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On Modelling and Pricing Rainfall
Derivatives with Seasonality

GUNTHER LEOBACHER* & PHILIP NGARE**
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and Applied Mathematics, Austrian Academy of Sciences, Linz, Austria
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ABSTRACT  We are interested in pricing rainfall options written on precipitation at specific
locations. We assume the existence of a tradeable financial instrument in the market whose price
process is affected by the quantity of rainfall. We then construct a suitable ‘Markovian gamma’
model for the rainfall process which accounts for the seasonal change of precipitation and show how
maximum likelihood estimators can be obtained for its parameters.

We derive optimal strategies for exponential utility from terminal wealth and determine the
utility indifference price of the claim. The method is illustrated with actual measured data on
rainfall from a location in Kenya and spot prices of Kenyan electricity companies.

KEy Worps: Rainfall derivatives, Seasonality, Discrete-time Markov control process, Utility
indifference pricing, Monte Carlo methods
MATHEMATICS SUBJECT CLASSIFICATION (2000): 491.20, 60J10, 65C05

1. Introduction

A developing country’s economy is vulnerable to extreme climatic changes with
disastrous consequence. For instance, Kenya is susceptible to severe drought and
seasonal floods.

An increased understanding of both the dynamics driving the natural disasters and
the possible hedging mechanisms would offer a new way to transfer financial risks
originating in the uncertainties of weather and climate to financial markets, which
has wide risk management strategies. Unlike independent events, such as fires or
auto accidents, weather-related catastrophes affect a large proportion of people
within a single area, resulting in highly correlated losses which translate to a larger
than expected number of insurance claims. This leads to constraints on the develop-
ing country’s economy, as most developing countries have a small number of
insurance companies or no insurance cover for weather-related events at all. The
weather derivatives not only create a new opportunity for dealing with catastrophic
or disaster risk but also act as a new private-based insurance product to highly
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weather-dependent sectors such as agricultural industries (e.g. see Zapranis and
Alexandridis, 2008) and hydro-power electric generating companies. These deriva-
tives are mainly not derived from the exchange-traded securities and can be defined
as a contract between two parties that states how payment will be exchanged between
the parties depending on certain meteorological conditions during the contract
period.

In our study, we consider a discrete-time Markovian model with the main objec-
tive of being able to account for rainfall seasonality as a factor in pricing rainfall
derivatives. The model is such that precipitation in every fixed month of the year has
gamma distribution, which is chosen because it fits the data well and it is possible to
estimate the parameters using maximum likelihood estimation (MLE). We then
model a financial instrument whose price process dynamics are correlated to pre-
cipitation. This could be forward contracts on electric power in a country that mainly
depend on hydro-power or the price of a share of a company whose business depends
on rainfall or lack of it. This enables an investor to hedge the risk of a rainfall
derivative in the market. In particular, one can compute the derivative’s utility
indifference price.

A similar view was shared by Carmona and Diko (2005), who proposed a time-
homogeneous jump Markov process to model the rainfall process. They assumed the
rainfall process to be composed of storms which are in turn composed of rainfall cells.
At a cell arrival time, the rainfall process jumps up by a random amount and at the
cell’s extinction time, it jumps down by a random amount with appropriate distribu-
tion. They used MLE to fit the model to Norwegian data. Then they gave indifference
prices of certain precipitation-based options for exponential utility and bounds on the
price for power utility. Despite being very elegant, this precipitation model has the
disadvantage of not taking into account seasonal variation of rainfall. For some
countries this disadvantage may even render that model useless.

In this study, we develop a Markovian gamma model incorporating the seasonality
effect for the rainfall process of the region under study, which is therefore not time-
homogeneous. The model is crafted in a way that makes the precipitation within a
period, for example 1 month, gamma-distributed. The popularity of the gamma
distribution for describing precipitation data is derived from the fact that it provides
a flexible representation and is widely used to represent precipitation (e.g. see Thom,
1958). We then describe how to maximum likelihood estimate the parameters of our
model to fit it to historical precipitation data.

Implicit in our model is the assumption that precipitation can be forecast with
sufficient accuracy for the period corresponding to one time step in our model. As
we use monthly precipitation data to calibrate our model and therefore the time step is
1 month, this assumption seems overly optimistic. However, one could do the same for
weekly data, and then the assumption of perfect forecast is rather sound.

