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Abstract 
 

This paper considers the problem of estimating conditional volatility function using 

conditional quantile autoregression function. We estimate the interquantile autoregression 

range and the conditional volatility function under known distributional assumptions. The 

conditional volatility function estimator is found to be theoretically consistent. A small 

simulation study ascertains that the Volatility Estimator is consistent.  

 

Mathematics Subject Classification: 62G05; 62M1 

 

Keywords: Quantile, InterQuantile, Autoregression, Range, Volatility  

 

 

1. INTRODUCTION 

Let      be   -measurable and  
 
     be     -measurable derived from a 

stationary and  -mixing multivariate time series *      + adapted to the sequence  
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            of sigma algebras. The response variable       and the covariate 

 
 
     are partitions of    such that    .    

 
 /  A time series with these feature is 

an autoregressive series where the regressors are past variables of the series     that 

is,    is regressed on  
 
  (           )  For example, the Generalized 

Autoregressive Conditional Heteroscedasticity (GARCH) process by Bollerslev 

(1986). We assume that there exists a conditional distribution   
 
 
(  )  from 

which 2    
 
 3 is drawn from at the point .   

 
/  Having in mind of an autoregressive 

process we consider a process with an AR process for the mean and GARCH process 

for the scale. To incorporate robustness in the model, we include quantile regression  

notion in our work which was introduced by Koenker and Basset (1978). For   

(   ) we define the Quantile Autoregression – Generalized Autoregression 

Conditional Heteroscedasticity (QAR-GARCH) process according Mwita (2003), 

which is algebraically expressed as;  

     . 
 
 /   . 

 
 /                                                                                                           ( ) 

Where;  
 
  (                )        are assume     with Zero θ-quantile and unit 

scale,   . 
 
 / is the conditional  -quantile of      given   and  . 

 
 /  is the 

conditional quantile scale function of    given     Since  . | 
 
/    

 
( )  

 .    | 
 
   

 
/  the conditional quantile function of    given  

 
  is defined as; 

  . 
 
/   . 

 
   /     2     (   

 
)   3 .The main course in this paper is to 

estimate the volatility function   . 
 
 / . The Quantile Autoregression-Generalized 

Autoregression Conditional Heteroscedasticity (QAR-GARCH) process can be 

rewritten as;     . 
 
    /   . 

 
   /   . We shall consider a     ( )  

      (   ) process defined as; 

                           (√          
            

          
            

 )   

    
  
 
  √    

  
 
 
    

  
 
 
                                                                                               }

 

 

     ( ) 

Where    (                )
     (             )

     (             )
   

 
  

(              )
   

 
 
  (      

         
 )   

 
 
  (      

         
 )  and   ( ) 

denotes a quantile of a random variable at  -level. 
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Assumption 1 

We assume that the conditional quantile for the variable is zero for all quantiles.  

That is, for   (   )            

    (  )                            

At each and every  -level, the conditional quantile of    given  
 
  is given by; 

  .    
 
 /    

  
 
 . We impose the constraint that |∑     

 
   |     so as to achieve 

stationarity of the QAR (r) as well as for the entire QAR (r)-GARCH (p, q) process. 

The process in (1) can be expressed as:  

    . 
 
    /   . 

 
   /          . 

 
    /   . 

 
   /                                ( ) 

From (3)     . 
 
    / denote the residuals. In mind we aim at parameters 

estimation by minimization of the residuals. Factoring in the notion of leverage, we 

consider an asymmetric check function so that the weights for negative and positive 

residuals differ. We define an asymmetric loss function of the form; 

  (    . 
 
    /)  {

 (    . 
 
    /)                           . 

 
    /   

(   ) (    . 
 
    /)         . 

 
    /   

    ( ) 

Where;   ( )   (   (   ))  for      with  ( ) being the indicator function. 

Using (3), (4) can be expressed as; 

 |    . 
 
     /|

 

 (   ) |    . 
 
     /|

 

 

  . 
 
   / ,     

   (   )    
 -                        ( ) 

Where           denotes the positive and the negative parts respectively. The quantile 

autoregression model for residuals (5), can be expressed as an asymmetric loss 

function as;  

  (    . 
 
     /)   . 

 
   /   . 

