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Abstract The diffusion of biodigester technology can
contribute support towards the achievement of the global

goals brokered under the auspices of the United Na-
tions. They have been promoted among farmers but low
adoption remains a challenge. Meanwhile, since biodi-

gesters come in different technical designs, they have
corresponding performance attributes. While theory sug-
gests that potential adopters trade off these attributes,
information about these tradeoffs is currently unavail-

able. Developing an understanding of how a potential
adopter trades-off these attributes can reveal impor-
tant information which technology developers and in-

formation providers should consider when promoting
the technology.

After presenting the underlying random utility frame-
work, a choice experiment (CE) was designed. Six at-
tributes in the CE describing the technology included

its installation cost, reliability, durability, maintenance
cost, movability, and ease of defect identification. Based
on the modified Fedorov algorithm, an efficient design

was constructed. This resulted in 64 hypothetical al-
ternatives in total, split into 2 blocks and presented as
a series of 8 choice tasks per respondent. Each choice
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situation had an opt-out alternative and three generic
choice profiles.

A random sample of 455 coffee farmers from Ki-

ambu and Machakos provided data used in the analysis.
Estimation was implemented through application of a
mixed logit model. Results suggested that respondents
were willing to forego a cost of 8,400KES for easy de-

fect identification. This suggests the desirability of cou-
pling individual biodigester units with IoT-based sensor
instrumentation. This can enhance the continued func-

tioning of biodigesters and stimulate the adoption of the
technology leading to reductions in on-farm methane
emissions.

Keywords Choice experiment, · mixed logit ·
adoption · biodigester defects

1 Introduction

Small scale domestic biodigesters appeal as options for
reducing the reliance by farmers on biomass fuels, re-
ducing health-related impacts of such fuels while at
the same time reducing GHG emissions (Somanathan
and Bluffstone, 2015; Van de Ven et al., 2019). De-
spite these embedded benefits, observed adoption of

the technology has been low. One of the main reasons
given for this low adoption have been credit and liquid-
ity constraints faced by potential adopters (Bond and
Templeton, 2011; Mwirigi et al., 2014; Muriuki, 2014).
This has prompted studies which assess biodigesters
for their economic feasibility. From studies conducted
in Ethiopia and Uganda, the general conclusion is the
biodigesters are economically feasible. Walekhwa et al.
(2014) is one such study which shows that biodigesters
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are economically feasible1. But economic feasibility is
only a necessary condition for adoption. To afford a
biodigester is always necessary, but not sufficient for
one to become an adopter. Other intrinsic considera-
tions such as preferences of the decision maker, their
attitudes, and perceptions towards the choice situation
also come into the decision making process (McFadden,
1999). Therefore, information about the technology is
at the core of creating beliefs and perceptions about
biodigesters, which are in turn important in the deci-
sion process.

Ten years ago, less than 2000 Kenyan households
used biodigesters for their energy requirements. Com-
paratively, there were over 30 million in China, 3.8 mil-
lion in India and 0.2 million in Nepal (Rajendran, et
al., 2012). Nepal, whose human population is about
three fifths the size of the Kenyan population had over
300,000 biodigesters by 2015 (Meeks et al., 2019). This
rose from 140,000 biodigesters which had been installed
by 2009 (Gautam et al., 2009). This is a coverage of
about 4% of the households compared to Kenya whose

comparative coverage is less than 0.2% (KNBS, 2018).
This difference can be attributed to the strong sup-
port provided by many of these Asian country gov-

ernments as well as accumulated technical knowledge
about biodigesters (Bond and Templeton, 2011).

The technology features a suite of different designs.

The fixed dome developed in China and floating drum
developed in India are among leading designs globally.
The plug flow biodigester is the third type of design and
unlike the former two, is built over the ground, mak-

ing it portable. This latter design features a reinforced
plastic digester bag, in place of the digester consist-
ing of masonry work in the other designs (Sovacool et

al., 2015). Generally, biodigesters have attributes which
distinguish them apart. Besides the operating param-
eters (pH, temperature, hydraulic retention time, or-
ganic loading rate and feeding mechanism), the type
of biodigester, including materials used determine bio-
gas (methane) yield (Obileke et al., 2020). For instance,
given the fluctuating temperatures above ground, de-
signs which feature underground construction may yield
more gas (Obileke et al., 2020). Some designs can be
fed with both fibrous and non-fibrous feedstock while
others can only suitable for non-fibrous feedstock. Oth-
ers have a longer lifespan while others (especially the
portable types) have a shorter lifespan. Nzila et al.
(2012) for example provide an overview where they con-

1 This study uses the NPV criterion and as an indivisible
technology with sufficient sunk costs, it is possible that a real
options investment approach (ROA) could suggest otherwise.
At least, studies applying the ROA in the USA and Canada
suggest that NPV is only a necessary but not a sufficient
condition to trigger adoption of biodigesters.

trast these designs against each other. From their multi
criteria sustaibnability assessment, they concluded that
the plug flow design was the most sustainable design for
Kenya despite its low score in terms of reliability.

Takama et al. (2012) in Ethiopia found that gen-
erally, the choice of cooking stove was also dependent
on product specific factors. These included the price
of the stove, its use costs, and their ability to reduce
indoor smoke. From a randomised controlled trial in
Bangladesh, Miller and Mobarak (2015) reported that
readily observable attributes of a cook stove may deter-
mine its eventual adoption. A recent study in India in-
dicates that fuel efficiency and ability to reduce indoor
smoke are attributes that attract potential adopters to
biodigesters (Talevi, et al., 2022, In Press) However,
the willingness to pay (mWTP) for biogas systems, like
many improved cook stoves is typically lower than their
market price. For instance, for the plug flow biodigester,
Kabyanga et al. (2018) in Uganda found that the cost
of installation was 10 times larger than the mWTP for

these systems. In Nepal, Thapa et al. (2021) estimated
mWTP values which were 0.8 times the size of the cost
of an installation of the fixed dome design.

In Kenya, authorities have disseminated a single de-

sign in the past (Laichena and Wafula, 1997). This has
mainly been the fixed dome design. Such standardiza-
tion has been recommended by others (e.g. Mwirigi et

al., 2014), arguing that it makes quality control eas-
ier. Meanwhile in Nepal, the Gobar Gas and Agricul-
tural Equipment Development Company (GGC) mod-

ified the Chinese fixed dome design and introduced it
as the accepted model in Gautam et al. (2009). This
was the GGC 2047, which consists of an underground
fermentation chamber atop which sits the dome for gas

storage. This is similar in many respects to the CAR-
MATEC design from Tanzania. Nontheless, in Kenya,
as in other African countries, there has not been much

structured and sustained analysis to provide scientifi-
cally backed recommendations about which attributes
are of great interest to users (Mulinda, et al., 2013).
While dissemination of biodigester technology operates
from the Energy Centres distributed across the coun-
try Laichena and Wafula (1997), empirical observations
are that their actual coverage is not enough for the en-
tire farmer population (Mwirigi et al., 2009). In fact,
in the Kenyan rural landscape, different designs coexist
(Muriuki, 2014). The presence of these different biodi-
gester designs suggests heterogeneity in the interests of
users in the attributes embedded in the different de-
signs. This is suggestive evidence that users have gone
ahead to adopt biodigesters which are in line with their

preferences.
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The flexi-biogas (a plug-flow design) was recently
piloted in Kenya. Through a project launced in 2011
by IFAD, at least 500 of such systems had been built in
Kenya (Sovacool et al., 2015). The design is credited for
its low cost, fast installation, portability and its appli-
cability in colder high altitude regions. In addition, to
encourage adoption, the Kenyan government, through
the Finance Act of 2015 exempted plastic digesters, bio-
gas and the lease of biogas producing equiplemt from
VAT. This tax break has been maintained in the most
recent amendments to the Finance Act by extending
the exemptions to prefabricated biodigesters (Republic
of Kenya, 2021). While prefabricated biodigesters do
not have a precise classification, they work though sim-
ilar principals as other “traditional” biodigester designs
(Cheng, et al., 2014). The only major difference is that
prefabs are constructed off site. Meanwhile, the fixed
dome design is still the most common biodigester design
in Kenya. The Akut and CAMARTEC models are by
far the most common fixed dome models (Nzila et al.,
2012). By 2017, an additional 13,200 fixed dome biodi-

gesters had been installed in Kenya (Clemens et al.,
2018). This was accomplished through support of the
African Biogas Partnership Programme, a Dutch gov-

ernment initiative operating in Ethiopia, Kenya, Tan-
zania, Uganda, and Burkina Faso. The ABPP ran until
2017. In Kenya, the ABPP also featured an improved

fixed dome model (KENBIM) which reportedly reduced
installation costs by 25% (Clemens et al., 2018). It is
difficult to be categorical about whether the growth in
biodigester installations through the ABPP was singly

a consequence of the subsidy offered for their construc-
tion. It is however probable that this may have been a
combination of subsidies and a lower cost of installa-

tion, the latter being a product specific characteristic.

To the discerning observer, it is clear that most
of the biodigesters have been installed in zones where
significant dairying occurs. These constitute the high-

lands, zones above elevations of 1000m above sea level
(Bebe et al., 2003). The reason is partly explained by
the fact that the zero grazing (cut and carry) dairy sys-
tem implies ready availability of feedstock in the form
of cattle dung. It also suggests the presence of ade-
quate water. These are two important ingredients for
the biodigestion process. Generally, smallholder dairy-

ing occurs at altitudes above 1500m above sea level
(Staal et al., 2002). In such zones with a bimodal rain-
fall pattern, feed resources are heavily determined by
the amount of rainfall and temperature, where precip-
itation is usually above 800mm per annum (Bebe et
al., 2003). Major feed resources for these animals espe-
cially for the cut and carry system comes from Napier
grass (Pennisetum purpureum) and crop residues (Staal

et al., 2002; Jaetzold et al., 2010a; Ortiz-Gonzalo et
al., 2017). Characterized by population pressure and
resultant small land sizes, Napier has been adopted
widely. Napier grass has respectable dry matter yield
and is suitable as a cut and carry fodder. These are at-
tributes responsible for its widespread adoption. Dung
from these zero grazed ruminants is used as feedstock
for the biodigesters. Water (including grey water from
other household activities) as well as animal urine can
be used to dilute this feedstock (Bansal et al., 2017).
Therefore, in addition to socio-economic variables, char-
acteristics of the farming system are important drivers
for biodigester adoption (Qu et al., 2013; Sun et al.,
2014; Bakehe, 2021). However, while dairying explains
much of the spatial distribution of biodigesters in Kenya,
it is not enough to explain the inherent heterogeneity.
Not all farmers who practice dairy have installed biodi-
gesters.

It has been widely reported that not all installed
biodigesters end up being of benefit to their owners.

For instance, by 2016, of the ABPP installed plants,
23% had been abandoned. Major reasons for abandon-
ment were technical problems such as broken fixtures

and blocked inlets (Clemens, et al., 2018). Similarly,
the flexi-biogas design is itself not free from some of
these challenges (Sovacool et al., 2015). For example,
Nzila et al. (2012) report that the flexi biogas system

has a low reliability (40%) compared to the fixed dome
and floating drum designs. Here, reliability is the ability
of a biodigester to operate as designed, without failure.

These challenges however appear to be of similar nature
to those reported about three decades ago since often,
users do not possess sufficient knowledge on the oper-
ation and maitenance of biodigesters (Laichena, 1989).

As relatively complex technologies, such a characteristic
in turn may reduce its rate of adoption (Rogers, 1983).
In fact, Laichena and Wafula (1997) reported that only
25% of fixed dome biodigesters completed before the
1980s were operational.

Like most equipment, age is a significant factor in
the performance of biodigesters (Bond and Templeton,
2011). As biodigesters age, performance degrades and

they are bound to require maintenance service. It means
that for one to contact the Biodigester Construction
Enterprise (BCE) offering maintenance servicing, any
biodigester owner needs to identify the defects and com-
municate the same. The fixed dome biodigester features
a digester and gas holder made of masonry constructed
underground. Without special sealant, this dome is prone
to cracks and porosity. Such cracks reduce the amount
of accumulated gas and therefore fluctuating pressure
in the system. Unfortunately, detecting the presence of

cracks is normally difficult if not impossible. But in-
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strumenting the health monitoring of the biodigester
can help ease the early identification and reporting of
problems and hasten repairs.

An empirical application will suffice to quickly demon-
strate the point. In the Rwanda water sector, for exam-
ple, sensors relaying technical data to a central portal
were shown to reduce hand-pump downtime (Nagel et
al., 2015). This is accomplished by instrumenting the
detection and alerting technicians in real-time. This
prompts technicians to perform repairs much earlier.
They reduced pump downtime (time to repair) from 152
days to just 21 days. Essentially, these sensors improve
reliability of servicing. A reliable service is that which
has a high probability of being available in the right
quantity and quality when required. In Kitui, Kenya,
such instrumentation which improves the speed of ser-
vice was shown to increase willingness to pay (mWTP)
for water services (Koehler et al., 2015). This improve-
ment in service reduced downtime from 27 days to just

2 (Thomson, 2020). Meanwhile, in the biodigester sec-
tor, sensor prototypes have revealed their usefulness in
monitoring the functioning of digesters (Acharya et al.,
2017; Logan et al., 2019). This strongly suggests the

possibility of their deployment for improved servicing
and maintenance of biodigesters.

