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On Modelling and Pricing Rainfall
Derivatives with Seasonality
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and Applied Mathematics, Austrian Academy of Sciences, Linz, Austria
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ABSTRACT We are interested in pricing rainfall options written on precipitation at specific
locations. We assume the existence of a tradeable financial instrument in the market whose price
process is affected by the quantity of rainfall. We then construct a suitable ‘Markovian gamma’
model for the rainfall process which accounts for the seasonal change of precipitation and show how
maximum likelihood estimators can be obtained for its parameters.

We derive optimal strategies for exponential utility from terminal wealth and determine the
utility indifference price of the claim. The method is illustrated with actual measured data on
rainfall from a location in Kenya and spot prices of Kenyan electricity companies.

KEY WORDS: Rainfall derivatives, Seasonality, Discrete-time Markov control process, Utility
indifference pricing, Monte Carlo methods
MATHEMATICS SUBJECT CLASSIFICATION (2000): 49L20, 60J10, 65C05

1. Introduction

A developing country’s economy is vulnerable to extreme climatic changes with
disastrous consequence. For instance, Kenya is susceptible to severe drought and

seasonal floods.

An increased understanding of both the dynamics driving the natural disasters and

the possible hedging mechanisms would offer a new way to transfer financial risks

originating in the uncertainties of weather and climate to financial markets, which

has wide risk management strategies. Unlike independent events, such as fires or

auto accidents, weather-related catastrophes affect a large proportion of people

within a single area, resulting in highly correlated losses which translate to a larger
than expected number of insurance claims. This leads to constraints on the develop-

ing country’s economy, as most developing countries have a small number of

insurance companies or no insurance cover for weather-related events at all. The

weather derivatives not only create a new opportunity for dealing with catastrophic

or disaster risk but also act as a new private-based insurance product to highly
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weather-dependent sectors such as agricultural industries (e.g. see Zapranis and

Alexandridis, 2008) and hydro-power electric generating companies. These deriva-

tives are mainly not derived from the exchange-traded securities and can be defined

as a contract between two parties that states how payment will be exchanged between

the parties depending on certain meteorological conditions during the contract

period.
In our study, we consider a discrete-time Markovian model with the main objec-

tive of being able to account for rainfall seasonality as a factor in pricing rainfall

derivatives. The model is such that precipitation in every fixed month of the year has

gamma distribution, which is chosen because it fits the data well and it is possible to

estimate the parameters using maximum likelihood estimation (MLE). We then

model a financial instrument whose price process dynamics are correlated to pre-

cipitation. This could be forward contracts on electric power in a country that mainly

depend on hydro-power or the price of a share of a company whose business depends
on rainfall or lack of it. This enables an investor to hedge the risk of a rainfall

derivative in the market. In particular, one can compute the derivative’s utility

indifference price.

A similar view was shared by Carmona and Diko (2005), who proposed a time-

homogeneous jump Markov process to model the rainfall process. They assumed the

rainfall process to be composed of storms which are in turn composed of rainfall cells.

At a cell arrival time, the rainfall process jumps up by a random amount and at the

cell’s extinction time, it jumps down by a random amount with appropriate distribu-
tion. They used MLE to fit the model to Norwegian data. Then they gave indifference

prices of certain precipitation-based options for exponential utility and bounds on the

price for power utility. Despite being very elegant, this precipitation model has the

disadvantage of not taking into account seasonal variation of rainfall. For some

countries this disadvantage may even render that model useless.

In this study, we develop a Markovian gamma model incorporating the seasonality

effect for the rainfall process of the region under study, which is therefore not time-

homogeneous. The model is crafted in a way that makes the precipitation within a
period, for example 1 month, gamma-distributed. The popularity of the gamma

distribution for describing precipitation data is derived from the fact that it provides

a flexible representation and is widely used to represent precipitation (e.g. see Thom,

1958). We then describe how to maximum likelihood estimate the parameters of our

model to fit it to historical precipitation data.

Implicit in our model is the assumption that precipitation can be forecast with

sufficient accuracy for the period corresponding to one time step in our model. As

we use monthly precipitation data to calibrate our model and therefore the time step is
1 month, this assumption seems overly optimistic. However, one could do the same for

weekly data, and then the assumption of perfect forecast is rather sound.

This article is organized as follows. In Section 2, we construct the Markovian

gamma model, then discuss how to estimate the parameters of the model in

Section 3. In Section 4 we present our main result; we derive the pricing formula

for the rainfall derivative. Section 5 deals with the numerical implementation of the

model using historical precipitation data from Kenya and an electricity company

listed at the Kenyan stock exchange. Finally, we discuss the results of our study in
Section 6.
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2. Model Setup

2.1 Markovian Precipitation Model with Seasonality

To account for the seasonal variation of precipitation over the year we partition the

year into m periods of equal length and model the total amount of rainfall within one

period separately.
Let Y0,Y1, . . . be the sequence of total precipitation per period. We assume that in

period k the precipitation has cumulative distribution function (CDF) Fk mod m, k � 0.

We further assume that Fk is continuous and strictly increasing, such that the inverse

F�1
k exists and is strictly increasing and continuous.

