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Abstract

This study build a reduced form of three factor valuation model by explicitly tak-
ing into account the unobservable character of the convenience yield. The spot
price process, the instantaneous convenience yield and CIR interest rate process are
taken in the reduced form of three factor valuation model. The CIR interest rate
process prevents interest rate from being negative. We simulate the reduced form
three factor valuation model by using Milstein and Euler discretization schemes.
We study the performance of Milstein and Euler discretization schemes theoreti-
cally and empirically in reduced form three factor valuation model. The Milstein
discretization scheme has better approximation than Euler discretization scheme in
reduced form three factor valuation model. As the time of maturity, T, is less and
the time interval decreases the result obtained from the simulation of reduced form
three factor valuation model for spot price process, convenience yield and interest
rate process has better approximation.
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1. Introduction

Assume we have (�, F, P ) complete probability space and a finite time interval [0, T ].
Assume again we have three stochastic processes i.e, the spot price process, St , instan-
taneous convenience yield process, δt and risk free interest rate, rt . This study develops
a reduced form three factor valuation model and find numerical solution of the joint
stochastic differential equations above using the two known discretization schemes i.e,
Euler and Milstein schemes. Reduced form models are trying to identify the relevant
state variables or factors. A growing number of empirical studies return predictability
pointed out the important role of the convenience yield. The spot price and the con-
venience yield are therefore the two commodity used state variables in pricing models.
Current studies showed that there are a problem while finding analytical solution of a
given stochastic differential equations(Anqi Shao,2012, Akinbo B.J, Faniran T and Ay-
oola E.O, 2015, Aurélien Alfonsi, 2005), especially for CIR model since the process has
no closed form solution. Hence the researchers are forced to study the process numer-
ically using discretization techniques in order to get best approximation solution for a
give process.1 There are many methods which can allow us to find numerical solution
for continuous time processes but this study used only Euler and Milstein discretization
schemes because of their convergence to the true result.

The Cox-Ingersoll-Ross(CIR) model is a diffusion process suitable for modeling the
term structure of interest rate(Anqi Shao, 2012). The dynamics for CIR model is given
by,2

dXt = κ(θ − Xt)dt + σ
√

XtdWt (1.1)

For κ > 0, θ > 0, σ > 0 and Wiener process W. This process has some appealing
properties from an practical point of view (Aurérien Alfonsi, 2005) i.e, the interest rate
remains positive and the CIR process is mean reverting in nature (Cox et al. 1985). The
condition 2κθ > σ 2 would ensure that the origin is inaccessible to the process so that
we can grant that the process Xt stays non-negative. One of our challenge, when we
are simulating CIR model was explained by Anqi Shao, in his article. One drawback
for simulation of CIR model is the process is not explicitly solvable (Aurérien Alfonsi,
2005). Due to this drawback we need to look further and proceed to find the method
used to find numerical solution of the process to tackle this problem. The problem can
be solved by using Diop A. and Deelstra and Delbaen’s approach i.e, Diop A. approach

Xt+1 = |Xt + T

n
(a − κXt) + σ

√
Xt(Wt+1 − Wt)| (1.2)

Deelstra and Delbaen approach

Xt+1 = Xt + T

n
(a − κXt) + σ

√
Xt > 0(Wt+1 − Wt) (1.3)

1refer Alfonsi, 2005
2refer Cox et al. 1985
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One of the simplest example of discretization is Euler scheme-Maryyama discretization
(Akinbo B.J., Faniran T. and Ayoola E.O., 2015). We assume stochastic differential
equation,

dXt = µXtdt + σXtdWt (1.4)

Discretizing the above process by Euler scheme on 0 ≤ t ≤ T for a given discretization,
0 ≤ t1 < t2 < · · · < tn ≤ T of final time interval [0,T] is given as follows,

Xt = Xt−1 + µXt−1�t + σXt−1
√

�tnX,t−1 (1.5)

Where,
� is the length of the time discretization subinterval and,
nX,t−1 is a standard normal random variable.
Euler-Maruyama scheme is is a method used to approximate numerical solution of a
continuous time processes. In practice, many stochastic differential equations are not
explicitly solvable like CIR model therefore we can not get an analytical solution to a
given continuous time process (Anqi Shao, 2012).

Like Euler-Maruyama discretization scheme Milstein scheme also used to find the
numerical solution of a given stochastic differential equations. For the above stochastic
differential equation (1.4) we have,

Xt = Xt−1 + µXt−1�t + σXt−1
√

�tnX,t−1 + 1

2
σ 2Xt−1(�t2

nX,t−1 − �t) (1.6)

Where, �t and nX,t−1 are as defined above. Milstein scheme has strong order of conver-
gence one and Milstein will converges to the correct stochastic solution process faster
than Euler-Maruyama as the step size �t goes to zero (Akinbo B.J., Faniran T. and Ay-
oola E.O., 2015). Due to the property of it’s strong convergency, Milstein discretization
scheme give better approximation for a given continuous time processes.