Construction subsidies and strong product quality
oversight are some of the reasons credited for the strong
performance of the biodigestor sector in Nepal (Meeks

et al., 2019; Thapa et al., 2021). There, BCEs provided
offer to provide service and maintenance for at least
three years. In Kenya however, cases are reported of

biodigesters due for servicing and maintenance but were
not attended because BCEs did not show up (Clemens
et al., 2018). In fact, while ABPP trained over 600 ma-
sons on biodigester construction, less than 20% were

found to be active fulltime. Being masons, other com-
peting construction jobs may keep them away from
providing prompt maintenance service. Thus is unlike

the situation in Nepal where over 100 registered biodi-
gester companies provide the link through which sub-
sidies administered through a government entity; the
Alternative Energy Promotion Centre. These compa-
nies employed about 11,000 Nepalese directly (techni-
cal, administrative and promotional staff) and an addt-
tional 65,000 indirect jobs (Gautam et al., 2009). The
AEPC provided subsidies which covered 40% of instal-
lation costs and at the same time, enforced quality
standards guiding both installation and maintenance
(Meeks et al., 2019). A portion of carbon credits gener-
ated were used to sustain this biogas program (Thapa
et al., 2021). In the absence of such a structured biodi-
gester sector, adopters in Kenya may need to be assisted

to link with the small number of active BCEs. One way

through which this can be accomplished is through the
deployment of sensors which help link individual biodi-
gesters with BCEs. The mechanism is not fundamen-
tally different from the sensors on hand pumps. Biodi-
gesters can be retrofited with sensors which gather and
transmit temperature and pressure data in realtime.
This data can be sent via SMS to a central portal
manned by the BCE. Thus, the health of the biodi-
gester can be monitored remotely in realtime. This al-
lows BCEs to dispatch technicians on demand, when
their service is required: the so called “ambulance ser-
vice” (Nagel et al., 2015).

However, instrumentation alluded to above has not
been rolled out. Yet, its actual installation would entail
an extra cost to owners of biodigesters. Nor do many
in Kenya know of its existence. As with new introduc-

tions, the willingness to pay for this Internet of Things
(IOT) based solution has not been studied. Besides, the
different biodigester designs feature different attributes

(Nzila et al., 2012; Cheng et al., 2014). How potential
adopters trade-off these attributes has not been sub-
jected to critical study (Mulinda et al., 2013). Antici-

pating how potential adopters respond to these different
attributes may further guide policy making. Such infor-
mation is also important for technology developers. De-
signs can, where technically feasible incorporate or en-

hance those attributes preferred by potential adopters.

This paper adopts the discrete choice experiment
(DCE) method to investigate trade-offs among impor-
tant biodigester technology attributes among farmers.

Smallholder farmers are an important population con-
stituency targeted for adoption. The basis of DCE is
random utility theory (RUT) which strongly relies on
the work of McFadden (1974), which built on the Lan-
casterian approach: where utility is derived not from
the actual consumption of a good per se, but from the
properties or characteristics of the good (Lancaster,

1966). Generally, RUT provides a behavioural frame-
work explaining choice behavior of individuals (Lou-
viere et al., 2010). In this study, we use a mixed logit
analytical approach (McFadden and Train, 2000; Hen-
sher and Greene, 2003; Train and Sonnier, 2005; Hole
and Kolstad, 2012). The next section details the econo-
metric specification and data. Results are presented and
discussed. The paper concludes with what we believe
is an opportunity to both understand and incorporate
results in biodigester related work by technology devel-
opers and promoters in developing countries.
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2 Materials and methods

2.1 Stated preferences and discrete choice experiments

While all the biodigester designs come at a different
cost, they also feature different attributes (Nzila et al.,
2012; Sovacool et al., 2015). A small number of stated
preference surveys have therefore been used to value
biodigester systems. The mWTP for biodigesters has
typically been below their actual cost (see for exam-
ple, Kabyanga et al., 2018; Thapa et al., 2021). Unlike
Takama et al. (2012), these studies employ the contin-
gent valuation method (CVM) to estimate the value
of biodigesters from the point of view of the respec-
tive population of potential adopters. While these val-
ues are generally useful, they cannot be used to elabo-
rate further how the potential adopters value individ-
ual attributes of the biodigesters. This is because the
CVM has various weaknesses, including the part-whole

bias problem. It is notable that CVM is suited for valu-
ing a change as a whole, rather than the small changes
which constitute the whole (Hanley et al., 1998; Han-
ley and Czajkowski, 2019). It is the different attributes

from which utility (satisfaction) is derived Lancaster,
(1966), rather than the biodigester itself. This is the
characteristics theory of value. Applying CVM at the

level of attributes rather than the technology to which
attributes are embedded is cumbersome. For policy rele-
vance, the method is less preferred than its stated pref-

erence choice modeling (CM) counterparts which in-
clude paired comparisons, contingent ranking, contin-
gent rating and choice experiment methods (Hanley et
al., 2001). As stressed by Louviere et al. (2010), choice
experiments are consistent with economic demand the-
ory unlike ranking and rating methods such as con-
joint analysis. Conjoint analysis relies on mathematical

proofs about mathematical representations of rank or-
derings, rather than actual human behavior. These CM
methods proceed in the stages i) selection of attributes
ii) assignment of levels iii) choice of experimental de-
sign iv) construction of chooice sets, v) measurement of
preferences and iv) estimation procedure (Hanley et al.,
2001). While CVM has a longer history, an early em-

pirical application of discrete choice experiments (DCE)
based on aggregate data appeared in the 1980s (Lou-
viere and Woodworth, 1983). In its basic form, DCEs
provide respondents with a series of alternative scenar-
ios which differ in terms of attributes and their levels
and are asked to choose the alternative of their prefer-
ence (Hanley et al., 2001).

Preferences over technology characteristics have been
investigated through various approaches, and the stated
Discrete Choice Experiment (DCE) approach is one of

the leading candidates that allows estimation of these
trade-offs. The other is conjoint analysis, a mathemat-
ical rather than a behavioral representation of choice
(Louviere et al., 2010). These help reveal the “indirect
decision utility”, which in “WTP-space” is the mone-
tized incremental utility gained by a change in an at-
tribute (Train and Weeks, 2005; Ben-Akiva et al., 2019).
The DCEs are widely used to study preferences in var-
ious contexts and fields among them including environ-
mental economics, health policy, marketing, and trans-
portation, where behaviors of interest involve discrete
responses or qualitative choices (Louviere et al., 2008;
Carson et al., 2009; Hanley and Czajkowski, 2019). As
an illustration, DCEs in Kenya have been used to study
trade-offs among insurance linked credit products (Shee
et al., 2021) maize variety traits, (Marenya, et al., 2021),
various livestock attributes (Makokha et al., 2007; Ruto
et al., 2008), disease-free zone attributes (Otieno et al.,
2011) and features of land leases (Otieno and Oluoch-
Kosura, 2019) among other applications.

2.2 Random utility theory and mixed logit

Given the expected heterogeneity in choices among the

population, modeling this heterogeneity would be im-
portant. To perform such modeling, DCE proceeds by
asking respondents to choose between cleverly designed
alternatives assuming that preferences would be revealed

through the choices made out of these alternatives. In
each choice situation, the respondent makes a choice
among J alternatives in a series of T choice occasions

(Hensher, et al., 2005). The basis for this approach is
the conditional logit model (McFadden, 1974). It is in
turn related to Lancaster’s theory of consumer choice
which is structured around objective consumer pref-

erences faced by consumers making a choice decision
over fixed characteristics (attributes) of a good. The
theory further assumes that in the presence of multi-
ple goods, in addition to making decisions about the
attributes represented by the good, the goods in the
choice set have more than one attribute, attributes that

can be shared by more than one good in set (Lancaster,
1966). Choices revealed are therefore RUT therefore,
combines basic economic theory with an econometric
specification that utilizes the extreme value distribu-
tion for practical purposes (Manski, 2001). In Random
Utility Theory, the probability that a random person q
choosing i out of the J alternatives offered on occasion
t can be expressed as P (i) = P [t : ut(i)ut(j), jCt, ij]
with Ct representing the choice set where i is the utility-
maximizing alternative (McFadden, 1974; Manski, 2001;
Walker and Ben-Akiva, 2002).
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An individual q drawn at random from the popula-
tion chooses a technology with a set of observed charac-
teristics of the attributes (and may include character-
istics of the chooser) represented by a vector x ∈ X. In
RUT modeling, an individual’s utility function can be
separated into deterministic and stochastic components
(McFadden, 1974). The choice made between two op-
tions reveals which choice provides greater unobserved
utility to the chooser (Greene, 2003). Assuming that
out of the J options, individual q chooses i (denoted as
Yi), then in this model, the individual’s utility function
and its related logit probabilities can be written as

uiq = viq + εiq, u6=v, ε≈iid (1)

uiq = βxiq + εiq (2)

Prob[Yi = |xi1, xi2...xij ]=
eβxiq

J∑
r=1

eβxjq

(3)

The non-stochastic utility component v in Eq. 1 rep-
resents tastes represented by a vector of explanatory

variables observed by the analyst while the stochas-
tic component reflects idiosyncrasies of the individ-
ual q tastes revealed in how they make choices across

alternatives indexed j = 1. . . J and choice occasions in-
dexed t = 1. . . T (Louviere et al., 2000; Hensher and
Greene, 2003; Carlsson and Martinsson, 2008; Brouwer
et al., 2017). Representative utility is normally specified

as being linear in parameters, thus viq = βxiq as dis-
played in Eq.2. Now, if and only if the disturbances are
distributed iid type I extreme value (Gumbel) whose

cumulative density F (iq) = exp[−exp(−iq)], > 0, this
results in the conditional logit model if x contains only
choice specific characteristics (Greene, 2003). This im-
plies that the error has a variance equal to 2/62 where
is the scale parameter (Swait and Louviere, 1993; Carls-
son et al., 2012). The estimating equation in the condi-
tional logit model (CLM) is shown in Eq. 3 which is es-

sentially the same as a multinomial logit model (MNL).
The expression shows that utility depends on xqj which
may include aspects specific to the individual as well as
those specific to the alternatives (Greene, 2003). The
only difference between CLM and MNL is that the for-
mer is applicable when data represent choice specific,
rather than individual specific characteristics (Greene,

2003).
The observed choice maximizes unobservable utility

and the choice made is only a manifestation of this la-
tent utility (McFadden, 1974; Walker and Ben-Akiva,
2002; Greene, 2003). The model arises because although
q’s utility is observable to him/herself, it contains ran-
dom components that are unobservable to the analyst
(Hensher and Greene, 2003). Assuming a linear utility

function, the error term enters the function additively.
One of the terms in the matrix of coefficients of at-
tributes in the alternatives in the choice set, , is the
estimated coefficient of the cost attribute, p (marginal
utility of income). In many applications, this particu-
lar marginal utility is negative of the estimated coeffi-
cient (Brownstone and Train, 1999). In such a formu-
lation, the marginal rate of substitution 2 between two
attributes x1 and x2 characterizing the good would then
be given by the expression dx1/dx2 such that the ex-
pression ∂p/(∂x2) = −β2/βp represents the mWTP or
the partworths for attribute 2 (Carlsson and Martins-
son, 2008; Train, 2009; Vermeulen et al., 2011; Kragt
and Bennett, 2012).

However, Eq. 3 is restrictive because the odds ratios
are independent of other alternatives where

pqi
pqj

is inde-
pendent of other probabilities, hence the Independence
from Irrelevant Alternatives (IIA) property (Hensher
and Greene, 2003; Greene, 2003; Train, 2009). For in-
stance, in a repeated sequence of choices over attributes,

it is expected that the unobserved factors in one period
are carried over into subsequent periods. In other in-
stances, a universally beneficial attribute will attract a

strictly positive mWTP (mWTP ∈ R+) estimate sug-
gesting a non-normally distributed unobserved factor
(Train, 2009). These represent instances in which the
standard logit is deficient in handling. For these rea-

sons, several reformulations including nested logit, het-
eroscedastic logit, and mixed logit (also called random
parameters logit) models have been suggested (Greene,

2003). In mixed logit, the parameters can be allowed
to vary randomly over the individuals, a procedure that
accounts for unobserved preference heterogeneity be-

tween individuals (Brownstone and Train, 1999; Hen-
sher and Greene, 2003; Hensher et al., 2005; Brouwer
et al., 2017).

Formally, this utility function in Eq. 1 can be rewrit-
ten as uiq = αxiq+ηqxiq+εiq such that the random βq
which comprises the deterministic component of utility

has now been decomposed into a population mean and
a deviation [(βq) =(αq) + ηq] (Brownstone and Train,
1999; Hensher and Greene, 2003; Train, 2009) . Here,
ηiq is a random term with zero mean (Hensher and
Greene, 2003). It represents stochastic deviations that
characterize a decision maker’s preferences relative to
those of the population, therefore random variations
around the parameter means (Revelt and Train, 1998;
Lancsar et al., 2017). Its distribution over individu-
als depends in general on underlying parameters and
can take various forms including normal, lognormal,
uniform, triangular, or even Johnson’s SB distribution

2 It is usually necessary to hold overall utility constant i.e.
(∂vi = β1∂x1 + β2∂x2 + βp∂p = 0)
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(Ghosh et al., 2013; Hensher and Greene, 2003). The
distribution of εiq is iid extreme value independent of
β, which is in turn specified (by the analyst) to have
a density f(β|θ) with θ representing the deep param-
eters of the distribution (Hensher et al., 2005; Huber
and Train, 2001).