From these assumptions it follows that the sequence ðFk mod mðYkÞÞk�0 consists of –

generally dependent – random variables with uniform distribution on (0, 1).

On the other hand, from a sequence of (0, 1)-uniform random variables U0,U1, . . . we

can generate a sample path of future precipitation by setting Yk :¼ F�1
k mod mðUkÞ, k � 0,

using the standard inverse transform method (e.g. see Glasserman, 2004).

Moreover, as the amounts of precipitation of two consecutive months are hardly

independent, we will propose some correlation structure as follows:

Assumption 2.1. The sequence ðFk mod mðYkÞÞ is a discrete-time Markov process

with state space (0, 1).

Obviously there are infinitely many possible candidates to use in a precipitation

model. We give an example which we will use later in our numerics and which has the
advantage that there is only one parameter and that this parameter can be estimated

using the MLE method.

Example 2.1 (Gaussian copula). Let U0;U1; . . . be a sequence of independent

random variables, uniform on (0, 1). Define

bU0 ¼ U0;bUkþ1 ¼ F rF�1ðbUkÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
F�1ðbUkþ1Þ

� �
for k > 0 :

Then ðbUkÞk�0 is a discrete-time, time-homogeneous Markov process with state
space (0, 1).

Here and in the rest of this article, F denotes the cumulative probability distribution

function of a standard normal random variable.

Remark 2.1. Note that the process ðbUkÞk�0 in Example 2.1 admits a certain mono-

tonicity property: a shift in bU0 results in a shift of the whole path of the chain in the

same direction.

In the numerical example we will assume that precipitation within period k has

gamma distribution with shape parameter ak and scale parameter bk, that is FkðzÞ ¼R z

�1 f ðyÞdy where
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fkðyÞ ¼
1

bk�ðakÞ ð
y
bk
Þak�1e�y=bk if y � 0;ak;bk>0;

0 if y < 0:

(
(1)

2.2 Market Model

Let Yn denote the precipitation in period [n, n þ 1] and suppose that this is known via
forecasts at the beginning of each period. We model the dynamics of the price process

of an asset S as follows: Let S0 be some fixed real number and

Snþ1 ¼ Sn þ mðYnÞ þ sðYnÞZnþ1 ; (2)

where Z1, . . . , ZN are independent standard normal variables and m and s are measur-

able functions, s is bounded away from 0. Z1, . . . , ZN are assumed to be independent

of Y0, . . . ,YN�1. Throughout this article we assume zero interest.
The concrete form of m and s has yet to be specified. In our numerical examples, we

shall assume that s is constant and that m is of the form

mðyÞ ¼ a logðeþ yÞ þ b: (3)

This form is the same as was used by Carmona and Diko (2005) for a similar model.

The purpose of e . 0 is to prevent the argument of log to become zero. We will show in

Section 3.3 how to estimate the parameters a and b.

3. Parameter Estimations

Suppose we are given historical data y0, . . . , yn�1 of precipitation at a specific location

with m observations per year. We want to fit our proposed model to the actual data,

that is, we want to find a set of parameters r, a0, . . . , am-1, b0, . . . , bm-1 such that, if Fk is

the CDF of a gamma distribution with parameters ak; bk for each k and the underlying
Markov process is of the form described in Example 2.1, then y0, . . . , yn�1 has max-

imum likelihood. For example, monthly observations would give m ¼ 12.

We have to make some concessions here in that we do not find a joint maximum

likelihood estimator for the whole set of parameters.

Instead, we first estimate ðak, bkÞ for every month using ordinary MLE for this

(Figure 1). Strictly speaking this is not allowed because in the MLE procedure we assume

that the given data are independent, which is not the case in our model. However, though

we cannot and do not want to ignore correlation between consecutive months, we do not
expect to make big error by assuming that consecutive Januaries are independent.

Having found the CDFs F0, . . . , Fm�1 in this way we then may compute zk :¼
F�1ðFk mod mðykÞÞ. From this sequence of (roughly) standard normal variables we can

estimate the auto-correlation r using MLE. We have to remark here that strictly

speaking this procedure is not correct: the precipitation data for two consecutive

Januaries, say, are not independent samples from the same distribution in our model
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(Figure 1). It is, however, fair to assume that they are almost independent, because – at
least when one uses the Gaussian copula for modelling correlation – the correlation

between two non-consecutive time periods decreases rapidly with the lag.

In the next section we discuss how to use MLE of parameters for the gamma

distribution for data containing zeros.

