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ABSTRACT

Most financial institutions have faced a lot of losses due to the fluctuations of commodities prices. Traditionally normal
distribution was applied and could not capture rare events which caused enormous losses. The objective is to estimate
conditional quantiles of the returns of an asset which leads to Value at Risk directly using Extreme Value Theory which
estimates the tails of the innovation distribution of financial returns. One of the most important approaches to risk
management used in this study is quantification of risk using Value at Risk (VaR) which is achieved by Extreme Value
Theory (EVT) that have the ability to estimate observations beyond the range of the data or out-of-sample data (extreme
quantiles). Data from Nairobi Stock Exchange (NSE) specifically equities from Barclays Bank was applied at different
confidence levels and it was observed that Peak-Over Threshold( POT) model of EVT and Generalized Pareto
Distribution( GPD) which describes the tail of the financial returns captures the rare events which makes it the most robust

method of estimating VaR.

Key words: Extreme Value Theory, Peak -Over Threshold (POT), Generalized Pareto Distribution (GPD).

I ntroduction

Quantiles are used in moderate or high probability
levels and also to high even to out-of-sample
observations (beyond maximum observations). These
are referred to as Extreme quantiles in Extreme Value
Theory perspective. Extreme Value Theory explains
significantly the limiting distribution of sample extremes
in the same way normal distribution explains the limiting
distribution of cumulative sums. This amounts to
estimation of asymptotic distribution of extreme values
without making any assumptions about an unknown
parent distribution. An extreme movement relates
directly to the tails of the distribution of the underlying
data generating process. Extreme quantiles and the
conditional a -quantiles of Y, are combined to obtain
Value at Risk. The mathematical theory of EVT and its
application in financial and insurance risk management
were introduced by Embretchts (1997). Heavy-tailed,
heteroskedastic and autoregressive models were used to
estimate future market values of a portfolio. Conditional
guantiles of innovations were estimated using Extreme
Value Theory particularly the peak-over-threshold
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(POT) model. Estimation of the tails and quantiles
(Extreme quantiles) of the returns were determined by
fitting a Generalized Pareto Distribution (GPD) to the
observations beyond a certain threshold.

Extreme Value Theory has the ability to quantify
probabilistic behavior of large losses and able to
adequately capture the tail behavior of stock returns.
McNeil and Frey, (2000; Longin, (1997) and Mcneil,
(1998) used estimation based on limit theorems for block
maxima to estimate extreme returns. Danielsson and de
Vries, (1997a, b) used semi-parametric approach based
on the Hill-estimator to estimate extreme returns for the
tail index and bases on conditional normality which is
not well suited for estimating the distribution of large
quantiles of the Profit and Loss distribution. Barone-
Adesi, Bourgoin and Giannopoulos (1998) fitted a
Garch-model to a fanancial returns series and uses
historical simulation to infer the distribution of the
residuals. Their results work well for a large data set and
as the data becomes smaller it might not work well in the
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estimation of the tails of the residuals and this requires
other methods like EVT. Embretchts Resnick and
Samorodnitsky, (1999) advocated the fully parametric
estimation technique which is based on a limit result for
the excess-distribution over high thresholds or Peak-
Over-Threshold (POT) i.e. the Generalized Pareto
Distribution (GPD). Mcneil and Frey, (2000) estimated
conditional quantiles by combining GARCH Models for
forecasting volatility and EVT techniques applied to the
residuals from the GARCH analysis. The disadvantage
for this method is that the results of the EVT analysis
will be sensitive to the fitting of a GARCH model to the
entire data set in the first stage. Gencay and Selcuk,
(2004) reviewed estimation of VaR in some emerging
markets using various models including EVT. From their
emperical results it showed that EVT- based models
provides more accurate VaR especially in a higher
guantiles. Harmantzis et. al. (2005) and Marinelli et. al.,
(2006) presented the performance of EVT in VaR and
ES estimation compared to the Gaussian and Historical
simulation models together with other heavy-tailed
approach. From their results it was found that fat — tailed
models can predict risk more accurately than non-fat-
tailed ones and there exists the benefits of EVT
framework especially method using GPD.

