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Abstract: In this paper the generalized autoregressive conditional heteroscedastic models are applied in 

modeling exchange rate volatility of the USD/KES exchange rate using daily observations over the period 

starting 3
rd

 January 2003 to 31
st
 December 2015. The paper applies both symmetric and asymmetric models that 

capture most of the stylized facts about exchange rate returns such as volatility clustering and leverage effect. 

The performance of the symmetric GARCH (1, 1) and GARCH-M models as well as the asymmetric EGARCH 

(1, 1), GJR-GARCH (1, 1) and APARCH (1, 1) models with different residual distributions are applied to data. 

The most adequate models for estimating volatility of the exchange rates are the asymmetric APARCH model, 

GJR-GARCH model and EGARCH model with Student’s t-distribution. 

Keywords: GARCH Models, Volatility clustering, forecasting volatility, Leverage effect, Value-at-Risk 

 

I. Introduction 
In the last decade the foreign exchange market has become the most volatile and liquid in all financial 

markets in the world. Particularly because of the dynamics of the foreign exchange market, it is essential to 

study some of the important historical events relating to currencies and currency exchange. The modeling and 

forecasting exchange rates volatility has important implications in a range of areas in macroeconomics and 

finance. Value-at-Risk (VaR) is a risk measurement tool based on loss distributions. The Basel III framework 

developed by the Basel Committee on Banking Supervision requires that financial institutions such as banks and 

investment firms set aside a minimum amount of capital to cover potential losses from their exposure to credit 

risk, operational risk and market risk. For measuring market risk they recommend the use of VaR, which is the 

worst loss in an asset or a portfolio of assets over a given time horizon at a given confidence level. Inaccurate 

portfolio VaR estimates may lead firms to maintain insufficient risk capital reserves so that they have an 

inadequate capital cushion to absorb large financial shocks. 

A number of models have been developed in empirical finance literature to investigate volatility across 

different regions and countries. The most commonly applied models to estimate exchange rate volatility are the 

autoregressive conditional heteroscedastic (ARCH) model introduced by Engle (1982) and the generalized 

(GARCH) models developed independently by Bollerslev (1986) and Taylor (1986). The purpose of the 

autoregressive conditional heteroscedasticity (ARCH) model is to estimate the conditional variance of a time 

series. Engle described the conditional variance by a simple quadratic function of its lagged values. Bollerslev 

(1986) extended the basic ARCH model and described the conditional variance by its own lagged values and the 

square of the lagged values of the innovations or shocks. In many cases, the basic GARCH model provides a 

reasonably good model for analyzing financial time series and estimating conditional volatility. However, 

GARCH models have been criticized in that they do not provide a theoretical explanation of volatility or what 

information flows are in the volatility generating process according to Tsay (2010). The GARCH model also 

responds equally to asymmetric shocks, and cannot cope with significantly skewed time series which results in 

biased estimates. Another problem encountered when using GARCH models is that they do not always fully 

embrace the heavy tails property of high frequency financial time series. To overcome this drawback Bollerslev 

et al. (1987) used the Student's t distributions. The GARCH extensions such as Exponential GARCH, Threshold 

GARCH, GJR-GARCH model and power GARCH models have been proposed to address some of these 

weaknesses. Nelson (1991) formulated the Exponential GARCH (EGARCH) model by extending the GARCH 

model to capture news in the form of leverage effects. Afterwards, the GARCH model extension was developed 

to test for this asymmetric news impact (Glosten et al., 1993; Zakoian, 1994). Ding et al. (1993) extensions nest 

a number of models from the ARCH family. The GARCH family models capture heteroscedasticity and 

volatility clustering in financial data.  

The main objective of this paper is to model exchange rate return volatility for USD/KES, by applying 

different univariate specifications of GARCH type models for daily observations of the exchange rate return 

series for the period 3
rd

 January 2003 to 31
st
 December 2015. The volatility models applied in this paper include 

the GARCH (1, 1), GARCH-M (1, 1), E-GARCH (1, 1), GJR-GARCH (1, 1), and Power GARCH (1, 1). The 
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relative performance of the symmetric and asymmetric GARCH family models in estimating and forecasting 

Value-at-Risk using the USD/KES exchange rates is also tested.  

The remainder of this paper is organized as follows. Section 2 provides the overview of symmetric and 

asymmetric GARCH family models used throughout the paper. Section 3 describes the data and empirical 

results and finally, Section 4 concludes the paper. 