This random utility model (RUM) can then be ap-
proximated to any degree of accuracy by a mixed logit
with the appropriate choice of variables and mixing dis-
tribution of the partworths (McFadden and Train, 2000;
Train and Sonnier, 2005; Train, 2009). In Eq. 4, the
probability of observing a sequence of choices from an
individual is conditional on a vector of parameters β
which are a product of conditional probabilities of the
alternatives available to the decision maker (Train and
Sonnier, 2005; Brouwer et al., 2017). Since we are deal-
ing with repeated choice by a decision maker, mixed
logit is a useful choice (Louviere et al., 2000). How-
ever, since β is not directly observed, Eq. 4 has to be
integrated over all possible values of β using their den-
sity function f(β|θ) making the probability of the ob-

served choice sequence conditional on the parameters
of this density function (Brouwer et al., 2017). Thus,
the unconditional probability is derived from the inte-

gral in Eq. 5 and is a mixed logit because it is a prod-
uct of standard logits mixed over a density of part-
worths (Brownstone and Train, 1999; Train and Son-

nier, 2005; Train, 2009). This model addresses three
limitations of standard logit by allowing for taste het-
erogeneity, unrestricted substitution patterns and cor-
relation in observed patterns over time (Train, 2009).

The mixed (random parameters) logit model (McFad-
den and Train, 2000; Bhat, 2001; Train and Sonnier,
2005; Train, 2009; Brouwer et al., 2017) which is a pop-

ular model in discrete choice experiments is specified as
Eq.5 given the value of ηiq:

Lqi(β)= eβqxiq+ηiq

ΣJ∈C,i6=jeβqxiq+ηiq
(4)

Piq(θ)=

∫ +∞

−∞
Lqi(β)f(β|θ) dβ

(5)
If η is a small scalar, then there exists a continu-

ous function x = (z, s) of dimension 1 × K for some

integer K (observed attributes of alternative i as well
as characteristics s of the decision-maker q) such that
x = (x(z1, s), . . . .x(zJ , s)) for z ∈ Z and s ∈ S . For the
set of choice alternatives C = z1, . . . , zJ , an individual q
from a population q = 1, . . . ..N may choose alternative
i out of the J on offer; β is a K×1 vector of parameters
(McFadden and Train, 2000). The unconditional choice
probability pqi is the probability that q chooses the al-
ternative i and Lqi is the conditional choice probability

for the choice set C or the logit probability evaluated
at parameters β; θ is a vector of underlying moment
parameters in the mixing distribution characterizing
f(β|θ) (Brownstone and Train, 1999; McFadden and
Train, 2000; Hensher and Greene, 2003) Typically, this
distribution f(.) is assumed to be normal (Brouwer et
al., 2017), although other distributions can be specified
(Train and Sonnier, 2005; Ghosh et al., 2013). When
the response parameter β is expected to be of a specific
sign (e.g. negative for a cost parameter), the lognor-
mal or exponential form is usually specified (Louviere
et al., 2000; Hole and Kolstad, 2012). Alternative spe-
cific constants i can be included in the utility function
and for identification, the no-choice (or another base)
alternative can be normalized to zero such that N = 0
(Lancsar et al., 2017). Added as a random parameter
interacting with attributes of the technology it can in-
duce a distribution about the mean providing a means
for revealing preference heterogeneity in the sampled
population (Ghosh et al., 2013).

Parameters are assumed to be randomly distributed
across individuals (Ghosh et al., 2013). This mixed logit

probability is the weighted average of the logit for-
mula evaluated at different values of the parameters; β,
weighted by the density f(β|θ), unlike standard logit

where this mixing distribution is degenerate at fixed
parameters (Hensher et al., 2005; Train, 2009). Here,
θ refers collectively to the parameters of this distribu-
tion: the mean, covariance of the β coefficients (Train,

2009). In this formulation, the probability of the ob-
served sequence of choices conditional on knowing βiqs

then given by sq(βq) =
∏T
t=1 Lqi(q,t)t(βq) in which

i(q, t) represents the alternative made by individual q

on choice occasion t; representing a situation where in-
dividuals are faced with several (T ) choice sets to choose
from (Revelt and Train, 1998; Hole, 2008). Here, sq(βq)
is an unbiased estimator of the unconditional Piq(θ)
and is twice differentiable (Revelt and Train, 1998).

Estimating by maximum likelihood the model whose
log-likelihood is given as LL(θ) = Σq=

N
1 lnpqθ is diffi-

cult since the integral in Eq. 2b is impossible to solve
analytically (Revelt and Train, 1998; Brownstone and
Train, 1999). It is, therefore, is simulated via maximum
simulated likelihood (Revelt and Train, 1998; Bhat, 2001;
Hole, 2008). A Bayesian approach that uses Markov
Chain Monte Carlo methods with the Gibbs sampler
would still provide comparable results from panel data
as that contemplated in this study (Huber and Train,

2001; Elshiewy et al., 2017). The simulated log-likelihood
is thus defined as:

SLLML(θ) = Σn=
N
1 ln[ 1R

∑
r

=
Ns(β

r)]
1

(6)
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Here, given repeated choices, the probability is sim-
ulated by drawing β from its distribution R times, and
the logit formula calculated for each occasion and the
product taken and averaged over the R draws (Brown-
stone and Train, 1999; Train and Sonnier, 2005; Hole,
2008;Train, 2009). The result is the appropriate choice
probability. Unlike the conditional logit, mixed logit
yields a mean and a standard deviation across the sam-
ple, hence the alternative name, random parameters
logit.

2.3 Choice of biodigester attributes and design of the
discrete choice experiment

Selection of biodigester attributes: Biodigesters come in
many designs but three basic designs are reported as
the floating drum, fixed dome, and the inflatable tubu-
lar (plug-flow) type (Nzila et al., 2012). All these de-
signs also have peculiar attributes in terms of their per-
formance parameters as well as more observable char-

acterizations such as their expected service life, their
cost, and even some seemingly benign attributes such
as portability. Comparatively, a fixed dome design has a
complicated and costly installation process when con-

trasted with the more modest installation costs of a
tubular digesters. However, this high cost of construc-
tion is countered by high maintenance costs of tubular

designs since the latter may require periodic replace-
ment of the polythene material (Nzila et al., 2012; Ra-
jendran et al., 2012). Generally, while these systems can

be characterized by many attributes, some may appear
to be more important than others.

In 2018, a series of focus group discussions (FGD)
with farmers, BCE technicians, entrepreneurs, researchers

and policy makers were conducted. From these discus-
sions, a list of 22 important attributes were identified
3. Coupled with the FGDs, literature reviews comple-
mented information about the levels with which these
attributes could be described. From these list of 22,
nine of the most important biodigester attributes were
isolated and retained. This exercise was conducted by
technical staff of the Kenya Biogas Program in Nairobi.
A pilot exercise was subsequently implemented to rank
these attributes. Mailu et al. (2019) describe the rank-
ing exercises conducted in 2018 by a heterogeneous group.
This group consisted of 59 undergraduate students from
Moi University, 70 researchers from the Kenya Agricul-

tural Research and Livestock Organization and 14 of
the FGD participants. Of the retained attributes sub-
jected to the ranking exercise, they were ranked in the

3 Due to space limitations, the interested reader can find
more details about the process used in deriving the attributes
and their levels here: https://ssrn.com/abstract=3598610

following order of importance i) amount of gas produced
ii) installation cost, iii) durability, iv) maintenance cost,
v) reliability, vi) portability of the biodigester, vii) gas
pressure, viii) the consistency of producing gas ix) abil-
ity for one to detect defects. An important result from
this ranking exercise was that though conducted by a
heterogeneous group, there was significant consistency
in the order in which they ranked these attributes.

From the nine attributes reported, further process-
ing led to their reduction to six. Some were merged as
it turned out that they spoke to the same aspect of the
attributes i.e. while technically independent, it is not
possible to present some attributes unambiguously as
truly independent attributes in the context of a choice
experiment with farmers. Below is an account of how
attributes were reduced from nine to six.

Gas production is a very important consideration,
being the main reason why a person would consider
having a biogas plant in the first place. Gas produc-

tion may be dependent on the size of the biogas plant
since larger plants accommodate more feedstock for the
anaerobic process (Muriuki, 2014). This is an attribute

that can be represented by the cost of installing the
plant. Larger plants ceteris paribus will require more
material to construct and therefore entail larger instal-
lation costs. Gas production and installation cost were

the highest-ranked attributes in terms of importance,
and this closeness might reflect this similar latent at-
tribute (Mailu et al., 2019). Moreover, gas production

also depends on the optimal conditions that facilitate
the anaerobic process (hydrolysis, acidogenesis, aceto-
genesis, and methanogenesis) which produces methane

gas. These suitable conditions include pH, tempera-
ture, substrate, loading rate, hydraulic retention time
(HRT), C/N ratio, and mixing (Rajendran et al., 2012).

Pressure on the other hand may also have a sig-
nificant association with environmental conditions too.
Some digester types such as the tubular digester may

produce gas at variable pressure (Rajendran et al., 2012),
while in others such as the floating drum, gas has rel-
atively constant pressure (Nzila et al., 2012). Besides,
the gas from the floating drum biodigester has higher
chances of escape, especially if the system is not well
maintained, thus compromising pressure buildup (Bruun
et al., 2014). Yet, from the accounts of many authors,

poor maintenance of these biodigesters is a recurring
observation. Improper feeding of the biogas plant with
wrongly constituted feedstock/water mixture reduces
gas production and thus the buildup of pressure in
the system. Besides, temperature, pH, and other condi-
tions determine the efficiency of the anaerobic process
and thus, the buildup of gas pressure. Moreover, while
pressure is well understood, translating pressure units
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(bars) to respondents in a real choice situation was dif-
ficult. For these reasons, the attribute (pressure) was
dropped since although partly dependent on the tech-
nology design, it also has significant interaction with
environmental and day to day management variations.

Just as with pressure, gas consistency may also de-
pend on the same environmental variables. Secondly,
gas consistency and reliability speak towards the same
underlying latent quality. The original description of
the attribute was “Assuming the same substrate, some
systems might not be consistent, while others might be
more consistent from day-to-day”. This suggests an as-
pect of reliability. Gas consistency was therefore dropped
in favor of reliability which can be presented more easily
and in more relatable units.

In all, it was felt that used together, gas pressure,
gas consistency, and gas amount may introduce split-
ting bias (Hämäläinen and Alaja, 2008). To a non- ex-
pert, in a DCE setting, these may appear to be sub-
attributes of the same or closely related latent quality.

For instance, when gas is produced from an optimal en-
vironment, pressure is expected to rise. Disentangling
the pressure buildup associated with the optimal envi-
ronment from that due to the specific biodigester de-

sign would require significant effort. In fact, amount of
gas (cause) results in pressure buildup (effect). A ca-
sual observation also revealed that even among those

who owned biodigesters, few would immediately tell
how many units of gas they produced in a given day.
The best they could do was observing how much pres-
sure seems to have built up to give them an idea of how

much gas was available. However, this is only observ-
able if the biodigester in question is of the plug-flow
(e.g. flexi-biogas) design. Luckily, in a DCE setting, the

inclusion of cause-effect attributes may not alter pa-
rameter estimates as the “cause” and “effect” attributes
absorb each other’s effects (Blamey et al., 2002). How-
ever, the difficulty in presenting these three attributes:
gas pressure, gas amount and gas consistency unam-
biguously led to their absorption in other closely related
attributes.

Design of the discrete choice experiment: For this dis-
crete choice experiment, the J alternatives are biodi-
gester plants presented as choice profiles over six at-
tributes viz: installation cost, reliability, durability, main-
tenance cost, movability/system portability, and ease
of identifying system defects. The attribute: mainte-

nance cost was described in the “imprecise” qualita-
tive points as low, moderate, and high. Johnston et al.,
(2017) have suggested that such descriptors need to be
avoided. However, in most of the descriptions around
this attribute, most authors have used such categoriza-

Table 1 Attributes and levels included in the DCE

Attribute Levels

Durability 2-5 years, 12-15 years, 15-20 years
Reliability 145 days , 335 days, 345 days

40 percent, 92 percent, 95 percent
Maintenance cost Low, Moderate, High
Movability Immovable, Movable
Defect identification Easy, Difficult
Installation cost 65,000 Ksh, 92,500 Ksh, 102,000 Ksh

tions, rather than give precise estimates of how much
low/high descriptors portray in an objective way (e.g.
Nzila et al., 2012; Cheng et al., 2014). Talevi et al.
(2022, In Press) for example in their labelled alterna-
tives used the prefix low / high to describe the main-
tenance cost attribute. Kabyanga et al. (2018) were
only able to estimate biodigester maintenance costs,
ex post from their CVM based study. Few exceptions
do exist where maintenance costs have been estimated

for use in such an exercise. Unlike maintenance costs,
biodigester installation costs were monetized in Kenya
Shillings. This cost reflects the cost of an 8 cubic meter
biodigester. The reason for this choice was that 8m3

is the most common volume installed by farmers who
own biodigesters in the country. Reliability on the other
hand was represented by the number of days in a year

(and for greater clarity, as a percent). Durability was
presented in years while portability was described as
either possible or impossible. Defect identification was

either easy or difficult. These attributes and their levels
are presneted in Table 1.