 
   / (  (    )   )                                       ( ) 

With conditional quantile function,  . 
 
     / and the noise term,     in this case been 

given by;  . 
 
   /    and (  (    )   ) respectively. Having the loss function 

defined, we let  ( ) denote an objective function which minimizes the expected loss  
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for our proposed model, defined as:  ( )   (  ( ))      and   is the usual 

expectation operator. 

 (    . 
 
    /)  {

  (    . 
 
    /)                    . 

 
    /   

(   ) (    . 
 
    /)         . 

 
    /   

        ( ) 

Definition 1  

A function          is lipschitz continuous if there exists a constant   such that   

                ( )   ( )         . 

To check whether our function is Lipschitz continuous we denote the loss function 

   (    . 
 
     /)    (   ) (for notation convenience). 

Theorem 1  

For (   ) a real valued random variable, the function   (   ) is Lipschitz continuous 

in   with Lipschitz constant      i.e.   (    )    (    )                  

Proof 

By definition;    (   )  (   ),   (     )- 

Then, let         

  (    )    (    )

 ((    ),   (      )-)  ((    ),   (      )-)

  (     )  ,(    ) (      )  (    ) (      )- 

For         we have; 

 (      )    and  (      )    hence; 

  (    )    (    )   (     )  (    ) 

                              (     )  (    )  (     ) 

                  (    )  (   )(     ) 

For (    )    and (    )   , we have; 

 (   )(     )    (    )    (    )   (     ) 

Thus    (    )    (    )  is bounded from above by at least   (     ) and  
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(   )(     ).  

Similarly if; 

(a)          then  (      )    and  (      )    hence; 

  (    )    (    )   (     ) 

(b)          then  (      )    and  (      )    hence; 

  (    )    (    )  (   )(     )  (   )        

   (    )    (    )     (     )        

                                                        

         

Hence its                               

Then, the Lipschitz continuity of the objective function follows from that of the loss 

function. From theorem 1 clearly our objective function is a bounded from above, 

convex and Lipschitz continuous. 

Theorem 2 

Rademacher's Theorem states that; If           is Lipschitz, then   is 

differentiable almost everywhere. 

By this theorem, our objective function is differentiable almost everywhere since is 

Lipschitz continuous. 

2. PARAMETER ESTIMATION AND ESTIMATOR PROPERTIES 

2.1 ESTIMATION 

For notational convenience let’s denote the objective function as  .     
 
     

/. An 

appealing method of estimation of the regression coefficients is to find the set of 

values of the coefficients which makes the residuals as small as possible. We define 

our estimates as those parameters that minimize the residuals dispersion. The 

parameters vector     is the solution to the minimization problem of the objective 

function. 

         ⏟    
 

  .     
 
     

/                                                                                                ( ) 
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The (   )  vector     is the population solution of the minimization problem which 

gives the least absolute residual error. Since to study an entire population is tedious we  

shall have to use a representative random sample 2.    
 
 /  .    

 
 /    .    

 
 /3. 

The sample version of the objective function will thus be given by;   

 .     
 
     

/
̂

    ∑  (    . 
 
     /)

 

   

                                                                ( ) 

The respective parameters vector estimate  ̂  is expressed as; 

 ̂        ⏟    
 

 .     
      

/
̂

                                                                                                (  ) 

Thus the conditional quantile function estimate is given by;   ̂ .    
 
 /  

 . 
 
    ̂ /   ̂ 

  
 
 . Next, we define the InterQuantile AutoRegression Range at  -

level denoted by        as;         . 
 
     /   . 

 
       / and the estimate 

for the       is expressed as;      ̂
   . 

 
    ̂ /   . 

 
    ̂   / 

From (1), we consider an AR (r)-GARCH (p, q) process which is a special case of 

QAR (r)-GARCH (p, q) which is mathematically expressed as;   

    . 
 
   /   . 

 
   /                                                                                              (  ) 

Then manipulate    such that,         
 , this makes the model be a quantile model 

of the form:     . 
 
   /   . 

 
   / (     

 )                                                        (  ) 

Where   
   is the  -quantile of    and    is as defined previously and       (   )  i.e. 

   has unit scale and mean zero. Substitution of    with      
  in the QAR (r)-

GARCH (p, q) process  at  -quantile level and similarly for    -quantile level we 

get;      . 
 