3.1 MLE for the Gamma Distribution Using Data Containing Zeros

The following method is taken from Wilks (1990).
Suppose the given data set contains M0 data points recorded as zeros. These are

interpreted as censored points, where the censoring level1 is A and points Mv with

known values where M ¼M0 þMv. The likelihood function for the distribution

parameters is given by

Y ða;b; yÞ ¼
YM0

j¼1

GðA; a; bÞ
YMv

i¼1

gðyi; a;bÞ

¼ ½GðA; a; bÞ�M0
YMv

i¼1

1

b�ðaÞ
yi

b

� �a�1

e�yi=b;

where

GðA; a; bÞ ¼
ZA

0

gðyj; a; bÞdy ¼ P½ yj � A�:

Consider first M0 ¼ 0, that is all the data values are known. Then it is easily shown

that the maximum likelihood estimators of the parameters satisfy

100 200 300 400
Precipitation (mm)

0.002

0.004

0.006

0.008

0.010

Frequency

Figure 1. January rain, Dagoretti weather station (gamma distribution with a ¼ 0.458 and
b ¼ 159.469). The cumulative monthly precipitation is selected from the Kenya Meteorological
Department for the period 1955–2005 with roughly 6% of the data censored, that is equal to 0.
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logðbÞ þ �ðaÞ ¼
XMv

i¼1

log yi

Mv

;

a� 1

b

XMv

i¼1

yi

Mv

¼ 0;

where �ðaÞ ¼ @ log½�ðaÞ�
@a is the digamma function. Depending on �y ¼

PMv

i¼1 yi=Mv we

obtain

log
1

a
�y

� �
þ �ðaÞ ¼ 1

Mv

XMv

i¼1

logðyiÞ:

Hence, the MLE satisfies logðbaÞ � �ðbaÞ ¼ logðyÞ � 1
Mv

PMv

i¼1 logðyiÞ and bb ¼ yba . ba and bb
can thus be computed numerically.

In the case M0�0, the maximization of

Lða; b; yÞ ¼M0 log½GðA; a; bÞ� �Mv½a logðbÞ þ logð�ðaÞÞ�

þða� 1Þ
XMv

i¼1

logðyiÞ �
1

b

XMv

i¼1

yi

can be computed numerically for the values of a and b, for example using

MATHEMATICA.

3.2 MLE of the Correlation Coefficient

Suppose we want to estimate the correlation coefficient parameter r, in Example 2.1.

We let

z0 ¼ w0;

zkþ1 ¼ rzk þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
wkþ1; hence wkþ1 ¼

zkþ1 � rzkffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p ;

where z0, . . . , zn�1 are as before, that is zk ¼ F�1ðFk mod mðykÞÞ. According to our

assumptions, w0, . . . , wn�1 should be standard normal. Then it is straightforward to

verify that the maximum likelihood estimate of the parameter is given by

r ¼

0 if
Pn�1

k¼1

zk�1zk ¼ 0;

bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 1
p

if
Pn�1

k¼1

zk�1zk < 0;

b�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 1
p

if
Pn�1

k¼1

zk�1zk>0;

8>>>>>>><>>>>>>>:
where b ¼

Pn�1

k¼1

ðz2
k�1 þ z2

kÞ

2
Pn�1

k¼1

zk�1zk

:
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3.3 Estimating the Parameters for m

As mentioned earlier we want to model m as

mðyÞ ¼ a logðeþ yÞ þ b :

We set e ¼ 0.01. The exact value of e does not make much difference as long as it is

small compared to y.

a and b can then be estimated from the combined rainfall and market data via MLE:

given precipitation records y0, . . . , yn�1 and asset prices s0, . . . , sn set xk :¼ logðeþ ykÞ
and �k :¼ sk � sk�1. Then

axk þ bþ sZkþ1 ¼ �kþ1 ;

where Z1, . . . , Zn are assumed to be independent standard normal variables.

It is not hard to show that the maximum likelihood estimates for the parameters a, b,

s are given by

a ¼ e� a�
�2 � � ; b ¼ �e� a�

�2 � � ;

s2 ¼ bþ b2 þ a2� � 2ba� 2aeþ 2ab�;

where

a ¼ 1

n

Xn�1

k¼0

�kþ1; b ¼ 1

n

Xn�1

k¼0

�2
kþ1; � ¼ 1

n

Xn�1

k¼0

xk; � ¼ 1

n

Xn�1

k¼0

x2
k; e ¼ 1

n

Xn�1

k¼0

�kþ1xk:

4. Indifference Pricing of Rainfall Options

4.1 Utility Maximization Without a Derivative

In this section we study the existence of an optimal strategy for maximizing expected

utility under our model at the end of a finite trading period in a financial market.

Here we assume that trading can only take place at discrete time intervals and that

precipitation is known one period ahead via forecasts.

We assume the market model presented in Section 2.2, that is that the dynamics are

given by

Snþ1 ¼ Sn þ mðYnÞ þ sðYnÞZnþ1 ; (4)

where Z1, . . . , ZN are independent standard normal variables and m and s are measur-

able functions, s is bounded away from 0. Z1, . . . , ZN are assumed to be independent

of Y0, . . . ,YN�1 and Y is a Markov process.

Let � ¼ f�ng0�n�N�1 be a trading strategy which describes the investor’s portfolio as

carried forward for a finite time. Particularly, �n is the number of units of the security
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(e.g. a share) held between n and n þ1 and �n may depend only on information

available at time n.