This article is organized as follows. In Section 2, we construct the Markovian
gamma model, then discuss how to estimate the parameters of the model in
Section 3. In Section 4 we present our main result; we derive the pricing formula
for the rainfall derivative. Section 5 deals with the numerical implementation of the
model using historical precipitation data from Kenya and an electricity company
listed at the Kenyan stock exchange. Finally, we discuss the results of our study in
Section 6.
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2. Model Setup
2.1 Markovian Precipitation Model with Seasonality

To account for the seasonal variation of precipitation over the year we partition the
year into m periods of equal length and model the total amount of rainfall within one
period separately.

Let Yo, Y1, ... be the sequence of total precipitation per period. We assume that in
period k the precipitation has cumulative distribution function (CDF) Fj modm, kK > 0.
We further assume that F is continuous and strictly increasing, such that the inverse
KL I exists and is strictly increasing and continuous.

From these assumptions it follows that the sequence (Fimodm( Yx));>( consists of —
generally dependent — random variables with uniform distribution on (0, 1).

On the other hand, from a sequence of (0, 1)-uniform random variables Uy, Uy, ... we
can generate a sample path of future precipitation by setting Yy := F,l . (Uy), k >0,
using the standard inverse transform method (e.g. see Glasserman, 2004).

Moreover, as the amounts of precipitation of two consecutive months are hardly
independent, we will propose some correlation structure as follows:

Assumption 2.1. The sequence (Fymodm(Yx)) is a discrete-time Markov process
with state space (0, 1).

Obviously there are infinitely many possible candidates to use in a precipitation
model. We give an example which we will use later in our numerics and which has the
advantage that there is only one parameter and that this parameter can be estimated
using the MLE method.

Example 2.1 (Gaussian copula). Let Uy, Uj,... be a sequence of independent
random variables, uniform on (0, 1). Define

(70 = U07
U1 = @(P‘D*l(ﬁk) +v1- P2(D71(0k+1)) for k>0.

Then (Uy) >0 1s a discrete-time, time-homogeneous Markov process with state
space (0, 1).

Here and in the rest of this article, ® denotes the cumulative probability distribution
function of a standard normal random variable.

Remark 2.1. Note that the process U >0 in Example 2.1 admits a certain mono-
tonicity property: a shift in Uy results in a shift of the whole path of the chain in the
same direction.

In the numerical example we will assume that precipitation within period k has
gamma distribution with shape parameter o, and scale parameter fi;, that is F(z) =

J2oof (v)dy where
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fiy) = F () e P ity > 0,4, fi>0, (1)
0 if y<0.

2.2 Market Model

Let Y, denote the precipitation in period [n, #n + 1] and suppose that this is known via
forecasts at the beginning of each period. We model the dynamics of the price process
of an asset S as follows: Let S, be some fixed real number and

Sn+1 =S,+ ,u( Yn) + 0( Yn)Zn+1 s (2)

where Z,, ..., Zy are independent standard normal variables and y and ¢ are measur-
able functions, ¢ is bounded away from 0. Z, ..., Zy are assumed to be independent
of Yy, ...,Yn_1. Throughout this article we assume zero interest.

The concrete form of u and ¢ has yet to be specified. In our numerical examples, we
shall assume that ¢ is constant and that u is of the form

u(y) = alog(e +y) + b. (3)

This form is the same as was used by Carmona and Diko (2005) for a similar model.
The purpose of € > 0 is to prevent the argument of log to become zero. We will show in
Section 3.3 how to estimate the parameters ¢ and b.

3. Parameter Estimations

Suppose we are given historical data yy, ..., y,_ of precipitation at a specific location
with m observations per year. We want to fit our proposed model to the actual data,
that is, we want to find a set of parameters p, oo, . . ., %1, B, - - - » Bpp_g SUch that, if Fj is
the CDF of a gamma distribution with parameters oy, 3, for each k£ and the underlying
Markov process is of the form described in Example 2.1, then yy, ..., y, 1 has max-
imum likelihood. For example, monthly observations would give m = 12.

We have to make some concessions here in that we do not find a joint maximum
likelihood estimator for the whole set of parameters.

