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Abstract: In this paper, a generalization of the modified inverse Rgklealistribution called the new exponentiated generalized
modified inverse Rayleigh distribution is proposed andistlid/arious sub-models of the new distribution were disedsand statistical
properties such as the quantile function, moment, momemgrgéng function, Rényi entropy, reliability measuralamder statistics
were derived. The parameters of the new model were estinnatad the method of maximum likelihood estimation and satiahs
were performed to assess the stability of the parametehsragiards to the estimation method.
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1 Introduction (MIR) distribution and studied its theoretical properties
The cumulative distribution function (CDF) of this
The selection of an appropriate distribution for modeling distribution is given by
data sets plays an essential role in statistical analysis an
forms the foundation to several parametric inferences. F(X) :ef(
However, most of the data sets arising from different
fields may not necessarily follow the existing wherea >0 and8 > 0 are scale parameters.
distributions. Thus, researchers in the area of distidiouti  This newly proposed distribution is suitable for modeling
theory have proposed several modifications of the existingeliability pattern for engineering system or any process
distributions to enhance their performance in modelingthat exhibits either increasing or decreasing failuresrate
data sets. Some of these modified distributions indue to the flexibility of its hazard function in handling
literature include: generalized Weibull-exponential such failure rates. The MIR distribution contains both the
distribution 0], transmuted  Erlang-truncated inverse Rayleigh (IR) distribution and the inverse
exponential distribution][§], odd generalized exponential exponential (IE) distribution as sub-models. The MIR
generalized linear exponential distributidk?], weighted  distribution is a special case of the modified inverse
Weibull distribution [L4], generalized Erlang-truncated Weibull (MIW) distribution proposed by § with the
exponential distribution 1[6], serial Weibull-Rayleigh  following CDF
distribution [15], McDonald exponentiated gamma
distribution [1], Kumaraswamy transmuted modified Fox)=e (558) x>0, )
Weibull distribution fL3] and Kumaraswamy generalized
power Weibull distribution 21]. These generalized wherea >0, 6 > 0 are scale parameters and> 0 is a
models have the potential of modeling data sets withShape parameter.

moderate and heavy tails, monotonic and non-monotonid € tWo parameters of the M'RI dli(stribution a(rjekall scale
failure rates. In addition, the generalization of the engpt parameters. However, to control skewness and kurtosis, to

; o model data with heavy tails and non-monotonic failure
models tends to improve the flexibility and aieq there is need for a distribution to have shape
goodness-of-fit of the distributions against the intuittin  parameters. In order to address these issues and increase
model parsimony in many cases. the flexibility of the MIR distribution, 9] studied the
Recently, ] proposed the modified inverse Rayleigh transmuted MIR distribution by adding a transmuting

x|Q

]
H8) x>0, 1)
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parameter to the existing baseline distribution. Howeverjindependent parallel components. Suppose that
several modifications of the MIR distribution are yet to be ,(g+%> d , ,

proposed in literature using the various methods forXij~1—(1—e \* /)% forl<i<cand1<j<A,
developing generalized classes of distributions. Some ofepresents the lifetime of thE" component in thejth

these methods of inducting new parameters into existingubsystem and is the lifetime of the entire system.
distributions include; beta-generated methds], [the  Then

exporr]lentiated gen%ralized class (gg‘)distritl])u(tjiopri appcrioach ’

4], the transformed-transformeil-K) metho , an _ A

{h]e exponentiate@X method BJ. PX<x)=1-[1-PXur<X... < X)]

[17] defined the CDF of the exponentiated generalized =1—[1-P%(Xy1 <X

exponentialX family of distribution as -

4 \C (a,0)\¢ 2"
G(X):‘/()ilog{k(lipd(x})}/\e’“dtzlf{lf{17(1—F(X))dr}lv @) :1_{1_ ll_ (1_e (X+X2>) 1 } 0

where the random variable € [0, ) has an exponential By differentiating equation 4), the PDF of the
distribution with probability density function (PDF) NEGMIR distribution is given by
Ae? A >0,t>0 XeR is a random variable with

CDFF(x), F(x) =1—F(x), andc > 0,d > 0 are shape (a2 NETAN (a,0)\°
parame(tgrs( ) ( ) p g(X):ACd<%+X—e3>e (X g) (1—e (x 52)) |:1(le (X 52)) :|

With the motivation of developing new distributions with 16n Aot

tractable CDF to facilitate simulation, modeling data with y . (ke—(%g%)) N
different failure rates, generating distributions with B
heavier tails and modeling data from many field of studies

with ease, this study proposes and investigates théemma 1.The PDF of the NEGMIR distribution can be
theoretical properties of a new distribution called the newwritten in a mixture form as

exponentiated generalized MIR (NEGMIR) distribution. g 28\ e @ @ = .

