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Abstract 

 

In this paper, we study and present a Microscopic Simulation of traffic in an 

unsignalised intersection using a Microscopic Car Following model based on 

the General Motors Theory (GM). The adverse effect caused by the traffic 

congestions is most notable in the largest cities, where traffic density is 

relatively high, with characteristically low and often variable speed. It extends 

the GM model by adding lane change (turning) manoeuvres which form the 

basis for describing the traffic flow at unsignalised intersections. We show how 

augmentation of traffic flow in most urban areas due to growth in transport and 

continual demand for it forms at those intesretions. This is investigated through 

a mathematical simulation in C++ and analysed numerically. Microscopic car 

following model considers vehicles in discrete form and this discretization using 

the finite (forward) difference method. Vehicles are put in a simulation 

environment over a specified period of time over which they are considered for 

analysis. 
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1.     INTRODUCTION 

The paper focuses on unsignalised intersections. Unsignalised intersections are 

examples of bottlenecks that are interesting in the study of traffic congestion since they 

are uncontrolled. Arguably, an efficient transport system is essential for the optimal 

functioning and prosperity of any modern economy. The quality of life, self-fulfilment, 

and personal freedom to some extent depend on mobility as a key catalyst to this 

satisfaction. To achieve mobility, this paper proposes a mathematical traffic simulation 

model using the General Motors microscopic car-following model to simulate traffic at 

these intersections. The proliferate development and the tremendous growth in the 

population of most cities has had a significant influence on the travel pattern(s) of the 

community from one place to another. This results from an increased transport demand 

which in most cases leads to a rise in the cost of living of the citizenry [17]. The 

transportation system is also affected by the annual increase of the vehicles on the road. 

For example, in 2014, the Bloomberg Business magazine reported that the number of 

cars on Nairobi’s roads has doubled to 700,000 since 2012- infrastructure and traffic 

management remaining unchanged. Again, Bloomberg reported that there is a 

foreseeable increase in the number of these vehicles to about 9 million by 2050, (10). 

This naturally means there’s are increases road congestion, especially during peak 

hours.  Traffic congestion is a major problem of transport in many countries [3, 12] and 

it’s not expected to end soon. This is always accelerated by the ever increasing 

urbanization of vast areas as urban extensions. In some urban centres, many roads were 

laid in an incremental manner to cater to the increased traffic demand [8,14]. The cities 

have developed in a disintegrated urban form spreading along major traffic corridors 

[2]. At the unsignalised intersections, traffic congestion may be caused by failure by 

drivers to adhere to traffic rules, aggressive drivers or timid drivers. Most of the major 

intersections are no longer able to cope with even the present traffic demand. The cause 

of this results from bottlenecks for example merging and intersections. The way 

vehicles enter their lane of choice without much regard to the other drivers makes 

congestion grow spreading far and wide. [18] describes microscopic (micro) simulation 

models as more and more widely used to support real-time control and management 

functions in the field of transportation planning, functional design, and operation 

engineering. Car following models predict the response of the following vehicle to the 

stimulus caused by the lead vehicle [18]. Improper understanding and consideration of 

all traffic scenarios/traffic characteristics at intersections leads to inaccurate 

interpretations of the results of the analysis which are key in making recommendations 

about the design and location of the intersection. A good understanding ensures that all 

the parameters and variables chosen for the study are well evaluated. Planning 

improvements and resource mobilization to expand the roads are quite expensive and 

unsustainable hence, cannot be relied upon. Therefore, it is very important to redevelop 

procedures for integrating various local traffic characteristics for a thorough analysis. 
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Figure 1: An Example of a T-Junction 

 

 

2.     MODEL PROBLEM 

Our microscopic car-following model is developed in a classical procedure from the 

so-called ‘General Motors’ (GM) type car-following models used by [1], where we 

incorporate lane changes and merging abilities. The basic philosophy of car-following 

theories can be summarized as follows;  

 

