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ABSTRACT 
Numerical simulation is widely used for predicting reservoir behavior and 
forecasting its performance. In this paper numerical modeling is 
performed to simulate single phase flow in oil reservoir in horizontal well, 
with the main objective of determining pressure variation in the reservoir. 
The conservation of mass and momentum equation in form of Darcy’s 
law are combined to form PDE’s that govern the flow. One dimensional 
slightly compressible flow in Cartesian co-ordinates and radial co-
ordinates with two injections and one extraction attached to the reservoir 
at distinct points is discussed. The governing equation is solved 
numerically using FVM with an assumption that the permeability and 
porosity are constant throughout the reservoir. Tri-diagonal Matrix 
Algorithm is developed from which iterative numerical solutions of 
pressure is obtain. The results were comparable with the analytical 
solution. 
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1. INRODUCTION 

Reservoir is underground porous media usually containing rock, oil, gas and water. Reservoir 
simulation is the means by which one uses a numerical model of the geological and petro 
physical characteristics of hydrocarbons reservoir to analyze and predict fluid behavior in the 
reservoir over time. 
(Dickstein, 1997) presented a FV model for the simulation of single phase flow of slightly                       
compressible fluid in a reservoir drained by horizontal well. The grid was locally refined 
around the well to    efficiently handle different time scales in a robust way. 
(Cai, et al., 1997) studied the control-volume mixed finite element methods for obtaining 
accurate velocity approximations on irregular block-centered quadrilateral grids. The control 
volume formulation for Darcy’s law was viewed as a discretization into element sized tanks 
with imposed pressures at the ends, giving a local discrete Darcy law analogous to the block-
by-block conservation in the usual mixed discretization of the mass conservation equation. 
Numerical results in two dimensions showed second order convergence in the velocity, even 
with discontinuous anisotropic permeability on an irregular grid. 
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(Monkeberg, 2012) developed a routine to compute FVM’s on triangular grids for solving 
hyperbolic PDEs. He implemented the FVM and used it to define an immiscible and 
incompressible two-phase flow in a rectangular domain. The tests of the implementation for 
incompressible single phase and incompressible two phase flows were correct. 
The focus in this work was to simulate single phase flow through horizontal oil reservoirs and 
study the variation of pressure with time and space. FVM is applied to the discretization of the 
differential equations that describe the flow. 1-D slightly compressible flow is solved in 
Cartesian and radial co-ordinates, using FV cell-centered approach. For simplicity 
permeability and porosity were set constant throughout the reservoir. 

2. MATHEMATICAL FORMULATION AND ANALYSIS 

In general the flow of a fluid through a porous medium is modeled by Darcy’s law, which is an 
expression of conservation of momentum. The law is used to describe oil, water and gas 
flows through petroleum reservoirs. It states that the volumetric flow rate is proportional to the 
gradient of the potential, which describes proportional relationship between the instantaneous 
discharge rate through a porous medium, the viscosity of the fluid and the pressure drop over 
a given time. The law is given by; 
 

𝑢 = −
𝑘

𝜇
∇𝑝             

                                                                                                                           (1) 
where 𝑘, 𝜇 , 𝑝 and 𝑢  are permeability of a porous medium, fluid viscosity, Darcy’s velocity and 
pressure, respectively. 

2.1 Continuity equation 
The mass conservation equation in 3D is given by; 

𝜕(𝜑𝜌)

𝜕𝑡
= −∇ ∙ (𝜌𝑢) + 𝑓                    

                                                         (2) 
where ∇ is del operator, 𝜑  is the porosity and 𝜌 is  density.  
Using equation (1) in (2) we obtain (3) which is the governing equation for single phase flow 
in reservoir 

𝜕(𝜑𝜌)

𝜕𝑡
= ∇.

𝜌𝑘

𝜇
(∇𝑝 − 𝜌𝑔∇𝑧) + 𝑓                        

                                                                    (3) 
Equation (3) can be transformed into equation (4) which is a parabolic equation in 𝑝 
governing slightly compressible flow of oil in the reservoir. 