The rest of the paper is organized as follows: in section 2, 9 =Acd (; + F) i;;k;ngofiikmx’zme’<k+l)(7)’X> o ®
the CDF, PDF, survival function and hazard function of o
the new distribution were defined. In section 3, somewhere
sub-models of the new distribution were discussed. In
section 4, statistical properties of the new model were &jm=
presented. In section 5, the parameters of the new
distribution were estimated using maximum likelihood Proof. For a real non-integey > 0, a series representation
estimgtion. In sep_tion 6, simulation was performed ,tofor (1—2)71,for |7 < 1is

examine the stability of the model parameters. In section

7, applications of the new model was demonstrated using L 2 (=),

real data set. Finally, the concluding remarks of the study (1-21 = Z}mi (7)
was given in section 8. SRR

c-1

(L) (k- )M (A) M (c(i+1)) M (d(j+1))
KM (A — )T (c(i+1)— ) (d(j+1)—K)

ra+l)=al

Using the series expansion in equatidi thrice and the

(a8
2 New Model factthatO< 1—e <X+x7> <1, we have
. _ a 20\ 22  (-FHKC)M(e(i+1)rd+1)
Suppose the random variableX has the CDF g<x)_Aw<7+ﬁ>i;gbk;i!j!klr(/\7i)l'(c(i+1)7j)l'(d(j+1)fk)

a6
ef(ﬁ?),x >0,a0>0,08>0(a+ 6 > 0), then the
CDF of the NEGMIR distribution is given by e

7(k+1)(%+>{%>.

®

g1ey A But
(58)
G(X):l_{l_ |f|__ <1_e X ) ‘| } ,X>O, e_(k+1)(;92_) _ i (_1)m(k+rr::;)memX72m. (9)
(4) "o '

where o > 0,86 > 0 are scale parameters and

A >0,c>0,d> 0 are shape parameters. For positive

integersA andc, the physical interpretation to the CDF of

the NGMIR distribution is as follows: given the lifetime

of series-parallel system with independent components g(x):/\cd(%+2e> i e 5 iEiikmx,2m67<k+1>(g),x>0_
=Y

a6 e
having CDF 1— (1—e7(?+x7>)d. Suppose that the

system is made up of independent components series Figure 1 displays the different shapes of the NEGMIR
subsystems and each of the subsystems consists of distribution PDF. The PDF of NEGMIR distribution can

Substituting equation9j into equation 8), the mixture
representation of the PDF of the NEGMIR distribution is
obtained as
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3 Sub-models

| = st The NEGMIR distribution houses a number of
; Y sub-models that can be used in different fields for
modeling data sets. These include: exponentiated
generalized modified inverse Rayleigh (EGMIR)
distribution, exponentiated generalized exponential
inverse Rayleigh (EGEIR) distribution, exponentiated
S e leletsilulaietutualaiuai generalized inverse Rayleigh (EGIR) distribution,
ooz e e L exponentiated generalized exponential inverse
exponential (EGEIE) distribution, exponentiated
generalized inverse exponential (EGIE) distribution, MIR
distribution, IR distribution and IE distribution. A

summary of the various sub-models of the NEGMIR
distribution are given in Tablg

03

Fig. 1: NEGMIR distribution density function

be symmetric, left skewed, right skewed, J-shape,
reversed J-shape or unimodal with small and large value§able 1: Summary of sub-models from the NEGMIR
of skewness and kurtosis for different parameter values. '

. . SR distribution

The survival function of the NEGMIR distribution is —
Distribution A a 6 [ d
(2+8) a1 A EGMIR 1 a 6 ¢ d
Sx)=q1-|1- (1—8 X2 ) x>0, (10) EGEIR A 0 6 ¢ d
EGIR 1 0 0 c d
and the hazard function is given by EGEIE A a 0O ¢ d
ot I EGIE 1 a 0 c d
Am(%+§3j>e*(%+i%) (1,e*(%+§°z)) 1,(1,;(%;%)) MIR 1 a 6 1 1
T = : x>0, IR 1 0 6 1 1
a1 IE 1 a 0 1 1