   Stimulussponse
i
Re , for the thi  vehicle ........)2,1( i . Each driver in the traffic 

stream can respond to the surrounding traffic conditions by either accelerating or 

decelerating the vehicle. The stimulus may be composed of the speed of the vehicle, 

relative speeds, distance headway, etc. It is from this realisation that our model 

advances that the generalised General Motors Model car following It is given by the 

following equation(s). 
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where i  is the vehicle, ix  is the position of the front bumper of vehicle i , ix  is the 

velocity of the thi vehicle, iv  is the acceleration of the thi vehicle, il  is the spacing 

between two following vehicles, )( iU  is the equilibrium velocity, H  is the length of 

vehicle i  (considered as a constant here for all considered vehicles), T  is the time 

vehicle i takes to reach the equilibrium velocity and C  is a constant which scales the 

anticipation term. 

 

 

Follow-the-Leader Model 

The car following model proposed by General motors is based on follow-the-leader 

concept. This is based on two assumptions;   

(a) The more a vehicle moves at a high speed, the higher will be the spacing between 

the vehicles until it closes on the gap and   

(b) To avoid collision, a driver must maintain a safe distance with the vehicle ahead. 
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Figure 2: Notation for car-following model 

 

The following vehicle is assumed to accelerate at time Tt  , where T  is the interval 

of time required for a driver to react to a changing situation. We denote the location and 

speed of the vehicles at time Rt and the distance between the successive cars 

iii xxl  1  by )(txi  and )(tvi  respectively and where Ni ............1 . Considering (1), 

the local “density around vehicle i ” and its inverse (the local (normalized) “specific 

volume”) are respectively defined by; 
i

i
l

H
  and 

H

li

i

i 



1

; Where   is the 

traffic density and H is the length of a car (vehicle). 

A car-following model describes the motion of the following vehicles in response to 

the leading vehicle. Basically all vehicles that are not in free flow, adjust their driving 

behaviour to the vehicle ahead, to keep a safe headway. In theory, car following models 

can be used for all kinds of vehicles. 

We describe the turning movement of along a T-Junction as shown in fig 3 below. 

 
Figure 3: Movement along a T-Junction. 
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The initial condition for motion AB is given by  2270  .  The initial condition will 

keep changing depending on the direction of the turn. For the motion described by AB, 

a vehicle moves from the straight path and to the connecting path. This motion makes 

an arc like path. A parametrization of the formed arc is done to help us in describing 

the motion. If we continue this path, the vehicle(s) moves in such a way that it forms 

part of a circle with a centre somewhere and with radius r which is always constant 

throughout the motion while  as the vehicle moves along path AB. The movement is 

occurring on a two-dimensional plane on the x  and axisy   where considering x  and 

y  in terms of the polar coordinates; cosrx   and sinry  . Looked this way, r  is 

a vector and is given as )sin(cos)( 21 eerr ji  


.  A velocity iv  is applied on the 

vehicle as it travels through the desired distance xy  or the r  path. 

 

Equations of the model. 

Now we consider a dynamical system of n vehicles, translated as follows; 
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The thi component of the )(tx is )(txi   ni ,.....,1  and )(tx is again the vector position. 

By differentiation, we obtain; 
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It can be seen that ),( xtf
dt

dx
 where ),( xtf is the vector field of the system. In our 

case, ),(),( xtvxtf  . 

 

By integration;     

  dtxtvdt
dt

dx
),( , 
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For the turning motion, we now introduce an approximation for x which is given by; 

 dtxtvtx ),()(  . 

This approximation will give us a formula for the turning angle  . 

 

For each vehicle i , its position )(txi is given by; 

 dtxtvtx ii ),()(  ; where ni ,,.........2,1  

 

Looking at the Fig 2 below, there’ll be two types of movements; 

 

 
 

Figure 2: Interactions of vehicles at a T-Junction 

 

 

i) Straight Movements e.g. 1→5, 2→3.1 

ii) Turning Movements e.g. 1→4, 6→5. 

