
which comprises the deterministic component of utility
has now been decomposed into a population mean and
a deviation [(8,) =(cy) + 1y4] (Brownstone and Train,
1999; Hensher and Greene, 2003; Train, 2009) . Here,
Niq is a random term with zero mean (Hensher and
Greene, 2003). It represents stochastic deviations that
characterize a decision maker’s preferences relative to
those of the population, therefore random variations
around the parameter means (Revelt and Train, 1998;
Lancsar et al., 2017). Its distribution over individu-
als depends in general on underlying parameters and
can take various forms including normal, lognormal,
uniform, triangular, or even Johnson’s SB distribution

2 It is usually necessary to hold overall utility constant i.e.

(81)1» = [10x1 + B20x2 + ﬁpap = 0)
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(Ghosh et al., 2013; Hensher and Greene, 2003). The
distribution of €;, is iid extreme value independent of
B, which is in turn specified (by the analyst) to have
a density f(8]0) with 0 representing the deep param-
eters of the distribution (Hensher et al., 2005; Huber
and Train, 2001).

This random utility model (RUM) can then be ap-
proximated to any degree of accuracy by a mixed logit
with the appropriate choice of variables and mixing dis-
tribution of the partworths (McFadden and Train, 2000;
Train and Sonnier, 2005; Train, 2009). In Eq. 4, the
probability of observing a sequence of choices from an
individual is conditional on a vector of parameters [
which are a product of conditional probabilities of the
alternatives available to the decision maker (Train and
Sonnier, 2005; Brouwer et al., 2017). Since we are deal-
ing with repeated choice by a decision maker, mixed
logit is a useful choice (Louviere et al., 2000). How-
ever, since 3 is not directly observed, Eq. 4 has to be
integrated over all possible values of £ using their den-
sity function f(8]0) making the probability of the ob-
served choice sequence conditional on the parameters
of this density function (Brouwer et al., 2017). Thus,
the unconditional probability is derived from the inte-
gral in Eq. 5 and is a mixed logit because it is a prod-
uct of standard logits mixed over a density of part-
worths (Brownstone and Train, 1999; Train and Son-
nier, 2005; Train, 2009). This model addresses three
limitations of standard logit by allowing for taste het-
erogeneity, unrestricted substitution patterns and cor-
relation in observed patterns over time (Train, 2009).
The mixed (random parameters) logit model (McFad-
den and Train, 2000; Bhat, 2001; Train and Sonnier,
2005; Train, 2009; Brouwer et al., 2017) which is a pop-
ular model in discrete choice experiments is specified as
Eq.5 given the value of 7;4:

ePariqtniq
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If n is a small scalar, then there exists a continu-
ous function z = (z,s) of dimension 1 x K for some
integer K (observed attributes of alternative i as well
as characteristics s of the decision-maker ¢) such that
x = (x(z1,8),....2(27,8)) for z € Z and s € S . For the
set of choice alternatives C' = z1, ..., zs, an individual ¢
from a population ¢ = 1,.....N may choose alternative
1 out of the J on offer; 8 is a K x 1 vector of parameters
(McFadden and Train, 2000). The unconditional choice
probability py; is the probability that ¢ chooses the al-
ternative ¢ and L; is the conditional choice probability

for the choice set C or the logit probability evaluated
at parameters f3; 6 is a vector of underlying moment
parameters in the mixing distribution characterizing
f(Bl0) (Brownstone and Train, 1999; McFadden and
Train, 2000; Hensher and Greene, 2003) Typically, this
distribution f(.) is assumed to be normal (Brouwer et
al., 2017), although other distributions can be specified
(Train and Sonnier, 2005; Ghosh et al., 2013). When
the response parameter 3 is expected to be of a specific
sign (e.g. negative for a cost parameter), the lognor-
mal or exponential form is usually specified (Louviere
et al., 2000; Hole and Kolstad, 2012). Alternative spe-
cific constants ; can be included in the utility function
and for identification, the no-choice (or another base)
alternative can be normalized to zero such that 5 =0
(Lancsar et al., 2017). Added as a random parameter
interacting with attributes of the technology it can in-
duce a distribution about the mean providing a means
for revealing preference heterogeneity in the sampled
population (Ghosh et al., 2013).

