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Abstract

Interest rate derivatives are largely used to manage interest rate risk.
For this reason, the accuracy of their pricing is very important as mis-
pricing can result in huge financial losses. In this study, the Pearson-Sun
model, an extension of the CIR model, was used to price interest rate
caps and floors. In the pricing process, the prices of zero-coupon bonds
and European options on zero-coupon bonds were derived. These were
then used to obtain the prices of caps and floors. The parameters of the
Pearson-Sun model were estimated using maximum likelihood method
on a daily term structure time series data. The results of the study
showed that the CIR model is rejected in favour of the Pearson-Sun
model. This implies that it would provide a better pricing accuracy as
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compared to the CIR model and would provide better prices to interest
rate derivatives. The prices of caps and floors were simulated using the
estimated parameters under the Pearson-Sun model.
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1 Introduction

Interest rate derivatives are popularly used to manage interest rate risk. The
popularity of these derivatives has made their pricing a major concern and
yet a challenging task. This has therefore attracted the attention of many
researchers in recent times [1]. Mispricing of these derivatives can result in
mismanagement of interest rate risk, which can lead to huge losses. To price
interest rate derivatives, term structure models are used. These models have
gone through tremendous development over the years.

In financial asset pricing, the Black-Scholes model proposed by [2] was a major
breakthrough. However, the model was not realistic with real markets as it
considered a constant interest rate. Stochastic processes were then employed
to describe interest rates and was first introduced by [8]. This was later ex-
tended by Ho and Lee [6].

The initial models were not characterised by mean reversion and diffusion [6].
Because of this, they could not simulate the real world rates very well. [11]
proposed a model which captured these two characteristics. But this model
also admitted negative rates, which was undesirable. This was corrected by
the CIR model proposed by [3].

Even though the CIR model is widely preferred and used, it does not always
describe interest rates movements in the observed market. The CIR model does
not always provide satisfactory pricing results and does not always account for
the shapes of term structure observed in the bond markets [7]. Therefore, over
the years, a number of extensions of the CIR model have been constructed.
Some of these include Hull and White model by [5] and the Pearson-Sun model
by [9]. The Pearson-Sun model is an extension of the CIR model which pre-
serves the drift term and introduces a constant to the CIR interest rate model.

The Pearson-Sun model makes the realisation of small values much more likely
as compared to the CIR model [9]. That is, the density of the CIR model as-
signs less probability to values near zero than that of Pearson-Sun model. As
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some economies have had very low interest rates over the years, the CIR model
may not be able to simulate such rates because of this weakness.

In [9], the price of a zero-coupon bond was obtained by re-writing the Pearson-
Sun model into a CIR model. In this study, the pricing formula of zero-
coupon bonds and the pricing formula of European options written on them
under the Pearson-Sun model are derived. These two derivations are the key
contributions of the paper. These prices were used to obtain the prices of
caps and floors under the model. Again, the Pearson-Sun model is compared
with the CIR model on a term-structure time series data. The parameters of
the model are estimated using maximum likelihood method. The results of
the study show that the Pearson-Sun model outperforms the CIR model and
hence will provide a better pricing accuracy for interest rate dependent assets.

2 Important Concepts

In this section, some basic concepts relevant to the study are presented. The
section contains term structure of interest rates and some standard results for
the prices of zero-coupon bonds, caps and floors.

2.1 Term structure of interest rates

A term structure of interest rates define the evolution of interest rates over
time. The major term structure model considered is this study is the model
proposed by [9], and the benchmark model used is the CIR interest rate model.

The Pearson-Sun model is described by the following stochastic differential
equation

dr(t) = α(µ− r(t))dt+ σ
√

(r(t)− rb)dB(t), r(0) ≥ 0, t ≥ 0 (1)

where µ is the long term mean, α is rate of mean reversion to the long term
mean, σ is the volatility, rb is the lower bound introduced and B(t) is a stan-
dard Brownian motion. The Pearson-Sun model retains the drift term of the
CIR model given below and introduces a bound to the interest rates.