𝜑𝜌𝐶𝑡
𝜕𝑝

𝜕𝑡
= ∇. (

𝜌𝑘

𝜇
(∇𝑝 − 𝜌𝑔∇𝑧)) + 𝑄          

                                                                              (4) 
2.2 Theorem of existence and uniqueness of solution 

To prove existence and uniqueness of solution of equation (4), we rewrite equations (1) and 
(2) as a system for the unknowns 𝑢 and 𝑝 
 

𝑢 + 𝐾∇𝑝 = 0,              
                                 (5) 

𝑑𝑖𝑣(𝑢) = 𝑓.                 
                                                          (6) 
In reservoirs, 𝐾 can be discontinuous although the normal component of  𝑢 is continuous. 
Equations (5) and (6) in weak formulation are respectively: 

𝑢. 𝑣 +   𝐾∇𝑝. 𝑣 = 0            ∀𝑣 ∈ 𝑉,              
                                                                               (7) 

       𝑑𝑖𝑣(𝑢)𝑞 = 𝑓𝑞          ∀𝑞 ∈ 𝑄,                                 
                                                                                                      (8) 
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where (𝑢, 𝑝) ∈ 𝑈 × 𝑃. 
This methods have been considered in (Thomas, 1994) (Brezzi, 1991), with particular choice  

𝐻(𝑑𝑖𝑣, 𝛺) = {𝑣 ∈ (𝐿2(𝛺))
𝑑
,   𝑑𝑖𝑣(𝑣) ∈ 𝐿2(𝛺)}            

𝑈 = 𝐻(𝑑𝑖𝑣, 𝛺), 𝑃 = 𝐻0
1(𝛺), 𝑉 = (𝐿2(𝛺))

𝑑
, 𝑄 = 𝐿2(𝛺)

} 

                                                                                                   (9) 
where 𝐻0

1(𝛺) = {𝑝 ∈ 𝐿2(𝛺), 𝐷𝑝 ∈ 𝐿2(𝛺).  𝑝 = 0 on 𝜕𝛺}.  However, it is generally difficult to find 
stable pair discrete spaces (𝑈ℎ , 𝑃ℎ),   𝑈ℎ ⊂ 𝐻(𝑑𝑖𝑣, 𝛺), 𝑃ℎ ⊂ 𝐻0

1(𝛺) for unstructured domain. 
In this section we state a theorem which is an easy generalization of the results by 
(Nicolaides, 1982), (Brezzi, 1991) ,  (Babuska, 1992)  and (Thomas, 1994). 
Consider an abstract problem of finding(𝑢. 𝑝) ∈ 𝑈 × 𝑃, given 

𝑎(𝑢, 𝑣) + 𝑏(𝑣, 𝑝) =< 𝑔, 𝑣 >      ∈ 𝑉,       

𝑐(𝑢, 𝑞) =< 𝑓, 𝑞 >                    ∀∈ 𝑄,         
}    

                                                                (10) 
where (𝑈, ‖. ‖𝑢), (𝑃, ‖. ‖𝑝), (𝑉, ‖. ‖𝑣) and  (𝑄, ‖. ‖𝑞) are four Hilbert spaces, 𝑎(. , . ), 𝑏(. , . ) 
and 𝑐(. , . ) are bilinear forms defined respectively on 𝑈 × 𝑉, 𝑃 × 𝑉 and 𝑈 × 𝑄 spaces. The right 
hand sides are defined for𝑔 ∈ 𝑉′, 𝑓 ∈ 𝑄′, where 𝑉′ and 𝑄′ are the dual spaces of 𝑉 and 𝑄 
correspondingly. 
Consider the discrete problem to find(𝑢ℎ, 𝑝ℎ) ∈  𝑈ℎ  × 𝑃ℎ: 