The key approach to EVT is that the distribution of
extreme returns converges asymptotically to a particular
known distribution rather than a single parametric
method where the data is fitted to a whole distribution.
Because of stochastic volatility in financial data, fitting
the whole data to a single parametric model may not be
appropriate when applied directly (Mwita, (2003)).
Danielsson (1998) showed that EVT does not capture
the risk well when the probabilities are as low as 0.95.
Another very significant approach is to combine EVT
which is used to estimate the residuals and Artificial
Neural Network which is to estimate the conditional
volatility and conditional expectations of returns Diagne,
(2003).1In this approach EVT method is used to estimate
the quantiles of the returns directly.

Methodology

Extreme Value theory is the most robust method in
the estimation of the tail behaviour of a distribution.
EVT models the tail returns and EVT estimates
measures the risks of financial returns.

Distribution of Exceedances

The framework of estimating the distribution of
excesses over certain threshold point, which identifies
the starting of the tail, is based on Peak-Over- Threshold
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(POT) approach. This is generally considered to be
most applicable in practical applications since it is
efficient in the use of limited data on extreme values.

The Generalized Pareto distribution (GPD)

The distribution function G, ¢ is defined as follows;
1
1{1+yeT ify 0
X
1—ex%e} ify =0
X

The definition of Generalized Pareto distribution is
given under the following conditions:

G.@=

Given that X >0, and the support e>0when (=
OQandO<e<-X/ly wheny <O0.

F. is a class of distribution which falls into three
categories depending on the value of the shape
parameter y in the limiting GPD approximation to the
distribution of excesses. If y > 0 then the distribution
corresponds to heavy-tailed distributions where the tails
decays like a power functions, these distributions
includes Pareto, Student t, Cauchy, Burr, Loggamma,
and Frechet distributions. If y =0 then the distributions
includes the normal, exponential, gamma, and
lognormal, whose tails decay essentially exponentially.
When y < 0, then the distributions are short tailed
distributions with finite right endpoint, such as the
uniform and Beta distributions. Since these distributions
subsume other distributions under common parametric
form, they are referred to as generalized distributions.
When y > 0, reparametrized type of the usual Pareto
distribution with shape a = 1l/y is obtained. Ify <0,
then type M Pareto distribution is obtained, if y = 0, it
gives the exponential distribution. If the family of
distribution is extended by adding a location parameter
u, then GPD (G, , x (€)) is defined to be G, x (e-u).

Theorem: Pickands-Balkema-Gnedenko-de
Haan

Let Xy, X5, X3...... X, be nindependent realizations of
a random variable X having a distribution function F(x).
For a large class of underlying distribution functions F
the conditional excess distribution function F, (y) given
an appropriately high threshold u is approximated by
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Where g, is defined by g, = sup {eeR such that F (x) <1}

Iim{ up ‘Fu(x)—q )

€= | 0<e<ey-u

2

From this theorem it suggests that as the threshold u
is progressively increased, the excess distribution (F,)
over the threshold may be approximated by Generalized
Pareto distribution (GPD) for some y andX provided

the underlying distribution F satisfies the extremal-types
theorem. Excesses over the threshold N, are assumed to
be iid with exact GPD parameters.

Estimating Excess Distribution

(Unconditional Quantiles)

Let €, be an iid random variables and also let y;,
Yoroe YN,
threshold U= qj. The definition of the distribution of
excess losses over a high threshold u is given as;

a gives a series of exceedances over the

F.(y)=Pr(e)<u+y|le,>u , y>0 3)

The assumption is that the excesses are iid having
distribution function F, and u is less than the right-hand

end point of the distribution e =SUp,_, {F(€)} < 1. In

terms of underlying loss distribution 3, the distribution
of excess losses over a high threshold may be defined as;

(y)= e +y)-Fu)

§ 1-Hu)

u

4)

When equation 4 is rearranged, the tail distribution
of the random variable €, above threshold u is obtained
as

Flu+y)=F(u).Fu(y)
©)
The tail of original distribution may be easily
estimated by estimating F and F, separately. The Peak-
Over Threshold may now be used to model observations
exceeding a high threshold u. From Pickands-Balkema-
de Haan theorem, it is stated that

I:u (y) - Gy ,x(u)(y)
(6)
Combining equations (5) and (6) and setting e = u +
y, the model can also be re-written as
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F (x)=(1-Hu))Gy ,x(x-u)+Hu) fgr x> U
Q)
This formula shows that the model may be
interpreted in terms of the tail of the underlying

distribution F(x) for x > u. Equation7 is used to
construct a tail estimator after estimating F(u).