The benchmark model, CIR model, is given by the equation

dr(t) = α(µ− r(t))dt+ σ
√
r(t)dB(t), r(0) ≥ 0, t ≥ 0 (2)

where µ, α and σ are the parameters of the model and are defined as in the
Pearson-Sun model and B(t) is a standard Brownian motion.
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2.2 Zero-coupon bond prices

The time t price of a zero-coupon bond under the risk-neutral framework with
maturity T is given by

P (t, T ) = EQ
[
e−

∫ T
t r(u)du | F(t)

]
. (3)

A standard result of equation (3) is given in [10] as

P (t, T ) = eA(t,T )−B(t,T )r(t)

where A(t, T ) and B(t, T ) are deterministic functions.

2.3 Price of a Cap and Floor

The price of a cap and a floor are considered as a portfolio of European put
options on zero-coupon bonds and European call options, respectively [4].

Consider a cap/floor maturing at time T with strike rate K and nominal
amount N . Also let the reset times for the cap be ti, i = 1 . . . , n and payment
times ti, i = 2, . . . , n. Let τi be the time fraction between ti−1 and ti.

The price of a cap under the Pearson-Sun model at time t is given by

Cap(t) = N
n∑
i=1

[
(1 +Kτi)ZBP (t, ti−1, ti, K̄i)

]
(4)

where ZBP (·) is the price of a European put option on zero-coupon bond.
The price of the floor at time t is given by

floor(t) = N

n∑
i=1

[
(1 +Kτi)ZBC(t, ti−1, ti, K̄i)

]
(5)

where ZBC(·) is a European call option on zero-coupon bond and K̄i = 1
(1+Kτi)

.

3 Mathematical Results

In this section, the main mathematical results of the study under the Pearson-
Sun model are presented.
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3.1 Density function

The density function of the model is used to estimate the parameters of the
model via maximum likelihood method.

Proposition 3.1. Given that the dynamics of the short-rate is defined by
the Pearson-Sun interest rate model given by equation (1). The probability
density function at time s conditional on its value at the current time t is
given by

fr(r(s), s; r(t), t) = ce−u−v(
v

u
)
q
2 Iq(2

√
uv) (6)

where

c =
2α

σ2(1− e−α(s−t))
(7)

u = c[r(t)− rb]e−α(s−t)

v = c[r(s)− rb]

q =
2α(µ− rb)

σ2
− 1

and Iq(·) is the modified Bessel function of the first kind of order q.

Proof. To proof the above proposition, it should be noted that the Pearson-Sun
model given by equation (1) could be written as

d(x(t)) = α([µ− rb]− x(t))dt+ σ
√
x(t)dB(t) (8)

where x(t) = r(t)− rb.

Equation (8) can be seen as a CIR interest rate model with long-run mean µ−
rb. Its general conditional density function is given in [3]. Using the technique
of transformation of random variables, the distribution function given in the
proposition is obtained.

3.2 Price of Zero-Coupon Bonds

A zero-coupon bond pays no dividend during the life-time of the bond with a
terminal payoff of 1. The following proposition presents the price of a zero-
coupon bond under the Pearson-Sun model.

Proposition 3.2. Consider that the dynamics of the short-rate is given by
the Pearson-Sun model. The time t price of a zero-coupon bond maturing at
time T , denoted P (t, T ), is given by

P (t, T ) = eΛ(t,T )−B(t,T )r(t) (9)
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where

B(t, T ) =
2
(
eγ(T−t) − 1

)
(γ + α)(eγ(T−t) − 1) + 2γ

Λ(t, T ) = A(t, T ) + C(t, T )

A(t, T ) =
2αµ

σ2
ln

(
2γe

(α+γ)
2

(T−t)

(α + γ)(eγ(T−t) − 1) + 2γ

)

C(t, T ) = 2rb

[
1

(α− γ)
ln

{
(2γ)le

(α+γ)
2

(T−t)

((α + γ)(eγ(T−t) − 1) + 2γ)
2α

(α+γ)

}

+
1

(α + γ)

(
1

2γ
− 1

((α + γ)(eγ(T−t) − 1) + 2γ)

)]
l =

2α

(α + γ)

γ =
√
α2 + 2σ2.