Parameters are assumed to be randomly distributed
across individuals (Ghosh et al., 2013). This mixed logit
probability is the weighted average of the logit for-
mula evaluated at different values of the parameters; f3,
weighted by the density f(5]6), unlike standard logit
where this mixing distribution is degenerate at fixed
parameters (Hensher et al., 2005; Train, 2009). Here,
0 refers collectively to the parameters of this distribu-
tion: the mean, covariance of the § coefficients (Train,
2009). In this formulation, the probability of the ob-
served sequence of choices conditional on knowing ;.5
then given by s,(8,) = H?Zl Lyi(q,t)t(Bq) in which
i(g,t) represents the alternative made by individual ¢
on choice occasion t; representing a situation where in-
dividuals are faced with several (T") choice sets to choose
from (Revelt and Train, 1998; Hole, 2008). Here, s4(5;)
is an unbiased estimator of the unconditional P;,(6)
and is twice differentiable (Revelt and Train, 1998).

Estimating by maximum likelihood the model whose
log-likelihood is given as LL(0) = X,_Vinp,0 is diffi-
cult since the integral in Eq. 2b is impossible to solve
analytically (Revelt and Train, 1998; Brownstone and
Train, 1999). It is, therefore, is simulated via maximum
simulated likelihood (Revelt and Train, 1998; Bhat, 2001;
Hole, 2008). A Bayesian approach that uses Markov
Chain Monte Carlo methods with the Gibbs sampler
would still provide comparable results from panel data
as that contemplated in this study (Huber and Train,
2001; Elshiewy et al., 2017). The simulated log-likelihood
is thus defined as:

SLLy1.(6) -
(6)
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Here, given repeated choices, the probability is sim-
ulated by drawing S from its distribution R times, and
the logit formula calculated for each occasion and the
product taken and averaged over the R draws (Brown-
stone and Train, 1999; Train and Sonnier, 2005; Hole,
2008;Train, 2009). The result is the appropriate choice
probability. Unlike the conditional logit, mixed logit
yields a mean and a standard deviation across the sam-
ple, hence the alternative name, random parameters
logit.

2.3 Choice of biodigester attributes and design of the
discrete choice experiment

Selection of biodigester attributes: Biodigesters come in
many designs but three basic designs are reported as
the floating drum, fixed dome, and the inflatable tubu-
lar (plug-flow) type (Nzila et al., 2012). All these de-
signs also have peculiar attributes in terms of their per-
formance parameters as well as more observable char-
acterizations such as their expected service life, their
cost, and even some seemingly benign attributes such
as portability. Comparatively, a fixed dome design has a
complicated and costly installation process when con-
trasted with the more modest installation costs of a
tubular digesters. However, this high cost of construc-
tion is countered by high maintenance costs of tubular
designs since the latter may require periodic replace-
ment of the polythene material (Nzila et al., 2012; Ra-
jendran et al., 2012). Generally, while these systems can
be characterized by many attributes, some may appear
to be more important than others.

In 2018, a series of focus group discussions (FGD)

with farmers, BCE technicians, entrepreneurs, researchers

and policy makers were conducted. From these discus-
sions, a list of 22 important attributes were identified
3. Coupled with the FGDs, literature reviews comple-
mented information about the levels with which these
attributes could be described. From these list of 22,
nine of the most important biodigester attributes were
isolated and retained. This exercise was conducted by
technical staff of the Kenya Biogas Program in Nairobi.
A pilot exercise was subsequently implemented to rank
these attributes. Mailu et al. (2019) describe the rank-
ing exercises conducted in 2018 by a heterogeneous group.
This group consisted of 59 undergraduate students from
Moi University, 70 researchers from the Kenya Agricul-
tural Research and Livestock Organization and 14 of
the FGD participants. Of the retained attributes sub-
jected to the ranking exercise, they were ranked in the

3 Due to space limitations, the interested reader can find
more details about the process used in deriving the attributes
and their levels here: https://ssrn.com/abstract=3598610

following order of importance i) amount of gas produced
ii) installation cost, iii) durability, iv) maintenance cost,
v) reliability, vi) portability of the biodigester, vii) gas
pressure, viii) the consistency of producing gas ix) abil-
ity for one to detect defects. An important result from
this ranking exercise was that though conducted by a
heterogeneous group, there was significant consistency
in the order in which they ranked these attributes.

From the nine attributes reported, further process-
ing led to their reduction to six. Some were merged as
it turned out that they spoke to the same aspect of the
attributes i.e. while technically independent, it is not
possible to present some attributes unambiguously as
truly independent attributes in the context of a choice
experiment with farmers. Below is an account of how
attributes were reduced from nine to six.