 

II. Methodology 
The traditional methods of measuring volatility (variance or standard deviation) are unconditional and 

cannot capture the characteristics exhibited by financial time series data, such as, time varying volatility, 

volatility clustering, excess kurtosis, heavy tailed distribution, leverage effect and long memory properties. The 

most commonly used models that capture these properties of financial time series data are the Autoregressive 

Conditional Heteroskedasticity (ARCH) model and its generalization, the Generalized Autoregressive 

Conditional Heteroskedasticity (GARCH) models. In this paper different univariate GARCH specifications are 

applied to model USD/KES exchange rate return volatility and these models are GARCH (1, 1), GARCH-M (1, 

1), EGARCH (1, 1), GJRGARCH (1, 1) and APARCH (1, 1). In presenting these different models, there are two 

distinct equations or specifications, the first the conditional mean and the conditional variance which are briefly 

reviewed in this methodology. 

 

2.1 Conditional Mean Equation 

The exchange rate return moving pattern might be an autoregressive (AR) process, moving average 

(MA) process or a combination of AR and MA processes i.e. (ARMA) process. For the purposes of this study 

the mean equation is modified to include appropriate AR and MA terms to control for autocorrelation in the 

data. For example, in ARMA (1, 1) process pattern would be: 

jt
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jtit
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i

it YY 
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11       (1) 

where tY  is a time series being modeled. 

 

2.2 Volatility Modeling  

The existing models of volatility can be divided into two main categories, symmetric and asymmetric 

models. In the symmetric models, the conditional variance only depends on the magnitude, and not the sign, of 

the underlying asset, while in the asymmetric models the positive or negative shocks of the same magnitude 

have different effect on future volatility.  

 

2.3 Symmetric GARCH Models 

2.3.1 Generalized Autoregressive Conditional Heteroscedasticity (GARCH) Model 

In this model, the conditional variance is represented as a linear function of its own lags. The general 

form of the GARCH (p, q) model is given by: 
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where tr  are the logarithm returns of the financial time series at time t,   are mean value of the returns, ty are 

the error terms (innovations) from the mean equation, and it can split into a stochastic piece t and a time 

dependant standard deviation t  characterizing the typical size of the terms. t is a zero mean, identical and 

independent distribution, which is assumed to have normal distribution, t distribution and skew t distribution and  

,0,0,0  ji  with constrains that 1
11


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q

j

j
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i  .  In most empirical applications the basic 

GARCH (1, 1) model fits the changing conditional variance of the majority of financial time series reasonably 

well. The GARCH (1, 1) model is given by the following equation: 
2
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To guarantee a positive variance at all instances, the following restricts are imposed 0 and .0, 11   
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In many cases, the basic GARCH model provides a reasonably good model for analyzing financial time series 

and estimating conditional volatility. However, there are some aspects of the model which can be improved so 

that it can better capture the characteristics and dynamics of a particular financial time series. Ever since the 

GARCH (p, q) model was introduced by Bolleslev (1986), new GARCH extension models which address the 

different weaknesses of the GARCH model and capture different characteristics of the financial time series data 

have been invented.  

 

2.3.2 The GARCH-in-Mean (GARCH-M) Model 
In finance, high risk is often expected to lead to high returns. To model such a phenomenon one may 

consider the GARCH-M Model of Engle, Lilien, and Robins (1987) where “M” stands for GARCH in the mean.  

This model is an extension of the basic GARCH framework which allows the conditional mean of a sequence to 

depend on its conditional variance or standard deviation. A simple GARCH-M (1, 1) model is given by: 

   
 
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where  and are constants. The parameter is called the risk premium parameter. A positive  indicates that 

the return is positively related to its volatility.  

 

2.4 Asymmetric GARCH Models 

In practice, the price of financial assets often reacts more pronouncedly to “bad” news than “good’ 

news. Such a phenomenon leads to a so called leverage effect, as first noted by Black (1976). The term 

“leverage” stems from the empirical observation that the volatility (conditional variance) of a stock tends to 

increase when its returns are negative. The leverage effect causes the asymmetries of variance dynamics and 

points out the drawbacks of GARCH model because of its symmetric effect towards the conditional variance. In 

order to capture the asymmetry in return volatility (“leverage effect”), a new class of models was developed, 

termed the asymmetric GARCH models. This paper uses the following asymmetric GARCH models; EGARCH 

GJR-GARCH and Asymmetric Power ARCH (APARCH) model for capturing the asymmetric phenomena. 