Proof. Given that interest rate process is given by equation (1), the bond price
at time t with maturity at time T is defined by equation (3). Multiplying both

sides of equation (3) by e−
∫ t
0 r(u)du, we obtain a Martingale given as

P (t, T )e−
∫ t
0 r(u)du = EQ

[
e−

∫ T
0 r(u)du | F(t)

]
. (10)

For simplicity, let P (t, T ) = P and r(t) = r. Using Ito lemma, the differential
of the LHS of equation (10) is given as

d
(
Pe−

∫ t
0 r(u)du

)
= −rPe−

∫ t
0 r(u)dudt+ e−

∫ t
0 r(u)du

[
Ptdt+ Prdr +

1

2
Prr(dr)

2

]
(11)

where

Pt =
∂P

∂t
, Pr =

∂P

∂r
, Prr =

∂2P

∂t2
.

Since dr is given by equation (1), (dr)2 = σ2(r − rb)dt. Substituting into (11)
and given the fact that (10) is a Martingale, we obtain the partial differential
equation

Pt + α(µ− r)Pr +
1

2
Prrσ

2(r − rb)− rP = 0

with terminal condition P (T, T ) = 1, r ≥ 0

 (12)

Equation (12) has a standard closed-form solution of the form

P (t, T ) = eΛ(t,T )−B(t,T )r(t) (13)



Pricing interest rate caps and floors 981

where Λ(t, T ) and B(t, T ) are deterministic functions. Differentiating P (t, T )
and substituting into equation (12) gives[

(−Bt + αB +
1

2
B2σ2 − 1)r + (Λt − αµB −

1

2
rbB

2σ2)

]
P = 0.

Now, the solutions to the following differential equations below give B and Λ.

−Bt + αB +
1

2
B2σ2 − 1 = 0

B(T, T ) = 0

 (14)

Λt − αµB −
1

2
rbB

2σ2 = 0

Λ(T, T ) = 0.

 (15)

Equation (14) is a Ricatti equation. The solution to (14) is as given in the
proposition. The solution to equation (15) is obtained by solving the following
equation

Λ(t, T ) = −αµ
∫ T

t

Bds− 1

2
σ2rb

∫ T

t

B2ds. (16)

Substituting the expression for B into equation (16), with change of limits, we
obtain

Λ(t, T ) =
2αµ

γ

∫ 1

eγ(T−t)

(
x− 1

(α + γ)(x− 1) + 2γ

)
dx

x
+

2σ2rb
γ

∫ 1

eγ(T−t)

(
x− 1

(α + γ)(x− 1) + 2γ

)2
dx

x

= A(t, T ) + C(t, T ). (17)

The solutions to A(t, T ) and C(t, T ) are as given in the proposition.

3.3 Price of European Options on Zero-Coupon Bond

The price of European call option is given in the following proposition.

Proposition 3.3. Given that interest rates follow the Pearson-Sun term
structure model given in equation (1) above, for 0 ≤ t ≤ s ≤ T , the time
t price of a European call option expiring at time s with exercise price K,
denoted ZBC(t, s), on a zero-coupon bond maturing at time T , is given by

ZBC(t, s) = P (t, T )χ2(d, y1;w1)−KP (t, s)χ2(d, y2;w2) (18)

where χ2(d, y;w) is the cumulative distribution of a non-central chi-squared
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distribution with d degrees of freedom and non-centrality parameter y and

d =
4α(µ− rb)

σ2

y1 =
2φreλ(s−t)

φ+ ψ +B(s, T )

w1 = 2η [φ+ ψ +B(s, T )]

y2 =
2φreλ(s−t)

φ+ ψ

w2 = 2η [φ+ ψ]

λ =
√
α2 + 2σ2

φ =
2λ

σ2 (eλ(s−t) − 1)

ψ =
α + λ

σ2

η =
Λ(s, T )− lnK

B(s, T )
− rb.

