

ISO 9001:2008 Certified

UNIVERSITY EXAMINATIONS 2016/2017

FIRST YEAR SECOND SESSION EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE EDUCATION

SMA 300: REAL ANALYSIS DATE: **TIME 2 HOURS**

INSTRUCTIONS TO CANDIDATES

(a) Answer question one and ANY TWO Questions

QUESTION ONE 30 MARKS (COMPULSORY)

- a) Define the following terms
 - i) Set
 - Subsets complement ii)
 - Universal set iii)
 - iv) **Function**
 - Rational numbers v) (5 marks)
- b) Show that $\sqrt{2}$ is irrational (4 marks)
- c) The square of an odd integer is odd and the square of an even integer is even proof (4 marks)
- d) Prove that the function $f(x) = x^2$ is continuous at every point $a \in R$ (4 marks)
- e) Show that the series $\sum_{n=1}^{\infty} (-)^{n+1} \frac{1}{n^2}$ is convergent (3 marks)
- f) Given that a and b are rational with $b \ne 0$ and s is an irrational number such that a bs = t. Show that t is irrational hence show that $\frac{-1+\sqrt{3}}{1+\sqrt{3}}$ is irrational (4 marks)
- g) i) Show that the infinite set $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots \dots is bounded$ (3 marks)

QUESTION TWO 20 MARKS

- a) Let π be an arbitrary indexing set and G_{α} be a collection of open subsets of a metric space X . Prove that $\cup G_{\alpha}$ is also open in X. (5 marks)
- b) Let (X, ∂) be a metric space and A C X. Then if P is a limit point of A. Prove that every nbd of P contains infinitely many points distinct from P. (5 marks)
- c) Let (X, ∂) be a metric space. Prove that for any subset A of X with a finite number of elements cannot have limit point. (5 marks)
- d) Prove that the intersection of an arbitrary family of closed sets is closed and the union of a finite number of closed sets is closed. (5 marks)

QUESTION THREE 20 MARKS

- a) Show from the first principle that
 - i) $\lim_{n\to\infty}\frac{1}{n}=0$

ii) $\lim_{n \to \infty} \frac{3n+2}{n+1} = 3$ (5 marks each)

b) Show that the sequence $\frac{1}{2^n}$ in R is a Cauchy sequence. (5 marks)

c) Proof that $\sqrt{3}$ is irrational (5 marks)

QUESTION FOUR 20 MARKS

- a) If $\{A^n\}$ is a collection of countable sets, then $A = \bigcup A^n$ is countable (5 marks)
- b) Prove that a subset of a countable set is countable. (5 marks)
- c) Prove that the empty set is open. (5 marks)
- d) Prove that set of all even natural numbers is countable. (5 marks)

QUESTION FIVE 20 MARKS

a) Prove that the $f(x) = x^2 + 2x + 6$ is continuous at x=3 (5 marks)

b) Show that the function $f(x) = \left\{ \frac{3x^2 - 2x - 8}{x - 2} , x \neq 2 \right\}$

8 x=2

Is discontinuous at x=2.redefine the function to make it continuous at x=2 (5 marks)

c) Show that if $r = \sqrt{n+1} - \sqrt{n-1}$ for any integer n>1 then r is rational (5 marks)

d) Consider the series $\sum_{n=1}^{\infty} \frac{1}{n^2+1}$, determine whether the series converges or diverges using the integral test. (5 marks)