Given a strategy �, the dynamic of the wealth process X � ¼ ðX �
n Þ

N
n¼0 is described by

X �
nþ1 ¼ X �

n þ �nðSnþ1 � SnÞ ; n � 0: (5)

We assume that the agents’ preferences are described by an exponential utility function

UðxÞ ¼ � expð�axÞ for some a . 0. We therefore seek a strategy � which maximizes

the expected utility over N stages for a given initial wealth x;

sup
�

E½UðX �
NÞÞjX �

0 ¼ x�: (6)

Definition 4.1. For all x 2 R and y 2 ½0;1Þ define

VNðx; yÞ :¼ UðxÞ

and

Vnðx; yÞ :¼ sup
�n;...;�N�1

E½UðX �
NÞjX �

n ¼ x;Yn ¼ y� for 0 � n < N :

Note that Vnðx, yÞ<1 for all n as U is bounded from above. We also have

Vnðx, yÞ>�1, as � ; 0 gives a finite value. The quantity Vnðx, yÞ is the highest

terminal expected utility for an agent who starts trading at time n with initial

endowment x and who knows that the precipitation for the coming period will be

equal to y.

Proposition 4.1. Under the above assumptions the optimal trading strategy �* is

given by

��n ¼
mðYnÞ
asðYnÞ2

and the optimal value at n is given by

Vnðx; yÞ ¼ �e�axE exp � 1

2

XN�1

k¼n

m2ðYkÞ
s2ðYkÞ

 !
jYn ¼ y

" #
:

Proof. Note that trivially VN has the claimed form. Consider now n with n , N.

Write bnðyÞ ¼ E exp � 1
2

PN�1

k¼n

m2ðYkÞ
s2ðYkÞ

� �
jYn ¼ y

� �
and �Snþ1 :¼ mðYnÞ þ sðYnÞZnþ1:
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Vnðx; yÞ ¼ sup
�n;...;�N�1

E U Xn þ
PN�1

k¼n

�k�Skþ1

� �
jXn ¼ x;Yn ¼ y

� �

¼ UðxÞ inf
�n;...;�N�1

E e
�a
PN�1

k¼n

�k�Skþ1

jYn ¼ y

24 35;
as U is exponential utility. It remains to show that the second factor equals bn(y):

cnðyÞ :¼ inf
�n;...;�N�1

E e
�a
PN�1

k¼n

�k�Skþ1

jYn ¼ y

24 35
¼ðaÞ inf

�n

E e�a�n�Snþ1 inf
�nþ1;...;�N�1

E e
�a
PN�1

k¼nþ1

�k�Skþ1

jYnþ1;Znþ1

264
375jYn ¼ y

264
375

¼ðbÞ inf
�n

E e�a�n�Snþ1 inf
�nþ1;...;�N�1

E e
�a
PN�1

k¼nþ1

�k�Skþ1

jYnþ1

264
375jYn ¼ y

264
375

¼ inf
�n

E e�a�n�Snþ1 bnþ1ðYnþ1ÞjYn ¼ y
	 


¼ðcÞ inf
�n

E e�a�nðmðyÞþsðyÞZnþ1ÞjYn ¼ y
	 


E bnþ1ðYnþ1ÞjYn ¼ y½ �

¼ E bnþ1ðYnþ1ÞjYn ¼ y½ � inf
�n

E e�a�nðmðyÞþsðyÞZnþ1Þ
	 


:

Here (a) holds because �nþ1, . . . , �N�1 are allowed to depend on Znþ1; (b) holds

because
PN�1

k¼nþ1 �k�Skþ1 and Znþ1 are independent by construction; (c) holds because

Znþ1 and Yn, . . . ,YN�1 are independent and therefore are also independent conditional
on Yn ¼ y. We can perform the maximization with respect to �n to get the optimal

control:

��n ¼
mðyÞ
asðyÞ2

: (7)

Substituting back gives us

cnðyÞ ¼ E½bnþ1ðYnþ1ÞjYn ¼ y� exp � 1

2

mðyÞ2

sðyÞ2

 !

¼ E½bnþ1ðYnþ1Þ exp � 1

2

mðYnÞ2

sðYnÞ2

 !
jYn ¼ y� ¼ bnðyÞ

as required. &
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4.2 Utility Maximization with a Derivative

We now consider the optimization problem for an agent who holds a derivative written

on precipitation. The nature of the options under consideration is the same as the ones

considered by Carmona and Diko (2005).

It is assumed that the payoff of the option is of the form

HðYÞ :¼
Xn2

k¼n1

hðYkÞ � K

 !þ
;

where h is some non-negative function. Special cases which are of interest are

(1) hðyÞ ¼ y, that is the contract specifies that its holder receives the difference

between the cumulative rainfall during periods n1 to n2, and K, if this difference

is positive, and zero otherwise;

(2) hðyÞ ¼ 1y>c, that is the holder of the option gets the difference between the

number of periods between n1 and n2 for which rainfall was above level c, and

K, if this difference is positive, and zero otherwise.