The plots of hazard function shown in Figuereveal
different shapes such as monotonically decreasing,4 Statistical P i
monotonically increasing, unimodal or upside down atistical Froperties

bathtub for different combination of the values of the In thi " h il ¢ i "
parameters. These features make the NEGMIR," tIS Section, the quantilé, moment, moment generating

distribution suitable for modeling different failure rate funct|on,_re||ab|l|ty measure, entropy and °Fdef Statsst
that are more likely to be encountered in real life were derived. Apart from the quantile function, all other

statistical properties were derived using the parameter

11)

situation. .
conditionsa > 0,6 >0,A >0,c>0andd > 0.
4.1 Quantile Function
3 — #=1440=1166=12c=15d=75 N — 7=0.24 2=1.826=0.24 c=0.1d=0.1 .
P AN R S\ oot RS it i In order to simulate random numbers from the NEGMIR
N e e L 31 distribution, it is important to develop its quantile
EE IR ENAN NN function. . :
g g LA NN A T Lemma 2. The quantile function of the NEGMIR
N By distribution forp € (0, 1) is
21 T e
N7 ) N 28 —.a>06>0,
i S ‘ ‘ S sk : { { 1\ 8]d
0 2 4 6 8 10 0 2 4 6 8 10 —a+ 112749I0g 1- 1—(1—(17p)/\>
g ~,a=0,0>0,
1
Qx(p) = gl [17 (17(17’))}1) T d 12)
Fig. 2: Plots of the NEGMIR distribution hazard function
Z —~.,a>0,0=0.
)]
—log{ 1— 17(17(17;))/\)
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For the case ofr > 0 andf > 0, the proof of the quantile
is as follows.
Proof. By definition, the quantile function is given by

G(xp) =P(X <Xp) = p.
Hence
0 9 oglio[io(1—a—pi)E] Vo
X_%+X_p+Og - —(—(—p)) =0
(13)

Lettingxp = Qx (p) in equation {3) and solving folQx (p)
gives

20

N
a+\|a24elog{l[l<l(lp>§)é} }

For p = 0.25,0.5 and 075, we get the first quartile, the
median and the third quartile of the NGMIR distribution
respectively.

Qx(p) =

4.2 Moment

Proposition 1.

The rt" non-central
distribution is given by

moment of the NEGMIR

® ® w0

Hr =Aed3 55 3 Eien

=0]=0k=0m=0

20

mF(Zm—r+2) :

{r(szru) + (14)

where r=1,2,...and

()i (k4 )T gM a2 (A) (i +1)) M (d(j +1))
KM (A =) T (c(i+1)— )T (d(j+1)—k) :

&jkm =

Proof. By definition

b= [ g
0

- N .
= x’)\cd(7+—> kX~ 2Me= (D () gx
/ 2t ) 522, 3 dn

222, 0m ¢ (e

® 0 w0

322z e

® 0 0

- AOd,ZJED Zﬁ > Eijkm/[; ax 2201 (%) gy

® © o

+A0dizbjzbg z E'ka/ 20x —2m-3g ~(+1)( & )d

)
% 7) x-2Mg~ (1) (%) gx

X224 Zexr—Zm—S) e—(k+1)( %)dx

identity I (a) =
oRi o
|: ( k+l >r 2m ydy+/ k+1 ( )>r—2m—1eiydy:|
ﬂwiiééﬁmx

[@" 2" (k+1)" 2" (2m—r 4 1) + 200" 2™ 2(k+ 1) 2™ 21 (2m—r + 2)]
20
a?(k+1)

Jo 2 letdt,

® o w

:/\cd;%z > E”km[ (2m—r+1)+

k=0m=0

I’(2m—r+2)].

4.3 Moment Generating Function

Proposition 2. The moment generating function (MGF) of
the NEGMIR distribution is

mmmmm

20
a?(k+1)

r2m-r+2)|,

(15)
where

(- (k)T ™ eMat M (A) M (e(i+1) M (d(j+1))

Sijian = WTKMITTT (A —) T (c(i+1) — )T (d(j+1)—K)

Proof. By definition

Mx (2) = A e%g(x)dx
:iﬁ :x’g(x)dx
_)\cdiiiiié,,km[ 2m—-r+1)+ %F(Zm—r+2).