Gas production is a very important consideration,
being the main reason why a person would consider
having a biogas plant in the first place. Gas produc-
tion may be dependent on the size of the biogas plant
since larger plants accommodate more feedstock for the
anaerobic process (Muriuki, 2014). This is an attribute
that can be represented by the cost of installing the
plant. Larger plants ceteris paribus will require more
material to construct and therefore entail larger instal-
lation costs. Gas production and installation cost were
the highest-ranked attributes in terms of importance,
and this closeness might reflect this similar latent at-
tribute (Mailu et al., 2019). Moreover, gas production
also depends on the optimal conditions that facilitate
the anaerobic process (hydrolysis, acidogenesis, aceto-
genesis, and methanogenesis) which produces methane
gas. These suitable conditions include pH, tempera-
ture, substrate, loading rate, hydraulic retention time
(HRT), C/N ratio, and mixing (Rajendran et al., 2012).

Pressure on the other hand may also have a sig-
nificant association with environmental conditions too.
Some digester types such as the tubular digester may
produce gas at variable pressure (Rajendran et al., 2012),
while in others such as the floating drum, gas has rel-
atively constant pressure (Nzila et al., 2012). Besides,
the gas from the floating drum biodigester has higher
chances of escape, especially if the system is not well
maintained, thus compromising pressure buildup (Bruun
et al., 2014). Yet, from the accounts of many authors,
poor maintenance of these biodigesters is a recurring
observation. Improper feeding of the biogas plant with
wrongly constituted feedstock/water mixture reduces
gas production and thus the buildup of pressure in
the system. Besides, temperature, pH, and other condi-
tions determine the efficiency of the anaerobic process
and thus, the buildup of gas pressure. Moreover, while
pressure is well understood, translating pressure units
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(bars) to respondents in a real choice situation was dif-
ficult. For these reasons, the attribute (pressure) was
dropped since although partly dependent on the tech-
nology design, it also has significant interaction with
environmental and day to day management variations.

Just as with pressure, gas consistency may also de-
pend on the same environmental variables. Secondly,
gas consistency and reliability speak towards the same
underlying latent quality. The original description of
the attribute was “Assuming the same substrate, some
systems might not be consistent, while others might be
more consistent from day-to-day”. This suggests an as-
pect of reliability. Gas consistency was therefore dropped
in favor of reliability which can be presented more easily
and in more relatable units.

In all, it was felt that used together, gas pressure,
gas consistency, and gas amount may introduce split-
ting bias (Hamaéldinen and Alaja, 2008). To a non- ex-
pert, in a DCE setting, these may appear to be sub-
attributes of the same or closely related latent quality.
For instance, when gas is produced from an optimal en-
vironment, pressure is expected to rise. Disentangling
the pressure buildup associated with the optimal envi-
ronment from that due to the specific biodigester de-
sign would require significant effort. In fact, amount of
gas (cause) results in pressure buildup (effect). A ca-
sual observation also revealed that even among those
who owned biodigesters, few would immediately tell
how many units of gas they produced in a given day.
The best they could do was observing how much pres-
sure seems to have built up to give them an idea of how
much gas was available. However, this is only observ-
able if the biodigester in question is of the plug-flow
(e.g. flexi-biogas) design. Luckily, in a DCE setting, the
inclusion of cause-effect attributes may not alter pa-
rameter estimates as the “cause” and “effect” attributes
absorb each other’s effects (Blamey et al., 2002). How-
ever, the difficulty in presenting these three attributes:
gas pressure, gas amount and gas consistency unam-
biguously led to their absorption in other closely related
attributes.

Design of the discrete choice experiment: For this dis-
crete choice experiment, the J alternatives are biodi-
gester plants presented as choice profiles over six at-
tributes viz: installation cost, reliability, durability, main-
tenance cost, movability /system portability, and ease
of identifying system defects. The attribute: mainte-
nance cost was described in the “imprecise” qualita-
tive points as low, moderate, and high. Johnston et al.,
(2017) have suggested that such descriptors need to be
avoided. However, in most of the descriptions around
this attribute, most authors have used such categoriza-

Table 1 Attributes and levels included in the DCE

Attribute Levels
Durability 2-5 years, 12-15 years, 15-20 years
Reliability 145 days , 335 days, 345 days