Instead, we first estimate (o, f5;) for every month using ordinary MLE for this
(Figure 1). Strictly speaking this is not allowed because in the MLE procedure we assume
that the given data are independent, which is not the case in our model. However, though
we cannot and do not want to ignore correlation between consecutive months, we do not
expect to make big error by assuming that consecutive Januaries are independent.

Having found the CDFs Fy,...,F,_; in this way we then may compute zj :=
@ (Fimodm(¥x)). From this sequence of (roughly) standard normal variables we can
estimate the auto-correlation p using MLE. We have to remark here that strictly
speaking this procedure is not correct: the precipitation data for two consecutive
Januaries, say, are not independent samples from the same distribution in our model
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Figure 1. January rain, Dagoretti weather station (gamma distribution with o = 0.458 and
p = 159.469). The cumulative monthly precipitation is selected from the Kenya Meteorological
Department for the period 1955-2005 with roughly 6% of the data censored, that is equal to 0.

(Figure 1). It is, however, fair to assume that they are almost independent, because — at
least when one uses the Gaussian copula for modelling correlation — the correlation
between two non-consecutive time periods decreases rapidly with the lag.

In the next section we discuss how to use MLE of parameters for the gamma
distribution for data containing zeros.

3.1 MLE for the Gamma Distribution Using Data Containing Zeros

The following method is taken from Wilks (1990).

Suppose the given data set contains M, data points recorded as zeros. These are
interpreted as censored points, where the censoring level' is 4 and points M, with
known values where M = M, + M,. The likelihood function for the distribution
parameters is given by

My

Y(a, B;y) = [[ G(4; % B)

j=1 i=1

—=

g, B)

ST y i (%yquﬂ
— e A iy g ’
where
A
am%m:/a%%mwzpm§Ay
0

Consider first My = 0, that is all the data values are known. Then it is easily shown
that the maximum likelihood estimators of the parameters satisfy
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log yi
lo +n(a) = ,
&(B) +n(x) ; v
1y,
_ Vi _ 0,
piz M,
where n(a) = w is the digamma function. Depending on y = Zfz“] i/ M, we
obtain

1 - 1 M,
() 1) = 37> “lox(r)

Hence, the MLE satisfies log(a) — n(%) = log(y) — MLZ \ log(y;) and B =
can thus be computed numerically.
In the case My+#0, the maximization of

sz>|‘<|
>2>
o)
=)
o
)

L(a, B; y) = Mo log[G ( jo, )] =M [alog(ﬂ)+10g(T(°€))]

(-1 Zlog (i) Zy,

can be computed numerically for the values of o and p, for example using
MATHEMATICA.

3.2 MLE of the Correlation Coefficient

Suppose we want to estimate the correlation coefficient parameter p, in Example 2.1.
We let

Z0 = Wo,
Zk+1 — PZk

Zk1 = pzk + V1 = pPwiyr, hence wiy = ——=-,
V1-=p2

where zg,...,z,_1 are as before, that is z; = d)_l(kaodm(yk)). According to our
assumptions, wy, ..., w,_1 should be standard normal. Then it is straightforward to
verify that the maximum likelihood estimate of the parameter is given by

n—1
0 if E Zk—-12k = 0, _
k,,:_ll Z (z1 +20)
p=Rb+vh -1 if >z 1z:<0, whereb= k=1 —
1;:,11 23 Zi1zk
—Vvb2 -1 if Z Zk—12;>0, k=1
k=1
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3.3 Estimating the Parameters for u

As mentioned earlier we want to model p as

u(y) =alog(e+y)+b.

We set ¢ = 0.01. The exact value of &€ does not make much difference as long as it is
small compared to y.

a and b can then be estimated from the combined rainfall and market data via MLE:
given precipitation records yy, . . ., y,—1 and asset prices so, . . . , s, set xx := log(e + yx)
and Ay := s; — si_1. Then

axg +b+0Zp 1 = Dy,

where Z, ..., Z, are assumed to be independent standard normal variables.
Itis not hard to show that the maximum likelihood estimates for the parameters a, b,
o are given by

a_s—ory e —ad
_727(5’ _7275’
0% = B+ b* + a6 — 2bo — 2ac + 2abry,

where
—1 n—1 n—1 n—1 n—1
13 1 1 1 1
2 2
“:;E AVERR ﬂz;E AVIRR 7:55 Xk, 5255 X S:;E AVERD 7
*=0 k=0 k=0 k=0 k=0