Note that the following series expansieff = 3> ;4 Z'X'
was employed in the proof.

4.4 Entropy

In this subsection, the Rényi entropy of the random
variableX is derived [L9]. _
Proposition 3. The Reényi entropy of a random variable

having the NEGMIR distribution is

mmmmm 2(0+m)+n—1)

G)\Cd ZZDZD nEqukmn Of 5+k)] (5rmin-1

R(3) = 15 log{
16)

whered #1,6 > 0and

Gijkrn =
(—p)iFiFktmgM(5 4 m (%,Q)mrwu)r(am ) D (C(E+i)— 5+ DI (d(E+)—+1)
KM (6 —n+ DF (B(A —1) i+ DI (c(@+1)—6— ] +Ir ([d(3+]) - —k+1)

Proof. The Rényi entropy19] is defined as

Lettingy = k+1 |mpl|es that ifx =0,y = o and ifx = 1 w

3
w,y=0. Also,x = (ky“ anddx = — Xk‘iyl) Using the Ir(0) = 7—50g UO 9 (x)dx] ,07#1,6>0.
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Using the same method for expanding the density,

mmmmm +m)+n

= (aAcd)® 14 ( ) e O(%),
"2 22 2
Hence
'R(é)zlféx
@@ e w @ w 713\ 28+m)+n a
log (nAOd)lSlz:j;Ok;OngOn;OZ”krm/o <;> (5+k)(x)dx}
Letting v = “(‘Sjk), when X = 0,y = o and when
x=c0,y=0.AlS0, % = g7 anddx= (’gfé Thus
© o o o (3+m)+n—2
LREE =L {“’M 23,2, 2ol We’ydy}
. oo o @ e 26 min1)
:mlog{(w\od .ZZZ gnéonz ZijkrmMr%}

whered # 1 andd >0

The Rényi entropy tends to Shannon entropg as 1.

4.5 Reliability

Proposition 4. If X; is the strength of a component and
X, Is the stress, such that both follow the NEGMIR
distribution with the same parameters, then the relighbilit
is given by

2o rm+1)—1  20r(2m+1))
R=1-ahedy 3 225 | lalcr DR 1 qlagkr DE™
17)
where
- (—2)HiHkamem (e DM (A 1) 1 (c(i +1)) 1 (d(j+1))
ijkm = .

WK (A —i+ )7 (c(i+1)— ) (d(j+1)—K)

Proof. By definition
R= P(Xz < Xl)

= [ 9(X)G(x)dx
Jo

Il
i
s~

E=3

<
@
x

=%

=3

8

H
|
>
a
a
™Me

.ka/ ax- 2D e (k1) ( ) g

o

+
H
>4

cd

HM8 EMS
?MS ?Mz

ukm/ 20y (3+2m g (0 ($) gy

HMg
™e T

4.6 Order Statistics

Order statistics have a very useful role in statistics and
probability. Hence, in this section the PDF pf' order
statistic of the NEGMIR distribution was developed.
SupposeXy, Xp, ..., X, is a random sample having the
NEGMIR distribution andXy.n < Xo:p < ... < Xn: p are
order statistics obtained from the sample. The PDF,
p: n(X), of the p" order statisticXp. n is

1
B(p,n—p+1)
where G(x) and gx) are the CDF and PDF of the
NEGMIR distribution respectively, anB(-,-) is the beta

function. Since 0< G(x) < 1 for x > 0, using the
binomial series expansion dfl. — G(x)]"P, which is

pin(X) = [G(IP 1~ G(X)" Pg(x),

given by
_ np_ s ql (NP '
1-a00r 7= 5 (-2 ("] ) 0ol
we have

S0 (PGP ().

(18)
Substituting the CDF and PDF of the NEGMIR
distribution into equation1(8) gives

Jpn(X) = W T

n—ppti-1 I+m
o (~1)!*Mni (p 1 -1y )
oonG9= 3" 3 TmeDip-Din—p-Ni(p-T-m-y 9% Amiz. 0.0 (19)

where dx;a, Amy1, 6, ¢, d) is the PDF of the NEGMIR
distribution with parameters a,6,c,d and
Amt1 = A(m-+1). Itis clear to see that the density of the

p" order statistic given in equatiorl®) is a weighted

function of the NEGMIR distribution with different shape
parameters.