 

2.4.1 The Exponential GARCH (E-GARCH) Model  

The general form of the Exponential GARCH (p, q) model introduced by Nelson (1991) is given by 
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where  is the asymmetric response parameter that can take a positive or negative sign depending on the effect 

of the future uncertainty. The simplest form is the EGARCH (1, 1) model, which is given by: 
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For a positive shock ,0
1

1 
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the equation becomes 

   
2

11

1

1
11

2 ln)(ln 



  t

t

t
t

y



      (7) 

whereas for a negative shock ,0
1

1 




t

ty


the equation becomes 
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2.4.2 The Glosten, Jagannathan and Runkle GARCH (GJR-GARCH) Model  

The GJR-GARCH model is another type of asymmetric GARCH models, which was proposed by 

Glosten, Jagannathan and Runkle (1993). The variance equation of GJR-GARCH (p, q) is given by 
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where  , and  are constant parameters, and I is a dummy variable (indicator function) that takes the value 

zero (respectively one) when ity  is positive (negative). If   is positive, negative errors are leveraged (negative 

innovations or bad news has a greater impact than the positive ones). The parameters of the model are assumed 

to be positive and that 12/   . If all leverage coefficients are zero, then GJR-GARCH model reduces 

to GARCH model. This means one can test a GARCH model against a GJR-GARCH model using the likelihood 

ratio test. 

 

2.4.3 The Power GARCH (PGARCH) Model  

Ding, Engle and Granger (1993) introduced the asymmetric power ARCH model also called APARCH 

(p, q) specification to deal with asymmetry. The variance equation of APARCH (p, q) can be written as 
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where qjpi jii ,,1,0,,,1,11,0,0,0    . i  and i are the standard 

ARCH and GARCH parameters, i are the leverage parameters and  is the parameter for the power term. The 

symmetric model sets 0i for all i. When ,2 Equation (10) becomes a classic GARCH model that allows 

for leverage effects and when ,1 the conditional standard deviation will be estimated. In addition, we can 

increase the flexibility of the APARCH model by considering  as another coefficient that must also be 

estimated. 

In this paper, conditional volatility is estimated using the probability distributions that are available in 

the rugarch package which include; normal, Student t and skewed Student t-distribution. Engle (1982) assumed 

that asset returns follow a normal distribution. However, the asset returns are not normally distributed, so the 

normality assumption could cause significant bias in VaR estimation and could underestimate the volatility. A 

number of authors evidenced that standard GARCH models with normal empirical distributions have inferior 

forecasting performance compared to models that reflect skewness and kurtosis in innovations. To capture the 

excess kurtosis in financial asset returns, Bollerslev (1987) introduced the GARCH model with a standardized 

Student’s t distribution with 2 degrees of freedom. 

The common methodology used for GARCH estimation is maximum likelihood assuming i.i.d. innovations. The 

parameters of the GARCH model can be found by maximizing the objective log-likelihood function: 
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where is the vector of parameters ),,,( ji  estimated that maximize the objective function 

tzL );(ln   represents the standardized residual calculated as 
2

t

ty




.  

Maximum likelihood estimates of the parameters are obtained by numerical maximization of the log-likelihood 

function using the Marquardt algorithm (Marquardt (1963)). We use the quasi-maximum likelihood estimator 

(QMLE) since, according to Bollerslev and Wooldridge (1992), it is generally consistent, has a normal limiting 

distribution and provides asymptotic standard errors that are valid under non-normality. 

For the GARCH (p, q) model the one-step-ahead conditional variance forecast, tt |1
ˆ
 is: 

2

1

1

2

1

1

2

|1
ˆ









   jt

q

j

jit

p

i

itt y      (12) 

For the EGARCH (p, q) model, we get: 
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Note that the value of || tzE depends on the density function of tz . For example, for the standard normal 

distribution, /2|| tzE , for the Student t-distribution, 
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However, the quantity ,1

1 1



 itity  both with and without the absolute value operator, for ,1i can be 

computed by the model as the values of both the innovation and its conditional standard deviation are available. 

Finally, the corresponding one-step ahead conditional variance forecast in the case of the GJR-GARCH (p, q) 

model is: 
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Therefore, to compute the one-step-ahead VaR forecast under all distributions, we compute the corresponding 

quantiles, which are then, multiply by the conditional standard deviation forecast, hence; 

,ˆ)( |1|1 tttt FVaR        (15) 

where )(F  is the corresponding quantile of the assumed distribution, and tt |1
ˆ
 is the forecast of conditional 

standard deviation at time t.  