Proposed reduced form three factor Model

In this study our contributions to the existing literature are three folds: First, we extend
the Schwartz (1997) three factor model by adding new feature, which is Vasicek interest
rate process in Schwartz (1997) model is replaced by mean reverting Cox-Ingersoll-
Ross (CIR) process as described by Cox et al. (1985). This new feature prevents
negative interest rate. Second, we provide numerical solution for reduced form three
factor valuation model by using two known discretization, i.e, Euler-Maruyama and
Milstein discretization techniques. Third, we study the strong convergence between
Euler-Maruyama and Milstein discretization methods.

Financial Market

Assume we have (�, F, P ) complete probability space with a standard filtration F =
{F(t) : t ∈ [0, T ]}, a finite time period [0, T ]. Assume we have three stochastic
processes i.e, the spot price process of the underlying commodity, S, the instantaneous
convenience yield process, δ, and the instantaneous interest rate process, r as presented
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in Schwartz (1997). First we discuss joint stochastic process for the two state variables
i.e, the spot price process and the instantaneous convenience yield under the equivalent
martingale measure can be expressed as3:

dS(t)

S(t)
= (µ − δ(t))dt + σsdZs(t) (1.7)

dδ(t) = κ(α − δ(t))dt + σδdZδ(t) (1.8)

with initial conditions S(0) ≡ S0 and δ(0) ≡ δ0. Two correlated standard Brownian
motions Zs and Zδ such that, dZsdZδ = ρdt , here ρ4 stands for correlation coefficient
between the two Brownian motions. κ > 0 is the magnitude of the speed of adjustment
of the long run mean α, σs and σδ represents, respectively, constant, strictly positive,
instantaneous standard deviation of the spot price and convenience yield.

Interest rates have an impact on spot commodity prices and on convenience yields.5

The reduced form three factor valuation model can be expressed as follows,

dS(t)

S(t)
= (r − δ(t))dt + σsdZ∗

s (t) (1.9)

dδ(t) = κ(α̂ − δ(t))dt + σδdZ∗
δ (t) (1.10)

dr(t) = a(m∗ − r(t))dt + σr

√
r(t)dZ∗

r (t) (1.11)

With initial conditions S(0) ≡ S0, δ(0) ≡ δ0 and r(0) ≡ r0. Where, α̂ = α − λ

κ
,

three correlated standard Brownian motions, dZ∗
s dZ∗

δ = ρ1dt , dZ∗
δ dz∗

r = ρ2dt and
dZ∗

s dZ∗
r = ρ3dt . a is the speed of adjustment, m∗ the risk adjusted mean short rate of

the interest rate and σr is the constant, strictly positive, instantaneous standard deviation
of interest rate, r(t). The SDE of the short rate follows a mean-reverting process as
Cox-Ingersoll-Ross(CIR).6 If 2am∗ > σ 2

r , the CIR process is strictly positive, otherwise
non-negative. Hence, the CIR interest rate model depicts the actual condition of the
market where interest rate is non-negative unlike Vasicek interest rate model. The CIR
model is mean reverting in nature. If the process deviates from the stationary mean level
m∗, it is brought back to m∗ at the rate of a.

3see Schwartz (1997)
4Positive correlation between spot price and convenience yield is induced by the level of commodities:

when inventories of the commodity decreases the spot price should increase since the commodity is scare
and the convenience yield should also increase since futures prices will not increase as much as the spot
price, and vice versa (Carmona and Ludkovski, 1991)

5Equilibrium models of commodity contingent claims assume that interest rates are zero or constant
and do not study the relation between convenience yields and interest rates (Anh Ngoc Lai and Constantin
Mellios,2015)

6see John C. Cox,Jonathan E. Ingersoll, Jr. and Stephen A. Ross, 1985
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Euler and Milstein discretization schemes

Euler discretization scheme

Using an Euler discretization to simulate CIR process gives rise to the problem that
while the process itself is guaranteed to be nonnegative, the discretization is not. General
schemes, such as the Euler scheme or the Milstein scheme are in general not well defined
because they can lead to negative values for which the square root is not defined (Anoi
Shao, 2012). To tackle this problem in our simulation we use Diop’s7 approach which is
’reflection scheme’ taking the norm of the discretization8. Therefore the straightforward
Euler discretization scheme for valuation model is given by,

St = St−1 + (µ − δt−1)St−1�t + σsSt−1
√

�tnS,t−1 (1.12)

δt = δt−1 + κ(α − δt−1)�t + σδρ1
√

�tnS,t−1 + σδ

√
1 − ρ2

1

√
�tnδ,t−1 (1.13)

rt = rt−1 + a(m − rt−1)�t + σrρ3
√

rt−1
√

�tnS,t−1 + σr
√

rt−1

√
1 − ρ2

3

√
�tnr,t−1

(1.14)
Where nS,t−1, nδ,t−1 and nr,t−1 are independent and identically distributed standard
normal random variables.