Proof. Let the maturity date of the European call option on the zero coupon
bond to be s with strike price K and maturity of the zero coupon bond be T .
The price at time t of the European call option given r(t) is defined as

ZBC(t, s) = EQ
[
e−

∫ s
t r(u)du(P (s, T )−K)+ | r(t)

]
. (19)

The option will only be exercised if P (s, T ) > K. But P (s, T ) = eΛ(s,T )−B(s,T )r(s).

⇒ eΛ(s,T )−B(s,T )r(s) > K ⇐⇒ r(s) <
Λ(s, T )− lnK

B(s, T )
= η ⇒ r(s) < η.

Now, define an indicator function by

Ir(s)<η =

{
1 if r(s) < η
0 otherwise.

And we have

ZBC(t, s) = EQ
[
e−

∫ s
t r(u)duP (s, T )Ir(s)<η | r(t)

]
− EQ

[
e−

∫ s
t r(u)duKIr(s)<η | r(t)

]
.

(20)

= EQ
[
e−

∫ T
t r(u)duIr(s)<η | r(t)

]
− EQ

[
e−

∫ s
t r(u)duKIr(s)<η | r(t)

]
.

(21)
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Employing change of measure; let P1 and P2 be two measures, equivalent to
Q. Defining their Radon-Nikodym derivatives and substituting gives

ZBC(t, s) = EQ
[
e−

∫ T
t r(u)du | r(t)

]
EQ
[
dP1

dQ
Ir(s)<η | r(t)

]
− EQ

[
e−

∫ s
t r(u)du | r(t)

]
EQ
[
dP2

dQ
KIr(s)<η | r(t)

]
.

But

P (t, T ) = EQ
[
e−

∫ T
t r(u)du | r(t)

]
and P (t, s) = EQ

[
e−

∫ s
t r(u)du | r(t)

]
.

Therefore,

ZBC(t, s) = P (t, T )EQ
[
dP1

dQ
Ir(s)<η | r(t)

]
− P (t, s)EQ

[
dP2

dQ
KIr(s)<η | r(t)

]
(22)

and

ZBC(t, s) = P (t, T )PP1 (r(s) < η | r(t))−KP (t, s)PP2 (r(s) < η | r(t)) .
(23)

To obtain the probabilities under P1 and P2, we note that Under P1, using
equation (8), where x(t) is described by the CIR model, under P1 gives

PP1 (r(s) < η | r(t)) = PP1 (x(s) < η − b | x(t))

and similarly, under P2, this gives

PP2 (r(s) < η | r(t)) = PP2 (x(s) < η − b | x(t)) .

Equation (23) becomes

ZBC(t, s) = P (t, T, r)PP1 (x(s) < η − b | x(t))−KP (t, s, r)PP2 (x(s) < η − b | x(t)) .
(24)

Since x(t) is described by the CIR model, the probabilities under both P1 and
P2 are well known and can be found in [3]. With the necessary substitutions,
the results in Proposition 3.3 are established.

Using the put-call parity for bond options defined by

ZBP (t, s) = ZBC(t, s) +KP (t, s)− P (t, T ) (25)

where ZBC(t, s) is the price of a European call option at time t, ZBP (t, s) is
the price of a European put option at time t, K is the strike price, P (t, s) and
P (t, T ) are the price of the zero coupon bond [4], the corresponding price of a
European put option on the zero-coupon bond can be obtained.



984 Abubakari Abdul Ghaniyyu, Philip Ngare and Joseph Mung’atu

4 Numerical Results

A comparison of the Pearson-Sun model and the CIR model in terms of their
ability to describe daily time series data on yields is shown.

4.1 Data Description

The data used in this study consist of daily 3 month term structure data
obtained from the bank of Canada. The data consist of 1972 daily observations
ranging from January 2010 to November 2017. Figure 1 shows the plot of the
data. It can be observed that the rates are fairly steady over the period with
steep increase and decrease at specific short time periods. From Table 1, it

Figure 1: Plot of 3 month term structure

can be observed that the data has a low volatility as the standard deviation
is very low with a small range of values between the maximum and minimum
values.

