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Abstract  In this paper we deal with the Euler equations for Isothermal gas. In analyzing the equations we obtain two real 

and distinct eigenvalues which enables us to determine the wave structure of the possible solutions to the Riemann problem 

set up. By considering the Rankine-Hugoniot condition we obtain the shock wave solution analytically. The rarefaction wave 

solution is determined analytically  by considering the fact that rarefaction wave lies along integral curves. To  obtain the 

numerical solution to the Riemann problem that we set up, we use a relaxation scheme to d iscretize the Euler equations for 

isothermal gas. Finally we present the simulation results of the numerical solutions, that is, the approximate shock and 

rarefaction wave solutions are shown, graphically, and explained. 
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1. Introduction 

Consider the Eu ler equations for isothermal gas. The 

system consists of Euler equations and is strictly hyperbolic 

with two real and distinct eigenvalues, whereby one is 

greater than the other. Depending on the init ial data the 

eigenvalues may represent shock and rarefaction waves. 

The resolution of the discontinuities of a self-similar 

solution of the compressible Euler equation is sharper than 

the corresponding initial value solution, Ravi[4]. 

A shock tube problem is the study of the propagation of 

shock waves in a one dimensional tube. The energy of a 

shock wave dissipates relatively quickly  within d istance. 

Moving shocks are usually generated by the interaction of 

two bodies of gas at different pressure, with a shock wave 

propagating into the lower pressure gas and an expansion 

wave propagating into the higher pressure gas. The 

numerical computation of the shock tube problem by means 

on F wave digital principle showed that the MD Kichoffs 

network can  successfully be extended by taking viscosity 

into account to represent the Navier Stokes equation 

Mengel[2]. 

A Riemann problem consists of equations together with 

the discontinuous initial data. The numerical dissipation of 

eight different schemes and five delimiters to numerical  
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computation of the Riemann problem compared to the 

resolution of discontinuities of each scheme were vital to 

improving the schemes accuracy and stability, Wang et 

al[8]. 

2. Mathematical Formulation of the 
Euler Equations 

The Euler equations is derived from Newton’s Second 

law of motion and is a  system of conservation laws that can 

be written in the form 

0)( =+ xt UFU             (2.1) 

Where U and F(U) are the vectors of conserved variables 

and fluxes, given respectively by 
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Where ρ  is density, p is pressure, u is the particle 

velocity and E is the total energy per unit volume. 

Under the assumption that the entropy, s, is a constant 

everywhere, which is a simplificat ion of the 

thermodynamics. Now the EOS is ρρ 2)( apP ==              (2.2) 

Where a is the wave propagation speed. 

Under this assumption the energy equation becomes 

redundant and thus we have a 2X2 system. Th is makes 

equation 2.1 to be: 
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Thus we have, 

0=++ xxt uu ρρρ          (2.4) 

02 22 =++++ xxxtt auuuuu ρρρρρ (2.5) 

Now using equation 2.5 we have 

0)( 2 =+++++ xxtxxt auuuuuu ρρρρρρ , 

thus the two equations can be written as: 

0=++ xxt uu ρρρ , 02 =++ xxt auuu ρρρ  

which can be written in matrix form as: 
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Now to get the eigenvalues for the matrix )(uA , we use 

the manipulat ion 0=− IA λ  
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quadratic equation with real roots  
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Since the eigenvalues exist and are real values, thus the 

equation can be said to be hyperbolic. Now to get the 

eigenvectors for the corresponding eigenvalues we use 

iii kAk λ=  where 2,1=i  

Thus using the first eigenvalue,
1λ , we have:
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using the second eigenvalues, 
2λ , we have: 
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as the corresponding eigenvector. 

From the above eigenvalues and eigenvectors then we 

can be able to determine the structure of the waves that is 

by considering the Riemann’s problem defined by 
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The solution to this problem depends on the relative 

values of 
Lu  and 

Ru . That is, for 
RL uu < , a 

rarefaction  wave is going to  develop while for 
RL uu > , a 

shock wave is going to appear. Thus for a case where no 

vacuum is present the exact solutions will have the two 

different waves which would be associated with the 

eigenvalues 2.6. 

3. Analytical Solution 

Now to get the analytical solution for the shock wave for 

both the left and right shocks, we apply the 

Rankine-Hugoniot condition to the system that is, 
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This gives two equations with three unknowns, that is,

*ρ , 
*Q  and s, which can easily be solved for 

*Q  and s 

in terms of 
*ρ , Leveque[3] 
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In equations 3.1 and 3.2 it remains to express in terms of 

the known values 
Rρ . For instance, in  Leveque[3], we 

paramet ize the curves by taking 
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Also the rarefaction wave solution takes the form 
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Since the rarefact ions lie  along the integral curve, 

Leveque[3], we consider the following equation. 