4. Indifference Pricing of Rainfall Options
4.1 Utility Maximization Without a Derivative

In this section we study the existence of an optimal strategy for maximizing expected
utility under our model at the end of a finite trading period in a financial market.
Here we assume that trading can only take place at discrete time intervals and that
precipitation is known one period ahead via forecasts.
We assume the market model presented in Section 2.2, that is that the dynamics are
given by

Sn+1 =S, + ,u( Yn) + G( Yn)Zn-H , 4)
where Z1, ..., Zy are independent standard normal variables and u and ¢ are measur-
able functions, ¢ is bounded away from 0. Z, ..., Zy are assumed to be independent
of Yp,...,Yy_1 and Y is a Markov process.

Let & = {0,}y<,<n_, be a trading strategy which describes the investor’s portfolio as
carried forward for a finite time. Particularly, 6, is the number of units of the security
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(e.g. a share) held between n and n +1 and 6, may depend only on information
available at time .
Given a strategy 6, the dynamic of the wealth process X? = (X! )nN:() is described by

X =X+ 0,(Sus1 — Su), n>0. (5)

We assume that the agents’ preferences are described by an exponential utility function
U(x) = —exp(—ax) for some a > 0. We therefore seek a strategy 6 which maximizes
the expected utility over N stages for a given initial wealth x;

sup E[U(X}))| Xy = x]. (6)

Definition 4.1. For all x € Rand y € [0, c0) define

Vn(x,y) = U(x)

and

Va(x,y):= sup EBUXHIX!=x,Y,=y] for0<n<N.
9,,,..,,(9,\!,[

Note that V,(x,y)<oo for all n as U is bounded from above. We also have
Va(x,y)> — 00, as § = 0 gives a finite value. The quantity V,(x,y) is the highest
terminal expected utility for an agent who starts trading at time n with initial
endowment x and who knows that the precipitation for the coming period will be
equal to y.

Proposition 4.1.  Under the above assumptions the optimal trading strategy 6* is
given by

and the optimal value at n is given by
Yi)
- Y, =
eXp( Yk)) | n y

Proof. Note that trivially ¥y has the claimed form. Consider now n with n < N,

. N-1
Write b,(y) = E[exp <—% ’;zg’g) | Y, = y] and ASy41 == w(Yy) + o(Yu)Zyi1:
k=n

Valx,y) = — B

N =

T2 (
2o
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N1
Va(x,y) = , Sup E|:U(Xn + kZ GkASkH) X, =x, Y, =y}
e UN—1 =n
N-1
—o GkASk
= U(x) inf Efe g +]|Yn:y )
OyersN-1

as U is exponential utility. It remains to show that the second factor equals b,,(y):

N-1
. *azgkAS/cﬂ
a(y) = , 1nﬁf Ele = Y, =y
nseesON—1
- 0cAS,
(a) . _ . o k k+1
= inf E|e ®ASs1  jnf Ele 5 | Yuit, Znit || Yn =y
0, Oni1seesOn-1
—3 —3 Ni
~ OeAS,
b . . o k k+1
O infE|e%ASw  inf Ele < | Y1 || Y=y
On Oty On—1

= inf Eleh51b,0 (Y,0)|Y, = )]

© i%f E[e_aeﬂ(u(y)w(y)znﬂ)|yn = V| Ebui1 (Yai1)| Yu = y]
= Ebp1 (Y1) Ye =) i%f E[e—aﬁﬂ(u(y)m(y)z,m)] .

Here (@) holds because 0,,1,...,0y_1 are allowed to depend on Z,,; (b) holds
because ZQ;L, 0rASy11 and Z,, | are independent by construction; (¢) holds because
Z,1and Yy, ..., Yy_ areindependent and therefore are also independent conditional
on Y, = y. We can perform the maximization with respect to 6, to get the optimal
control:

167
% o ()’ @

Substituting back gives us

B B Clu@)’
cn(y) = Ebps1(Yug1)| Y = y]exp
Y,

= E[bn+l ( Yn+1) eXp ( 5

as required. O
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4.2 Utility Maximization with a Derivative

We now consider the optimization problem for an agent who holds a derivative written
on precipitation. The nature of the options under consideration is the same as the ones
considered by Carmona and Diko (2005).