 

According to Tsay (2010), if one further assumes that tz is Gaussian, then the conditional distribution of 1tr  

given the information available at time t is  ttttrN |1|1
ˆ,ˆ
  .  Quantiles of this conditional distribution can easily 

be obtained for VaR calculation. For example, the 5% quantile is  

.ˆ645.1ˆ
|1|1 ttttr     

Therefore, if tz of the GARCH model in Equation (12) is a standardized Student-t distribution with v degrees of 

freedom and the probability is p, then the quantile used to calculate the 1-period horizon VaR at time index t is  
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where )( ptv  is the p-th quantile of a Student-t distribution with v degrees of freedom. 

 

III. Empirical Results 
3.1 Data 

The data set consists of the daily currency exchange rate of the US Dollar versus Kenyan Shilling 

(USD/KSH). These data are obtained from Central Bank of Kenya (CBK) website, (www.cbk.co.ke). The data 

set was for the period from January 3, 2003 to December 31, 2015, a total of 2818 observations. A visual 

inspection of Figure 1 shows that daily USD/KES exchange rate prices are not stationary. In order to test for 

stationarity an Augmented Dickey–Fuller test (ADF) for a unit root in a time series sample is performed. The 

computed ADF test-statistic in Table 1 is (-3.0) which greater than the critical values at one per cent significance 

level. Therefore, we fail to reject the null hypothesis that there is a unit root and that the series needs to be 

differenced in order to make it stationary.  

 

Table 1: Augmented Dickey-Fuller test of the daily returns 

 
 

The currency exchange rates are then transformed into daily log returns using the following returns formula: 
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where tP  is the daily closing value of the USD/KES exchange rate on day t.  

 
Figure 1: Daily USD/KES Currency Exchange Rates 

 

A plot of the log returns series for USD/KES exchange rates given in Figure 2 shows periods of high 

volatility, occasional extreme movements and volatility clustering, as upward movements tend to be followed by 

other upward movements and downward movements also followed by other downward movements. This 

indicates that the logarithm of USD/KES exchange rates is stationary after taking the first-difference, and the 

ADF test results in Table 2 confirm the stationarity of the return series data. The computed ADF test-statistic in 

Table 2 is (-10.0) which smaller than the critical values at 5% significance level.  

 

Table 2: Augmented Dickey-Fuller test of the daily returns 

 
 

Figure 2: Daily Logarithmic Returns of the USD/KES Currency Exchange Rates 

 

A summary of the statistics of the return series data is given in Table 3. The mean is positive, 

suggesting that exchange returns increase slightly over time. The coefficient of skewness indicates that returns 

have asymmetric distribution, i.e., they are skewed to the left. The kurtosis of returns is 73.6776 which is greater 

than three, indicating that the distribution of returns follows a fat-tailed distribution, thereby exhibiting one of 

the important characteristics of financial time series data, namely that of leptokurtosis. The non-normality 
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condition is supported by a Jarque-Bera test which shows that the null hypothesis of normality is rejected at the 

five per cent level of significance. 

 

Table 3: Summary Statistics for the returns of USD/KES exchange rates  

Number of Observations 2817 

Max. 9.5776 

Min. -9.4458 

Mean 0.0069 

Median 0.0053 

Variance 0.3054 

Std.Dev 0.5527 

Skewness -0.0736 

Kurtosis 73.6776 

Jarque-Bera 638102.8932 

JB p-value 0.0000 

 

The Ljung-Box test is applied to the daily log returns of the USD/KES exchange rates and the test 

results are shown in Table 4. The null hypothesis of the Ljung-Box is rejected for the returns, squared returns 

and absolute returns, at lags 1, 6, 10, 15 and 20. The test statistics are statistically significant with p-values not 

greater than 0.01, indicating that the returns are not white noise. Indeed, the daily exchange rate returns exhibits 

correlation. 

