

SCHOOL OF PURE AND APPLIED SCIENCES

DEPARTMENT OF PHYSICAL SCIENCES

THIRD YEAR FIRST SEMESTER EXAMINATION FOR BACHELOR OF SCIENCE (APPLIED PHYSICS AND TECHNOLOGY) SPH 309: MATERIAL PHYSICS

DAT	E:		TIME:
INST	TRUCTIONS:		
Answ	ver Question ONE which is o	compulsory and any other TWO	
<u>SEC</u>	FION A (COMPULSORY)		
QUE	STION ONE (30 MARKS)		
(a)	Describe the following	(i) Covalent forces	(3 marks)
	(ii)	Ionic forces	(3 marks)
(b)	What is meant by reinforce	ed polymers	(2 marks)
(c)	Explain three disadvantage	s of centre-loading of beams	(3 marks)
(d)	Distinguish uniform and st	eady flow	(3 marks)
(e)	Derive an expression for the	e bulk modulus of a body	(4 marks)
(f) In conducting test on materials, explain why it is more appropriate to analyse		opriate to analyse stress-strain r	
	elations than those of force	-extension	(2 marks)
(g)	Explain the effects of mechanical stress on corrosion		(3 marks)
(h)	(i) What is meant by a	composite material	(2 marks)
	(ii) State three weaknes	sses of composites	(3 marks)
(i)	Distinguish between rustin	g and corrosion	(2 marks)

SECTION B (ATTEMPT ANY TWO)

QUESTION TWO (20 MARKS)

- (a) On parallel grids for comparison, sketch the following relationships due to the interaction between the particles in a body
 - (i) Force distance (4 marks)
 - (ii) Potential energy-distance (4 marks)

(b) The energy of dissociation of a lattice is given by $U(r) = -\frac{a}{r^m} + \frac{b}{r^n}$

(i) Explain each term in the equation, indicating the relationship between m and n

(4 marks)

(ii) Find an expression for the equilibrium distance in terms of <i>a</i> , <i>b</i> , <i>m</i> and <i>n</i>	(4 marks)
--	-----------

(iii)Show that the minimum energy is given by $U_{min} = -\frac{a}{r^m} \left(1 - \frac{m}{n}\right)$ (4 marks)

Question Three (20 MARKS)

(a)	For a viscous undergoing laminar flow, show that the rate of shear strain is equal to the			
	veloci	ty gradient	(4 marks)	
(b)	(i)	Define a Newtonian liquid	(2 marks)	
	(ii)	Show that the coefficient of viscosity of a Newtonian liquid depends on the	he rate of	
		change of the strain in the liquid	(4 marks)	
(b)	(i)	Distinguish between critical and terminal velocity	(2 marks)	
	(ii)	Using the forces acting on a body moving in a long column of a viscous fl	uid, show	
		that its terminal velocity is constant	(8 marks)	
QUES	STION	FOUR (20 MARKS)		
(a)	(i) Explain why materials under tension are more likely to fracture along planes of 45		nes of 45° to	
		the direction of the shearing force	(4 marks)	
	(ii) For small angles of shear, show that the shear modulus, G is inversely proportional		portional to	
		the angle of shear	(4 marks)	
(b)	Describe each of the four basic components of concrete		(12 marks)	
QUESTION FIVE (20 MARKS)				

(a)	Distinguish between	(i) alloying and galvanizing	(2 marks)
		(ii) eutectic and eutectoid mixtures	(2 marks)

(u)	From a phase diagram, show now the weight of a solid can be obtained i	
(\mathbf{d})	From a phase diagram, show how the weight of a solid can be obtained from the liquid an	
(c)	Explain three advantages of alloying	(6 marks)
(b)	Explain two methods of alloying	(6 marks)