It is assumed that the payoff of the option is of the form

H(Y) := (ZZ: h(Y) —K) :

k=n,

where / is some non-negative function. Special cases which are of interest are

(1) h(y) =y, that is the contract specifies that its holder receives the difference
between the cumulative rainfall during periods n; to n,, and K, if this difference
is positive, and zero otherwise;

(2) h(y) = 1,5, that is the holder of the option gets the difference between the
number of periods between n; and n, for which rainfall was above level ¢, and
K, if this difference is positive, and zero otherwise.

We assume K = 0 (the result can be extended to the case where K > 0 is analogous to
the method in Carmona and Diko (2005)), that is

=

-1

n + n N-1
(Z h(Yn) - K) = Z h( Yn) = Zh( Yn)l{nl,.“,nz}(n) = g(”> Yn)'

n=n k=n, n=0 n

I
<)

The dynamic of the wealth process of an investor following strategy ¢ is given by
Xl = X0+, (0(Y) + 0(Y2) Zui).

Our objective is to compute

1

N—

k=0

supE
¢

This is equivalent to computing
uEU~¢ X“b: Yo =
S¢P ( N)| 0 X, Lo =DY|,

where the dynamic of X ? s described by

10 >
Xn+l =X, +g(”v Yn) + ¢n(.“( Y”) =+ 0( Yn)Zn+1)-

Now similar calculations as before yield the following result:
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Proposition 4.2.  Under the above assumptions the optimal trading strategy ¢* for
an investor holding a derivative with payoff H(Y) = fo;ol g(n,Yy,), g >0, is given by

and the optimal value at n is given by

o (1Y) _
exp(—; (20.2()/];) +O{g(k, Yk))>|Yn _y‘| :

So far we have only considered the buyer’s position. The situation of the seller of the
derivative is similar and can be treated nearly the same way with the objective

Vi(x,y) =~ E

supE
¢

N-1
U<X]q\z; - Z g(k7 Yk)) |X(;b =x, Yo =)

k=0

Note that now it can happen that for some (or even every) strategy ¢ we
have E[U(Y$)|XO¢ =x,Yp=y] = —occ. To avoid this we make the following
assumption.

Assumption4.1. Foralln=0,...,N — 1 and all y we have

N-1
U(Z g(k, m)m =y

k=n

E

> — 00.

This assumption guarantees that the optimal value functions for the seller are finite
valued. We have the following result whose proof is analogous to those of Propositions
4.1 and 4.2.

Proposition 4.3.  Under the above assumptions the optimal trading strategy ¢*
for an investor being short a derivative with payoff H(Y) = ZnN;OI gnY,), g>0,is
given by

and the optimal value at 7 is given by

o (1E () _
exp <— kz (5 O.z(Y]]:) — ag(k, YH)) |Y, = y} :

=n

Vi(x,y) =~ E

Note that in our setup the investor follows the same optimal strategy



82 G. Leobacher and P. Ngare

regardless of whether he/she holds the derivative or not. This strange feature also exists
in Carmona and Diko (2005).

Benth and Proske (2009) analysed the effectivity of the hedging strategy induced by
the indifference pricing paradigm in the context of interest rate guarantees. This
hedging strategy is defined as the difference between the optimal strategy of an
investor not holding the derivative and the optimal strategy of an investor holding
the derivative and having the same initial wealth, diminished by the indifference price.
It is then interesting to ask how effectively the risk of the derivative is reduced by
following this hedging strategy.

However, in the present setup this hedging strategy is zero. Nevertheless we adopt
the terms ‘hedged’ and “‘unhedged,’ referring to the circumstance that an investor
with access to a market admitting an asset which is correlated to precipitation is
exposed to less risk when buying the derivatives than an investor without that
capability. That means that there is no straightforward meaningful way to extend
the notion of effectivity of the hedging strategy from Benth and Proske (2009) to our
problem.

4.3 The Indifference Price

We recall that our wealth process without derivative is
X = X+ 0u(u(Y) + 0(Yo) Zy),

let the value function of our investments without rainfall derivatives at time 0 be
V() = supBlUXY)|Xg" = x, Yo = y).
We have shown that there exists a strategy 6* such that
V(x,y) = E[UXY)|Xo = x, Yo = ]

Similarly, suppose that an investor holds a derivative with payoff H(Y) and keeps it
in his/her portfolio until maturity N, then the value of his/her investments at time 0 is
given by

Vi(x,y) = sng[U(Xx +H(Y))XS =x, Yo =l.