 

Table 4: p -values based on the Ljung-Box test for of the USD/KES exchange rates 

 m  1 6 10 15 20 

Returns 
mQ  

p -value 

10 

(0.0004) 

40 

(0.0000) 

50 

(0.0000) 

60 

(0.0000) 

90 

(0.0000) 

Squared returns 
mQ  

p -value 

6 

(0.01) 

20 

(0.0004) 

30 

(0.002) 

40 

0.003 

600 

(0.0000) 

Absolute returns 
mQ  

p -value 

200 

(0.0000) 

800 

(0.0000) 

1000 

(0.0000) 

1000 

(0.0000) 

2000 

(0.0000) 

 

From the results of Ljung-Box test in Table 4 and the autocorrelation (ACF) and partial autocorrelation 

(PACF) plots in Figure 3, for the exchange rate return series, absolute and squared return series shows that the 

return series exhibit autocorrelation at some lags at 5% level of significance. The presence of autocorrelation 

detected in the log return can be removed by fitting the simplest plausible ARMA (p, q) model to the data. On 

the other hand, the autocorrelation detected in the squared log returns, indicate that there exists conditional 

heteroskedasticity of the exchange rate returns series which could be removed by fitting the simplest plausible 

GARCH model to the ARMA filtered data.  

 

3.2 Estimated Mean Equation 

An ARMA (p, q) model is used to fit the mean returns, as it provides a flexible and parsimonious 

approximation to conditional mean dynamics. The Autocorrelation Function (ACF) and Partial Autocorrelation 

Function (PACF) are used to determine the order of ARMA (p, q) models. The ACF and PACF plots given in 

Figure 3 suggest that the returns may be modeled by an ARMA (2, 2) process. Tsay and Tiao (1984) proposed 

the extended autocorrelation function (EACF) technique to identify the orders of a stationary or non-stationary 

ARMA process based on iterated least square estimates of the autoregressive parameters. The output of EACF is 

a two-way table, where the rows correspond to AR order p and the columns to MA order q.  Therefore, the 

EACF suggests that the daily log returns of USD/KES exchange rate follow an ARMA (2, 0) model. This is in 

agreement with the result in Table 5 suggested by the best fitting model selected based on Bayesian Information 

Criterion (BIC) values. The criterion is to choose a model with minimum AIC and BIC and largest log-

likelihood function. BIC always gives penalty for the additional parameters more than AIC does. So the ARMA 

(2, 0) is selected as the mean equation that mainly takes account of the BIC. 
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Table 5: Criterion for ARMA (p, q) Order Selection 

 

 
Figure 3: ACF/PACF Plots for USD/KES returns 

 

3.3 Estimated Volatility Model 

The results of the fitted AR (2)-GARCH (1, 1) and AR (2)-GARCH –M (1, 1) models to the USD/KES 

log return series with normal distribution, Student’s t distribution and skewed t distribution for the standardized 

residuals are presented in Table 6. The estimates of the model parameters are all significant for normal, 

Student’s t and skewed t distribution except for the  parameter which is not significant for all the distributions. 

The estimates of 1 and 2 are significant, supporting the use of the AR (2) model for the returns. Volatility 

shocks are persistent since the sum of the ARCH and GARCH coefficients are very close to one. The Box-

Pierce Q statistics is insignificant up to lag 20, indicating that there is no excessive autocorrelation left in the 

residuals. Comparing the log-likelihood and information criterion in Table 6 within the three conditional 

distributions, the model with conditional distribution of skewed t has larger log-likelihood and smaller 

information criterion statistics than estimated by normal and t distribution which means this model is better 

fitted. 

0.00 0.04 0.08 0.12

-0
.1

0
0
.0

0

ACF for log Returns

Lag

A
C

F

0.00 0.04 0.08 0.12

-0
.1

0
0
.0

0

Lag

P
a
rt

ia
l A

C
F

PACF for log Returns

0.00 0.04 0.08 0.12

0
.0

0
.2

0
.4

ACF for Squared log Returns

Lag

A
C

F

0.00 0.04 0.08 0.12

-0
.2

0
.1

0
.4

Lag

P
a
rt

ia
l A

C
F

PACF for Squared log Returns

0.00 0.04 0.08 0.12

-0
.0

5
0
.1

5

ACF for Absolute log Returns

Lag

A
C

F

0.00 0.04 0.08 0.12

-0
.0

5
0
.1

5

Lag

P
a
rt

ia
l A

C
F

PACF for Absolute log Returns



Modeling USD/KES Exchange Rate Volatility using GARCH Models  

DOI: 10.9790/5933-0801011526                                   www.iosrjournals.org                                           23 | Page 

Table 6: Estimation of AR (2)-GARCH (1, 1) and AR (2)-GARCH-M (1, 1) with Different Distributions 
 AR (2)-GARCH (1, 1) AR (2)-GARCH-M (1, 1) 

 Normal t Skew t Normal t Skew t 

  0.000137 

(0.00230) 

0.000079 

(0.01642) 