40 percent, 92 percent, 95 percent
Low, Moderate, High

Immovable, Movable

Easy, Difficult

65,000 Ksh, 92,500 Ksh, 102,000 Ksh

Maintenance cost
Movability

Defect identification
Installation cost

tions, rather than give precise estimates of how much
low/high descriptors portray in an objective way (e.g.
Nzila et al., 2012; Cheng et al., 2014). Talevi et al.
(2022, In Press) for example in their labelled alterna-
tives used the prefix low / high to describe the main-
tenance cost attribute. Kabyanga et al. (2018) were
only able to estimate biodigester maintenance costs,
ex post from their CVM based study. Few exceptions
do exist where maintenance costs have been estimated
for use in such an exercise. Unlike maintenance costs,
biodigester installation costs were monetized in Kenya
Shillings. This cost reflects the cost of an 8 cubic meter
biodigester. The reason for this choice was that 8m3
is the most common volume installed by farmers who
own biodigesters in the country. Reliability on the other
hand was represented by the number of days in a year
(and for greater clarity, as a percent). Durability was
presented in years while portability was described as
either possible or impossible. Defect identification was
either easy or difficult. These attributes and their levels
are presneted in Table 1.

Granted the six attributes with levels ranging from
two to three, the next stage involved combining these
into an efficient experimental design. These six attributes
in a full factorial design would require 223* = 324 com-
binations. For example, offering these as a pair of two
alternatives would require (324323)/2=>52326 pairs in
total or if in triples, 34884 combinations. This large
number of alternative combinations suggested the need
to combine them into a smaller set of alternatives. That
is, from this full factorial, choosing an efficient design
from which the main effects can be estimated (Lou-
viere et al., 2000). Efficient designs are characterized
certain criteria i.e. level balance, orthogonality, mini-
mum overlap and utility balance (Huber and Zwerina,
1996). Typically however, some of these criteria are in
conflict such that fulfilling one necessitates disregarding
another. The interest, being to obtain precise estimates
from a small subset of the full factorial requires that this
subset be designed. Precision of coefficient estimates is
given by the variance-covariance matrix {2 of the coeffi-
cients which in turn is a function of 5. There are differ-
ent methods of calculating the size of the matrix which
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leads to different efficiency measures which include D-
efficient designs, A-efficient designs and S-efficient de-
signs (Bliemer and Rose, 2011). Another more recent
design is the c-optimal design (Vermeulen et al., 2011).
In this study, the more common D-efficient design was
chosen. Here, the idea is to minimize the D-error de-
fined by the expression |£2|'/% which is an inverse of
D-efficiency. Here, K is defined as the number of pa-
rameters to be estimated. As suggested by Carlsson and
Martinsson (2003) a D-optimal design based on param-
eter priors is better than one with zero priors which
in turn performs better than an orthogonal design. An
orthogonal design in fact would by design contain dom-
inant alternatives, thereby yielding different parameter
estimates (Bliemer and Rose, 2011).

The minimum number of choice tasks S was also
determined using the expression (J — 1)S > K where
K = 10 is the number of parameters, and J=4 is the
number of alternatives (Rose and Bliemer, 2013). This
guideline is based on the requirement of at least as
many data points as there are parameters to estimate
(Greiner et al., 2014). Providing respondents with four
alternatives and given the 10 parameters to estimate,
this evaluated to (4-1)410. This therefore indicated a
minimum of four choice tasks. Given these above, the
study sought to develop a matrix composed of 16 choice
sets in 2 blocks of 8 choice tasks per respondent.

The next step involved estimation of priors for use in
constructing the design. A conditional logit model was
therefore performed on data from the ranking exercise
reported by Mailu et al. (2019). This was done by taking
the top ranked profile by each of the the 84 researchers
and FDG participants as indicative of preference. This
estimation yielded the priors (8): -0.00000699 (installa-
tion cost), -0.72 (low reliability), -0.31 (high reliability),
-0.96 (low durability), -0.78 (high durability), 0 (low
maintenance cost), -0.57 (high maintenance cost), 0.45
(movable plants), 1.14 (ease of defect identification) and
0 (constant).

These priors were subsequently used as part of the
input for constructing a D efficient design. This in-
volved instructing the algorithm by specifying a de-
sign with 16 choice sets, with each set composed of 3
real valued profiles and an opt out. Including an opt-
out option was included as one of the alternatives to
avoid a forced-choice situation and also increase real-
ism (Lancsar et al., 2017; Campbell and Erdem, 2019).
Doing so also allows the estimation of true demand,
rather than conditional demand models (Louviere et
al., 2000). Adding such a constant in the analysis im-
proves overall fit and allows the modeling changes to the
‘no choice’ alternative (Kamakura et al., 2001; Ghijben
et al., 2014; Ryan and Skéatun, 2004). This alternative