Proposition 5. The rt" non-central moment of the™
order statistic is given by

© o o o N-pptl-1

pn )\Od;ZD 3.2 IZO WZ .
d

207 (291 +2)
a?(k+1)
(20)

{ (29—-r+1)+

wherer =1,2,... an

(—)it ik Mgy )T =A-19Aa" 241 (n4 1)1 (p+ 1) (A(m+ 1) (c(i + 1) (d(j +1))
itjlkitmigl(p— 1) (n—p—DIr(p+1—m)F (A(m+1)—i)l (c(i+1)—j)r (d(j+1)—k)

Pijkimg =

Lettingy = k+1) ,Whenx=0,y=candwherx=c,y=  Proof. By definition
a(k+1 —xd
0. Also,x = <y a1 anddx = it Thus S
® o o o 2(m+1)—2 0 n pp+| 1 = )I+m.( 1)
R=1-Acd z z / _ayAmue —eVdy ,/0 b 0 Wo' s 1)(npp+)(p+| D 906 A, 0.
1= [=0k=0m=0 k+l o |
n—Pp+ +m
o @ ® o gy2m+1 (=) nt (p+1-1)! o
=2 2 i K g0, Ay 1, 0, ¢ d)dx.
+1—Acd ZZ}Z% |ka/ k+1]2<m+1) Ydy 120 w&o TMEDHp- DI p-Di(p+1—m- 5k
e i w i i (2(m+1) ) 268 (2m+1)) E@ﬂg%{n\%}véhoeb?;we method for deriving the non-central
= (Fok=om=0 [or(k+ 2)2MD=1 g (k4 1)) ML ,
2 a e r@m+1)—1) 207 (2(m+1) N A { 207 (2q-1+2)
=1-aAicd i p =Acd (2q—r+1)+ ——s———>
Z,: k;méoﬁlkm [a<k+1)]2(m+1)—1 a[a(k+l>]z(m+1) ;Zbkzoq: IZO rrZ Bijkimg q— )+ PRI
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5 Parameter Estimation conditions are satisfied and that the parameters are within
) ) o the interior of the parameter space, but not on the

In this section, the esurpatpn of the unknown pa.rameterboundary, the distribution C\Vﬁ(é —9) converges to the

vectord = (A, a, 8, ¢, d) using the method of maximum  ytivariate normal distributionNs(0,1-%(8)), where

likelihood estimation was carried out. L¥§, Xo,..., X, 1(9) is the ex ; ; ; i
> 3 N20 e, pected information matrix. The asymptotic
be a random sample of sibédrom NEGMIR distribution. behavior remains valid wheh(8) is replaced by the

Letz — e‘(%*;?f) andz = 1—e_(%+;?2), then the log-  OPserved information matrix evaluated atd). The
likelihood function is given by asymptotic multivariate normal distribution
N5(0,J-%(8)) is a very useful tool for constructing an
¢~ nlog(adh) +(d~1) 3 log(&) +(c-1) 3 logl—#)+ (A1) 3 log 1 (1-#C] approximate 10Q — )% two-sided confidence intervals
ey e e o for the model parameters, wher is the significance
Se(s) 8 %) @ level.

By differentiating the log-likelihood function with respte
to the parameterk, c, d, a and 8, the score functions are 6 Monte carlo Simulation

obtained as
o _n. Lo - (-] 22) In this section, the properties of the maximum likelihood
oA A i; o " estimators of the parameters of the NEGMIR distribution
were examined using simulation. The average bias (AB),
o the root mean square error (RMSE) and the average width

3= Efzilog(lfi“)f(/\fl)zwﬂ (23) (AW) of the parameter values were observed. The
. - guantile function given in equationl®) was used to
generate random samples from the NEGMIR distribution.
" Flog(z) n oF(1-F)c tog(F) The simulation experiment was repeated for= 1,000
+A-yy Aaal A . ) :
& 1-7 i; 1-(1-F times each with sample sizes
@49 n =25 50,75 100,200 300,600 and parameter values
l:A=05a=016=08c=04,d=05) and
L1 L e a7t [1:A =040 =056=05c=25d=15. From
a0~ 2, 2<%+ 9> 2% TN e T Table 2, both the AB and the RMSE of the parameters
1

1-(1-2)

9t §+§llog<z> ~(e-1)

ad

decreases to zero as the sample size increases. Also, the
AW for the confidence intervals of the parameters
decreases as the sample size increases. Thus, the
maximum likelihood estimates and their asymptotic
properties can be employed for estimating and