0.000093 

(0.017355) 

0.000141 

(0.005763) 

0.000082 

(0.018374) 

0.000094 

(0.017024) 

AR(1) 0.132993 
(0.00000) 

0.139786 
(0.00000) 

0.139081 
(0.00000) 

0.131115 
(0.00000) 

0.139499 
(0.00000) 

0.138878 
(0.00000) 

AR(2) -0.097567 

(0.00000) 

-0.044787 

(0.012145) 

-0.045087 

(0.011554) 

-0.098027 

(0.000010) 

-0.044807 

(0.012114) 

-0.045080 

(0.011577) 

Omega
 

0.00000 
(0.658234) 

0.00000 
(0.469487) 

0.00000 
(0.472896) 

0.00000 
(0.675454) 

0.00000 
(0.470185) 

0.00000 
(0.473492) 

1  
0.120459 

(0.00000) 

0.318323 

(0.00000) 

0.317466 

(0.00000) 

0.118585 

(0.00000) 

0.318264 

(0.00000) 

0.317520 

(0.00000) 

1  
0.878420 

(0.00000) 

0.680677 

(0.00000) 

0.681534 

(0.00000) 

0.880377 

(0.00000) 

0.680736 

(0.00000) 

0.681480 

(0.00000) 

Skew      1.011980 

(0.00000) 

Shape  3.146979 

(0.00000) 

1.013131 

(0.00000) 

 3.147627 

(0.00000) 

3.150416 

(0.00000) 

LLF 12002 12511 12512 12002 12511 12512 

AIC -8.5166 -8.8778 -8.8772 -8.5167 -8.8778 -8.8772 

BIC -8.5039 -8.8630 -8.8603 -8.5167 -8.8630 -8.8603 

*P-values are shown in parentheses. 

 

To capture the asymmetry dynamics and the presence of the “leverage effect” in the USD/KES 

exchange rate returns, the nonlinear asymmetric models; AR (2)-EGARCH (1, 1), AR (2)-GJR-GARCH (1, 1) 

and AR (2)-APARCH (1, 1) with conditional distributions;  normal distribution, Student’s t distribution and 

skewed t distribution are fitted to the exchange returns. Table 7 gives the results of the parameter estimates for 

the AR (2)-EGARCH (1, 1), AR (2)-GJR-GARCH (1, 1) and AR (2)-APARCH (1, 1) models. The parameters 

estimates for these three models are all significant except for the mean under the AR (2)-EGARCH (1, 1) for the 

normal and skew t distribution, also the coefficient of the second term of autoregressive  process under the skew 

t distribution and the coefficients of 1  under the Student’s t and skew t distribution are not significant. For 

both the AR (2)-GJR-GARCH (1, 1) and AR (2)-APARCH (1, 1)   is not significant for all the distribution. 

The parameter   is not significant for the AR (2)-APARCH (1, 1) under the t distribution. The coefficient in 

the case of AR (2)-APARCH (1, 1) is statistically significant at level of significance of 5% implying that there is 

an asymmetry under the normal distribution. On the other hand, its negative value indicates the presence of the 

“leverage effect”. The coefficient   in the AR (2)-E-GARCH (1, 1) and AR (2)-GJR-GARCH (1, 1) is 

significantly different from zero, which indicates the presence of asymmetry. The value of   which is less than 

zero implies presence of the “leverage effect”. According to the log-likelihood value and information criterion 

of the estimated models, the APARCH model has the larger log-likelihood value and smaller information 

criterion compared with E-GARCH model and GJR-GARCH model. Secondly, comparing within the APARCH 

models under normal distribution, and Student’s t distribution, the model with conditional Student’s t 

distribution outperforms the normal distribution which means this model is superior in modeling the USD/KES 

exchange rate returns with asymmetry and fat tail. 

The estimated power parameter in the APARCH model is 2.44 which is slightly different from the 

estimated result of Ding, Granger and Engle (1993)’s under the normal distribution which is 1.43. This may be 

caused by the time period of the data is different and then mean equation is also different to model the data. But

 in this paper is still significantly different from 1 (GJR-GARCH) or 2 (GARCH). When the conditional 

distribution changes to t distribution  is getting smaller to 0.73, however, using the same test as in Ding, 

Granger and Engle (1993)’s paper, let 0l be the log-likelihood of value under the GARCH model which is set as 

the null hypothesis, while the alternative hypothesis is APARCH model with log-likelihood is l, then )(2 0ll   

have a 2  distribution with 2 degrees of freedom when 0H is true. Then, under the Student’s t distribution 