Table 1: Descriptive statistics

Mean Std Dev. Min Max Range Kurtosis Skewness
0.007742 0.002565 0.001196 0.011334 0.010138 2.021842 -0.611756

4.2 Parameter Estimation

The parameter estimates of the Pearson-Sun and the CIR models are obtained
via the method of maximum likelihood. From Tables 2 and 3, it can be ob-
served that the parameter estimates of both the CIR and Pearson-Sun models
are all significant at a 5% significance level. Most significant in this result is
the fact that rb is significantly different from zero. It can also be noted that the
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standard errors are all less that 4%. According to [7], this is a good indication
that the calibration procedure was successful.

Table 2: Estimates under Pearson-Sun model

Parameter Estimate Std Error p-value
α 1.250465 0.536051 0.019662
µ 0.009884 0.000799 0.000000
rb 0.001116 0.000785 0.016230
σ 0.046666 0.000744 0.000000

Table 3: Estimates under CIR model

Parameters Estimate Std Error p-value
α 1.212284 0.013275 0.000000
µ 0.008963 0.001302 0.000000
σ 0.046676 0.000741 0.000000

Table 4 below also shows the descriptive statistics after simulating the data
with the estimated parameters. It can be observed that the statistics of the
simulated Pearson-Sun model are much closer to those of the real data. This
is an indication that the Pearson-Sun model provides a better fit to the real
data used.

Table 4: Descriptive statistics of real and simulated data

Data Mean Std Deviation Min. Max. Range
Real Data 0.007742 0.002566 0.001196 0.011334 0.010138
PS 0.007963 0.002525 0.001396 0.012545 0.011149
CIR 0.007314 0.002215 0.001520 0.013003 0.011483

4.3 Model Comparison

The Pearson-Sun and CIR models only approximate the real interest rates,
hence, the main goal of the above estimation procedure of the two competing
models is to choose a model which best describes the characteristics of the
data used.

From Table 5, it can be observed that the Pearson-Sun model has the least
among the comparison measures. This means that the Pearson-Sun model
minimises loss of the information contained in the observed data as compared
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to the CIR model.

Table 5: Comparison measures

Model AIC BIC RMSE MAPE
PS -27826.87 -27810.11 0.001225 14.397640
CIR -27649.29 -27626.94 0.001394 17.221690

Figure 2 shows the plots of the real and simulated data sets. It can be observed
that the plot from the simulated data under the Pearson-Sun model provides
a better fit to the original data.

Figure 2: Plot of real and simulated data

4.4 Caps and Floor Prices

To simulate caps and floors prices, the following were considered. The time to
maturity ranged from three months (0.25 years) to 10 years with an interval of
0.25 years (three months), with a tenor of 3 months. Again, a nominal value
of one (1) was considered with a strike rate of 0.5%.

Figure 3(a) shows the model price of a cap. It shows a smooth increasing cap
prices over the period. Since the mean of the data used is above the strike
rate, an investor holding an interest rate cap with a rate of 0.5% will be in an
advantageous position.

Also, Figure 3(b) shows the prices of floors over the period. There are lower
prices for interest rate floors as compared to cap prices over the period.
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(a) Cap price (b) Floor price

Figure 3: Model prices

As compared to interest rate caps, floors are sold at a lower price over the
period. This can be observed from the maximum values shown in Table 6.

Table 6: Descriptive statistics of prices

Derivative Mean Std Deviation Min Max
Cap 0.691397 0.600494 0.002497 1.941187
Floor 0.345699 0.300247 0.001248 0.970593

5 Conclusion

In this paper, the price of interest rate caps and floors under the Pearson-
Sun model were obtained. The Pearson-Sun model is an extension of the CIR
model that preserves the CIR drift structure and introduces a lower bound
to the model. The study shows that the Pearson-Sun model provides a much
better description of the data than the CIR model. The Pearson-Sun model
will therefore provide better pricing results in financial markets as compared
to CIR model. The prices of the caps and floors were simulated based on the
estimated parameters.

The study simulates the prices of caps and floors. However, these prices were
not compared with the market cap and floor prices. The study therefore rec-
ommends the comparison of the model prices with market prices. Finally, it
is recommended that a comparison of the pricing performance of the Pearson-
Sun model with other well known interest rate models including models that
allow for initial term structure such as the CIR++.
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