Method of Historical Simulation (HS) taking the
empirical estimate F (u) as n-Nu/n
The maximum likelihood

y, and )(An (u) of the GPD parameters are fitted with

estimators

the residual excess sample ét defined as

é =Y, —q, (Xt ) assuming that €, is iid then the tail
estimator formula is given by

Fx)= Fm(x){l—%}x 1 Ya(xou)

X, (u)

-1y

®
Estimation of Value at Risk

The quantile estimate which is an unknown
parameter of an unknown underlying distribution may
be calculated by inverting the tail estimation equation 8
to obtain the Value at Risk which is given by

SEAC) )

u

©
This is the unconditional quantile estimate of an
underlying distribution.

4

The GPD is fitted to the N, EXC((ESS)GS to obtain the
estimates by assuming that number N, out of a total n
data points exceed the threshold. The Maximum
likelihood estimation (MLE) method is used to obtain
parameters, where parameter values are chosen to
maximize the joint probability density of the
observations. This method help to give estimates of
statistical error (standard errors) for parameter
estimates which makes it a general(ﬁ)ting method in
statistics. From Hosking, J., & Wallis, J. (1987), (MLE)
is not as efficient as the method of moments even in
samples as large as 500. GPD estimators based on the
method of moments are of the form.

~ 1 Z-U ~ Z-U(z-u
=_|1- d =— 1
Y 2( s’ j o i(é)u) 2 ( $ J

(10)
Where Z and s* are empirical mean and variance
respectively.
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Equation 10 assumes that the unknown distribution
function F has an exact GPD tail.

A more realistic approach to use for any heavy
tailed distribution F is to relax the exact type of
distribution by using result of Balkema-de Haan and
Pickands.

It can be seen from (16) that the estimates

A

bn(u) and yAnare consistent and asymptotically

N 1
normal an N— oo and fory , > —E. Smith, R. (1987),

also obtains asymptotic normality results of the
estimates under the weaker assumption that the excesses
are iid from F,(y) which is approximately GPD.

The log-likelihood function for the estimates is
given as

L o, () =N, |og(xn(u»_(1+1]Nzulo{l+i:(ﬁ)

n i=1

Estimating Tails of Distributions of
Conditional Quantiles for Dependent Data

In order to obtain appropriate results from extreme
value theory, independence in the series is required. Let
us denote the filtered excess residuals by

t=12,...n
1

Assumption of independence are relaxed up to
some high level of @ . The approach here assumes

independence for only et* corresponding to largea .

If th(e) is a conditional density function of ét on X

then the following assumptions hold for filtered excess
residuals.

Assumption 1
Assume that €, =Y, -G (Xt) are sample
residuals

approximating€,. At least to a good

approximation, the conditional density function g, (e)

of the excesses of ét over the threshold q§ given X; = X,
is assumed such that

g,(e)=gle) forall x and Gle)e MDAH, y >0)

(12)
From the definition of €, as iid, the condition states
that the excess conditional distribution of filtered excess
residuals are heavy tailed and independent of the
covariate beyond the threshold at high probability.

S
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The main objective is to find the distribution
function of the data above the threshold U=(Q; =0
whose inverse will be Quantile Autoregression -scaled

extreme quantile. From 4.3 the implicit form of the
distribution may be written as

Flos +e)=Flas J+0-Fla)F ()
(13)

Where its estimate is given as
Flas +e)=Fla )+ 0-Fa)F, @)

ﬁ(qae )= F(qae ) =a from Cai, Z and Roussas (1997)
which implies that

F(g +e)=a +(1—a)lfqz (€) which simplifies the

tail estimator to

If(f]ae +e):a +(1-a Ifaae ()

)
o Fle)=a +(1-a)F,(e)
(14)
Wheree>0 and ¢S =0

A lemma which is proved in (\M{)ta, 2003) shows

that F(e) is asymptotically a generalized Pareto
distribution function estimator.