specific constant (ASC) allows the estimation to pick
up preferences not captured in the set of alternatives
offered (Kragt and Bennett, 2012). Since there were no
strong theoretical or empirical grounds to include in-
teraction effects, the design was optimized for 10 main
effects. These were the four attributes of three levels
each (8 main effects) and two attributes carrying two
levels each (2 main effects). The design was also blocked
so that no respondent would be presented with the full
complement of 16 choice sets. This resulting design de-
veloped was based on a computerized search algorithm;
the modified Fedorov algorithm (Carlsson and Martins-
son, 2003). While the design was based on the condi-
tional logit model, it is also efficient for the random pa-
rameters logit (Carlsson and Martinsson, 2003; Bliemer
and Rose, 2010; Vermeulen et al., 2011; Greiner et al.,
2014). From an initial design randomly drawn from a
full-factorial design, the algorithm iteratively exchanges
alternatives until it is impossible to reduce D-efficiency
any further (Carlsson and Martinsson, 2003). These pri-
ors yielded a D-efficiency=2.39 for a design composed
of 16 choice sets, each inclusive of an opt-out offered in
two randomized blocks.

This represents in total, 64 rows (i.e. four alterna-
tives in each of 16 choice sets). Of these, there were
48 real valued choice sets and 16 opt-outs. The alter-
natives offered to respondents were unlabeled (generic)
rather than labelled alternatives as expected from an
alternative-specific design (Louviere et al., 2000). A phys-
ical check was made to ensure that none of the pro-
files selected by the algorithm was strongly dominant.
For instance, a relatively cheap to install (65,000 Ksh),
cheap to maintain (low maintenance cost), reliable (345
days), durable (15-20 years) biodigester, which provided
easy defect identification and was portable would be
such a dominant set. However, such a profile did not
appear in any of the choice sets included in the design.

However, for greater flexibility, these attributes were
dummy coded and the algorithm ran a second time. A
major reason for this is the caution offered some au-
thors about misspecification errors (Bliemer and Rose,
2010). It was considered that the ranking tasks leading
to these data used for estimating the priors were per-
formed by researchers (not a very similar constituency
to farmers). Therefore, their use would introduce some
misspecification error. Applying zero priors on the other
hand yielded a D-efficiency=2.85. However, given that
Specification of zero priors was used instead as by look-
ing at these two estimates, they do not look very differ-
ent from each other. The design though not orthogonal
(there were 4 attributes with 3 levels and 2 attributes
with two levels) is still efficient. The resulting design
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was saved in a worksheet and used as input in the sam-
ple size calculation.

While deploying these choice sets, the cost attribute
was randomly placed in the first position in half of the
questionnaires and last in the other half. Doing so was
designed to control for any ordering effect that may oc-
cur if respondents attach undue weight on the cost at-
tribute when it appears prominently (first) among the
list of attributes under consideration. As alluded else-
where, the cost of installing biodigesters is probably the
most prominent of reasons why would-be adopters keep
away from the technology. This repositioning of the at-
tribute has been found in a random effect probit model
to influence the weighting of the cost attribute vis-a-vis
other variables (Kjeer et al., 2006).

The questionnaire and all tools were translated by
a translation firm from English into three other lan-
guages namely Kikuyu, Kamba, and Swahili. This is
because of the possible different language preferences
that one would encounter in the field. Experience has
indicated that respondents prefer to be interviewed in a
language they are most comfortable with. The question-
naire was transcribed into a computer-assisted personal
interviewing software through which the formal inter-
view would be conducted. With the software chosen
(ODK), it was possible to seamlessly incorporate GPS
location, the skip logic, and other features to ease data
collection. A pretest conducted on the tool was con-
ducted with enumerators allowing them to get the feel
of the tool. Also, they were allowed to test the question-
naire among themselves, their friends, and neighbors.
In addition to the questionnaire, enumerators were also
provided with pictorials which featured different biodi-
gester designs. These were designed to highlight fea-
tures of the different designs. This was important, es-
pecially for any respondent that had not seen these dif-
ferent designs.