𝑎ℎ(𝑢ℎ, 𝑣ℎ) + 𝑏ℎ(𝑣ℎ , 𝑝ℎ) =< 𝑔, 𝑣ℎ > 1ℎ      ∀𝑣ℎ  ∈ 𝑉ℎ 

𝑐ℎ(𝑢ℎ, 𝑞ℎ) =< 𝑓, 𝑞ℎ > 1ℎ     ∀𝑞ℎ     ∈ 𝑄ℎ ,                       
}     

                                                                                        (11) 
where (𝑈ℎ, ‖. ‖𝑢ℎ), (𝑃ℎ , ‖. ‖𝑝ℎ), (𝑉ℎ , ‖. ‖𝑣ℎ) and  (𝑄ℎ , ‖. ‖𝑞ℎ) are four Hilbert spaces, 𝑎ℎ(. , . ), 
𝑏ℎ(. , . )and 𝑐ℎ(. , . )are bilinear forms defined respectively on  𝑈ℎ × 𝑉ℎ , 𝑃ℎ × 𝑉ℎ  and 𝑈ℎ × 𝑄ℎ .  
Suppose that 𝑈ℎ ⊄ 𝑈  and 𝑉ℎ  ⊄ 𝑉, i.e., discretization of equation (13) is non-conforming, and 
let 𝑈0ℎ and 𝑉1ℎ be the spaces defined by 

𝑈0ℎ = {𝑢ℎ ∈ 𝑈ℎ ,       ∀𝑞ℎ ∈ 𝑄ℎ ,    𝑐ℎ(𝑢ℎ, 𝑞ℎ) = 0}

𝑉1ℎ = {𝑣ℎ ∈ 𝑉ℎ,    ∀𝑈ℎ ∈ 𝑈0ℎ, 𝑎ℎ(𝑢ℎ, 𝑣ℎ) = 0  }
} . 

                                                                              (12) 
Assuming that there exists three constants 𝐴, 𝐵 and 𝐶 independent of ℎ such that 

𝑎ℎ(𝑢ℎ, 𝑣ℎ) ≤ 𝐴‖𝑢ℎ‖𝑈ℎ‖𝑣ℎ‖𝑉ℎ,

𝑏ℎ(𝑣ℎ , 𝑝ℎ) ≤ 𝐵‖𝑣ℎ‖𝑉ℎ‖𝑝ℎ‖𝑃ℎ ,

𝑐ℎ(𝑢ℎ, 𝑞ℎ) ≤ 𝐶‖𝑢ℎ‖𝑈ℎ‖𝑞ℎ‖𝑄ℎ ,

}   

                                                        (13)                  
and consider the Babuska-Brezzi conditions: 

𝑖𝑛𝑓

𝑢ℎ ∈ 𝑈0ℎ

𝑠𝑢𝑝

𝑣ℎ ∈ 𝑉ℎ

𝑎ℎ(𝑢ℎ, 𝑣ℎ)

‖𝑢ℎ‖𝑈ℎ‖𝑣ℎ‖𝑉ℎ
 ≥ 𝛼,    

𝑖𝑛𝑓

𝑝ℎ ∈ 𝑃ℎ
 
𝑠𝑢𝑝

𝑣ℎ ∈ 𝑉ℎ

𝑏ℎ(𝑣ℎ, 𝑝ℎ)

‖𝑣ℎ‖𝑉ℎ‖𝑝ℎ‖𝑃ℎ
≥ 𝛽,   

𝑖𝑛𝑓

𝑞ℎ ∈ 𝑄ℎ
 
𝑠𝑢𝑝

𝑢ℎ ∈ 𝑈ℎ

𝑐ℎ(𝑢ℎ, 𝑞ℎ)

‖𝑢ℎ‖𝑈ℎ‖𝑞ℎ‖𝑄ℎ
≥ 𝛾,

}
  
 

  
 

         

                                                                                                                                 (14) 
such that dim(𝑈ℎ) + dim(𝑃ℎ) = dim(𝑉ℎ) + dim(𝑄ℎ) is satisfied. 
Then problem (14) has a unique solution ( 𝑢ℎ, 𝑝ℎ). Moreover, if  𝛼, 𝛽 and 𝛾 are independent of 
ℎ, there exists positive constant 𝐶 independent of ℎ such that 