,72)1251112547(2)(2 0  ll  which means we can reject the null hypothesis that the data is generated 

from GARCH model. And also in the same way we can reject that the data is generated from E-GARCH model 

and GJR-GARCH model. 
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Table 7: Estimation of AR (2)-EGARCH (1, 1) and AR (2)-GJR-GARCH (1, 1) with Different Distributions 
 AR (2)-EGARCH (1, 1) AR (2)-GJR-GARCH (1, 1) AR (2)-APARCH (1,  1) 

 Normal t Skew t Normal t Skew t Normal t 

  -0.000138 

(0.103591) 

0.000077 

(0.010444) 

0.000085 

(0.052036) 

0.00154 

(0.000768) 

0.000084 

(0.011170) 

0.000100 

(0.010824) 

0.000100 

(0.031989) 

0.00059 

(0.00000) 

AR(1) 0.121891 
(0.000036) 

0.128796 
(0.00000) 

0.128516 
(0.00000) 

0.134449 
(0.00000) 

0.139695 
(0.00000) 

0.139224 
(0.00000) 

0.134804 
(0.00000) 

0.091779 
(0.00000) 

AR(2) -0.046525 

(0.000491) 

-0.029849 

(0.038131) 

-0.029962 

(0.076620) 

-0.097030 

(0.000011) 

-0.043918 

(0.013838) 

-0.043998 

(0.013590) 

-0.100342 

(0.000004) 

-0.011551 

(0.00000) 

Omega
 

-0.535835 
(0.00000) 

-0.599479 
(0.000097) 

-0.599915 
(0.000098) 

0.000000 
(0.665489) 

0.000000 
(0.482739) 

0.000000 
(0.489444) 

0.000000 
(0.981524) 

0.000000 
(0.962086) 

1  
0.111569 

(0.00000) 

0.022818 

(0.453770) 

0.022900 

(0.452603) 

0.13854 

(0.00000) 

0.354876 

(0.00000) 

0.354889 

(0.00000) 

0.087753 

(0.00000) 

0.394055 

(0.00000) 

1  
0.942070 

(0.00000) 

0.944689 

(0.00000) 

0.944655 

(0.00000) 

0.879810 

(0.00000) 

0.686124 

(0.00000) 

0.687931 

(0.00000) 

0.879502 

(0.00000) 

0.855587 

(0.00000) 

Gamma 0.484044 

(0.00000) 

0.554240 

(0.00000) 

0.554074 

(0.00000) 

-0.025328 

(0.026778) 

-0.084006 

(0.049376) 

-0.086881 

(0.041340) 

-0.051172 

(0.035613) 

-0.085833 

(0.066427) 

Delta       2.437594 

(0.00000) 

0.727418 

(0.00000) 

Skew   1.006334 

(0.00000) 

  1.014788 

(0.00000) 

  

Shape  2.386515 

(0.00000) 

2.387376 

(0.00000) 

 3.145621 

(0.00000) 

3.148859 

(0.00000) 

 2.100008 

(0.00000) 

LLF 11557 12505 12505 12004 12513 12514 11997 12547 

AIC -8.2004 -8.8728 -8.8721 -8.5177 -8.8785 -8.8780 -8.5119 -8.9014 

BIC -8.1857 -8.8559 -8.8531 -8.5029 -8.8616 -8.8590 -8.4950 -8.8825 

*P-values are shown in parentheses. 

 

The GARCH models with the innovations of Student’s t and skewed Student’s t distributions have a 

better fit in general than the models with normal distribution innovations since they have the highest log-

likelihood function (LLF) and smallest AIC and BIC. Secondly, the values of the AIC, BIC and LLF for all the 

models with Student’s t and skewed Student’s t distributions innovations are not significantly different. This 

implies that the models with Student’s t and skewed Student’s t distributions innovations would result in the 

same conclusions. The volatility (conditional variance) process and standardized residuals for the AR (2) - 

APARCH (1, 1) model with Student t distribution is plotted in Figure 4.  

 
Figure 4: Volatility (conditional variance) process and standardized residuals of exchange rate returns derived 

from the AR (2)-APARCH (1, 1) residuals. 