Granted the six attributes with levels ranging from
two to three, the next stage involved combining these
into an efficient experimental design. These six attributes

in a full factorial design would require 2234 = 324 com-
binations. For example, offering these as a pair of two
alternatives would require (324323)/2=52326 pairs in
total or if in triples, 34884 combinations. This large

number of alternative combinations suggested the need
to combine them into a smaller set of alternatives. That
is, from this full factorial, choosing an efficient design
from which the main effects can be estimated (Lou-
viere et al., 2000). Efficient designs are characterized
certain criteria i.e. level balance, orthogonality, mini-
mum overlap and utility balance (Huber and Zwerina,
1996). Typically however, some of these criteria are in
conflict such that fulfilling one necessitates disregarding
another. The interest, being to obtain precise estimates
from a small subset of the full factorial requires that this
subset be designed. Precision of coefficient estimates is
given by the variance-covariance matrix Ω of the coeffi-

cients which in turn is a function of β. There are differ-
ent methods of calculating the size of the matrix which
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leads to different efficiency measures which include D-
efficient designs, A-efficient designs and S-efficient de-
signs (Bliemer and Rose, 2011). Another more recent
design is the c-optimal design (Vermeulen et al., 2011).
In this study, the more common D-efficient design was
chosen. Here, the idea is to minimize the D-error de-
fined by the expression |Ω|1/K which is an inverse of
D-efficiency. Here, K is defined as the number of pa-
rameters to be estimated. As suggested by Carlsson and
Martinsson (2003) a D-optimal design based on param-
eter priors is better than one with zero priors which
in turn performs better than an orthogonal design. An
orthogonal design in fact would by design contain dom-
inant alternatives, thereby yielding different parameter
estimates (Bliemer and Rose, 2011).

The minimum number of choice tasks S was also
determined using the expression (J − 1)S ≥ K where
K = 10 is the number of parameters, and J=4 is the
number of alternatives (Rose and Bliemer, 2013). This
guideline is based on the requirement of at least as

many data points as there are parameters to estimate
(Greiner et al., 2014). Providing respondents with four
alternatives and given the 10 parameters to estimate,

this evaluated to (4-1)410. This therefore indicated a
minimum of four choice tasks. Given these above, the
study sought to develop a matrix composed of 16 choice

sets in 2 blocks of 8 choice tasks per respondent.

The next step involved estimation of priors for use in
constructing the design. A conditional logit model was

therefore performed on data from the ranking exercise
reported by Mailu et al. (2019). This was done by taking
the top ranked profile by each of the the 84 researchers

and FDG participants as indicative of preference. This
estimation yielded the priors (β): -0.00000699 (installa-
tion cost), -0.72 (low reliability), -0.31 (high reliability),
-0.96 (low durability), -0.78 (high durability), 0 (low
maintenance cost), -0.57 (high maintenance cost), 0.45
(movable plants), 1.14 (ease of defect identification) and
0 (constant).

These priors were subsequently used as part of the
input for constructing a D efficient design. This in-

volved instructing the algorithm by specifying a de-
sign with 16 choice sets, with each set composed of 3
real valued profiles and an opt out. Including an opt-
out option was included as one of the alternatives to
avoid a forced-choice situation and also increase real-
ism (Lancsar et al., 2017; Campbell and Erdem, 2019).
Doing so also allows the estimation of true demand,
rather than conditional demand models (Louviere et
al., 2000). Adding such a constant in the analysis im-
proves overall fit and allows the modeling changes to the
‘no choice’ alternative (Kamakura et al., 2001; Ghijben
et al., 2014; Ryan and Sk̊atun, 2004). This alternative

specific constant (ASC) allows the estimation to pick
up preferences not captured in the set of alternatives
offered (Kragt and Bennett, 2012). Since there were no
strong theoretical or empirical grounds to include in-
teraction effects, the design was optimized for 10 main
effects. These were the four attributes of three levels
each (8 main effects) and two attributes carrying two
levels each (2 main effects). The design was also blocked
so that no respondent would be presented with the full
complement of 16 choice sets. This resulting design de-
veloped was based on a computerized search algorithm;
the modified Fedorov algorithm (Carlsson and Martins-
son, 2003). While the design was based on the condi-
tional logit model, it is also efficient for the random pa-
rameters logit (Carlsson and Martinsson, 2003; Bliemer
and Rose, 2010; Vermeulen et al., 2011; Greiner et al.,
2014). From an initial design randomly drawn from a
full-factorial design, the algorithm iteratively exchanges
alternatives until it is impossible to reduce D-efficiency
any further (Carlsson and Martinsson, 2003). These pri-
ors yielded a D-efficiency=2.39 for a design composed

of 16 choice sets, each inclusive of an opt-out offered in
two randomized blocks.

This represents in total, 64 rows (i.e. four alterna-

tives in each of 16 choice sets). Of these, there were
48 real valued choice sets and 16 opt-outs. The alter-
natives offered to respondents were unlabeled (generic)
rather than labelled alternatives as expected from an

alternative-specific design (Louviere et al., 2000). A phys-
ical check was made to ensure that none of the pro-
files selected by the algorithm was strongly dominant.

For instance, a relatively cheap to install (65,000 Ksh),
cheap to maintain (low maintenance cost), reliable (345
days), durable (15-20 years) biodigester, which provided
easy defect identification and was portable would be
such a dominant set. However, such a profile did not
appear in any of the choice sets included in the design.

However, for greater flexibility, these attributes were
dummy coded and the algorithm ran a second time. A
major reason for this is the caution offered some au-
thors about misspecification errors (Bliemer and Rose,
2010). It was considered that the ranking tasks leading
to these data used for estimating the priors were per-
formed by researchers (not a very similar constituency
to farmers). Therefore, their use would introduce some
misspecification error. Applying zero priors on the other
hand yielded a D-efficiency=2.85. However, given that
Specification of zero priors was used instead as by look-

ing at these two estimates, they do not look very differ-
ent from each other. The design though not orthogonal
(there were 4 attributes with 3 levels and 2 attributes
with two levels) is still efficient. The resulting design
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was saved in a worksheet and used as input in the sam-
ple size calculation.

While deploying these choice sets, the cost attribute
was randomly placed in the first position in half of the
questionnaires and last in the other half. Doing so was
designed to control for any ordering effect that may oc-
cur if respondents attach undue weight on the cost at-
tribute when it appears prominently (first) among the
list of attributes under consideration. As alluded else-
where, the cost of installing biodigesters is probably the
most prominent of reasons why would-be adopters keep
away from the technology. This repositioning of the at-
tribute has been found in a random effect probit model
to influence the weighting of the cost attribute vis-à-vis
other variables (Kjær et al., 2006).

The questionnaire and all tools were translated by
a translation firm from English into three other lan-
guages namely Kikuyu, Kamba, and Swahili. This is
because of the possible different language preferences
that one would encounter in the field. Experience has
indicated that respondents prefer to be interviewed in a

language they are most comfortable with. The question-
naire was transcribed into a computer-assisted personal
interviewing software through which the formal inter-

view would be conducted. With the software chosen
(ODK), it was possible to seamlessly incorporate GPS
location, the skip logic, and other features to ease data

collection. A pretest conducted on the tool was con-
ducted with enumerators allowing them to get the feel
of the tool. Also, they were allowed to test the question-
naire among themselves, their friends, and neighbors.

In addition to the questionnaire, enumerators were also
provided with pictorials which featured different biodi-
gester designs. These were designed to highlight fea-

tures of the different designs. This was important, es-
pecially for any respondent that had not seen these dif-
ferent designs.

2.4 The study site, sampling, and study participants

General characteristics of the study area The present

study was part of a work package nested within a larger
research project “Optimizing small-scale biogas tech-
nology for household energy and improvement of soil
fertility within coffee-dairy production systems in Ki-
ambu and Machakos Counties”. For this reason, Ki-
ambu and Machakos were purposely selected for pur-
poses of the study. These counties are divided into sev-
eral agro-ecological zones. The main and marginal cof-
fee zone; Upper Midland (UM2 and UM3) respectively
are both represented within these counties (Jaetzold et
al., 2010a; 2010b). These are zones which receive be-

tween 800-1300mm of rain annually. In Machakos, the

area under UM2 is rather tiny. Land sizes are much
smaller in Kiambu than Machakos, with less than 1ha
per farm household. The UM2 and UM3 classification
gives rise to almost similar agricultural production ac-
tivity. As is typical of market oriented smallholder coffee-
dairy systems, a range of crops are planted within these
farms (Ortiz-Gonzalo et al., 2017). Apart from coffee,
maize and bean intercrop as well as banana are a com-
mon feature. Others include irish potato (mainly in Ki-
ambu) and macadamia nuts, avocados, mangoes, guavas,
and passion fruits. On many of these small farms, coffee
may cover half of the farm area (Ortiz-Gonzalo et al.,
2017).

Livestock keeping in the zone is also important and
livestock ownership is widespread where between 70
and 85 percent of farmers keep dairy animals (Lekasi
et al., 2001). These animals are kept under different
systems: free range, semi zero and zero grazing. Ani-
mals are grazed (free range) where land sizes are larger
but the more intensive cut-and-carry system (zero graz-

ing) is practiced in areas where fodder availability is
constrained by small land sizes. For farmers keeping
livestock under the cut-and-carry system, napier and

crop residues are major feed sources (Bebe et al., 2003).
On such farms, a third of the area may be devoted
to own fodder production (Ortiz-Gonzalo et al., 2017).
Sometimes, especially in Kiambu, farmers may rely on

purchased fodder to supplement own produced fodder
(Lekasi, et al., 2001). It has been established that in the
more densely populated and dairy intensive Kiambu,

an inverse relationship exists between land size and the
number of livestock kept (Lekasi et al., 2001). This sug-
gests that high stocking rates and intensive cropping
may require important soil fertility inputs in order to

reduce nutrient mining. Biodigester technology utilizing
manure from the dairy enterprise is one of the secondary
motivations for farmers adopting the technology in Ki-
ambu as it allows nutrient recycling within the farm
(Muriuki, 2014).

Sample size The appropriate sample size was estimated
by using the priors indicated elsewhere above. The es-
timated sample size is a lower bound for finding a sta-
tistically significant (p¡0.05) estimate for particular pa-
rameters βj , for each j attribute (Rose and Bliemer,
2013). The estimation was implemented using the R
script provided for such estimation (de Bekker-Grob et
al., 2015). To estimate sample size, this script uses the
expression;

nj ≥ (
1.96×se(βj)

βj)
)2 (7)

In this expression, βj is a prior parameter estimate
for attribute j and se its standard error while 1.96 is
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the t-ratio. This expression is derived from the con-
dition βj(sen(βj)1.96) which allows one to state with
certainty p¡0.05 that the parameter estimate obtained
from such sample size will be different from zero (Rose
and Bliemer, 2013). The respective priors used in the
design stage of the DCE yielded sample sizes of 165,
11, 78, 6, 14, (Inf), 19, 34, 6, and (Inf) respectively.
These are theoretical lower bounds of the sample size
for finding a significant effect for respective parame-
ters. This result suggested that assuming a conditional
logit, a sample size of at least 165 respondents was re-
quired to obtain the desired power 1- of 0.8 for finding
an effect when testing at a confidence level α of 0.05.
Low maintenance cost and the constant were entered
as zero priors since these coefficients were not signifi-
cantly different from zero (p¡0.2) in the conditional logit
model. Therefore, they would require infinitely large
sample sizes. Likewise, installation cost and high reli-
ability had p-values greater than the usual benchmark
(p¡0.05). Installation cost was retained for the practi-
cal reason that dropping such an important attribute

would jeopardize mWTP calculations. Including these
zero priors yielded sample sizes as large as n=582 (low
maintenance cost) and over n¿9000 for the constant.

The particular R script was designed for the conditional
rather than a mixed (random parameters) logit. Since
the design was optimized for conditional logit, using

the largest lower bound sample size n=165 to estimate
parameters using a different model could herald a loss
of statistical efficiency (Bliemer and Rose, 2010). How-
ever, Bliemer and Rose (2010) simulated sample size

estimations for case studies featuring different number
of attribute and level combinations and alternatives.
They also optimized these for conditional / multino-

mial logit, cross-sectional mixed logit and panel mixed
logit. The lower bound sample sizes for the conditional
logit were typically larger than those of the panel mixed
logit (Bliemer and Rose, 2010). Therefore, to achieve
similar level of statistical significance this lower bound
of n=165 was deemed adequate for estimating a mixed
logit.

A sample size of 582 for example translated into a
budget which was 27 percent greater than what was
available for research. Therefore, a judgment call was
made considering resource availability. A sample size of
n=480 respondents was estimated heuristically. It was
considered adequate as this is greater than the largest
(n=165) estimate obtained from the informative priors.