 

Described by; 

Let l  be the distance between the vehicles; 

Let 1x  be the vehicle at position 1 intending to go to position 4 

Let 2x  be the vehicle at position 2 moving straight to position 3 

Now, at time instant t*, vehicle 1v  can only get 4 iff there’s a safe distance between 

itself and vehicle 2x , that is; 

 ),,( 22121 vxxlxx safe     

 

Similarly, for vehicles at position 6 going to 5, applying the same conditions as 

described above; it has to check vehicles 1x and 2x  this motion is described as below; 

),,( 22626 vxxlxx safe and ),,( 11616 vxxlxx safe  
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The vehicle velocity in both motions is described by (2) and (3) respectively. 

Then for every  ni ,........,1  

)(tvx ii          (2) 

  

 21 )(sin)(cos)( etetrtx iii        (3) 

  

Where;  

 dttvt ii )()(  and 21 eande are unit orthogonal vectors. 

In both cases, the acceleration is described by; 
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Doing simple transformations on (7) we get; 

iii vvl  1
  or )(

1
1 iii vv

H
  , for  1,.......,1  ni   

 

 

Discretizing using the Forward Finite Difference method. 

In microscopic traffic modelling, each vehicle is considered on its own (as a single 

entity). Therefore, a discretization is done to get the equations that represent of each 

vehicles. We do this by the use of the finite forward finite difference method. 

For any  1,......,1  ni , 
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Now; 

Letting k be the time index and i the location index we have; 
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ix is the position of the front bumper of the leading vehicle and k

ix  is the 

position of the front bumper of the following vehicle 

 



204 D.M. Maithya, M. Kimathi and Diaraf Seck 

 

Starting with n  as zero we have; 
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For the acceleration function; 

 

Let k be the time index; 

Then we have; 

t

vv

t

dv k

i

k

ii








1

 

Where 1

1





k

iv is the velocity of the leading vehicle and k

iv is the velocity of the 
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Then we get: 
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Existence and Uniqueness of Results 

It is very important for us to check if the results exist and if yes, if they are unique. This 

is done by invoking the Cauchy Lipschitz Theorem. 

 

Statement of the Cauchy Lipschitz Theorem 

Let nRU   be an open set and   nRTUf  ,0: a continuous function which satisfies 

the Lipschitz condition  TUtxtxxxMtxftxf ,0),(),,(),(),( 212121   

(where M is a given constant). Let us consider the initial value problem described by 
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 where Ux and  Tt ,0 . If Ux 0 then for some positive,  there is a 

unique solution   Ux ,0: of the initial value problem.  

 

We take the hypothesis where our model equations (4), (5) and (6) are lipschitzian. 

From the above sets of ODEs, we have;  
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Taking the hypotheses as in the Cauchy Lipschitz theorem, we have )()( tvtx  ) and 

 tx  is a continuous vector function and also )(tv is a Lipschitz continuous vector 

function. Then )(tx and )(tv  are continuously differentiable. The solution of each 

system of ordinary differential equation is called the integral curve. 

 

 

RESULTS AND DISCUSSION 

The results presented here are an outcome of the implementation of the finite difference 

method scheme in C++ programming language (both code and plots have been 

produced in C++).  The vehicles are randomly generated. A hierarchical description of 

the vehicles id used in implementing their movement. The hierarchy specifies their 

claim on the right-of-way at the common intersecting space. In general, first in the 

hierarchy is the through movement on the Major Street; second is the right turn from a 

Major Street. For example, if in a situation there is a vehicle on the right turn movement 

and another on the conflicting through movement, the latter uses the intersection first 

while the former waits until the latter clears the intersection. If some other movement 

is still lower down the hierarchy (like the right turn from Minor Street), then a vehicle 

for that movement has to wait until the vehicles on the movements higher up in the 

hierarchy has cleared the intersection. The Red, the Blue and the Green Trajectories 

represent the preceding, the following and the turning vehicles respectively. 
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Position - Time Graph for First 3 vehicles in the Simulation 

 

 

 
 

 