Also in this case we have shown that, if H(Y) = Ziv;ol g(k,Yy) with non-negative g,
there exists an optimal strategy ¢* such that
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Vi(x,y) = BUXY + H(Y))|X{" = x, Yo = yl.

In this case the utility indifference buying price p®(x, y) is the solution to

Vd(x —pb(X,y),y) = V(xvy)'

That is, p®(x, y) is the price at which an investor is indifferent between paying p° now
for receiving the claim from the derivative at expiration and not having the claim.

Definition 4.2. The utility indifference price of the claim with payoff H(Y) is the
price for which the two value functions ¥ and ¥ coincide. Thatis V9 (x — p®(x, ), y) =

V(x, y) for all initial wealth levels x and initial precipitation y.

Proposition 4.4. The indifference buying and selling price of a contingent claim
with a payoff Zf:':_()l g(n, Y,,) written on (Yk),i\':_o1 is given by

= 1u2
_Ezg Y/ ‘YO:y
J=0

1
PPxy) ==l
* N ) ;
E eXp| — y (§g<),/_)2+06g(], YJ)) |Y0 =)

and
N-l 5,
Bt (—%z;ggg)m:y]
=0
P(x,y) =-In 7
Uy
exp< 2(2  — ag() >)>|Yo
respectively.

In particular, the prices do not depend on x.
Proof.  This follows immediately from Propositions 4.1, 4.2 and 4.3. O

Suppose we rewrite

®)
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Define a probability measure Q with density relative to P by

N=1 ,
1 w(Y;)
d(@ eXp( 2 P aZ(Y;)>
T : 9
dP RS ®
Blew| ~4 2 3 1=
j=
then we can rewrite Equation (8) as
1 N-1
PP(x,;0) = ——InEq [exp (oc > gl Y| Yo = yﬂ -
o ‘=
Taking limits on both sides as o — 0 +,
N-1
InEq [exp (%Zg(llYf)Yo—yﬂ
: b . _ 1 =0
lig rie) = - lip :
N-1
LinEy |:exp (oc £(,Y))| Yo}’):|
= — lim =0
o—0+ @
N-1
£Eo [eXp (—%Zg(/} Y)l Yo—y)]
= lim =
a—0+ Nl
Eq [eXp (1 10 Y/)Yo—y>
=0
N-1 N-1
Eq [ gl Y)exp | —a " gl Y/)Yo)>]
= — lim = /=0
o—+0 N-l
" Eq | exp (—azg(jﬂ’j) Yoy)}
=0
N-l
= Eo|X g ¥)%o =y
j=
We call
N-1
alilg,l+pb(x,y) =Eq| Y g0, YYo= y} (10)
=0

a zero risk-aversion limit price or Q-risk-neutral price.

If Eg[exp (« 211\501 2(7.Y;))| Yo = y]< oo for some o > 0, as is the case if, for example,
Assumption 4.1 holds, then by dominated convergence the limit for @ — 0 4+ of the
seller’s price exists as well and is also equal to lim, g, p°(x,y).
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In the next section we discuss the numerical implementation of the above pricing
formulas.

5. Some Numerical Illustrations

We are now ready to apply the techniques developed in this article to a (hypothetical)
rainfall contract written on precipitation measured at Dagoretti weather station in
Kenya. As our traded asset we use a share of a major Kenyan electricity company
(KPLC), because Kenya produces most of its electricity from hydroelectric power
plants. The contract pays the buyer 1 Ksh per millimeter of cumulative monthly
rainfall above K mm for 12 months, that is

The computation using Monte Carlo simulation is rather straightforward: First we
estimate all the parameters as described in Section 3, then we only need to compute the
following expectations:

El

S L)
E|exp Z (Y | Yo =
7)

They can be computed in one Monte Carlo loop as each random precipitation path
(Yo, ...,Yx_1) may be used three times over.