For DCEs, Johnson et al. (2013) indicate that precision
increases rapidly for sample sizes n¡150 and levels out
at n=300. Therefore, a sample size of n=480 was con-
sidered adequate as it is greater than the calculated
n=165; a lower bound.

Sampling: A sampling frame covering both dairy-coffee
farmers was unavailable. First, it is probable that close
to 70 percent of farmers would integrate crop and dairy
farming (Bebe et al., 2003). Secondly, all active coffee
farmers in a given location are registered through their
farmer cooperative (FC) which is in turn linked to the
nearest coffee factory. Thus, a sample obtained from all
coffee farmers may also capture a sizable percentage of
farmers who integrate coffee with dairy farming. Each
of these FCs operates within a geographic area and ser-
viced by a coffee mill. Large FCs on the other hand may
run several coffee mills. Therefore, rather than sample
coffee mills, the study settled on the FC as the primary
sampling unit.

A list of all farmer cooperatives active in both Ki-
ambu and Machakos was procured from the Coffee Di-
rectorate. Information from this list indicated that Ki-
ambu and Machakos respectively have a total of 22
and 33 coffee cooperatives. Inactive cooperatives were

dropped as it is assumed that these farmers were prob-
ably not likely to be involved as coffee-dairy producers.
Kiambu had one inactive cooperative while Machakos

had seven. In total, Kiambu had 55,658 active members
while 60,887 active members.

Using the FC as the Primary Sampling Unit (PSU)
at stage 1, six farmer cooperatives were selected from

each County. In Kiambu, selected cooperatives included
3GS FCS, Gititu, Komothai, Ndumberi, Gitwe and Muhara.
In Machakos, selected farmer cooperatives were Muthun-

zuuni, Kaliluni, Ithaeni, Mungala, Mwatati, and Kawethei.
As stage 2, 40 households were then randomly selected
(without replacement) from each of the cooperatives
selected at stage 1. Six enumerators were subsequently

recruited for the survey. The criteria for their selection
included academic qualifications (at least a Bachelors’
degree in a social science discipline) and previous survey
experience. Being a resident of the sub-locations where
the sampled farmers were drawn was another require-
ment since it would almost ensure that enumerators
were comfortable in the language of the interview. Trav-
eling from their home for the interviews would ensure
that they are not in a rush at the end of the day. They
were subsequently invited for 2-day training and brief-
ing sessions held at the Waruhiu ATC farm in Githun-
guri during August 2019. Some of the topics covered at
the briefing included a background on biodigester tech-

nology as well as the basics of choice experiments in-
cluding how the sample had been arrived at. They were
also provided with tablets and instructions on how to
handle the interviews, replace households that are not
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Fig. 1 Kiambu and Machakos Counties and distribution of respondent households

traced during the interview among other relevant logis-
tics.

3 Results

3.1 Sample summary

In September 2019, following training and piloting the

survey instrument, a team of six experienced enumera-
tors (two females, four males) administered a question-
naire in either of the languages Kikuyu (32%), Kamba
(45%), Swahili (6%) or English (17%). Respondents

chose the language with which they preferred the in-
terview to proceed. While 480 was the target, a total
of 455 households were interviewed during the survey

period which took place between 2 and 19 Sept 2019.
This represents a response rate of 95%. The resulting
data yielded 8 × 4 × 455 = 14560 rows of choice data.
However, in the end, some of the respondents did not
attend to the choice questions or skipped some of these
representing 3% attribute non-attendance. The 552 rep-
resents individual choice profiles that were skipped or

not answered, therefore differentiating these from the
opt-out, a valid choice. The resulting dataset represents
14560-552=14008 rows of usable data for the choice ex-
periment. This represents a choice task completion rate
of 96% for respondents that were interviewed and ¿10
cases per independent variable. There were 3502 com-
pleted choice tasks in total. A map showing the distri-

bution of respondents captured in this study is shown
in Fig 1.

From the data, respondent households were resident
at altitudes between 1326 and 1975m asl which covers
a substantial dairying zones. Given the way the sam-
ple was derived, virtually all respondents grew coffee
but ruminant livestock owning households comprised
67 percent of the sample. On average there were 1.3

Table 2 Summary statistics

Variable Unit Min Max Mean StDev

HH size No 1 15 4.7 2.2
Age
<40 yrs 0 1 0.18 0.38
<30 yrs 0 1 0.13 0.33
40-60 yrs 0 1 0.4 0.49
60> yrs 0 1 0.41 0.49
Education
No educ percent 9.7
Primary percent 41.6
Secondary percent 39.6
Post secondary percent 9
Fuel
Purchasef prop 0 1 0.25 0.43
Collectf prop 0 1 0.49 0.50
Purchasep prop 0 1 0.36 0.48
Fuel prop 0 1 0.34 0.47
TLU No 0 11.8 1.28 1.48
Owning TLU Percent 33.3
Elevation masl 1326 1975 1702 149
TLU own Prop 0 1 0.67 0.47
Respondents No 455
Completed No 440
Completed tasks No 3502
Datapoints No 14008
Certainty Percent 15 100 68 16

Tropical Livestock Units (TLU) per household rang-
ing between zero (0.32 LUs considering only households
owning ruminant livestock) and 11.8 TLUs. While ru-
minant livestock ownership has been the main target
constituency for biogas, other livestock such as poultry
can indeed be a source of feedstock. However, although
a majority of households own poultry, given the cur-
rent numbers reared and the production system under

which production takes place, it makes this source of
feedstock unlikely.

Interviewed respondents were aged between 17 and
96 years with an average of 55 years. Eighteen percent
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of the household heads were below 40 years of age while
40 percent were aged between 40 and 60 years, an age
bracket associated with a higher likelihood of adopting
biodigesters in Kiambu (Muriuki, 2014). Only 10 per-
cent had not attended any formal schooling (Table 2).
Whereas none of those interviewed had a biodigester
plants, 70 percent responded concerning their current
fuel sources. Of these, 25 percent purchased firewood
while 49 percent collected firewood just as a similar
fraction purchased charcoal. Respondents were also al-
lowed to indicate the certainty with which they thought
of their answers. On average, respondents had 68 per-
cent confidence in their responses where less than 1 per-
cent had no confidence in their responses while 7 per-
cent had complete confidence in their choices. The re-
sults in the following sections have to be reviewed with
the level of certainty with which the respondents had
about their choices. About 20 percent had a certainty
of 50 percent or less in their choices.

3.2 Model fitting

This analysis is based on estimation sample consisting
of 3502 usable responses. From this data, a conditional

(fixed-effects) logistic regression (Eq. 3) employing only
the six biodigester attributes (and the Alternative Spe-
cific Constant (ASC) as well as the ASC x block and
ASC x price position interactions) was estimated as the

“base” model (M1). All coefficients except for “low”
maintenance costs had the expected sign. The sign on
the ASC was negative and significant (p = 0.000). From

these models, the non-significance (p = 0.847) of the
block parameter suggests that there were no significant
differences in the two sets of questionnaires i.e. no block
effect exists. Similarly, no significant effect (p = 0.616)
from the positioning of the cost attribute within the
offered alternatives was found. Nor was there a signif-
icant (p = 0.319) effect when the position of the cost
attribute was interacted with the level of cost.

Next, additional covariates representing the socioe-
conomic variables were considered (M2). The variables

household size, herd size (TLU), fuel expenditure, age
of household head, and education level were considered
as possible covariates. Their inclusion is based on re-
sults from studies which suggest these variable as im-
portant in the decision to invest in biodigesters (Walekhwa
et al., 2009; Qu et al., 2013; Sun et al., 2014; Muriuki,
2014; Bakehe, 2021). Since these are individual-specific
variables, they cannot enter the conditional logistic model
directly and they were therefore entered as interaction
terms with the ASC (opt-out). Also considered was the
influence of environmental variables which are impor-

tant antecedents for technology adoption (Qu et al.,

Table 3 Tetrachoric correlation coefficients among socioeconomic
variables

HHsize Fuel Educ Youth TLUs Elev

HHsize 1.00
(0.00)

Fuel 0.33? 1.00
(0.01) (0.00)

Educ 0.02 -0.17? 1.00
(0.02) (0.19) (0.00)

Youth -0.07? -0.05? -0.41? 1.00
(0.02) (0.01) (0.02) (0.00)

TLUs 0.07? -0.02 -0.46? -0.11? 1.00
(0.01) (0.01) (0.01) (0.01) (0.00)

Elev 0.016 -0.091? 0.09? -0.08? -0.07? 1.00
(0.01) (0.01) (0.02) (0.02) (0.01) (0.00)

Educated (1=household head has some formal schooling, 0 oth-
erwise) Household size (1= household has more than 5 persons,
0 otherwise); youth (1=respondent age ¡ 35 years, 0 otherwise);
Fuel (household reports ¿0 expenditure on firewood, charcoal or
paraffin, 0 otherwise); TLUs (1=household has cattle at present,
0 otherwise); Elevation (1=household located less than 1500m asl,
0 otherwise). Figures in brackets are p-values and a * indicates
that the correlation is significant at p < 0.01.

2013; Sheahan and Barrett, 2017). Rather than look
at the exact geographic location of the respondent, el-

evation was used to stand in for this location gradi-
ent. Altitude was likewise interacted with the alterna-
tive specific constant. Adding these covariates does not
compromise the estimation since each respondent had

8 choice tasks and (4-1) × 8≥ k with k representing the
maximum number of estimable parameters. This sug-
gests that the estimable models have an upper bound

of 24 parameters. This is important to keep track of
in mixed logit models which estimate parameter means
and their respective standard deviations.

A likelihood ratio test showed that their addition
improved model fit χ2

(13,19)=354.94, p = 0.000. How-
ever, they were found to be collinear and this would in-
troduce multicollinearity if included in their entirety or
their untransformed form. Hoping to reduce the possi-
bility of multicollinearity, they were converted to binary
variables using the arguments shown at the bottom of
Table 3. The tetrachoric correlation coefficients were
significant among some variables as appearing in Ta-
ble 3. As expected, household size and fuel costs were
positively correlated. Education, age and the index of
livestock owning (TLUs) were correlated. Since the ma-
jor objective in this paper was to demonstrate rather
than explain the likely place of socioeconomic charac-

teristics in these tradeoffs, some individual specific vari-
ables were dropped. This included education as well
as household size. For simplicity and parsimony, only
the non-collinear variables; fuel, TLUs, and elevation
were retained. The resultant fit was improvement from
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the base model χ2
(13,16)=96.28,p=0.000. These are dis-

cussed in the subsequent analysis and are the subject
of §3.4.

A mixed multinomial model (Eq. 4) was used to
estimate the parameters of the mixed logit model. In
model (M3), only the dummy coded attributes were
assumed to be random while the cost of installation
was assumed fixed. In model (M4), installation cost,
which enters as a real value was also assumed random.
In model (M5), the cost variable was assumed to be log
normally distributed. In model M6, just unlike M5, the
coefficients were allowed to be correlated. These mixed
logit models were estimated through simulated max-
imum likelihood using Halton draws with 500 replica-
tions. For the distributional assumptions on the random
parameters, the mixed logit was ran separately specify-
ing the attributes as random but a fixed price coefficient
(M3), assuming that these are normally distributed co-
efficients. The results also serve to show that there is

substantial heterogeneity. The standard deviations were
all significant. The likelihood ratio test for the joint sig-
nificance of the standard deviations reveals that the null
hypothesis of zero standard deviation is rejected. The

non-zero standard deviations suggested that a random
parameters specification was ideal for this data. The
goodness-of-fit was measured through the likelihood ra-

tio index which raises from 0.13 to 0.118 as coefficients
are allowed to vary. These models (M3, M4 and M5) in
WTP space were also attempted. They allow estimation

of mWTP directly and conveniently (Hess and Train,
2017). Scarpa et al. (2008) also suggest that in some
cases, WTP space models outperform those in prefer-
ence space unlike (Train and Weeks, 2005; Hole and
Kolstad, 2012) who suggest those in preference space
outperform WTP space. Convergence problems with
the WTP-space models were noted and these were not

considered further.