%:iéfi%+(dfl)i%7(cfl) S f‘zﬂfl + constructing confidence intervals even for reasonably
S3(a. e =R & xz G-z ;
% (g+;§> small sample size.
n Cde —1(172‘51)0—1
AV e a2y o

_ _ _ 7 Applications

Equating the score functions to zero and solving for the

unknown parameters in the system of non-linear|n this section, applications of the NEGMIR distribution
equa“ons numerlca”y y|6|dS the maximum likelihood were demonstrated using two real data sets. The
estimates of the parameters. For the purpose Ofoodness-of-fit of the NEGMIR distribution was
constructing confidence intervals for the parameters, the ompared with that of its sub-models and the new
observed information matriX(#) is used due to the generalized inverse Weibull (NGIW) distribution using
complex nature of the expected information matrix. The Kolmogorov-Smirnov (K-S) statistic and Cramér-von

observed information matrix is given by Misses distance (W values, as well as Akaike
R T S S P information  criterion  (AIC), corrected Akaike
A2 9AJc 9A9d dAda 9AJ0 information criterion (AICc) and Bayesian information
9% 9% 0% 0% criterion (BIC). The PDF of the NGIW distribution is
dc2 Jdcdd dcda dcdb . b
J9)=— 920 9% 9% given by
9d2 9dda 9doe
9% 0% ) B
2 9agdb . _a (1 _a_g(1
oa 92¢ g(X):ﬁ<u+n9(;)n 1><;>2e< %-o(3) >(1—e( %-o(3) )) x>0, @7
L Frril

The elements of the observed information matrix arewheren > 0,3 > 0 are the shape parameters and-
given in the appendix. When the usual regularity O, 6 > 0 are scale parameters of the distribution.
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Table 2: Monte Carlo simulation results: AB, RMSE and AW
I 1]
Parameter n AB RMSE AW AB RMSE AW

A 25 0.533 0.975 17.759 0.430 2.404 39.319
50 0.448 0.827 14.581 0.222 1.298 20.377
75 0.392 0.756 12.071 0.251 1.089 19.377
100 0.377 0.702 10.353 0.159 0.625 12.140
200 0.383 0.692 9.412 0.167 0.607 11.807
300 0.333 0.573 7.749 0.190 0.607 12.990
600 0.267 0.501 5.482 0.183 0.507 9.329

a 25 0.389 0.523 6.935 -0.103 0.454 26.910
50 0.341 0.476 5.236 -0.109 0.409 15.649
75 0.301 0.444 4524 -0.092 0.384 14.265
100 0.292 0.427 4.047 -0.113 0.365 11.114
200 0.239 0.392 2.762 -0.076 0.321 11.240
300 0.223 0.361 2.470 -0.043 0.297 13.128
600 0.157 0.307 1.539 -0.020 0.247 11.125

[Z] 25 0.191 0.701 10.047 -0.018 0.419 37.024
50 0.032 0.433 7.782 0.050 0.380 25.619
75 -0.009 0.378 7.046 0.103 0.393 22.394
100 -0.035 0.334 6.382 0.132 0.382 20.964
200 -0.079 0.287 4.757 0.128 0.352 21.270
300 -0.082 0.272 4.697 0.204 0.367 22.982
600 -0.073 0.247 4.098 0.026 0.351 18.444

c 25 0.050 0.222 6.062 3.747 9.793 508.001
50 0.059 0.184 4.900 1.801 4.460 241.696
75 0.064 0.161 4.507 1.021 3.243 204.629
100 0.063 0.157 4.213 0.758 2.839 141.913
200 0.081 0.167 3.170 0.131 1.794 98.608
300 0.076 0.158 3.094 -0.159 1.430 81.678
600 0.069 0.149 2.584 -0.422 0.977 59.848

d 25 -0.123 0.010 5.551 0.089 0.028 29.222
50 -0.120 0.008 4.413 0.046 0.024 21.361
75 -0.107 0.008 4.070 -0.018 0.023 19.872
100 -0.106 0.007 3.764 -0.016 0.023 20.184
200 -0.123 0.007 3.171 -0.034 0.022 18.868
300 -0.110 0.006 2.879 -0.023 0.021 19.484
600 -0.091 0.006 2.344 -0.015 0.020 17.662

Table 3: Failure times data for the air conditioning system d an aircraft

23 261 87 7 120 14 62 a7 225 71
246 21 42 20 5 12 120 11 3 14
71 11 14 11 16 90 1 16 52 95

7.1 Aircraft Data Table 5, the NEGMIR distribution has the highest
log-likelihood and the smallest K-S, WAIC, AlCc, and
The data comprises failure times for the air conditioning BIC values compared to the other fitted models. Although

observations. The data set can be foundlifj nd [10] distribution also provides a good fit to the data set.