))(()( ξξα FiF uru =′  

Where 
t

x=ξ , 
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1
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With initial data 
LF uu =)(ξ , where )(1 Li uλξ =  

and )(2 Ri uλξ =  

Now, using the first eigenvalue and equation 3.1, we can 

be able to construct the 1-rarefactions for the equations, 

thus the system of ODE’s takes the form 
a
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Where on eliminating ξ  to solve for m as a function ofρ , we have 

)/log(/)( 111 ρρρρρρ amm −=     (3.3) 

Similarly, using the second eigenvalue to construct the 

2-rarefact ions, we have 

)/log(/)( 111 ρρρρρρ amm +=
  

  (3.4) 

4. Numerical Solution Using the 
Relaxation Scheme 

Now, fo r us to solve the Euler equation 2.3 numerically  

we will use the relaxation scheme, since it they are stable 

and conservative discretizations of the original conservation 

laws. 

In equation 2.3 we had,  
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Now introducing the relaxat ion system, we have 

0=+ xt vu  0,,, 122 >ℜ∈ℜ∈ℜ∈ txvu  (4.1) 
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A , is a positive diagonal matrix to 

be chosen. 

For � sufficiently small, it is expected that by solving 

(4.1) properly, one can obtain good approximations to the 

original conservation laws 

The positive constant a need satisfy: Shi J. et a l [5],  
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For the relaxation system (4.1), the in itial data is: 
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A spatial discretizat ion to equation 4.1 in conservation 

form can be written as: 
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Where the averaged quantity Fj is defined by 
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Since the relaxation  system 4.1 has two characteristic 

variables, see Shi J. et al 5, 

uAv 2
1±                    (4.3) 

that travel with the frozen characteristic speeds 2
1

A±  

respectively. 

For better accuracy we use a second-order scheme that is 

the Van Leer’s MUSCL scheme, see Van Leer[7]. 

Applying this scheme to the p
th

 component that is 

equation 4.3, gives 

+
+ ++=+ jjjpjp huavuav σ

2
1)()(

2
1

,   (4.4) 

−+++ +−−=− 11
2

1 2
1)()( jjjpjp huavuav σ  

Where jσ  is the slope of uav p±  on the j-th cell 

which we define using Sweby’s notation, see Sweby[6]. 
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Where φ  is a slope-limiter function given as, Van 

Leer[7] 

θ
θθθφ +

+=
1

)(  



236 S. K. Mutua et al.:  A Study of Solutions to Euler Equations for a One Dimensional Unsteady Flow   

 

 

Solving equations 4.4 for 
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Applying 4.5 in 4.4 we have, 
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Where 
)( pF  is the p-th component of F. 

Since the one dimensional Eu ler equation 2.3 has two 

eigen values au
±  we take  
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Now, to obtain the time discretization for the relaxat ion 

scheme we use a second-order TVD Runge-Kutta splitting 

scheme which was introduced by Jin, Shi J. et al[5] 
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Then applying the second-order TVD Runge-Kutta 

splitting scheme to the time derivative in 4.6, that is 

applying it to 4.1 y ields 
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5. Simulation 

We use the value of h as 0.005 but choose the time step, 

k, accord ing to Courant-Friedrichs-Lewy (CFL) condition.  

2
1

max

≤λh
k  where 

maxλ is the maximal (in  

absolute value) eigenvalue of the Jacobian matrix A given 

in section 2.6. 

In the first case we consider the initial data 

2.0,9.0 == RL ρρ  2.0,1.0 == RL vv , to yield : 

 

Figure 1.1.(a).  Density profile for a 1-rarefaction followed by a 2-shock 

 

Figure 1.1.(b).  distance-time graph of the density profile for a 

1-rarefaction followed by a 2-shock 

In the second case we consider the initial data 

9.0,2.0 == RL ρρ  5.0,9.0 == RL vv , to yield: 
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Figure 1.2.(a).  Density profile for a 1-shock followed by a 2-rarefaction. 

 

Figure 1.2.(b).  distance-time graph of the density profile for a 1-shock 

followed by a 2-rarefaction 

6. Conclusions 

Through the analysis of the Euler equation for an 

isothermal gas we were ab le to get two real and distinct 

eigenvalues which enabled us to determine the wave 

structures for the possible solutions to the Riemann problem. 

The analytical solutions was found by considering the 

Rankine-Hugoniot conditions to obtain the shock wave 

solution and using the fact that rarefaction waves lie on the 

integral curves. 

The numerical scheme used is found to adequately 

approximate the shock wave as well as the rarefaction wave 

as evidenced by the simulat ions. In these simulat ions, two 

cases have been considered. In case 1 we considered some 

initial data which gave rise to a 1-rarefaction fo llowed by a 

2-shock waves, while in case 2 we considered another set of 

initial data which gave rise to a 1-shock followed  by a 

2-rarefact ion waves. 

Due to insufficient time the author of this study decided 

to deal with an isothermal case of the Euler equation and 

thus recommends for investigation of the Euler equations 

including the energy equation. We recommend for 

researchers to compare the relaxat ion scheme used in this 

research with other numerical schemes such as the Godunov 

scheme. 

One can also check the accuracy of the numerical method 

used in this research by comparing it with the exact 

solution. 
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