In the mixed logit models, the coefficients were larger

in magnitude than those obtained from their condi-
tional logit counterparts (Table 5). This was not be
surprising since the coefficients from different models
are confounded by their scale factors, and therefore not
directly comparable (Swait and Louviere, 1993). Be-
sides, the variance in the error term in models M1 and
M2 was greater than that in the extreme value com-
ponent of the error term in models M3, M4 and M5
hence the larger coefficients from the mixed logit (Rev-
elt and Train, 1998). The AIC was used to compare
these models AICM 2 =8482.3 and AICM 3 =7465.14
and this suggests that M3 had a better fit than M2.
The BIC statistics point to a similar conclusion. A like-
lihood ratio test for model fit χ2

( 16,24) =1033.5, p =

0.000 suggested this improvement. This suggests that

Table 4 Model fit statistics

Statistic M1 M2 M3 M4 M5 M6

N 14008 14008 14008 14008 14008 14008
No of par 13 16 24 25 25 61
LR χ2 – – 1033 2121 2164 2419
df 8 9 9 45
Ln(L0) -4329 -4280 -4204 -3851 -4176 -4114
Ln(L) -4273 -4225 -3708 -3164 -3140 -3015
LRindex 0.013 0.013 0.118 0.178 0.248 0.267
AIC 8572 8482 7465 6378 6330 6152
BIC 8670 8603 7646 6567 6519 6612

The number of parameters in M1 include nine that relate to the
attributes, one an ASC, and three representing i) an association
between the position of the cost attribute on the questionnaire
and cost iteslf, ii) ASC*block, iii) ASC*cost position parameters.
The extra two parameters in M2 are the ASC interactions with
TLU, fuel cost, elevation. In the mixed logit models, they almost
double because of the presence of standard deviations which are
additional parameters

the mixed logit was an improvement to the conditional

logit. The next estimation entered the cost variable as a
random rather than fixed parameter M4. The improve-
ment in the fit is revealed through the likelihood ra-

tio test χ2
( 24,25)=1088.5, p = 0.000. In this particular

model (M4), it was assumed that all attribute coeffi-
cients are normally distributed, thereby allowing con-

sumers to place positive as well as negative values on
the attributes.

Next, in addition, a log-normal distribution on the
cost variable was assumed (Ghosh et al., 2013). This

assumption is in line with common-sense expectations
that this coefficient is restricted to being negative (Mei-
jer and Rouwendal, 2006; Hess and Train, 2017). In M5,

the log-normally distributed cost parameter was neg-
ative with its mean, median, and standard deviation
being -0.0939, -0.0254, and 0.333. The AIC statistic
suggested that a log-normally distributed cost coeffi-
cient improved model fit. Using this result, a mixed
logit with log-normally distributed random parameters
can be picked as the model of choice. In fact, as stressed
by Hess and Train (2017), mWTP estimation requires
that the price coefficient does not overlap zero. The like-
lihood ratio index, 1− Ln(L)

Ln(L0)
which is derived from the

log-likelihood function and an analog to the R2 was also
computed (Greene, 2003). This has been reported in Ta-
ble 4 for all of the regressions. This index is analogous
(but not similar) to the multiple correlation coefficient
in linear regression (Domencich and McFadden, 1975).

This also includes the log-likelihood and other relevant
sample and regression statistics as shown in Table 4.

Observing the significant standard deviations sug-
gested that there was substantial heterogeneity. It dawned
later that at the time of the experimental design, al-
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lowance for correlation among attributes (interaction
effects) had not been accommodated. In model 6 (M6),
in addition to a log normally distributed cost variable
and normally distributed random coefficients, the re-
striction of independent coefficients was relaxed, allow-
ing for correlation among these coefficients. This flexi-
bility acknowledges that for instance, respondents who
prefer a durable biodigester may have a strong prefer-
ence for a reliable biodigester. Or that one who prefers a
movable biodigester would also prefer a cheaper biodi-
gester. A cheaper biodigester implies a smaller sunk
cost, and if movable, it increases the possibilities of dis-
posing it through sale to a neighbor. Adding such flex-
ibility allowed all forms of correlation (Hess and Train,
2017). It comes at a cost of inflating the number of pa-
rameters (Hole, 2008). This appeared to improve model
fit. Comparing M5 and M6, the comparative statistics
were AIC(M5) = 6330.6 and AIC(M6) = 6152.78 sug-
gesting an improvement. A likelihood ratio test also
confirmed this improvement χ2

(25,61) = 250.24, p = 0.000.
The saturated model (M6) had a deviance D(M6) =

6030.38 compared to a deviance of D(M5) = 6280.64 in
M5 and therefore χ2

(25,61) = 250.26 which was greater

than the critical chi square statistic χ2
(df=36,0.05) = 50.9

leading us to reject the null of independent coefficients.
However, the Bayesian Information Criterion derived
from these two wereBIC(M5) = 6519.32 andBIC(M6) =

6612.78.

This result left some uncertainty about which model
to choose between M5 and M6 based on the BIC as it
appeared to conflict with the AIC and the LR test.

However, the reason for fitting these models was for
the purposes of inference (how attributes are traded
off against each other). Once this inference is made,
the next decision was to predict the underlying mWTP
estimates implied by these parameters. It is also con-
ceivable that BIC penalizes heavily those models with
a large number of predictors. Therefore, choice of the

best fit was based on the AIC statistic. While the Mc-
Fadden pseudo R2 also suggested M6 to be superior,
choice between M5 and M6 can also be disentangled
by considering the criterion suggested by Glover and
Dixon (2004). This uses the Bayesian posterior odds as-
suming uninformative priors. This indicated M5 as the
model of choice. A further check was conducted by con-

sidering the correlation coefficients between attributes.
Since some attributes are diametric opposites (e.g. low
durability vs high durability), then logically, the cor-
relation between such opposites should be negative. In
M5, this condition was met, but this was not consis-
tent in M6. When coefficients were allowed to be corre-
lated (M6), the correlation between the two extremes of
the opposites for both maintenance cost and durability

were positive. This for example would be interpreted
to mean that respondents who had a preference for low
durability also have a preference for high durable biodi-
gesters. While this result does not make logical sense,
the presence of complex interactions is not new. This
is because of the presence of both pure correlation and
scale heterogeneity in these estimates which are diffi-
cult to disentangle (Hess and Train, 2017; ; Mariel and
Artabe, 2020).

This study sought to estimate mWTP and the most
pressing requirement of a log normal cost variable was
both contained in these two models. Comparing fit across
the six models showed that the log likelihood increased
indicating better fit from left to right (Table 4) as the
number of coefficients increases. In M6, the number of
parameters increased by 45. These extra parameters
represent correlations among attribute coefficients. A
likelihood ratio test of joint significance in M6 led to
the rejection of the null hypothesis of independent (un-
correlated) coefficients. The standard deviations were

significant indicating that there was substantial varia-
tion in these parameters. Allowing these parameters to
vary in the mixed logit improved the explanatory power
i.e compared to the conditional logit, and allowing for

a log normal distribution on the cost variable as well as
correlation among the coefficients had a better fit.

The main results from this analysis are presented in
Table 5. Generally, the regression coefficients have the
expected signs. Broadly, respondents had preferences
for biodigesters with high reliability, were durable, mov-

able and subject to easy defect identification and cost
less to install. The inclusion of a log normally distributed
cost parameter however appeared to interfere with the

sign and significance of other parameters. For instance,
in M5, the TLU parameter was no longer significant
while the block parameter was now significant with a
sign reversal. A similar observation was made with re-
spect to M6. Meanwhile, although the regression coeffi-
cients in M4 appear sufficient, the distribution of the in-
dividual level installation cost coefficient was checked in

order to be in line with apriori expectations. The distri-
bution of this coefficient for individuals spanned across
both sides of zero. This has the interpretation that while
some acted as expected (preferring lower cost), others
appeared to prefer a larger cost. Despite these inherent
inconsistencies, M6 was picked as the model of choice.

The correlations between coefficients in model (M6)
are shown in Figure 2. These are derived using the pro-
cedure outlined by (Mariel and Artabe, 2020). In these

results, the coefficients in M6 as appearing in Table
5 which are negative were transformed to be positive.
These are those relating to low reliability, both mainte-
nance cost coefficients, low reliability as well as immov-
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Fig. 2 Correlations among individual-level attribute coefficients

able biodigesters. An auxiliary regression on M6 was
therefore performed where the signs of the coefficients
were altered in order for all to bear a positive sign. In so
doing, a correlation matrix of the random coefficients

can be developed. This method proposed by Mariel and
Artabe (2020) is based on the idea that scale hetero-
geneity shifts covariance to the right and a small shift

will keep the final covariance between two parameters
negative but a large shift reverses the sign. Rather than
Pearson correlations (ρ), Spearman correlation (ρs) co-
efficients were calculated. This was because some of
the variables (installation cost) were log-normally dis-
tributed and may display some non-linearity. In this
figure, the coefficient on installation cost has not been
converted and raw values from the regression have been
displayed instead. For this reason, the coefficient ap-
pears to straddle the positive and negative spectrum.

This attribute was dropped from Figure 2.

4 Discussion

Many of the respondents in this study used biomass fuel
sources. While the data did not include that about chal-
lenges faced while obtaining these fuels, such challenges
are not unexpected. The stated drive by many govern-
ments including Kenyan authorities to ensure that such

traditional fuels are replaced by cleaner fuels is based on
the economic, environmental and health benefits that

accrue (Somanathan and Bluffstone, 2015; Van de Ven

et al., 2019; Talevi et al., 2022, In Press). But given the
heterogeneity in available feedstock, the suitability of a
biodigester design also needs to go hand in hand with

the different types of feedstock available to farmers. At
the time of this study, separate research was underway
to establish the usability of coffee waste as a source
of feedstock for anaerobic digestion. Separate results

in Ethiopia suggest that while coffee husk, pulp and
mucilage have a potential as feedstock for biodigesters,
the same cannot be said of parchment (Chala et al.,

2018). Research at identifying these choke points, when
designing and disseminating biodigester systems which
fit well with the preferences of potential adopters is en-
couraged. This, it is hoped would provide coffee farmers
with another viable source of feedstock, since besides
water availability, as feedstock availability is also one
of the factors enumerated as posing a challenge to the
adoption and continued use of biodigesters (Lwiza et
al., 2017; Clemens et al., 2018).

4.1 Socioeconomic variables and opt-out

The alternative specific constant (opt-out) was nega-
tive and significant (p < 0.05) in all models considered.
This statistically significant negative parameter can be
interpreted to mean that respondents are less likely to
choose the opt-out over the three options provided in
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the choice sets. In fact, qualitatively, these results are
in contrast to those by Thapa et al. (2021) in Nepal
where they found a latent unwillingness to demand for
biodigesters. Why actual adoption of the technology is
still low while this parameter suggests a higher proba-
bility of preferring a biodigester was not immediately
clear. However, it may be expected that most farm-
ers are risk-averse as found in China (He et al., 2018).
Such intrinsic preferences were however not measuresd
in this survey. Moreover, risk and uncertainty loss aver-
sion was found to affect the probability of selecting of-
fered alternatives rather than the opt-out in a DCE over
new rice varieties in India (Ward and Singh, 2015). In
the present study however, only directly observable re-
spondent characteristics were used to account for some
of the choice heterogeneity.

Variables that relate to the respondent characteris-
tics (i.e. size of the cattle herd and fuel costs) and their
environment (elevation) were used in the estimations

to control for observed heterogeneity. It was suspected
that just as in Uganda where these factors determine
biogas adoption (Walekhwa et al., 2009; Lwiza et al.,

2017), so should they be important in our case. As-
suming that the opt-out is a preference for the status
quo (preference for a biodigester plant with “zero at-
tributes”), we could stretch our imagination and sug-

gest that these coefficients would at least tell us some-
thing about potential non-adopters. However, at this
point, it is necessary to point out that this does not

strictly represent adoption per se, but indicates the
probability of choosing the opt-out, conditional on cer-
tain observable socioeconomic characteristics. Further,
the opt-out option was also not strictly an individual

specific status quo alternative as defined by (Carlsson
et al., 2012) but an alternative specific constant. In the
study, this opt out was undefined. This was done to

avoid forcing respondents to formally define this opt-
out. Doing so, it was thought would provide them an op-
portunity to define a plant with all desirable attributes

and hence a dominant alternative (Bliemer and Rose,
2011).

Livestock holding: The coefficient on livestock numbers
(TLUs) was significant (p < 0.05) and negative in M4.
It is expected that herd size is not truly random but
has a distinct environmental signal. Keeping in mind re-
sults from LSMS study data, geography and biophysical
factors appear more important than micro-level factors
in the adoption decision (Sheahan and Barrett, 2017).
The result suggests that those with larger flocks (the
estimation used tropical livestock units) have a proba-
bility of preferring to have a biodigester than without

(opt out). Large numbers of livestock allow one to have

enough feedstock in the form of manure for their bio-
gas plants. This is true from studies in Kenya (Muriuki,
2014), Uganda (Walekhwa, et al., 2009; Lwiza, et al.,
2017), and China too (Sun, et al., 2014). The type
of cattle production system employed by the different
households to raise livestock may determine how eas-
ily manure is fed into the biogas system. While there
may be major differences across different households,
no major differences may exist in the sample because
the AEZ from which the sample was drawn are not far
from each other. That said, smaller land parcels in Ki-
ambu (Jaetzold, et al., 2010a) where commercial small
dairying is more prominent suggests that the system
here is zero-grazing. Despite the smaller land sizes, es-
pecially in Kiambu, farmers keep animals under con-
finement and are therefore able to raise feedstock for
to run a biodigester. To assess the possible association
between livestock numbers and environmental variables
(here represented by altitude), a Spearman correlation
coefficient was estimated. The correlation between alti-
tude and livestock numbers was significant though weak

(ρ = −0.0713, p = 0.0161). The households interviewed
in Machakos lie at lower elevations than those in Ki-
ambu. This may be a reason why Kiambu has a larger
density of plants than Machakos.