    /   . 

 
   / (     

 )   and     . 
 
      /   . 

 
   / (   

    
 ) respectively. Taking the difference of these expressions and making the 

conditional scale function as the subject we have; 

 . 
 
   /  

 . 
 
    /   . 

 
      /

  
      

  
      

  
      

                                                    (  ) 
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Since the scale function can be expressed as a function of         we shall not 

estimate the parameters            . Therefore the conditional volatility function 

estimator is expressed as; 

 

 ̂ . 
 
   /  

 . 
 
   ̂   /   . 

 
   ̂ /

    
    

  
     ̂

 

  
      

                                                     (  ) 

The volatility function estimator  ̂ . 
 
   / will be given by substituting the respective 

parameters in the conditional quantile function quantities, the quantiles   
  and     

  

will easily be obtained after assuming a distribution function for the nuisance term   . 

 

2.2 ESTIMATOR PROPERTIES 

Asymptotic properties of Estimator 

To ensure that the estimator   ̂  is a good estimate of   , we shall test for it 

asymptotic properties. We use the following assumptions as found in Mwita (2010). 

CONDITION 1 (Consistency Assumptions) 

Considering the QAR-GARCH process, the following assumptions are useful in 

providing surety for consistency of  . 
 
    ̂ /. 

A1. (F,  , P) is a complete probability space and *     +           are random 

vectors on this space 

A2. The function  . 
 
     /:        is such that for each      a compact 

subset of     . 
 
    ̂ / is measurable with respect to the Borel set     and 

 . 
 
    / is continuous in     a.s-              for a given choice of explanatory 

variables  *  +  

A3. (i)  .0  (    . 
 
    /)1/exists and is finite for each    in  , 

(ii)  .0  (    . 
 
    /)1/ is continuous in    and  (iii) 20  (    . 

 
    /)13 

obeys the strong (weak) law of large numbers.  

A4. {    20  (    . 
 
    /)13} has identifiable unique maximizer. 
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Theorem (Consistency)  

Under assumptions A1– A4,  ̂    as    . Where  ̂  is as previously defined. 

Proof 

For the proof see White (1994, pg. 75) by using the loss function defined in (3). 

CONDITION 2 (Asymptotic Normality) 

To prove the asymptotic normality of  ̂ , we introduce some extra notation. Let     be 

a (   ) vector of variables that determine the shape of the conditional distribution 

of         . Associated with    is a set of parameters . Denote the density of   , 

conditional on all the past information, as   (      )      Here,     includes 

conditional variance and  , the vector of parameters that define a volatility model. 

Whenever the dependence on    and   is not relevant, we will denote the conditional 

density of   simply by   ( )  Let   (      )be an unconditional density of    

(        ). Finally, define the operators   
 

  
,    

 

   
, where   is the     element 

of  , and     ( )     . 
 
   / and    ( )     . 

 
   /   

The following assumptions are important for asymptotic normality. 

B1.      (  )is A-smooth (a function whose derivatives for all desired orders exist 

and are continuous within the given domain) with variables     and functions   , 

              In addition,        ( )    for small enough. 

B2. (i)    ( ) is Lipschitz continuous in   uniformly in   . That is for          and 

    we have,    (  )    (  )           (implying Lipschitz continuous) and 

     there is a     s.t              (  )    (  )    (implying   is 

uniformly continuous in   ) 

(ii) For each t and (     ),   (     )  is continuous in   . 

B3. For each        (      ) is continuous in (    )  (following from the continuity 

of    

B4. *     + are          with parameter  ( )  and there exist     and    

  such that  ( )      for some    
  

   
 

B5. For some          ( ) is uniformly  -dominated by functions      

B6. For all   and   ,  |       |
 
      There exist a measurable functions     such 

that          and for all   ∫         and ∫   
          

B7. There exists a matrix   such that;    ∑  ,   (  ) 
   (  )-
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As     uniformly in    

 

Theorem (Asymptotic Normality) 

In consideration of our quantile autoregression model, if the estimator  ̂  is consistent 

and the axioms B1 – B7 hold, then we have; 

√   

 
 
   ( ̂    )

 
   (   ) 

Where; 

   
 (   )

 
∑  ,   (  ) 

   (  )-
 
         

 

 
∑  ,  ( )   (  ) 

   (  )-
 
    and  

  ̂        ⏟    
 

    [ ∑ (   ) |     
  
 
 |

  2       
  
  3

 ∑   |     
  
 
 |

  2       
  
  3

] 

Proof  

To proof that the estimator is asymptotically normal we substitute the function 

,   (   )- in place of the function     ( )   0
 

 
  *   +1 in Weiss (1991) 

theorem 3.  