2.4 The study site, sampling, and study participants

General characteristics of the study area The present
study was part of a work package nested within a larger
research project “Optimizing small-scale biogas tech-
nology for household energy and improvement of soil
fertility within coffee-dairy production systems in Ki-
ambu and Machakos Counties”. For this reason, Ki-
ambu and Machakos were purposely selected for pur-
poses of the study. These counties are divided into sev-
eral agro-ecological zones. The main and marginal cof-
fee zone; Upper Midland (UM2 and UM3) respectively
are both represented within these counties (Jaetzold et
al., 2010a; 2010b). These are zones which receive be-
tween 800-1300mm of rain annually. In Machakos, the

area under UM2 is rather tiny. Land sizes are much
smaller in Kiambu than Machakos, with less than 1ha
per farm household. The UM2 and UM3 classification
gives rise to almost similar agricultural production ac-
tivity. As is typical of market oriented smallholder coffee-
dairy systems, a range of crops are planted within these
farms (Ortiz-Gonzalo et al., 2017). Apart from coffee,
maize and bean intercrop as well as banana are a com-
mon feature. Others include irish potato (mainly in Ki-
ambu) and macadamia nuts, avocados, mangoes, guavas,
and passion fruits. On many of these small farms, coffee
may cover half of the farm area (Ortiz-Gonzalo et al.,
2017).

Livestock keeping in the zone is also important and
livestock ownership is widespread where between 70
and 85 percent of farmers keep dairy animals (Lekasi
et al., 2001). These animals are kept under different
systems: free range, semi zero and zero grazing. Ani-
mals are grazed (free range) where land sizes are larger
but the more intensive cut-and-carry system (zero graz-
ing) is practiced in areas where fodder availability is
constrained by small land sizes. For farmers keeping
livestock under the cut-and-carry system, napier and
crop residues are major feed sources (Bebe et al., 2003).
On such farms, a third of the area may be devoted
to own fodder production (Ortiz-Gonzalo et al., 2017).
Sometimes, especially in Kiambu, farmers may rely on
purchased fodder to supplement own produced fodder
(Lekasi, et al., 2001). It has been established that in the
more densely populated and dairy intensive Kiambu,
an inverse relationship exists between land size and the
number of livestock kept (Lekasi et al., 2001). This sug-
gests that high stocking rates and intensive cropping
may require important soil fertility inputs in order to
reduce nutrient mining. Biodigester technology utilizing
manure from the dairy enterprise is one of the secondary
motivations for farmers adopting the technology in Ki-
ambu as it allows nutrient recycling within the farm
(Muriuki, 2014).

Sample size The appropriate sample size was estimated
by using the priors indicated elsewhere above. The es-
timated sample size is a lower bound for finding a sta-
tistically significant (pj0.05) estimate for particular pa-
rameters f3;, for each j attribute (Rose and Bliemer,
2013). The estimation was implemented using the R
script provided for such estimation (de Bekker-Grob et
al., 2015). To estimate sample size, this script uses the
expression;

;> (R (7)
In this expression, §; is a prior parameter estimate

for attribute j and se its standard error while 1.96 is



12

Stephen Mailu et al.

the t-ratio. This expression is derived from the con-
dition B;(se,(5;)1.96) which allows one to state with
certainty pj0.05 that the parameter estimate obtained
from such sample size will be different from zero (Rose
and Bliemer, 2013). The respective priors used in the
design stage of the DCE yielded sample sizes of 165,
11, 78, 6, 14, (Inf), 19, 34, 6, and (Inf) respectively.
These are theoretical lower bounds of the sample size
for finding a significant effect for respective parame-
ters. This result suggested that assuming a conditional
logit, a sample size of at least 165 respondents was re-
quired to obtain the desired power 1- of 0.8 for finding
an effect when testing at a confidence level « of 0.05.
Low maintenance cost and the constant were entered
as zero priors since these coefficients were not signifi-
cantly different from zero (pj0.2) in the conditional logit
model. Therefore, they would require infinitely large
sample sizes. Likewise, installation cost and high reli-
ability had p-values greater than the usual benchmark
(pj0.05). Installation cost was retained for the practi-
cal reason that dropping such an important attribute
would jeopardize mWTP calculations. Including these
zero priors yielded sample sizes as large as n=582 (low
maintenance cost) and over n;9000 for the constant.
The particular R script was designed for the conditional
rather than a mixed (random parameters) logit. Since
the design was optimized for conditional logit, using
the largest lower bound sample size n=165 to estimate
parameters using a different model could herald a loss
of statistical efficiency (Bliemer and Rose, 2010). How-
ever, Bliemer and Rose (2010) simulated sample size
estimations for case studies featuring different number
of attribute and level combinations and alternatives.
They also optimized these for conditional / multino-
mial logit, cross-sectional mixed logit and panel mixed
logit. The lower bound sample sizes for the conditional
logit were typically larger than those of the panel mixed
logit (Bliemer and Rose, 2010). Therefore, to achieve
similar level of statistical significance this lower bound
of n=165 was deemed adequate for estimating a mixed
logit.