Fuel costs: The household size on the other hand was
dropped in favor of fuel costs since the correlation be-

tween these variables in the data was significant and
sizable (ρ = −0.326, p = 0.013). The fuel cost pa-
rameter was positive suggesting that those with large

fuel costs (presumably large households) would choose
the opt-out. This was unexpected as it would appear
that a large household represents a source of labor re-
quired to collect firewood, take care of the animals as
well as feed a biodigester. The result looks counterin-
tuitive at first. However, as argued from recent studies,
labor markets are not missing and farmers are players
in the labor market. Available labor is thus directed to
other activities and is not as abundant as previously
thought. However, while such factor markets are not
completely missing, they are incomplete (Dillon and
Barrett, 2017). This failure does not reveal why the
coefficient may be positive. In Uganda, the probabil-
ity of adoption is higher for larger household sizes and

those with large fuel costs (Walekhwa et al., 2009), but
our results suggest the opposite. In hindsight, the de-
scription of the technology that respondents were asked
to picture (8 cubic meters) might explain his result.
Such a biodigester size may not produce enough gas for
the average household and therefore this surprising re-

sult. A common finding is that even among households
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that adopted biodigesters, they still maintain other fuel
sources on the side.

Elevation: Respondents located in elevations lower than
1500m asl were less likely to choose the opt-out. This
means that those in higher elevations were likely to
choose the opt out. This was as expected. Households
located in higher elevations where dairying is kept un-
der zero grazing units would have a preference for biodi-
gesters. There could be many reasons why this is so. On
the one hand, zero grazing farmers here have ready ac-
cess to feedstock. Secondly, most biodigesters are al-
ready located in these dairying zones and there are
ample opportunities for neighbors and friends to learn
about biodigesters from each other. This result while
only suggestive, does not imply that other zones should
be left out in any dissemination efforts. In fact, it may
suggest just the opposite. The heterogeneities observed
in these regressions (Model 6 in particular) suggest that

there may be pockets in zones lower than 1500m asl
where preferences for biodigesters are favorable.

4.2 Attributes and their tradeoffs:

To the best of our knowledge, this study is the first DCE
study conducted to investigate tradeoffs among biodi-

gester attributes. As is common with such studies, cost
or price attribute is crucial. As expected, the parameter
on installation cost was negative just as is the parame-

ter reflecting low reliability, and low durability. That is,
ceteris paribus, respondents discount a plant that is low
in reliability, movability and durability or is pricey and
presents difficulties in identifying any defects. An inter-

pretation of the different parameter estimates is given
below. As the numeraire, the installation cost parame-
ter as expected had the expected sign in all models. For
instance, it was estimated as -0.02 in M1 and -0.09 in
M5. This parameter was used in the mWTP estimations
appearing in Fig 2. Interestingly, the Global Moran I
statistic was significant indicating that for parameter,
respondents close together tended to have similar val-
ues. This parameter I = 0.06, (p = 0.000) suggests a
significant, though quantatitatively small correlation.

Ability / Ease of defet identification: The defect identi-
fication parameter is positive and significant (p < 0.05)
suggesting that ceteris paribus, a biodigester that offers
ease in identifying defects is a good thing. The provision

of information about the health of the biogas plants is
a critical requirement for timely repairs to be under-
taken. Anecdotal evidence suggests that for the major-
ity of defective biodigester plants, few end up being re-
ported to Biogas Construction Enterprises (BCEs). As

Table 5 Moran’s I coefficient at different radius bands

mWTP 0.1 0.2 0.3 0.4 0.5 1.0

low relaibilty 0.008 14008 14008 14008 14008 14008
No of par 13 16 24 25 25 61
LR χ2 – – 1033 2121 2164 2419
df 8 9 9 45
Ln(L0) -4329 -4280 -4204 -3851 -4176 -4114
Ln(L) -4273 -4225 -3708 -3164 -3140 -3015
LRindex 0.013 0.013 0.118 0.178 0.248 0.267
AIC 8572 8482 7465 6378 6330 6152
BIC 8670 8603 7646 6567 6519 6612

The number of parameters in M1 include nine that relate to the
attributes, one an ASC, and three representing i) an association be-
tween the position of the cost attribute on the questionnaire and cost
iteslf, ii) ASC*block, iii) ASC*cost position parameters. The extra
two parameters in M2 are the ASC interactions with TLU, fuel cost,
elevation. In the mixed logit models, they almost double because of
the presence of standard deviations which are additional parameters

pointed out, most biodigesters will present difficulties
in defect identification. Further, in only a few occasions
of reported cases are assurances given that the defects

would be fixed. This reflects results in Uganda that
suggest that inaccessible BCEs are among the leading
causes for abandoned plants (Lwiza et al., 2017). With

sensors relaying real-time data, technicians from BCEs
can determine the health of each plant. From a tech-
nical perspective, the likelihood of detecting a defect
before it becomes catastrophic increases. In turn, the

possibility of increasing the plant’s operational reliabil-
ity increases. It is reasonable to assume that reliability
is an important signal to potential adopters. It is such

signals that will be shared by local opinion leaders.

For this information to be transmitted, the defect
will need to have been identified in the first place. This

reorganizes the context in which BCEs make decisions
and hence, can act as a nudge towards action (Be-
nartzi et al., 2017). From a behavioral angle, informa-
tion so transmitted is visible to all BCEs and their as-

sociated technicians. This differs from the current sit-
uation where reports of defects are shared with one
or a few technicians. Just as with the findings in Ki-
tui (Koehler et al., 2015), sensor data can alter the
choice architecture available to the BCEs (technicians).
Since this information is in “the open/is public”, this
in turn may speed servicing. For these reasons, respon-
dents have a preference for easy defect identification
and thus, the parameter is significant (p¡0.05) and pos-
itive. This was true for 69% of respondents. However,
moving from the default situation where such instru-
mentation has not been rolled out would entail a cost
to farmers. This comes in the form of the initial installa-

tion and running costs (e.g. mobile data subscriptions)
of these sensors.
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Fig. 3 Mean willingness to pay for different biodigester attributes

The mWTP was estimated from M5 and M6. How-

ever, the resultant estimates were considerably lower
than for other candidate models. While low mWTP for
biodigesters is not surprising Kabyanga et al., (2018),
this result was probably statistical. A strong possibil-

ity was that this is because mWTP in M5 and M6 was
derived from a ratio of a log normally distributed co-
efficient and a normally distributed coefficient. Train

and Weeks (2005) noted that working with WTP val-
ues that take this inconvenient distribution is difficult.
Besides, Hensher and Greene (2003) also noted that
long fat tails associated with the log normal distribu-
tion could inflate mWTP estimates when the attributes
are also log normal. Models in WTP space would’ve
avoided the need to convert these estimates, but as in-

dicated, convergence problems were encountered. One
solution to this problem would be to simulate WTP val-
ues using estimated mixing distributions. An interim
solution was to use M3 since the coefficients have a
common distribution (normal) and are random while
the cost attribute is fixed. In M4, all the coefficients
are random, and therefore the resulting distribution of
mWTP might be difficult to characterize (Talevi et al.,
2022, In Press). Besides, the model had not exceeded
the maximum number of parameters estimable. It how-

ever appears that some have estimated more parame-
ters in their random parameter models and proceeded
to publish their results (e.g. Hole, 2008).

One other caveat here was that the cost parameter
in M3 was not constrained to be log-normal, and no

correlations among coefficients were allowed. A conso-
lation is that in M5 and M6, the median (-0.0254 and
-0.0199) are qualitatively close to the parameter in M3

which is -0.027. The mean of the cost coefficients in M5
and M6 were -0.093 and -0.101 respectively. A normally
distributed cost coefficient implies that some share of
the respondents have a positive coefficient on cost. The

WTP estimate of Ksh 8400 using M3 is slightly greater
than the possible cost of the sensors at the shelf (Fig-
ure 2). It was not immediately clear if and by how

much these WTP estimates were mis-estimated. But
a quick check appears to suggest that the mWTP es-
timates may be over-estimated since the coefficient ra-
tios in M5 and M6 are considerably different from those
obtained from M3. This suggests that the mWTP from
M3 may have been overestimated by a factor or 3 or 4. A
quick check for example confirms that the ratio between
the cost and other attribute coefficients declines as one
moves from M3 to M6 (Table 5). However, the mWTP
estimates derived from M3 provide an idea about how
attributes compare in relative terms.

With this particular attribute, a few clarifying points
may be necessary. A clear separation of the sensor run-
ning costs (which would be part of typical operation
and maintenance costs) from maintenance costs was
not explicitly made. Otherwise, doing this would entail

specifying attributes that make the choice experiment
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difficult to comprehend. Whether respondents lumped
the ability to identify defects with typical maintenance
costs (which returns a negative coefficient) is only spec-
ulative.

The correlations from the procedure outlined by Mariel
and Artabe (2020) applied to M6 were used to check
for interactions among these random coefficients. The
method is only limited to interpreting negatively cor-
related coefficients. The negative but weak correlation
(ρs = −0.309) between defect identification and low
maintenance cost suggested that respondents with a
high preference for easy defect identification have a neg-
ative preference for biodigesters with low maintenance
costs.

Maintenance costs: Maintenance costs (both low and
high) all returned a negative coefficient. In fact, the ex-
pectation was that respondents would place a premium
on low maintenance biodigesters (a positive coefficient).
Moreover, that on low maintenance was not different
from zero (p = 0.726). Besides, 28% of respondents pre-

ferred any cost other than high costs—possibly moder-
ate or low costs. The mWTP estimate was Ksh -7200
for a high maintenance cost plant. A possible interac-

tion between maintenance cost and the ability to de-
tect defects (through sensors that imply running costs)
would have been a welcome parameter to test. How-
ever, this was not foreseen during the design phase of

the experiment and such a hypothesis has therefore not
been tested in this paper. Maintenance costs to respon-
dents that have not been exposed to such technology

may have been a source of ambiguity. That is, respon-
dents do not have a map of the maintenance cost distri-
bution and cannot formulate the expectations around
this variable (Ward and Singh, 2015). However, it was
interesting to note that even in the pilot, maintenance
cost similarly was not significant. Whether this was be-
cause this attitude was presented by adjectives (high

– low) was not clear. That even low maintenance cost
returned a negative parameter however suggests that
respondents appear to consider low costs unacceptable.
Although Talevi et al. (2022, In Press) found this pa-
rameter to be significant, it was not large in compari-
son to other attributes employed in their study. Similar
interpretation can be made when eyeballing the rela-

tive size of the maintenance cost parameter vis-à-vis
other attributes (Table 5). In their study, Talevi showed
that present biased (impatient) respondents had larger
mWTP for maintenance assistance. It therefore appears
that our result is not an artefact of the experiment it-
self, but that something more substantial can be learnt.
The large standard deviations suggest substantial het-
erogeneity, which appears to be a similar case in the

Indian study. The spread of the high maintenance cost
parameter in M6 was significant (p = 0.000).

The correlation between maintenance cost and dura-
bility was strong (ρs > 0.7). This suggests that respon-
dents with preferences for durable biodigesters had low
preferences for maintenance costs. This result makes
perfect sense. Durability implies long service life and
coupling such with maintenance costs is not expected
to be a situation that respondents would like to face.
While the correlation between these attributes was neg-
ative, that of high maintenance costs was greater (ρs =
−0.933) than that of low costs (ρs = −0.795) suggest-
ing a greater sensitivity to higher maintenance costs.

Reliability: The parameter on low reliability was neg-
ative while that on high reliability was positive as ex-
pected. Both parameters were significant (p = 0.000).
For this particular attribute, explicit information cues
were provided. These were made by making reference

to how one would describe a plant as high, moderate,
or low in reliability. The choice experiment made refer-
ence to the count of days of a year when the plant that

is reliable would be able to provide gas. To frame this
reliability, the study indicated to the respondents that
a reliable plant would be able to give gas for 345 days

in a year. Low reliability on the other hand would af-
ford 145 days (40%) of the time in a year. Such framing
effects may not have significant effects on choices made
(Kragt and Bennett, 2012). While 27% of respondents

would prefer a plant that is not low (40% reliability or
145 days in a year) in reliability, 37% prefer plants that
are not highly (95% reliability or 335 days in a year)

reliable. A plant whose reliability is high (Nzila et al.,
2012) for instance had a mWTP of Ksh 8,300 while one
whose reliability is only 40% was estimated to have a
mWTP of Ksh -17,900. High maintenance and low re-
liability may be correlated since a plant that fails too
often may increase maintenance costs and is, therefore,
becomes less reliable. As with other coefficients, this
possible interaction was not factored in the experimen-
tal design, and adding such interactions ex-post would
not be feasible.

Generally, a negative correlation existed between
low reliability and low maintenance costs. An estimated
correlation (ρs = −0.661) was moderate. Respondents
with above average mWTP for low reliability are likely
to have a lower than average mWTP for low mainte-
nance cost. In other words, this result suggested that
those with a preference for biodigesters that were cheap
to maintain had a low preference for biodigesters were
unreliable.