 ‖𝑢 − 𝑢ℎ‖𝑈ℎ + ‖𝑝 − 𝑝ℎ‖𝑃ℎ ≤ 𝐶 ( 𝑖𝑛𝑓
𝑣ℎ∈𝑉ℎ

‖𝑢 − 𝑣ℎ‖𝑣ℎ +
𝑖𝑛𝑓

𝑝ℎ∈𝑃ℎ
‖𝑝 − 𝑝ℎ‖𝑃ℎ +𝑀1ℎ +𝑀2ℎ +𝑀3ℎ +

𝑀4ℎ),                                                                                                                                                              (15)    

where 

                                 𝑀1ℎ =
𝑠𝑢𝑝

𝑣ℎ ∈ 𝑉ℎ
 
𝑎ℎ(𝑢, 𝑣ℎ) + 𝑏ℎ(𝑣ℎ , 𝑝)−< 𝑞, 𝑣ℎ >

‖𝑣ℎ‖𝑣ℎ
, 
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                                         𝑀2ℎ =
𝑠𝑢𝑝

𝑣ℎ ∈ 𝑉ℎ
 
< 𝑔, 𝑣ℎ > −< 𝑔, 𝑣ℎ > ℎ

‖𝑣ℎ‖𝑣ℎ
 ,             

                                 𝑀3ℎ =
𝑠𝑢𝑝

𝑞ℎ ∈ 𝑞ℎ
 
𝑐ℎ(𝑢, 𝑞ℎ)−< 𝑓, 𝑞ℎ >

‖𝑞ℎ‖𝑄ℎ
,                       

                                 𝑀4ℎ =
𝑠𝑢𝑝

𝑞ℎ ∈ 𝑄ℎ
 
< 𝑓. 𝑞ℎ > −< 𝑓, 𝑞ℎ > ℎ

‖𝑞ℎ‖𝑄ℎ
.            

and we can further use the results above for the bilinear forms: 

𝑎(𝑢, 𝑣) = ∫𝑢. 𝑣,             𝑎ℎ (𝑢ℎ, 𝑣ℎ) = ∫𝑢ℎ. 𝑣ℎ ,

𝑏(𝑣, ℎ) = ∫𝐾∇𝑝. 𝑣,          𝑏ℎ (𝑣ℎ, 𝑝ℎ) = ∫𝐾∇𝑝ℎ . 𝑣ℎ ,

𝑐(𝑢, 𝑞) = ∫𝑑𝑖𝑣(𝑢)𝑞,        𝑐ℎ (𝑢ℎ, 𝑞ℎ) = ∑∫𝑢ℎ. 𝑛𝑞ℎ
𝑉∈𝑣

,
}
  
 

  
 

      

                                                                                       (16) 

where 𝑈ℎ ⊄ 𝑈 = 𝐻(𝑑𝑖𝑣, 𝛺), 𝑉ℎ  ⊂ 𝑉 = (𝐿2(𝛺))
2
, 𝑃ℎ ⊂ 𝑃 = 𝐻0

1(𝛺), 𝑄ℎ ⊂ 𝑄 = 𝐿2(𝛺). 
3. NUMERICAL DISCRETIZATION 

Suppose the domain Ω is divided into set of control volumes Ω𝑖 , 𝑖 = 1, … . . , 𝑛, and assume Ω𝑖 
is smooth enough and integrating by parts, equation (4) over Ω𝑖 we obtain equation (17) and 
(20) in. rectangular no source term and cylindrical coordinates with source terms, 
respectively.  

3.1 Case 1 

Integrating equation (4) over the control volume in the reservoir domain,Ω  using FVM with the 
assumptions that source term is zero, reservoir is horizontal and one dimensional gives rise to 

∬ 𝜑𝜌𝐶𝑡  
𝜕𝑝

𝜕𝑡
𝑑Ω

Ω𝑖

=∬
𝑘𝜌

𝜇
(
𝜕2𝑝

𝜕𝑥2
)

Ω𝑖

 𝑑Ω                      

                                                                           (17) 
 
Simplifying (17) we obtain integral equation over the boundary of the control volume and we 
get  