We assume K¼ 0 (the result can be extended to the case where K . 0 is analogous to

the method in Carmona and Diko (2005)), that is

Xn2

n¼n1

hðYnÞ � K

 !þ
¼
Xn2

k¼n1

hðYnÞ ¼
XN�1

n¼0

hðYnÞ1fn1;...;n2gðnÞ ¼:
XN�1

n¼0

gðn;YnÞ:

The dynamic of the wealth process of an investor following strategy f is given by

X
f
nþ1 ¼ Xf

n þ fnðmðYnÞ þ sðYnÞZnþ1Þ:

Our objective is to compute

sup
f

E U X
f
N þ

XN�1

k¼0

gðk;YkÞ
 !

jXf
0 ¼ x;Y0 ¼ y

" #
:

This is equivalent to computing

sup
f

E UðX̃ f
N ÞjX

f
0 ¼ x;Y0 ¼ y

h i
;

where the dynamic of X̃
f

is described by

X̃
f
nþ1 ¼ X̃

f
n þ gðn;YnÞ þ fnðmðYnÞ þ sðYnÞZnþ1Þ :

Now similar calculations as before yield the following result:
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Proposition 4.2. Under the above assumptions the optimal trading strategy f* for

an investor holding a derivative with payoff HðYÞ ¼
PN�1

n¼0 gðn,YnÞ, g� 0, is given by

f�n ¼
mðYnÞ
asðYnÞ2

and the optimal value at n is given by

V d
n ðx; yÞ ¼ �e�axE exp �

XN�1

k¼n

1

2

m2ðYkÞ
s2ðYkÞ

þ agðk;YkÞ
� � !

jYn ¼ y

" #
:

So far we have only considered the buyer’s position. The situation of the seller of the
derivative is similar and can be treated nearly the same way with the objective

sup
f

E U X
f
N �

XN�1

k¼0

g k;Ykð Þ
 !

jXf
0 ¼ x;Y0 ¼ y

" #
:

Note that now it can happen that for some (or even every) strategy f we

have E½UðX̃ f
NÞjX

f
0 ¼ x, Y0 ¼ y� ¼ �1. To avoid this we make the following

assumption.

Assumption 4.1. For all n ¼ 0; . . . ;N � 1 and all y we have

E U
XN�1

k¼n

gðk;YkÞ
 !

jYn ¼ y

" #
>�1:

This assumption guarantees that the optimal value functions for the seller are finite
valued. We have the following result whose proof is analogous to those of Propositions

4.1 and 4.2.

Proposition 4.3. Under the above assumptions the optimal trading strategy f*

for an investor being short a derivative with payoff HðYÞ ¼
PN�1

n¼0 gðn,YnÞ, g � 0, is

given by

��n ¼
mðYnÞ
asðYnÞ2

and the optimal value at n is given by

V d
n ðx; yÞ ¼ �e�axE exp �

XN�1

k¼n

1

2

m2ðYkÞ
s2ðYkÞ

� agðk;YkÞ
� � !

jYn ¼ y

" #
:

Note that in our setup the investor follows the same optimal strategy
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fn ¼
mðYnÞ
as2ðYnÞ

regardless of whether he/she holds the derivative or not. This strange feature also exists

in Carmona and Diko (2005).

Benth and Proske (2009) analysed the effectivity of the hedging strategy induced by

the indifference pricing paradigm in the context of interest rate guarantees. This

hedging strategy is defined as the difference between the optimal strategy of an
investor not holding the derivative and the optimal strategy of an investor holding

the derivative and having the same initial wealth, diminished by the indifference price.

It is then interesting to ask how effectively the risk of the derivative is reduced by

following this hedging strategy.

However, in the present setup this hedging strategy is zero. Nevertheless we adopt

the terms ‘hedged’ and ‘unhedged,’ referring to the circumstance that an investor

with access to a market admitting an asset which is correlated to precipitation is

exposed to less risk when buying the derivatives than an investor without that
capability. That means that there is no straightforward meaningful way to extend

the notion of effectivity of the hedging strategy from Benth and Proske (2009) to our

problem.

4.3 The Indifference Price

We recall that our wealth process without derivative is

X �
nþ1 ¼ X �

n þ �nðmðYnÞ þ sðYnÞZnþ1Þ;

let the value function of our investments without rainfall derivatives at time 0 be

Vðx; yÞ ¼ sup
�

E½UðX �
NÞjX ��

0 ¼ x;Y0 ¼ y�:

We have shown that there exists a strategy �* such that

Vðx; yÞ ¼ E½UðX ��
N ÞjX0 ¼ x;Y0 ¼ y�

Similarly, suppose that an investor holds a derivative with payoff H(Y) and keeps it

in his/her portfolio until maturity N, then the value of his/her investments at time 0 is

given by

V dðx; yÞ ¼ sup
f

E½UðXf
N þHðY ÞÞjXf

0 ¼ x;Y0 ¼ y�:

Also in this case we have shown that, if HðYÞ ¼
PN�1

k¼0 gðk,YkÞ with non-negative g,

there exists an optimal strategy f* such that
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V dðx; yÞ ¼ E½UðXf�
N þHðYÞÞjXf�

0 ¼ x;Y0 ¼ y�:

In this case the utility indifference buying price pbðx, yÞ is the solution to

V dðx� pbðx; yÞ; yÞ ¼ Vðx; yÞ:

That is, pbðx; yÞ is the price at which an investor is indifferent between paying pb now
for receiving the claim from the derivative at expiration and not having the claim.