Part of the data based on relatively high probability
level say o is assumed to be an initial as well as the
beginning of the right-hand tail of a heavy tailed
distribution. A high probability levels, say ¢ > a is taken
to obtain extreme quantiles. First consider the iid
random variables g ... based on the process given in
equation 1. A high quantile q, is considered in order to
derive an estimate of an extreme quantile g, for ¢ =1,

where o <@ is large but not as close to 1 ase.

It should be observed that the assumptions of
independence are related up to some high levels ofa. A
method which involves historical simulation (HS) in
finding the threshold assumes standardized excesses
over the conditional mean are iid, this kind of approach
assumes independence for only & corresponding to
large o. Assuming d,, to be the quantiles above a

threshold qae =0 based on g and derived by inverting

the distribution F(¢) at a particular level of ¢ > a. That is
for fixed ¢ €(0,1),
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g =inf{Fe)>j | =inf{l-(1-a)1-FK(e))=j |

e>0 e>0
from 3.24
1-]
~Su ——, a
e>(§3{(%/b ( ) 1—3} ”
1ad G=1-G =G (—H j
el 1-a
_bla) (1—1 j*’ 1
y l-a
(15)
Its estimate is denoted by
qje :infe>o{ (Qa +e)>J } Q [1 J ] -1
y 1-a
g° is a consistent estimate of Q° since

A

INL|Y -y, %—1

is consistent and

asymptotically normal with mean zero covariance given
in lemma 4.1 in Mwita, (2003), clearly

gl—y x(@ )—)(OO asa —1 and N, -

x(@) (1 j ) .
Therefore — —1| estimates

y 1-a
— 1- _ _ _ _
Gy x(@) H consistently which is proved in

Dudewicz and Mishra, (1998).

In choosing on appropriate threshold, we are faced
with a bias-variance tradeoff. Theoretically the threshold
should be as high as possible for the Pickands-Balkema-
de Haan theorem to be satisfied. In practice too high
threshold means that we are remaining with very few
observations above the threshold for estimating GPD
parameters leading to very high variance of estimates
(McNeil and Frey (2000)). Note that if by visual
judgment it is observed that the required quantiles does
not fall in the peak area, we use other appropriate
method. That is, a series of iid random variables may be
generated from normal or t distribution if it is observed
that the required level of a(in this casee) does fall in
appropriate region. A set of quantiles is then fitted on
the excesses over the quantiles adjusted random
variables (Mwita, (2003).
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Results and Discussion

Estimation of Extreme Quantiles and Value
at Risk

In this section data analysis for Extreme value
applications in MATLAB is demonstrated. This entails
the estimation of the distribution of excesses over a
certain high threshold using the POT approach which
actually identifies the starting point of the tail. The data
used is stock market data specifically (ei?é}lties from
Barclays Bank of Kenya consisting of 1023 observations.

Logarithmic transformation was performed on the
raw data to obtain logarithmic returns which then
applied in data analysis. Figure 1 below shows
logarithmic returns plotted against time.

Figure - 1 Daily negative logarithmic returns
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After logarithmic transformation, the mean of the
data became stationary. From figure 1 it is observed that
there is presence of values clustering. This actually
means that small values follows small values and
similarly large values follows large values which
indicates presence of short-range dependence, resulting
into doubting the assumption independent and
identically distributed returns that may be violated due
to the observed clustering. The presence of clustering of
returns indicates the presence of stochastic volatility.
Modeling the tails of a distribution with GPD requires
observations to be approximately independent and
identically distributed (iid). To produce a series of iid
observations, GARCH-type stochastic volatility model is
fitted to the returns and the filtered residuals and
Volatilities are extracted from the returns of the equity
prices. The residuals obtained after model filtration from
each return series are standardized to have a Zero -
mean, unit-variance and also iid of which are now used
in EVT estimation of the sample CDF tails. Value at
Risk can now be obtained using equation (3.15).
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The first step in the use of Extreme Value Theory
analysis is to examine the QQ-plots and the distribution
of mean of excesses. Most financial data series are fat
tailed and therefore the graph makes it possible to assess
their goodness of fit of the data series to the parametric
model. The fat-tailness of a distribution is confirmed by
the use of QQ-plot, which should be concave in nature
to indicate a fat-tailed distribution. This can be shown in
figure 2.