Note that Assumption 4.1 need not be fulfllled for every a. If for example
g(k,y) =y, then the expectation E[U (Zk o '¢(k,Y}))] need not be finite
because for a gamma-distributed random variable X with parameters a, b
the expectation Efe~**] is finite iff «<1. We make the following, more precise
statement:

Theorem 5.1 Assume the Markovian gamma model where the correlation struc-
ture is generated by Example 2.1. Let |g(j, ;)| < ¢ +dy; forallj =0,...,N — 1.
Then, for o > 0 small enough, we have

eXp< Zg(/ Yo=y>]<oo.

For the proof we need the following lemma:
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Lemma 5.2 Let oy < o and f; < f,. If F; is the CDF of a gamma-distributed
random variable with parameters o, f5;, j = 1, 2 then Fy(x) > F>(x) for all x > 0 (and
Frl(y) < F'(p) forall y € (0,1)).

Proof Suppose oy = a,. Then the assertion is trivial. Next suppose ff; = ff, =1,
oy = o + &. We want to show that

o0

[l | e
- xn < gt n
/F(ocl)é e de /r(a,+g)" ¢ dn

X
that is

INE? +8)f§“171676 dé < T() fvy“'*e’le*”dn

el "’dnff“‘ fe=¢d¢ < gile=ede [apte-lendy

(s
o
3

(En) e Crpdedn < (&) e Eryp diy dé

(Em)™~ le- Etpedédn < (En)™~ le- (Empe dp dé.

S w0y
=8 re—g
S nogo—3y
Rl 8w g

But the last inequality is certainly true, as

//(én)““le’“*”)nsdfdn <//(én)“'*le’“*’”xsdfdn
0 x 0 x
< / / (En)" ey dpde.
0 x

The remainder of the proofis trivial: [, g > F, g, > Fo, ,. O

Proof of Theorem 5.1 Obviously,
N-1
expla ), c+dY;||Yo=p
Jj=0

ew( Z g0, ))IYozy]
exp (ocd]\gl Y]->|Y0 :yl

and we want to show that the last term is finite for small o.

N-1
First we show that E lexp (ocd > Y,)
Jj=0

IN

E

= "N

< oo for o small enough.
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Let G be the CDF of a gamma-distributed random variable with parameters
o :=maxg<j<n-19% f:=maxo<j<n-1f;, where a;, B; are the parameters of Fj.
Then G '(y) > F'(y) and therefore Z;:= G '(F(Y)) > F/ ' (F(Y)) = Y,
such that

N-1 N-1
E exp(ocdz Y]> <E exp(adZZj) ,
Jj=0 Jj=0
and Z,...,Zy_ are gamma-distributed random variables with parameters &, [3 Let

M := maxo<j<y—1 Z; and denote by fys, Fs the probability distribution function and
the CDF of M, respectively.

Then 1 — Fy(y) = P(M>y) < NP(Zy>y) = N(1 — G(»)). Therefore

N-1
E|exp <ocd > Z_,) < E[e*NM]
Jj=0
J e ™ far(v)dy
0

e N (1 — Fy () + [ odN e (1 — Fyr(y))dy
0

< Ne™(1— G + [ adN?e™ (1 - G(r))dy,
0

which is finite for o small enough.

N-1
exp (ocd > Yj>

J=0

N-1 <
exp (O(d Y]>

J=0

N-1
explad . Y;||Yo=y| <oo for almost all y. But as

We have established & < 00. Now, as

1

N—
exp <ocd Z Yj) | Yo = y]f%,ﬁo (y)dy

i=0

oo >E

0
we need to have E
j=0

y—=E

N-1
exp (ocd > Yj>|Y0 = y} is strictly increasing, this means that
Jj=0

E

N-1
exp (ocd > Y_,) | Yo = y] < oo for all y. (Here we use Remark 2.1, i.e. a property
j=0

of the Gaussian copula).

5.1 Accelerating the Monte Carlo Simulation for Pricing Rainfall Options

The Monte Carlo simulation for our model can be rather time-consuming. We provide
some hints for speeding up the algorithm.
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First, we recall that to generate a random precipitation path we have to evaluate N — 1
inverses of the CDFs of gamma-distributed random variables. The use of interpolat-
ing functions instead of the original CDFs usually yields a great improvement in
efficiency.

Second, there are near-at-hand control variates for our expectations: For example

use
N-1{ 2
117°(Z))
E eXp| — Y ! ‘ZO =Y,
< =0 2 0'2(2]')
where Z, Z,, ..., Zy_ are independent random variables having the same respective
distributions as Yy, ..., Yy_;. As the modulus of the correlation of the Y}’s is typically

smaller than 0.1, this control is very strongly correlated to the original variable.