If the conditions (A1-A4) and (B1-B7) are satisfied then our estimate is consistent and 

also asymptotically normal. Since our scale function is defined in terms of the 

interquantile autoregressive range then it is also consistent and asymptotically normal. 

 

3. SIMULATION STUDY 

A small simulation study was done for our model an AR (1) – GARCH (1, 1) to 

reinforce the theoretical results obtained earlier for samples of size n=500, n=700 and 

n=1000. The error term    is assumed to be independent and identically distributed 

following standard normal distribution. Figure 1, is an illustration of the AR (1) – 

GARCH (1, 1) and in Figure 2 we superimpose different QAR function estimates (at 

                      respectively) “lines” on the AR-GARCH process “points”.  

The Interquantile Autoregression range function was estimated for all sample sizes at 

(a)  =0.99 and 0.01 (b)  =0.95 and 0.05 (c)  =0.90 and 0.10 and (d)  =0.75 and 0.25. 

Figure 3, illustrates on the superimposing of symmetric quantile autoregression 

functions on the AR (1) – GARCH (1, 1) process. The computed volatility is  
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compared the true volatility and as seen in Figure 4, the estimated volatility follows 

the same pattern as the true volatility. 

Quantiles exhibit a property of been robust to outliers. This is clearly illustrated in 

Figure 5 where its show how the parameters are dynamic from one quantile level to 

another. This makes the quantile autoregression model parameters adapt appropriately 

to capture outliers wherever they exist. To test the performance of the volatility 

estimator, we use its Mean Absolute Proportionate Error (MAPE).  

    ( ̂(    ))  
 

 
∑|

 (    )   ̂(    )

 (    )
|

 

   

 

As tabulated on Table 1, it is seen that the volatility estimator converges to the true 

volatility as the sample size increases. When the sample size is increased the MAPE 

tends to zero. That is; ̂ . 
 
   /   . 

 
   / as    . This property proofs the 

consistency of our estimates. 

 

 

 

Figure 1: The simulated AR (1) – GARCH (1, 1) process 

 

From the plot, we can see that there is; volatility clustering, low auto autocorrelation, 

high autocorrelation which are the stylistic features of financial data. Thus the AR (1)-

GARCH (1, 1) can model financial phenomenon. 
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Figure 2: AR (1)-GARCH (1, 1) process (points) with Estimated QARF (green lines) superimposed. 

 

 

 

Figure 3: AR (1)-GARCH (1, 1) process (points) with Estimated QARF (red lines) “upper and lower 
quantiles”) superimposed 
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Figure 4: The Estimated Volatility “green dotted line” at different Quantiles superimposed on the 
True Volatility (GARCH generated) for a sample of size 1000 

 

 

Figure 5: A plot of Quantile Autoregression Function parameter Estimates for different quantiles 

 

 

Table 1: MAPE table with Increasing Sample sizes under different quantile levels 

THETA 

 -Quantile  

level 

SAMPLE SIZE 

N=500 N=700 N=1000 

0.99 0.08879089 0.07060485 0.05853213 

0.95 0.08214568 0.07584826 0.06694122 

0.90 0.09705549 0.0843745 0.06034376 

0.75 0.1164644 0.07893194 0.05859721 
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4. CONCLUSION 

From the research in this paper we have come up with a quantile autoregression 

model, QAR – GARCH used in estimation of market risk volatility. The model being 

based on the interquantile autoregression range framework we have found that the 

method is dynamic and robust to outliers. The theoretical results obtained in this paper 

agree with the simulated results that the volatility estimator is consistent.  

Further investigations can be done on cases where the error distribution is asymmetric. 

The method can also be improved by incorporating cases of data censoring. Future 

extension of the methodology can be done on Bayesian quantile autoregression and 

developing the methodogy for forecasting. 
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