Figure -2 QQ Plots

Q0 Plot of Sample Data versus Standard Normal
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If the graph follows a linear form, then the
parametric model fits the data well. It is possible for the
QQ-plots to assist to detect outliers if the distribution of
the data is known. QQ-plots also makes possible to
assess how well the given model fits the tail of the
empirical distribution. From figure 2, it is shown that the
graph is curved to the top at the right end or to the
bottom at the left end indicating that the empirical data
is fat tailed.

Figure- 3 Mean Excess Plot
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Figure 3 shows a plot of sample mean excesses of a
stock data against different thresholds. This is a plot of
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some few sample mean excesses. This is because plotting
all the excesses affect and finally distorts the plotting.
From figure 9, it is observed that the graph declines and
begins an upward trend which indicates the presence of a
heavy-tailed distribution. A threshold is chosen
observing the area with a linear shape on the graph
straightening upwards. It is observed that the graph
begins to straighten upward around threshold 2 and also
the function tends to infinity like a GPD, which provides
a reasonable fit to the whole data set. The chosen
threshold is 2.00 meaning that from the actual data 50
out of 1023 data points exceed the threshold.

Estimations at the Tail of the Distribution

The 50 exceedances over high threshold are fitted to
the GPD wusing Maximum Likelihood Estimation
(MLE). The quantile (percentile) value at the tail from
estimated parameters of different distributions is
estimated. Basing on these data, the parameter estimates

are Yy =0.3582 andX =0.2212. The

parameter ¥ >0 is an indication of a heavy-tailed

distribution. This can be interpreted to mean, the higher
the value of the shape parameter the heavier is the tail
and the higher the derived quantile estimates and the
corresponding prices. At this point quantile estimates
and confidence intervals for a high quantiles above the
threshold in a GPD are calculated.

shape

Figure - 4 Exceedance distributions
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Figure 4 shows a smooth curve which is the
estimated GPD Model for the excess distribution and
the points which shows the emperical distribution of 50
extreme values showing that GPD model fits the excess
losses well.
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From Figure 5, y-axis indictes the tail
probabilitues 1 - F(x). The Threshold of 2.00
corresponds to a tail probability of approximately 0.05
which can be observed from the top left corner of the
graph. The solid curve indicates the tail estimation which
can be extrapolated to areas of sparse data and the
points again shows the 50 large losses.

Figure - 5 Tail estimate
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Figure 6 shows the scatter plot of residuals from
a Generalized Pareto Distribution fitted to stock market
data over a high threshold 2.The solid line observed is
the smooth of the scattered residuals.

Figure - 6 Scatter plot of residuals
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In Figure 7, Value at Risk is esimated to be
VaR, oo =3.0726 which is calculated using equation

3.20 and is statistically refered to as a quantile estimate.
The figure shows the point and interval estimation of
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VaR at the 0.999™ quantile and 95 percent confidence
intervals for the stock market data. Confidence interval
of VaR yields an asymptotic interval where VaR lies and
these demonstrate a fundamental asymmetry in the
estimation of a high quantile for heavy-tailed data.
Where the vertical red dotted line intersects with the tail
estimate gives the point Value at Risk of 3.0726. The left
vertical dotted blue line shows the lower confidence
level which is 2.5822 and the right vertical dotted blue
line shows the upper confidence level which is 6.6548 for
the Value at Risk and the Horizontal red thick line
corresponds to the 99.9% confidence level. The advantage
of estimating VaR using GPD method is that, this
method can estimate VaR outside the sampling interval

In Figure 7, Value at Risk is esimated to be
VaR, oo =3.0726 which is calculated using equation

3.20 and is statistically refered to as a quantile estimate.
The figure shows the point and interval estimation of
VaR at the 0.999™ quantile and 95 percent confidence
intervals for the stock market data. Confidence interval
of VaR yields an asymptotic interval where VaR lies and
these demonstrate a fundamental asymmetry in the
estimation of a high quantile for heavy-tailed data.
Where the vertical red dotted line intersects with the tail
estimate gives the point Value at Risk of 3.0726.