Definition 4.2. The utility indifference price of the claim with payoff H(Y) is the

price for which the two value functions Vd and V coincide. That is Vdðx� pbðx, yÞ, yÞ ¼
Vðx, yÞ for all initial wealth levels x and initial precipitation y.

Proposition 4.4. The indifference buying and selling price of a contingent claim

with a payoff
PN�1

n¼0 gðn;YnÞ written on ðYkÞN�1
k¼0 is given by

pbðx; yÞ ¼ 1

a
ln

E exp � 1
2

PN�1

j¼0

m2ðYjÞ
s2ðYjÞ

 !
jY0 ¼ y

" #

E exp �
PN�1

j¼0

1
2

mðYjÞ2

sðYjÞ2
þ agðj;YjÞ

� � !
jY0 ¼ y

" #

and

psðx; yÞ ¼ 1

a
ln

E exp � 1
2

PN�1

j¼0

m2ðYjÞ
s2ðYjÞ

 !
jY0 ¼ y

" #

E exp �
PN�1

j¼0

1
2

mðYjÞ2

sðYjÞ2
� agðj;YjÞ

� � !
jY0 ¼ y

" # ;

respectively.

In particular, the prices do not depend on x.

Proof. This follows immediately from Propositions 4.1, 4.2 and 4.3. &

Suppose we rewrite

pbðx; y; aÞ ¼ � 1

a
ln

E exp �a
PN�1

j¼0

gðj;YjÞ � 1
2

PN�1

j¼0

mðYjÞ2

sðYjÞ2

 !
jY0 ¼ y

" #

E exp � 1
2

PN�1

j¼0

m2ðYjÞ
s2ðYjÞ

 !
jY0 ¼ y

" # : (8)
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Define a probability measure Q with density relative to P by

dQ

dP
¼

exp � 1
2

PN�1

j¼0

m2ðYjÞ
s2ðYjÞ

 !

E exp � 1
2

PN�1

j¼0

m2ðYjÞ
s2ðYjÞ

 !
jY0 ¼ y

" # (9)

then we can rewrite Equation (8) as

pbðx; y; aÞ ¼ � 1

a
ln EQ exp �a

XN�1

j¼0

gðj;YjÞjY0 ¼ y

 !" #
:

Taking limits on both sides as a! 0þ ,

lim
a!0þ

pbðx; y; aÞ ¼ � lim
a!0þ

ln EQ exp

�
�a
PN�1

j¼0

gðj;YjÞjY0¼y

�� �
a

¼ � lim
a!0þ

d
da ln EQ exp

�
�a
PN�1

j¼0

gðj;YjÞjY0¼y

�� �
d

daa

¼ � lim
a!0þ

d
daEQ exp

�
�a
PN�1

j¼0

gðj;YjÞjY0¼y

�� �
EQ exp

�
�a
PN�1

j¼0

gðj;YjÞjY0¼y

�� �

¼ � lim
a!þ0

EQ �
PN�1

j¼0

gðj;YjÞ exp

�
�a
PN�1

j¼0

gðj;YjÞjY0¼y

�� �
EQ exp

�
�a
PN�1

j¼0

gðj;YjÞjY0¼y

�� �
¼ EQ

PN�1

j¼0

gðj;YjÞjY0 ¼ y

" #
:

We call

lim
a!0þ

pbðx; yÞ ¼ EQ

XN�1

j¼0

gðj;YjÞjY0 ¼ y

" #
(10)

a zero risk-aversion limit price or Q -risk-neutral price.

If EQ

	
exp

�
a
PN�1

j¼0 gðj,YjÞ
�
jY0 ¼ y�<1 for some a . 0, as is the case if, for example,

Assumption 4.1 holds, then by dominated convergence the limit for a! 0þ of the

seller’s price exists as well and is also equal to lima!0þ pbðx, yÞ.
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In the next section we discuss the numerical implementation of the above pricing

formulas.

5. Some Numerical Illustrations

We are now ready to apply the techniques developed in this article to a (hypothetical)

rainfall contract written on precipitation measured at Dagoretti weather station in

Kenya. As our traded asset we use a share of a major Kenyan electricity company

(KPLC), because Kenya produces most of its electricity from hydroelectric power

plants. The contract pays the buyer 1 Ksh per millimeter of cumulative monthly
rainfall above K mm for 12 months, that is

XN�1

j¼0

gðj;YjÞ ¼
X11

j¼0

ðYj � KÞþ:

The computation using Monte Carlo simulation is rather straightforward: First we

estimate all the parameters as described in Section 3, then we only need to compute the

following expectations:

E exp �
XN�1

j¼0

1

2

m2ðYjÞ
s2ðYjÞ

 !
jY0 ¼ y

" #
, E exp � 1

2

XN�1

j¼0

m2ðYjÞ
s2ðYjÞ

� agðj,YjÞ
 !

jY0 ¼ y

" #
:

They can be computed in one Monte Carlo loop as each random precipitation path

ðY0, . . . ,YN�1Þ may be used three times over.