A sample size of 582 for example translated into a
budget which was 27 percent greater than what was
available for research. Therefore, a judgment call was
made considering resource availability. A sample size of
n=480 respondents was estimated heuristically. It was
considered adequate as this is greater than the largest
(n=165) estimate obtained from the informative priors.
For DCEs, Johnson et al. (2013) indicate that precision
increases rapidly for sample sizes nj150 and levels out
at n=300. Therefore, a sample size of n=480 was con-
sidered adequate as it is greater than the calculated
n=165; a lower bound.

Sampling: A sampling frame covering both dairy-coffee
farmers was unavailable. First, it is probable that close
to 70 percent of farmers would integrate crop and dairy
farming (Bebe et al., 2003). Secondly, all active coffee
farmers in a given location are registered through their
farmer cooperative (FC) which is in turn linked to the
nearest coffee factory. Thus, a sample obtained from all
coffee farmers may also capture a sizable percentage of
farmers who integrate coffee with dairy farming. Each
of these FCs operates within a geographic area and ser-
viced by a coffee mill. Large FCs on the other hand may
run several coffee mills. Therefore, rather than sample
coffee mills, the study settled on the FC as the primary
sampling unit.

A list of all farmer cooperatives active in both Ki-
ambu and Machakos was procured from the Coffee Di-
rectorate. Information from this list indicated that Ki-
ambu and Machakos respectively have a total of 22
and 33 coffee cooperatives. Inactive cooperatives were
dropped as it is assumed that these farmers were prob-
ably not likely to be involved as coffee-dairy producers.
Kiambu had one inactive cooperative while Machakos
had seven. In total, Kiambu had 55,658 active members
while 60,887 active members.

Using the FC as the Primary Sampling Unit (PSU)
at stage 1, six farmer cooperatives were selected from
each County. In Kiambu, selected cooperatives included

3GS FCS, Gititu, Komothai, Ndumberi, Gitwe and Muhara.

In Machakos, selected farmer cooperatives were Muthun-
zuuni, Kaliluni, Ithaeni, Mungala, Mwatati, and Kawethei.
As stage 2, 40 households were then randomly selected
(without replacement) from each of the cooperatives
selected at stage 1. Six enumerators were subsequently
recruited for the survey. The criteria for their selection
included academic qualifications (at least a Bachelors’
degree in a social science discipline) and previous survey
experience. Being a resident of the sub-locations where
the sampled farmers were drawn was another require-
ment since it would almost ensure that enumerators
were comfortable in the language of the interview. Trav-
eling from their home for the interviews would ensure
that they are not in a rush at the end of the day. They
were subsequently invited for 2-day training and brief-
ing sessions held at the Waruhiu ATC farm in Githun-
guri during August 2019. Some of the topics covered at
the briefing included a background on biodigester tech-
nology as well as the basics of choice experiments in-
cluding how the sample had been arrived at. They were
also provided with tablets and instructions on how to
handle the interviews, replace households that are not
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Fig. 1 Kiambu and Machakos Counties and distribution of respondent households

traced during the interview among other relevant logis-
tics.

3 Results
3.1 Sample summary

In September 2019, following training and piloting the
survey instrument, a team of six experienced enumera-
tors (two females, four males) administered a question-
naire in either of the languages Kikuyu (32%), Kamba
(45%), Swahili (6%) or English (17%). Respondents
chose the language with which they preferred the in-
terview to proceed. While 480 was the target, a total
of 455 households were interviewed during the survey
period which took place between 2 and 19 Sept 2019.
This represents a response rate of 95%. The resulting
data yielded 8 x 4 x 455 = 14560 rows of choice data.
However, in the end, some of the respondents did not
attend to the choice questions or skipped some of these
representing 3% attribute non-attendance. The 552 rep-
resents individual choice profiles that were skipped or
not answered, therefore differentiating these from the
opt-out, a valid choice. The resulting dataset represents
14560-552=14008 rows of usable data for the choice ex-
periment. This represents a choice task completion rate
of 96% for respondents that were interviewed and ;10
cases per independent variable. There were 3502 com-
pleted choice tasks in total. A map showing the distri-
bution of respondents captured in this study is shown
in Fig 1.