5.2 Numerical Results

In our examples, the method in Section 5.1 has made the variance small enough to
make a couple of thousand runs per price calculation sufficient to guarantee an error
of less than 1%.

The effect of the variance reduction by the control variates is diminished if p
becomes too big. For example for p = 0 we can compute the price exactly and need
no simulation at all and for p = 0.4 we already need around 10° to have an error of less
than 1%. The historical rainfall data from Dagoretti weather station gave an estimate
for p of about 0.06%.

Table 1 shows the buyer’s and seller’s prices p® and p®, respectively, in our setup for
o = 0.001 and for several values of p. The option has payoft Z}CI:O(Y;{ — K), with
K = 100 and Y, = 100. For comparison we also listed the buyer’s and seller’s prices

without hedging, that is
N-1
exp(“ g(ka Yk)>|YO J’],
j=0

N-1
exp (oc Z g(k, Yk)> Yo=y

j=0

|
) = —~logE

1
S(y) = —~logE
() S log

Table 1. Dependence of prices on correlation.

p P’ 2 q° i

0.0 340.1 390.8 344.7 396.1
0.01 340.2 391.3 344.8 396.7
0.05 340.5 393.6 345.5 399.5
0.1 341.0 396.5 346.4 403.0
0.2 341.5 402.2 347.8 409.9
0.3 342.0 408.2 349.4 417.5
0.4 341.6 413.0 350.3 424.2
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We see that the buyer’s prices are relatively insensitive to the correlation although
the seller’s prices admit a sizable dependence on the correlation.

The results as given in Table 2 show a relative decrease in the price because of
hedging with an electricity contract. Both seller’s and buyers price with the power
hedge is lower than without it. The gap between buyer’s and seller’s price for each
strike price decreases but remains positive. In addition, the price table shows a relative
difference in buyer’s price for the model with seasonality as compared to the model
without seasonality. The difference increases with risk aversion. However, for low risk
aversion level, some seller price with hedge is lower than the buyer price without
hedging. Hence, an acceptance weather derivatives deal can be done between a seller
with knowledge and access to the power market and a buyer without the access or
knowledge, provided that the seller hedges himself/herself in the power market.

In addition, we note that for some risk aversion the seller’s price does not exist (i.e. if,

for example g(k, y) = y, then the expectation E [U (21]::01 gk, Yk))] need not be finite
because for a gamma-distributed random variable X with parameters «, b the expecta-
tion E[e**] is finite iff o < 1).

We observe from Table 2 that the difference between hedged and unhedged prices is
still noticeable but admittedly not very big. The difference would probably have been
bigger if we could have correlated to electricity prices directly instead of the stock price
of an electric power producer.

The risk premia for the buyer/seller can also be read off from Table 2. By this we
mean the difference between the utility indifference price and the Q- risk-neutral price,

Eqg [Z,ivz_ol g(k,Yy)| Yo = y|, where the change of measure is given by Equation (9).

6. Discussion

We have developed a new discrete-time model for precipitation and derived a pricing
formula for a class of rainfall options using utility indifference pricing for an investor
with exponential utility. We implemented an efficient version of Monte Carlo simula-
tion for the rainfall process to compute expectations for the pricing formula in
Section 4.

This provides an alternative to the model by Carmona and Diko (2005). Our model
applies to low-frequency/long-term data as compared to Carmona-Diko model that
applies to high-frequency/short-term data. Ideally, a model should take both informa-
tion about long-term behaviour and short-term behaviour into account. But we
focused more on the effect of seasonality of the rainfall process: Whereas our model
is in a sense more coarse than the Carmona—-Diko model, it has the advantage that it
allows for seasonal variation, which is obviously of paramount importance in some
parts of the world.

We therefore view both models as important steps in the development of more
refined rainfall process models, for example a Markov jump process model like the
Carmona-Diko model, which allows for seasonal variation, or a discrete model like in
the present study that allows for efficient calibration of long-term/high-frequency
data.
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Note

"In our numerical examples we used a censoring level of 4 = 0.1. That means that we assume that a
precipitation of less than 0.1 mm per month cannot be detected by the instruments.
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