Durability of biodigester: A durable plant described as
one that would last 15-20 years was as expected more
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preferable than one that offered less service time (2-5
years). Biodigesters that are less durable as described
by some authors (e.g. Nzila et al., 2012; Cheng et al.,
2014) are mainly the tubular design. They are made
of materials that may be subject to environmental and
other chance stress variables. For instance, tubular di-
gesters may be trampled over by animals. In other cases,
curious children may puncture the inflated balloon and
destroy its capacity to hold gas. Of the WTP esti-
mates, durability appears to be the most valued of the
attributes subjected to testing in this study. Respon-
dents showed a strong dislike for low durability plants.
Taken alongside a study of subsidy policy in China
(Wang et al., 2016), the long-term use of biodigesters
can be sustained by providing maintenance support.
This would be in addition to installation subsidies. This
is because, many seem to agree that in the long run,
biodigesters can pay back the investment even at mod-
est carbon prices (Somanathan and Bluffstone, 2015).
Some of the designs being fairly long-lasting may pro-
vide ample opportunity for peer learning. Since learn-

ing from others is common for this particular technol-
ogy, the presence of durable neighboring plants is a
relevant signal for potential adopters to use in their

own decisions. For instance, Milller and Mobarak (2015)
were able to show that opinion leaders had a signifi-
cant influence on the uptake of cooking technologies in

Bangladesh. What was more important was that their
influence was stronger when the technology in ques-
tion did not meet expectations. In India, those who
had undergone a bad experience with biodigesters had

low mWTP for the technology. Drawing parallels with
biodigesters in Kenya is not difficult. Since biodigesters
degrade with age, there are always a greater probability

of negative experiences as the biodidigester ages. This
therefore implies the need for constant maintenance,
which as we argued above, may be enhanced by em-
bracing sensor technology.

The correlation between the two coefficients rep-
resenting durability was negative (ρs = −0.369) but
weak. This result was expected. Those who have a pref-
erence for a durable biodigester have a low preference
for less durable biodigesters. While not unexpected, this

result can be used as auxiliary evidence that the re-
sponses to the DCE (at least for this attribute) were
consistent with apriori expectations. What was also clear
was that the related coefficients for this attribute were
typically larger, signaling that this is possibly the most
important characteristic to respondents.

Portability of biodigester: Finally, respondents had pref-
erences for portable biodigesters (p = 0.000). Portabil-

ity in a biodigester was estimated to be valued at Ksh

10,900. This result was not surprising. Some designs by
their nature (especially those involving masonry works
such as fixed dome) are immovable. As others have sug-
gested, portability of prefabricated biodigesters is one
of their strong points. These biodigesters are usually
cheaper to acquire, although they are less durable. Un-
like fixed dome designs, they can be described as having
low sunk costs. In addition, their investment can be re-
versible (can be sold to neighbors). Some authors have
suggested that the investment trigger for biodigesters
may be higher than is usually thought (Anderson and
Weersink, 2013). This is in part due to the fact that
they are expensive to install, and once installed, are
difficult to liquidate. This result contrasts with simi-
lar work in settings similar to those in Kenya. For in-
stance, Walekhwa et al. (2014) in Uganda concluded
that biodigesters are economically viable. While they
applied classical investment theory, a critical assump-
tion therein was that biodigesters do not involve signif-
icant sunk costs. With this in mind, and as expounded
earlier, the immovable fixed dome design which has

these characteristic is the most common in Kenya. It
is therefore not surprising that its adoption is low. Per-
haps, under conditions of increasing land scarcity and
small land sizes, respondents prefer to postpone invest-

ment in such an immovable fixture. However, thirty-
one percent of respondents prefer immovable to mov-
able plants.

The need to move plants from time to time may not
be common. However, this decision may be important in
places where land ownership is fragile (e.g. lack of secure
tenure) or subject to changing tenure status. Therefore,

without compromising on performance, designing mov-
able biodigesters would be an important consideration
for engineers. Luckily, such design features have been
incorporated in some plants, using durable plastics in
place of masonry work (Cheng, et al., 2014). The ma-
terials used on these biodigesters may include polyvinyl

chloride (PVC), polyethylene (PE), high-density polyethy-
lene (HDPE) among others. It is notable that through
the Finance Act, tax waivers have been granted for such
prefabricated biodigesters (Republic of Kenya, 2021).
While the text talks of prefabricated biodigesters, it
is not clear whether this waiver extends to materials
which go towards their construction.

5 Conclusion

This paper presents what we think is the first formal

treatment of the subject of biodigester plant attributes
and their tradeoffs. The attributes: durability, reliabil-
ity, movability, and defect identification show a clear
preference structure. The results also suggest that there
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is substantial unobserved preference heterogeneity. This
was revealed by the significant standard deviations in
all mixed logit regressions, even after controlling for
some respondent characteristics. In addition, the ASC
suggests that at least for the respondents comprising
this sample, the preferences towards bidigesters can be
described as enthusiastic. While costs have been the
key impediment highlighted in many studies, this pa-
per points towards other product specific demand mod-
ifiers, which presumably are linked to adoption of the
technology. For instance, these results suggest a strong
preference for reliable but durable biodigesters. The sig-
nificant mWTP for defect identification suggests that
retrofitting biodigesters with sensors can be a feasible
direction to take. A caution in interpreting the mWTP
values however is given because they may have been
over-estimated by a factor of between 2 and 4. If so,
this means that at an off the shelf cost of Ksh 5000, a
subsidy covering 2

7 or 5
8 of the cost of a retrofit may

also need to be provided.

From a more practical perspective, technology de-
velopers and promoters would consider using these re-

sults to direct and enrich their work. Where technically
possible, preferred attributes can be enhanced without
compromising on attributes seen as utility enhancing.
Of immediate application is the deployment of sen-

sor technology on existing plants. Retrofitting exist-
ing biodigesters with these sensors is a recommendation
coming from this study. Doing so, we contend, can help

deal with the problem of numerous defective plants.
This in turn could result in a reduction of the number
of failed plants. This has immediate benefits to biogas

plant owners. It can in turn leads to increased adop-
tion and diffusion of the technology. In an environment
where learning from others (neighbors and friends) is
important, this may serve to paint biodigesters in posi-

tive light. From the observations of others before, a neg-
ative perception about biodigesters among the popula-
tion can be traced back to failed biodigesters. It there-
fore is not a surprise that this study revealed a strong
preference for durable biodigesters. Highly durable biodi-
gesters allow users enough time to reap from its bene-
fits, hence the high premium placed on the attribute.

As with studies of this type that rely on stated pref-
erences, the results are only an approximation of reality.
A key feature of this reality is heterogeneity in prefer-
ences as well as personal context. Many of the possi-
ble sources of heterogeneity were not explicitly incorpo-
rated in this study. For instance, the study did not con-
trol for risk and ambiguity preferences as some authors
suggest these may be important in decision making.

Since a DCE as applied in this study mimics decision
making, albeit under hypothetical conditions, a repli-

cation of this study which incorporates such intrinsic
characteristics is called for. Further a careful consider-
atin of the precise meaning of the significant correla-
tions among the attributes can also shed further light
towards the tradeoffs.

Social learning from neighbors is important for biodi-
gesters. The present study had a major failing in incor-
porating what respondents actually knew about biodi-
gesters. Kiambu, unlike Machakos for instance has a
higher (but small) concentration of biodigesters. It is
possible that responses to this experiment are also con-
taminated by what respondents have learnt from their
social network. Although results from a DCE are based
on responses to hypothetical situations, it is difficult
to ensure that responses are only based on those vari-
ations contained in the experiment. In the case of a
highly observable technology as biodigesters, it is con-
ceivable that learning from others engenders significant
heterogeneity. While none of the respondents in this
study owned a biodigester, it is plausble that a num-

ber of them had come into contact with neighbors who
owned the technology. This contact may induce learn-
ing. This is because most social interaction based learn-

ing is local. An attempt to control for such inherent het-
erogeneity by including a simple dummy may not have
been sufficient. Importantly, data on what respondents

had learnt and from whom was not collected. Extend-
ing these analytical models to incorporate other forms
of heterogeneity would be one recommendation from
this study. While some have extended discrete choice

analysis to incorporate spatial heterogeneity (e.g. Bhat
and Sener, 2009; Smirnov, 2010; Brouwer et al., 2010;
Meyerhoff, 2013; Liu et al, 2020; Toledo-Gallegos et al.,

2021) the authors have not come across similar exten-
sions incorporating social interaction in the analysis of
DCE data. How such learning may translate to actual
behavior (considering the salience of failed plants) is an
important question for future research.
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Table 6 Results from conditional (fixed effects) and mixed logit models

b height Variable Attribute Level M1 M2 M3 M4 M5 M6

Installation cost ’000 mean -0.020*** -0.020*** -0.027*** -0.041*** -3.670*** -3.917***
(0.003) (0.002) (0.002) (0.005) (0.140) (0.179)

s.d. 0.074*** 1.615*** 1.804***
(0.003) (0.119) (0.162)

Reliability low mean -0.268*** -0.268*** -0.488*** -0.489*** -0.418*** -0.432***
(0.047) (0.047) (0.079) (0.072) (0.068) (0.077)

s.d. 0.899*** 0.634*** 0.600*** 0.824***
(0.112) (0.137) (0.115) (0.104)

High mean 0.286*** 0.286*** 0.226** 0.433*** 0.463*** 0.193*
(0.071) (0.057) (0.099) (0.097) (0.089) (0.102)

s.d. 1.415*** 1.208*** 1.055*** 1.217***
(0.092) (0.100) (0.085) (0.127)

Maintenance cost Low mean -0.074 -0.076 -0.126 -0.033 0.088 -0.109
(0.078) (0.077) (0.100) (0.104) (0.094) (0.111)

s.d. 0.136 0.085 0.037 0.255*
(0.147) (0.186) (0.107) (0.142)

High mean -0.122*** -0.122*** -0.198*** -0.184*** -0.099 -0.213***
(0.047) (0.046) (0.069) (0.068) (0.063) (0.075)

s.d. 0.540*** 0.029 0.264** 0.491***
(0.104) (0.177) (0.119) (0.097)

Durability Low mean -0.465*** -0.467*** -1.215*** -1.157*** -0.870*** -0.973***
(0.078) (0.060) (0.144) (0.130) (0.114) (0.142)

s.d. 1.852*** 1.559*** 1.460*** 1.753***
(0.140) (0.138) (0.132) (0.142)

High mean 0.320*** 0.319*** 0.394*** 0.414*** 0.554*** 0.456***
(0.084) (0.065) (0.116) (0.115) (-0.102) (0.124)

s.d. 1.607*** 0.933*** 0.984*** 1.281***
(0.107) (0.112) (0.101) (0.123)

Movability Immovable mean -0.215*** -0.216*** -0.299*** -0.312*** -0.387*** -0.074
(0.066) (0.058) (0.089) (0.081) (0.076) (0.095)

s.d. 1.062*** 0.484*** 0.494*** 0.786***
(0.095) (0.113) (0.089) (0.106)

Defect identification Easy mean 0.199*** 0.199*** 0.229*** 0.331*** 0.403*** 0.370***
(0.061) (0.055) (0.084) (0.077) (0.072) (0.092)

s.d. 0.852*** 0.499*** 0.376*** 0.712***
(0.097) (0.103) (0.125) (0.098)

ASC mean -3.414*** -2.916*** -3.413*** -9.745*** -14.987*** -14.020***
(0.429) (0.220) (0.217) (0.664) (1.246) (1.325)

ASC*Block mean -0.064 -0.127 -0.372 -0.137 3.923*** 2.433***
(0.333) (0.125) (0.163) (0.487) (0.893) (0.790)

ASC*position mean 0.241 0.259 -0.407 -0.006 0.724 -1.017
(0.480) (0.23) (0.321) (0.530) (0.799) (0.707)

ASC*TLU mean -0.811*** -0.894*** -0.957** -0.081 0.203
(0.123) (0.155) (0.477) (0.734) (0.731)

ASC*Elevation mean -1.771*** -1.847*** -1.952*** -4.858*** -5.216***
(0.344) (0.376) (0.715) (1.724) (1.518)

ASC*Fuel mean 0.349*** 0.209 1.527*** 3.252*** 6.375***
(0.125) (0.158) (0.490) (0.799) (0.893)

Position*install cost mean 0.004 0.004 0.009*** -0.0006 -0.0005 0.005
(0.004) (0.002) (0.003) (0.0069) (0.0041) (0.0043)

No of respondents 440 440 440 440 440 440
No of choice tasks 3502 3502 3502 3502 3502 3502
No of datapoints 14008 14008 14008 14008 14008 14008
log normal cost NO NO NO NO YES YES
Randomly dist cost NO NO NO YES YES YES
Randomly dist parameters NO NO YES YES YES YES
Independent coefficents YES YES YES YES YES NO
McFadden’s pseudo R2 0.013 0.013 0.118 0.178 0.248 0.273

Standard errors in parentheses, *** p < 0.01, ** p < 0.05, and * p < 0.1. In M5 and M6 which employ a log normal distrubution on
the installation cost parameter, the coefficnent needs to be transformed into its respective mean, median and standard devision. They

are defined as exp(β), exp(β+σ2/2) and exp(β+σ2/2)×
√
exp(σ2 − 1) (Train 2003). The values β and σ are as estimated from the

regressions where the cost parameter is specified as log-normally distributed. For example, the resultant values are βM5 = -0.0939,
β̃M5 =-0.0254, and σM5 = 0.333 for M5 and βM6 = -0.101, β̃M6 =-0.0199, and σM6 = 0.414 for M6
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