From the data, respondent households were resident
at altitudes between 1326 and 1975m asl which covers
a substantial dairying zones. Given the way the sam-
ple was derived, virtually all respondents grew coffee
but ruminant livestock owning households comprised
67 percent of the sample. On average there were 1.3
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Table 2 Summary statistics

Variable Unit Min Max Mean StDev
HH size No 1 15 4.7 2.2
Age
<40 yrs 0 1 0.18 0.38
<30 yrs 0 1 0.13 0.33
40-60 yrs 0 1 0.4 0.49
60> yrs 0 1 0.41 0.49
Education
No educ percent 9.7
Primary percent 41.6
Secondary percent 39.6
Post secondary percent 9
Fuel
Purchase prop 0 1 0.25 0.43
Collect s prop 0 1 0.49 0.50
Purchase,, prop 0 1 0.36 0.48
Fuel prop 0 1 0.34 0.47
TLU No 0 11.8  1.28 1.48
Owning TLU Percent 33.3
Elevation masl 1326 1975 1702 149
TLU own Prop 0 1 0.67 0.47
Respondents No 455
Completed No 440
Completed tasks No 3502
Datapoints No 14008
Certainty Percent 15 100 68 16

Tropical Livestock Units (TLU) per household rang-
ing between zero (0.32 LUs considering only households
owning ruminant livestock) and 11.8 TLUs. While ru-
minant livestock ownership has been the main target
constituency for biogas, other livestock such as poultry
can indeed be a source of feedstock. However, although
a majority of households own poultry, given the cur-
rent numbers reared and the production system under
which production takes place, it makes this source of
feedstock unlikely.

Interviewed respondents were aged between 17 and
96 years with an average of 55 years. Eighteen percent
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of the household heads were below 40 years of age while =~ Table 3 Tetrachoric correlation coefficients among socioeconomic

40 percent were aged between 40 and 60 years, an age  variables

bracket associated with a higher likelihood of adopting -

biodigesters in Kiambu (Muriuki, 2014). Only 10 per- Hisize Fuel —~ Bduc  Youth TLUs Elev

cent had not attended any formal schooling (Table 2). HHsize 1.00

Whereas none of those interviewed had a biodigester Fael (()Oggg) 100

plants, 70 percent responded concerning their current (0.01) (0.00)

fuel sources. Of these, 25 percent purchased firewood Educ 0.02 -0.17* 1.00

while 49 percent collected firewood just as a similar (0.02)  (0.19)  (0.00)

fraction purchased charcoal. Respondents were also al- Youth 'g'gg* _?).851)* '8'35 1(')080

lowed to indicate the certainty with which they thought TLUs (()_67*) _(0:02) —(0:462 _(0_'112 1.00

of their answers. On average, respondents had 68 per- (0.01)  (0.01) (0.01)  (0.01)  (0.00)

cent confidence in their responses where less than 1 per- Elev 0.016 -0.091*  0.09*  -0.08* -0.07* 1.00
(0.01)  (0.01)  (0.02) (0.02) (0.01) (0.00)

cent had no confidence in their responses while 7 per-
cent had complete confidence in their choices. The re-
sults in the following sections have to be reviewed with
the level of certainty with which the respondents had
about their choices. About 20 percent had a certainty
of 50 percent or less in their choices.

Educated (1=household head has some formal schooling, 0 oth-
erwise) Household size (1= household has more than 5 persons,
0 otherwise); youth (1=respondent age j 35 years, 0 otherwise);
Fuel (household reports £0 expenditure on firewood, charcoal or
paraffin, 0 otherwise); TLUs (1=household has cattle at present,
0 otherwise); Elevation (1=household located less than 1500m asl,

* indicates

3.2 Model fitting

This analysis is based on estimation sample consisting
of 3502 usable responses. From this data, a conditional
(fixed-effects) logistic regression (Eq. 3) employing only
the six biodigester attributes (and the Alternative Spe-
cific Constant (ASC) as well as the ASC x block and
ASC x price position interactions) was estimated as the
“base” model (M1). All coefficients except for “low”
maintenance costs had the expected sign. The sign on
the ASC was negative and significant (p = 0.000). From
these models, the non-significance (p = 0.847) of the
block parameter suggests that there were no significant
differences in the two sets of questionnaires i.e. no block
effect exists. Similarly, no significant effect (p = 0.616)
from the positioning of the cost attribute within the
offered alternatives was found. Nor was there a signif-
icant (p = 0.319) effect when the position of the cost
attribute was interacted with the level of cost.

Next, additional covariates representing the socioe-
conomic variables were considered (M2). The variables
household size, herd size (TLU), fuel expenditure, age
of household head, and education level were considered
as possible covariates. Their inclusion is based on re-
sults from studies which suggest the