Figure-7 Point estimate at the tail
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The left vertical dotted blue line shows the lower
confidence level which is 2.5822 and the right vertical
dotted blue line shows the upper confidence level which
is 6.6548 for the Value at Risk and the Horizontal red
thick line corresponds to the 99.9% confidence level. The
advantage of estimating VaR using GPD method is that,
this method can estimate VaR outside the sampling
interval.
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In figure 8, the tail estimates with 95 percent
confidence intervals are plotted against the number of
exceedances. The dotted lines are the upper and lower
95 percent confidence intervals. This actually describes
variability of the estimate of a high quantile in the tail of
the data based on GPD estimation with varying
threshold or number of exceedances.

Figure - 8 Stock market data loss estimates of 0.999-
quantile as a function of exceedances
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Estimating Extreme Quantiles Considering
Volatility of Returns

This approach entails the estimation of Value at
Risk, where the main aim is to find out the possible
extent of a loss arising from adverse market movement
over the next day taking into account current volatility
background. Volatilities are extracted using the
GARCH model as explained in the previous section. In
a period of high volatility an extreme value appears less
extreme than the same value in a period of low volatility.
This section shows how this dynamic risk measure of
market risk procedure can be improved by using EVT to
take into account the extreme risk over and above
volatility risk.

Figure 9 shows the extracted volatilities derived
from the output function of GARCH Model. After the
identification of the shape parameters, it is now possible
to estimate extreme quantiles which indicates the scale
losses if the threshold were to be exceeded.
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Figure - 9 Volatility
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Figure - 10 Value at Risk at different confidence
intervals
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From figure 10 the green line gives quantiles at
confidence interval of 0.95, the Red line shows extreme
guantiles at confidence interval of 0.99 superimposed on
the logarithmic returns of stock market data. This is
called conditional quantiles or The Value at Risk which
should be observed from time to time to avoid excessive
losses.

It can be observed in figure 10 that at high
probability level, Value at Risk (conditional quantiles)
can be captured properly using Extreme value Theory
specifically the POT method.

Computing VaR and ES using Extreme
Value Theory Method

Alternatively equation (9) is used to calculate Value
at Risk. Using the threshold of 2, number of
observations above the threshold is 50, total number of
observations as 1023, Shape parameter as 0.3582, Scaling
parameter as 0.2212 and varying confidence level, the
results may be obtained as follows.
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Table - 1 Point Estimates for VaR and ES

Level of 0.95 0.99 0.995 0.999
confidence
y 0.3582 0.3582 0.3582 0.3582
XA 0.2212 0.2212 0.2212 0.2212
VaRq 2.5105 2.5330 2.5358 2.5380

Looking at the VaR from table 1, with 5% confidence
level tomorrows loss (left-tail) for the stock market
prices to exceed 2.5105{.  Analogously the same
interpretation holds for 14, 0.5% and 0.14. In practice when
the portfolio loss is known, then precautions can be
taken to mitigate against it.

Conclusion

VaR estimates were obtained using Extreme Value
method. In the estimation of extreme quntiles, the
distribution of excesses over a certain high threshold was
based on Peak-Over-Threshold method which identified
the starting of the tail. After the excesses over a high
threshold were fitted to the GPD, parameters were
estimated which were used to estimate Value at Risk.
The point estimates and interval estimates of VaR at
99.9% and 95k confidence intervals for the equities were
clearly shown and found to capture the financial Risks
significantly since this method can estimate VaR outside
the sampling interval.
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