The data set is given in Tab& ’ To make a complete inference about a model, it is
The maximum likelihood estimates of the parameters and’€cessary to reduce the number of parameters of the
their corresponding standard errors in bracket ar odel and investigate its effect on the reduced model
displayed in Tabled. The parameters of the NEGMIR with regards to providing good fit to a data set. Thus, the

istributi Il sianificant at the 5% sianifi likelihood ratio test (LRT) was therefore performed to
dls ”bu lon were all significant at the 5% significance compare the NEGMIR distribution with its sub-models.

The NEGMIR distribution provides a better to the data setThe LRT statistic and their correspondifigvalues in
than its sub-models and the NGIW distribution. From Table 6 revealed that the NGMIR distribution provides a
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Table 4: Maximum likelihood estimates of parameters and stadard errors for aircraft data

Model A a 8 ¢ d
NEGMIR 0.082 18.949  3.736 0.132 11.356
(0.018) (2.491) (0.851)  (0.025) (1.309)
EGMIR 29.072  1.569 0.326 0.674
(12.559) (0.566)  (0.133) (0.153)
NEGIR 47.262 10.089 0.897 0.003
(1.6x 1074 (0.006)  (0.164)  (B4x10°3)
NEGIE 0.062 1.734 13.278 6.537
(0.016) (0.234) (14.581) (1.014)
a B 6 i
NGIW 7.312 0.628 0.944  150.959
(2.226) (0.150)  (0.994)  (158.932)

Table 5: Log-likelihood, goodness-of-fit statistics and iformation criteria for aircraft data
Model L AIC AlCc BIC K-S W+
NEGMIR  -146.520 303.046 306.698 309.882 0.1490 0.0701
EGMIR -151.920 311.842 314.342 317.312 0.2336  0.1636

NEGIR -158.360  324.723  327.223 330.192 0.3111 0.5359
NEGIE -156.420  320.840 323.340 326.309 0.2816 0.5021
NGIW -148.500 304.993 307.493 310.462 0.2270 0.1538

Table 6: Likelihood ratio test statistic for aircraft data

Model Hypotheses LRT P-values

EGMIR Hp:A =1vsH;:Hgisfalse 10.797 < 0.001
NEGIR Hp:a=0vsH;:Hpisfalse 23.677 <0.001

NEGIE Ho:8=0vsH;:Hpisfalse 19.794 < 0.001

good fit than its sub-models.

The asymptotic variance-covariance matrix for the
estimated parameters of the NEGMIR distribution is
given by

0.010 0012
I |

0.008
I

3.191x 10* 6.003x 10°° —8.433x 1072 1.347x 1072 8.209x 104
6.003x 10°° 6.306x 10* 1.052x 102 3.744x 102 1.416x 102

Density
0006
L

J1=|-8433x10°1.052x102 1714 0624 0488
1.347x 1072 3.744x102%  0.624 6205 1236 S
8.209x 104 1.416x102  0.488 1236 Q724 °

0.002
I

0.000
L

Hence, the approximate 95% confidence interval for the ‘ ‘ ‘ ‘ ‘ ‘ ‘
parameters A,a,6,c and d are
[0.0468 0.1169, [14.0665 23.8311], [2.0681 5.4043,
(0.0827,0.1811 and [8.790Q 139218 respectively. Fig. 3: Empirical and fitted densities plot for aircraft data
Figure 3 displays the empirical density and the fitted

densities of the distributions.
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Table 7: March precipitation in Minneapolis/St Paul

077 174 081 1.20 120 047 143 337 220
300 3.09 151 210 162 131 032 059 081
281 187 118 1.35 248 096 1.89 090 2.05

Table 8: Maximum likelihood estimates of parameters and stadard errors for precipitation data