 

The plot in Figure 4 shows that the model is well specified. The ACF of the square standardized 

residuals compares well with the ACF of the square returns in Figure 3. This shows that AR (2)-APARCH (1, 1) 

Student-t model sufficiently explains the heteroscedasticity effect in the returns, thus we can conclude that the 

model fit the USD/KES returns well. The Ljung-Box test of the standardized residuals at different lags confirms 

that standardized residuals have no correlation. 
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The future return rate and volatility for one-day-ahead based on the estimated parameters of the models are 

obtained. These forecasted values are necessary for the estimation of Value at Risk (VaR). The estimated values 

of the VaR parameters for one-day-ahead as well as the probabilities of 95% and 99% are exhibited in Table 8. 

 

Table 8: Econometric Estimation of the parameters of VaR for One-day-ahead period 
Model GARCH 

t distribution 

GARCH-M  

t distribution 

GJR-GARCH  

t distribution 

EGARCH  

t distribution 

APARCH 

t Distribution 

Forecasted return 0.00005066 0.0000522 0.000055 0.00004574 0.00002786 

Forecasted 

conditional variance 

0.00127 0.00127 0.001269 0.00159 0.002049 

VaR 0.95 -0.16% -0.16% -0.16% -0.16% -0.16% 

VaR 0.99 -0.33% -0.33% -0.33% -0.35% -0.36% 

 

The estimated VaR values obtained with the GARCH approach are negative. The negative sign is usually 

ignored since it’s an indicator of loss. With probability of 0.95 the expected maximum loss due to having to 

change 1 US Dollars to KES is around in one day period. 

 

IV. Conclusions 
Modeling and forecasting the volatility of exchange rate returns has become an important field of 

empirical research in finance. This is because volatility is considered as an important concept in many economic 

and financial applications like asset pricing, risk management and portfolio allocation. This paper attempts to 

explore the comparative performance of different econometric volatility forecasting models in the terms of their 

ability to estimate VaR in the USD/KES exchange rates. A total of five different models were considered in this 

study. The volatility of the USD/KES returns have been modeled by using a univariate Generalized 

Autoregressive Conditional Heteroscedastic (GARCH) models including both symmetric and asymmetric 

models that captures most common stylized facts about exchange returns such as volatility clustering and 

leverage effect, these models are GARCH (1, 1), GARCH-M (1, 1), exponential GARCH (1, 1), GJR GARCH 

(1, 1) and APARCH (1, 1) following three residual distributions namely; normal, Student’s t-distribution and 

Skewed Student’s t-distribution. The first two models are used for capturing the symmetry effect whereas the 

second group of models is for capturing the asymmetric effect. The study used the USD/KES exchange rates 

data from the Central Bank of Kenya (CBK) for the period  3
rd

 January 2003 to 31
st
 December, 2015. Based on 

the empirical results presented, the following can be concluded: 

The paper finds strong evidence that daily returns could be characterized by the above mentioned 

models. The USD/KES data showed a significant departure from normality and existence of conditional 

heteroscedasticity in the residuals series. Descriptive statistics for the USD/KES exchange rates show presence 

of negative skewness and excess kurtosis. The results of the conducted ARCH-LM test point out significant 

presence of ARCH effect in the residuals as well as volatility clustering effect. Standardized residuals and 

standardized residuals squared were white noise. The econometric estimation of VaR can be related to the 

chosen GARCH model. Therefore a first step in estimation of the parameters of VaR is a detailed specification 

analysis of the potential models. Based on the estimated model, a 1-step-ahead forecasting is taken to forecast 

the future value of the exchange rate returns and the conditional volatility. The values are used to estimate VaR. 

The empirical results have indicated that the most adequate GARCH models for estimating and forecasting VaR 

in the USD/KES exchange rates are the asymmetric APARCH, GJR-GARCH and EGARCH model with 

Student’s t-distribution. These models have a better fit of the exchange returns, since they have the largest log-

likelihood function and smallest AIC and BIC. We also compared the one step-ahead VaR estimate from the 

asymmetric models with Student’s t-distribution and from the results the conclusion was that the AR (2)-

APARCH (1, 1) model is also superior in the estimating the one-step-ahead VaR. 

The findings in this paper have important implications regarding VaR estimation in volatile times, 

market timing, portfolio selection etc. that have to be addressed by investors and other risk managers operating 

in emerging markets. However, the limitation of the study is that the empirical research focused only on the 

USD/KES exchange rate and therefore the findings cannot be generalized to other exchange rates in the market. 

In the future research a wider sample of exchange rates should be used to compare the performance of the most 

commonly used foreign currencies in the market and the inclusion of other asymmetric GARCH-type models, 

testing and comparing their predictive performance. 
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