Note that Assumption 4.1 need not be fulfilled for every a. If for example

gðk, yÞ ¼ y, then the expectation E½Uð
PN�1

k¼0 gðk,YkÞÞ� need not be finite

because for a gamma-distributed random variable X with parameters a, b

the expectation E½e�aX � is finite iff a< 1
b

. We make the following, more precise
statement:

Theorem 5.1 Assume the Markovian gamma model where the correlation struc-

ture is generated by Example 2.1. Let jgðj, yjÞj � cþ dyj for all j ¼ 0, . . . , N � 1.

Then, for a . 0 small enough, we have

E exp a
XN�1

j¼0

gðj;YjÞjY0 ¼ y

 !" #
<1:

For the proof we need the following lemma:
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Lemma 5.2 Let a1 � a2 and b1 � b2. If Fj is the CDF of a gamma-distributed

random variable with parameters aj, bj, j ¼ 1, 2, then F1ðxÞ � F2ðxÞ for all x � 0 (and

F�1
1 ðyÞ � F�1

2 ðyÞ for all y 2 ð0, 1Þ).

Proof Suppose a1 ¼ a2. Then the assertion is trivial. Next suppose b1 ¼ b2 ¼ 1,

a2 ¼ a1 þ e. We want to show that

Z1
x

1

�ða1Þ
xa1�1e�x dx <

Z1
x

1

�ða1 þ eÞ�
a1þe�1 e�� d�

that is

�ða1 þ eÞ
R1
x

xa1�1e�x dx < �ða1Þ
R1
x

�a1þe�1e�� d�

,
R1
0

�a1þe�1e�� d�
R1
x

xa1�1e�x dx <
R1
0

xa1�1e�x dx
R1
x

�a1þe�1e�� d�

,
R1
0

R1
x

ðx�Þa1�1
e�ðxþ�Þ�e dx d� <

R1
0

R1
x

ðx�Þa1�1
e�ðxþ�Þ�e d� dx

,
Rx
0

R1
x

ðx�Þa1�1e�ðxþ�Þ�e dx d� <
Rx
0

R1
x

ðx�Þa1�1e�ðxþ�Þ�e d� dx:

But the last inequality is certainly true, as

Zx

0

Z1
x

ðx�Þa1�1e�ðxþ�Þ�e dx d� <

Zx

0

Z1
x

ðx�Þa1�1e�ðxþ�Þxe dx d�

<

Zx

0

Zx

x

ðx�Þa1�1e�ðxþ�Þ�e d� dx:

The remainder of the proof is trivial: Fa1;b1
� Fa1;b2

� Fa2;b2
. &

Proof of Theorem 5.1 Obviously,

E exp a
PN�1

j¼0

gðj;YjÞ
 !

jY0 ¼ y

" #
� E exp a

PN�1

j¼0

cþ dYj

 !
jY0 ¼ y

" #

¼ eaNcE exp ad
PN�1

j¼0

Yj

 !
jY0 ¼ y

" #

and we want to show that the last term is finite for small a.

First we show that E exp ad
PN�1

j¼0

Yj

 !" #
<1 for a small enough.
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Let G be the CDF of a gamma-distributed random variable with parameters

â :¼ max0� j�N�1 aj b̂ :¼ max 0� j�N�1 bj, where aj, bj are the parameters of Fj.

Then G�1ðyÞ � F�1
j ðyÞ and therefore Zj :¼ G�1ðFjðYjÞÞ � F�1

j ðFjðYjÞÞ ¼ Yj,

such that

E exp ad
XN�1

j¼0

Yj

 !" #
� E exp ad

XN�1

j¼0

Zj

 !" #
;

and Z0; . . . ;ZN�1 are gamma-distributed random variables with parameters â, b̂. Let

M :¼ max0�j�N�1 Zj and denote by fM, FM the probability distribution function and

the CDF of M, respectively.

Then 1� FMðyÞ ¼ PðM > yÞ � NPðZ0 > yÞ ¼ Nð1� GðyÞÞ. Therefore

E exp ad
PN�1

j¼0

Zj

 !" #
� E eadNM

	 

¼

R1
0

eadNyfMðyÞdy

¼ eadNyð1� FMðyÞÞj10 þ
R1
0

adN eadNyð1� FMðyÞÞdy

� NeadNyð1� GðyÞÞj10 þ
R1
0

adN2 eadNyð1� GðyÞÞdy;

which is finite for a small enough.

We have established E exp ad
PN�1

j¼0

Yj

 !" #
<1. Now, as

1> E exp ad
XN�1

j¼0

Yj

 !" #
¼
Z1
0

E exp ad
XN�1

j¼0

Yj

 !
j Y0 ¼ y

" #
f�0;b0
ðyÞdy

we need to have E exp ad
PN�1

j¼0

Yj

 !
jY0 ¼ y

" #
<1 for almost all y. But as

y 7!E exp ad
PN�1

j¼0

Yj

 !
jY0 ¼ y

" #
is strictly increasing, this means that

E exp ad
PN�1

j¼0

Yj

 !
jY0 ¼ y

" #
<1 for all y. (Here we use Remark 2.1, i.e. a property

of the Gaussian copula).