                             
𝜑𝜇𝐶𝑡
𝑘

∫
𝜕𝑝

𝜕𝑡

𝑡

𝑡0

 𝑑𝑡 = ∫ ∫
𝜕2𝑝

𝜕𝑥2

𝑒

𝑤

𝑡

𝑡0

𝑑𝑥𝑑𝑡                

                                                                           (18) 
          

Summing numerical approximation of   equation (18) over the entire domain, we get the 
components of the summation in the whole domain.  Then applying TDMA for inversion we 
obtain the numerical solution. The discretized equation becomes 

1

𝛾
 (𝑝(𝑡) − 𝑝(𝑡0)) =

∆𝑡

∆𝑥
(𝑝𝑖+1 − 𝑝𝑖) −

∆𝑡

∆𝑥
(𝑝𝑖 − 𝑝𝑖−1)    

                                                                                      (19) 

where𝛾 =
𝑘

𝜑𝜇𝐶𝑡
 

3.2 Case 2 
We consider one dimensional flow, with a source term in cylindrical co-ordinates in equation 
(4), and then integrate over the control volume in the domain to obtain, 
 

1

𝛾
 ∫ 𝑟

𝜕𝑝

𝜕𝑡Ω𝑖

𝑑Ω =∬ (𝑟
𝜕2𝑝

𝜕𝑟2
+
𝜕𝑝

𝜕𝑟
)

Ω𝑖

𝑑Ω +∬ 𝑄
Ω𝑖

𝑑Ω         

                                (20) 
Equation (20) is integrated over the boundary of the control volume and the approximation 
summed over the whole domain to obtain. 
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1

2𝛾
(𝑟2𝑖+1 − 𝑟

2
𝑖−1){𝑝(𝑡) − 𝑝(𝑡0)} = 𝑟𝑖+1 (

𝜕𝑝

𝜕𝑟
) − 𝑟𝑖−1 (

𝜕𝑝

𝜕𝑟
) + 𝑄∆𝑟∆𝑡    

                                                                                                                         (21)       
4. RESULTS AND DISCUSSION 

Consider a one dimensional flow model problem defined by equation for slightly compressible 
flow  

𝜑𝜌𝐶𝑡  
𝜕𝑝

𝜕𝑡
=
𝑘𝜌

𝜇
(
𝜕2𝑝

𝜕𝑥2
)          𝒙 ∈ 𝛺 

  

𝑝(1, 𝑡) = 𝑝1 ,                     𝑡 > 0

𝑝(100, 𝑡) = 𝑝2 ,                𝑡 > 0

𝑝(𝑥, 1) = 1000                             

 

}
 
 

 
 

             

                                                            (22) 
 

where 𝑘 = 1, 𝑐𝑡 = 10−10, 𝜇 = 0.001, 𝜑 = 0.2  
The numerical and analytical pressure as a function of space variable x, from the node j=2, is 
illustrated in Figure 2 and Figure 3, pressure is shown as function of radius with the pressure 
values obtained by inversion using the TDMA. Figure 4 illustrates the injection and extraction 
attached to the reservoir at distinct points. 

 
                       Figure 1: Numerical and analytical pressure as a function of space variable x 
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  Figure 2: Numerical and analytical pressure distribution as a function of radius and time. 

 
  

 

Figure 3: Injection of pressure at two points and extraction at one point in the reservoir with 
respect to radius. 

 

462

Onyango, T. T. M, Kimathi, M. and Abidha, M. G.



  

 
 

5. CONCLUSIONS 
The main objectives of this work was to model single phase flow in oil reservoirs and study the 
behavior of pressure in the reservoir of different orientations at constant permeability and 
porosity. CVM with rectangular gridding in the horizontal plane was developed for describing the 
fluid flow in oil reservoirs. The results obtained shows that Iterative scheme is the most accurate 
in approximation of numerical solutions in the CVM. 
The scope of this work was to model the flow of oil through horizontal reservoir and simulate the 
variation of pressure under reservoir conditions. Further work can be carried out to determine 
pressure variations when permeability is a function of the space variable, and to investigate two 
phase flow of immiscible fluid in a vertical reservoir which captures realistic reservoir 
phenomenon. 
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