Model A a 0 ¢ d
NEGMIR 0.225 3.022 2.246 0.112 24.039
(0.102) (0.515) (0.281) (0.052) (12.399)
EGMIR 1.658 2.918 0.235 1.877
(0.138) (0.355) (0.051) (0.146)
NEGIR 0.087 1.305 0.219 10.813
(0.018) (0.181) (0.028) (1.555)
NEGIE 8.228 9.708 0.258 0.092
(4.261) (2.387) (0.086) (0.022)
a B 6 A
NGIW 2.202 3.292 535x 10°° 5.822
(0.448) (1.087) (0.002) (0.014)
7.2 Preci pitation Data Table 9 Lo.g-li.kelihood, . goqdness-of-fit statistics and
information criteria for precipitation data
The data was first reported by Hinkle§] [and consists of  podel ) AIC  AlCc BIC KsS W

30 observations of March precipitation (in inches) in
Minneapolis/ St Paul. The data set is given in Table NEGMIR -37.870 85.738 89.390 92.744 0.076 0.014
The maximum likelihood estimates for the parameters of EGMIR  -42.750 93.492 96.101 99.097 0.208 0.138
the fitted distributions and their corresponding standard

errors in brackets are shown in Tatﬂe'lghe NEgGMIR NEGIR  -40210 88.421 91.030 94.025 0.282 0.071
distribution had all its parameters to be significant at the NEGIE  -40.460 88.912 91.521 94.517 0.140 0.070
5% significance level excemt which was significant at )

10%.The parameters of the EGMIR, NEGIR and NEGIE NGIW 39.66 87.326 89.935 92.931 0.125 0.066
distributions were all significant. The parameters of the
NGIW distribution were also significant, excefpt . , L L
Table9 revealed that the NEGMIR distribution provides a Table 10: Likelihood ratio test statistic for precipitatio n data
better fit to the precipitation data compared to its Model Hypotheses LRT P-values
sub-models and the NGIW distribution since it has the .

highest log-likelihood, smallest K-S, WAIC, AiCc and ~ ECMIR Ho:A =1vsHiiHoisfalse 9754 0.002
BIC values. NEGIR Hgp:a=0vsH;:Hpisfalse 4.682 0.030
The LRT was performed to compare the NEGMIR NeGiE  Hy:g=0vsHy:Hpisfalse 5174 0023
distribution with its sub-models. The results as shown in
Table 10 revealed the NEGMIR distribution provides a
better fit to the precipitation data than its sub-models.
The estimated asymptotic variance-covariance matrix of
the NEGMIR distribution for the precipitation data is

The approximate 95% confidence interval for the

given by parameterd, a, 6, c andd are[0.025, 0.424),
0010 0003 —1.033 Q017 Q004 [2.012 4.032], [1.696, 2.797, [0.011, 0.214 and
0.003 Q003 —0.307 —0.001 —0.003 [-0.262,48.340 respectively. Figure4 displays the
31| -1.033-0307 153725 Q287 Q099 empirical density and the fitted densities of the

0.017 —0.001 Q0287 0265 Q046 distributions.

0.004 —0.003 Q099 Q046 Q079
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Density

Appendix
@ _ - The elements of the 5 unit observed information matrix
2 are given by:
R 9% n
=l L ‘\‘ oA2 A2
N
" N
ISR = g 02 - (1-7)°log(1-7)
= | i \.\3 — EGMIR = — s
- 2 i gAdc i; 1-(1-F)e
'IIIIIJI \\\ \ — NGIW
JIII] Ty '
ol | 9% _ L cZ(1-Z)" tlog(z)
e Iy NN — 5
b 20d "2 1-(1 7
A IS
)P
e ) (92€ B n Cdziz-dfl _Zd)cfl
0 1 2 3 4 5 dAda i; Xi [1—(1—2-(1)0] ’
(92€ n Cdzizdfl _Zd)cfl

Fig. 4: Empirical and fitted densities plot for precipitation data

8 Conclusion

This study proposes a five-parameter distribution called
NEGMIR distribution, which is an extension of the MIR

distribution and contains several sub-models suitable for
for modeling data from different fields of study. Various

statistical properties of the new distribution such as the
guantile function, moment, moment generating function,
Rényi entropy, reliability measure and order statistics
were studied. The parameters of the model were
estimated using the method of maximum likelihood

estimation and simulation studies performed to examine 2,

the estimators of the parameters. The usefulness of thecia
new model was demonstrated using two real data sets.
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