5.1 Accelerating the Monte Carlo Simulation for Pricing Rainfall Options

The Monte Carlo simulation for our model can be rather time-consuming. We provide

some hints for speeding up the algorithm.
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First, we recall that to generate a random precipitation path we have to evaluate N – 1

inverses of the CDFs of gamma-distributed random variables. The use of interpolat-

ing functions instead of the original CDFs usually yields a great improvement in

efficiency.

Second, there are near-at-hand control variates for our expectations: For example

use

E exp �
XN�1

j¼0

1

2

m2ðZjÞ
s2ðZjÞ

 !
jZ0 ¼ y

" #
;

where Z1, Z2, . . . , ZN�1 are independent random variables having the same respective

distributions as Y1, . . . ,YN�1. As the modulus of the correlation of the Yj’s is typically

smaller than 0.1, this control is very strongly correlated to the original variable.

5.2 Numerical Results

In our examples, the method in Section 5.1 has made the variance small enough to

make a couple of thousand runs per price calculation sufficient to guarantee an error

of less than 1%.

The effect of the variance reduction by the control variates is diminished if r
becomes too big. For example for r ¼ 0 we can compute the price exactly and need
no simulation at all and for r¼ 0.4 we already need around 105 to have an error of less

than 1%. The historical rainfall data from Dagoretti weather station gave an estimate

for r of about 0.06%.

Table 1 shows the buyer’s and seller’s prices pb and ps, respectively, in our setup for

a ¼ 0.001 and for several values of r. The option has payoff
P11

k¼0ðYk � KÞþ with

K ¼ 100 and Y0 ¼ 100. For comparison we also listed the buyer’s and seller’s prices

without hedging, that is

qbðyÞ ¼ � 1

a
log E exp �a

XN�1

j¼0

gðk;YkÞ
 !

jY0 ¼ y

" #
;

qsðyÞ ¼ � 1

a
log E exp a

XN�1

j¼0

gðk;YkÞ
 !

jY0 ¼ y

" #
:

Table 1. Dependence of prices on correlation.

r pb ps qb qs

0.0 340.1 390.8 344.7 396.1
0.01 340.2 391.3 344.8 396.7
0.05 340.5 393.6 345.5 399.5
0.1 341.0 396.5 346.4 403.0
0.2 341.5 402.2 347.8 409.9
0.3 342.0 408.2 349.4 417.5
0.4 341.6 413.0 350.3 424.2
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We see that the buyer’s prices are relatively insensitive to the correlation although

the seller’s prices admit a sizable dependence on the correlation.

The results as given in Table 2 show a relative decrease in the price because of

hedging with an electricity contract. Both seller’s and buyers price with the power
hedge is lower than without it. The gap between buyer’s and seller’s price for each

strike price decreases but remains positive. In addition, the price table shows a relative

difference in buyer’s price for the model with seasonality as compared to the model

without seasonality. The difference increases with risk aversion. However, for low risk

aversion level, some seller price with hedge is lower than the buyer price without

hedging. Hence, an acceptance weather derivatives deal can be done between a seller

with knowledge and access to the power market and a buyer without the access or

knowledge, provided that the seller hedges himself/herself in the power market.
In addition, we note that for some risk aversion the seller’s price does not exist (i.e. if,

for example gðk, yÞ ¼ y, then the expectation E U
PN�1

k¼0 gðk,YkÞ
� �h i

need not be finite

because for a gamma-distributed random variable X with parameters a, b the expecta-

tion E½eaX � is finite iff a < 1
b

).

We observe from Table 2 that the difference between hedged and unhedged prices is

still noticeable but admittedly not very big. The difference would probably have been

bigger if we could have correlated to electricity prices directly instead of the stock price

of an electric power producer.

The risk premia for the buyer/seller can also be read off from Table 2. By this we

mean the difference between the utility indifference price and the Q - risk-neutral price,

EQ

PN�1
k¼0 gðk,YkÞjY0 ¼ y

h i
, where the change of measure is given by Equation (9).

6. Discussion

We have developed a new discrete-time model for precipitation and derived a pricing

formula for a class of rainfall options using utility indifference pricing for an investor

with exponential utility. We implemented an efficient version of Monte Carlo simula-

tion for the rainfall process to compute expectations for the pricing formula in

Section 4.

This provides an alternative to the model by Carmona and Diko (2005). Our model

applies to low-frequency/long-term data as compared to Carmona–Diko model that
applies to high-frequency/short-term data. Ideally, a model should take both informa-

tion about long-term behaviour and short-term behaviour into account. But we

focused more on the effect of seasonality of the rainfall process: Whereas our model

is in a sense more coarse than the Carmona–Diko model, it has the advantage that it

allows for seasonal variation, which is obviously of paramount importance in some

parts of the world.

We therefore view both models as important steps in the development of more

refined rainfall process models, for example a Markov jump process model like the
Carmona–Diko model, which allows for seasonal variation, or a discrete model like in

the present study that allows for efficient calibration of long-term/high-frequency

data.
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Note

1In our numerical examples we used a censoring level of A ¼ 0.1. That means that we assume that a

precipitation of less than 0.1 mm per month cannot be detected by the instruments.
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