

SCHOOL OF PURE AND APPLIED SCIENCES

DEPARTMENT OF PHYSICAL SCIENCES

FOURTH YEAR SECOND SEMESTER EXAMINATION FOR

BACHELOR OF SCIENCE (APPLIED PHYSICS AND TECHNOLOGY)

SPH 469: GEOTHERMAL ENERGY TECHNOLOGY

TIME:

INSTRUCTIONS:

- The paper consists of **TWO** sections.
- Section **A** is **compulsory** (30 marks).
- Answer any **TWO** questions from section **B** (each 20 marks)

SECTION A

QUESTION ONE (30 MARKS)

Exam	Page 1 of 3	
f) Sta	(3 marks)	
e) De	(3 marks)	
d)	Explain the origin of geothermal energy.	(3 marks)
c)	Define a feed point within the geothermal reservoir engineering context.	(3 marks)
b)	List six manifestations in geothermal field.	(6 marks)
a)	Define geothermal energy.	(2 marks)

g)	Give an alternative method other than stage testing that can be done after well completion		
	and explain its limitation.	(3 marks)	
h)	Give two reasons that justify renewability of geothermal energy.	(4 marks)	
i)	State the objective intended to be achieved during a well completion test.	(3 marks)	

SECTION B

QUESTION TWO

- a) List five countries with geothermal energy and state the aspect they share in common.
- b) Using a diagram, show a temperature profile for a well.
 - i. With a water loss at a 2000 m depth
 - ii. With two water loss points at 1000 m and 2000 m respectively
 - iii. With a water gain at 1000 m and a water loss at 200 m respectively (6 marks)
- c) Distinguish between binary and ordinary geothermal power plants using well labeled diagrams. (4 marks)
- d) Some researchers from Machakos University report that the temperature gradient at Ol karia Geothermal field is 60 ° C per kilometer of depth, determine the temperature 2000 metres deep. (6 marks)

QUESTION THREE (20 MARKS)

a) Explain the three characteristics of a geothermal reservoir and illustrate with a diagram.

(5 marks)

(4 marks)

- b) Any geothermal energy harnessing company is composed of over seven departments.
 - i. List five technical departments the entity must have. (5 marks)
 - ii. Explain the point in time at which each department becomes into play. (5 marks)
 - iii. Describe the role played by each department. (5 marks)

QUESTION FOUR (20 MARKS)

a) Explain the working principle of a separator in steam pipe line that separates steam from water. (3 marks)

- b) Describe flow measurements by lip pressure and silencer method (5 marks)
- c) Temperature profiles for three geothermal wells A, B and C are shown in figure 1. For each well, explain the information relayed to the reservoir scientist. (6 marks)

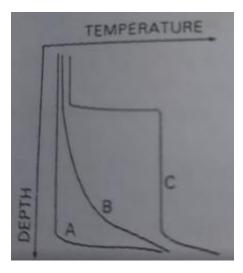


Figure 1: Temperature profiles for wells A, B and C

b) State the significance of fitting a well with a metal casing and explain why the lowest should be slotted. (6 marks)

QUESTION FIVE (20 MARKS)

a) In liquid dominated reservoirs, completion test is done by injecting cold water, explain how the following parameters are done:

	i.	Water loss/gain points are identified	(4 marks)
	ii.	Permeability is determined	(3 marks)
b)	L	ist the steps for the normal New Zealand well completions procedure.	(7 marks)
c)	E	Explain three geothermal energy problems.	(6 marks)