The preceding vehicle changes position uniformly with respect to time and its 

unchanging velocity. When it reaches the junction, the vehicle momentarily waits for 

another vehicle to turn after which it proceeds to drive past the junction at a higher 

speed hence the sharp gradient and the vehicle exists the junction. The following 

vehicle (blue vehicle) accelerates using the General Motors Car following model 

equations therefore the vehicle is solely dependent on the preceding vehicle (red). This 

is seen at the point where the following vehicle takes the preceding vehicle’s behaviour 

by stopping and moving when it starts moving. The Turning vehicle’s behaviour is as 

well depicted by the characteristics of the behaviour of the second vehicle. As seen in 

the Graph, the vehicle stops for some time and resumes motions as soon as the leading 

vehicle (Second) resumes movement.  This clearly shows that the behaviour of the first 

vehicle was back-chained to all the following vehicles via the follow the leader 

behaviour as described by the General Motors Car Following Model. 
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Position - Time Graph for the 11th, 12th and 13th Vehicles in the Simulation 

 

 
 

This is a case of 3 consecutive vehicles. The front vehicle is a consequence of the first 

vehicle having followed another vehicle (vehicle 10). We see that, after the vehicle 

drove for two seconds, it seized moving and then drove for some another a second 

stopped again, then moved again, stopped for a while and then proceeded to the junction 

after which it went straight almost immediately after it reached the junction. The second 

vehicle replicates the behaviour until it turns at the junction. Contrary, the 13th vehicle, 

does not immediately replicate the behaviour of the preceding vehicle (12th) although 

it accelerates with respect to the behaviour of the preceding vehicle. This shows that 

the vehicle doesn’t blindly follow the preceding vehicle i.e. it first checks if the gap 

between itself and the preceding vehicle is less than the safe distance before it stops. 

When the 12th vehicle stops for the 2nd time, the 13th vehicle stops too and proceeds to 

according the behaviour of the preceding vehicle but as when it reaches the junction, it 

also stops momentarily even though the preceding vehicle had already turned. This 

implies that the stopping was as result of presence of another turning vehicle hence it 

had to give way. 
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Position-Time Graph for 10 vehicles in the Simulation 

 

 
 

This graph illustrates the exact sequence of propagation of the behaviour of the 

preceding vehicle especially in the case where jam has occurred. Since there is a high 

density of vehicles, when the preceding vehicle stops for some time, it causes five more 

vehicles to stop. The 7th vehicle is affected by the jam propagation when the condition 

gap is greater than safe distance becomes false. This is the same case for the 8th, 9th and 

10th vehicle. We therefore conclude that in so long as the gap between the preceding 

and the following vehicles is greater than the safe distance, the vehicle will always 

accelerate. 

 

Traffic Density-Time Graph for the Traffic Simulation 
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This graph illustrates how a jam grows around a T-Junction. In the graph, we see that 

before the simulation starts there are few vehicles on the road. As more vehicles are 

generated the density of the traffic on the road grows gradually over time. In some 

instances, the density remains constant when there’s a balance between the incoming 

and outgoing vehicles. As more and more vehicles are generated, the density increases 

until all the lanes are jammed. This creates a Traffic Shock wave which propagates 

backwards. By the use of the Stop and Go Condition that is based on prioritization, the 

density fluctuates as vehicles leave and enter the junction respectively but the density 

is maintained at interval 45-55. This explicitly means that the jam will never end. 

 

 

CONCLUSION 

In this paper, we presented the turning logic in the General Motors Car Following 

Model. Also, the paper clearly depicts the formation of jams at unsignalised 

intersections. Vehicles with lower priorities to turn, are forced to wait until no higher 

ranked conflicting vehicle turns. The stopping is propagated to the following vehicles 

which leads to the gradual growth of traffic jam over time. Further, if the vehicles move 

at low speeds, jam development rate is higher and the contrary is always true. Finally, 

the paper establishes that for safe merging, several strategies must be employed; 

prioritization where vehicles moving straight and or turning right from the main 

road/lane into a minor road or lane are given the highest priority. Second in that order 

are those vehicle turning left from the main or turning right into the main road. The 

lowest priority is given to those turning left into the main road. Maintaining a Safe 

Distance between the preceding and the following vehicle is another very impressive 

strategy for safe merging.  A vehicle should also leave the junction at a higher velocity 

if it enters so that it gives way to the others 
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