Milstein discretization scheme

Milstein discretization9 scheme is given by,

St = St−1 + (µ− δt−1)St−1�t +σsSt−1
√

�tnS,t−1 + 1

2
σ 2

s St−1(�t2
nS.t−1 −�t) (1.15)

δt = δt−1 + κ(α − δt−1)�t + σδρ1
√

�tnS,t−1 + σδ

√
1 − ρ2

1

√
�tnδ,t−1 (1.16)

rt = rt−1 + a(m − rt−1)�t + σrρ3
√

rt−1
√

�tnS,t−1 + σr
√

rt−1

√
1 − ρ2

3

√
�tnr,t−1

(1.17)
Where nS,t−1, nδ,t−1 and nr,t−1 are as stated above.

Simulation

To simulate reduced form three factor valuation model we use Euler and Milstein dis-
cretization representations listed above of the model with different discretization in-
tervals. For both discretization techniques, we use the same time interval [0,1]. For
each discretization schemes10, we choose �t = 10−3 and use 103 simulation paths and
�t = 10−1 and use 102 simulation paths.

7refer Berkaoui A., Bossy M. and Diop A., 2008
8refer Aurélien Alfonsi, 2005
9as stated in Ola Elerian,1998

10The discretization alternatives with either the first-order Euler’s approximation or the Milstein’s ap-
proximation formats introduce discretization errors into the simulation and have higher computational cost
because need small �t .
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Milstein discretization simulation for T = 1

We choose the following parameters to generate the trajectories in Milstein discretization
scheme for valuation model.

Table 1: Parameters of valuation model for Milstein and Euler discretization scheme

σs σδ σr ρ1 ρ2 ρ3 κ α̂ a m∗
0.25 0.15 0.1 0.24 0.3 0.08 0.3 1 0.18 0.76

Figure 1: Milstein discretization simulation for valuation model with �t = 10−3 and
103 simulation paths
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Figure 2: Milstein discretization simulation for valuation model with �t = 10−1 and
102 simulation paths

Euler discretization simulation for T = 1

We choose the same parameters as Milstein discretization scheme listed above.

Figure 3: Euler discretization simulation for valuation model with �t = 10−3 and 103

simulation paths

For above figures (1), (2), (3) and (4) lines indicated by blue represents the simulation
paths and the line indicated by black represents the true mean of the factor spot price, S.
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Figure 4: Euler discretization simulation for valuation model with �t = 10−1 and 102

simulation paths

Simulation results for both Milstein and Euler schemes as maturity expands Euler
discretization simulation for T = 5

T = 5

Figure 5: Euler discretization simulation for valuation model with �t = 10−3 and 103

simulation paths
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T = 5

Figure 6: Euler discretization simulation for valuation model with �t = 10−1 and 102

simulation paths

Milstein discretization simulation for T = 5

Figure 7: Milstein discretization simulation for valuation model with �t = 10−3 and
103 simulation paths
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Figure 8: Milstein discretization simulation for valuation model with �t = 10−1 and
102 simulation paths

T = 25

Figure 9: Simulation for reduced form three factor valuation model with �t = 0.025
and 104 simulation paths
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Figure 10: Simulation for reduced form three factor valuation model with �t = 0.25
and 103 simulation paths

2. Simulation results

Table 2: Simulation results for the first ten simulation paths for �t = 10−5 and T=1
t S δ r True mean of S True mean of δ True mean of r Ab. error in S Ab. error in δ Ab. error in r
0 2.658897758 −0.265611268 0.69674544 2.658897758 −0.265611268 0.69674544 0 0 0

1 × 10−5 2.659807581 −0.265724802 0.696868195 2.658971699 −0.26563021 0.696763447 0.000835882 0.063735992530 0.000104748

2 × 10−5 2.659391766 −0.265976129 0.697051102 2.659104144 −0.265618158 0.696735733 0.000287622 0.000357971 0.000315369

3 × 10−5 2.659731848 −0.266181455 0.697104729 2.658997712 −0.265607887 0.696738081 0.000734135 0.000573568 0.000366649

4 × 10−5 2.658860786 −0.266142717 0.697045966 2.658904728 −0.265602877 0.696747529 0.02960781932 0.00053984 0.000298438

5 × 10−5 2.654995665 −0.266367026 0.697017383 2.658974969 −0.265628119 0.696749456 0.003979304 0.000738907 0.000267927

6 × 10−5 2.652938128 −0.266872281 0.696629212 2.659107973 −0.265578497 0.696762256 0.006169845 0.001293784 0.000133044

7 × 10−5 2.655396543 −0.266828903 0.697016206 2.659141004 −0.265584732 0.696760074 0.00374446 0.001244171 0.000256132

8 × 10−5 2.653494379 −0.266616827 0.697019088 2.658894072 −0.265621916 0.696759831 0.005399692 0.000994912 0.000259256

9 × 10−5 2.651565607 −0.266719849 0.697117397 2.658925909 −0.265581912 0.696783244 0.007360302 0.001137937 0.000334153

Table 3: Simulation results for the first ten simulation paths for �t = 0.1 and T = 25
t S δ r True mean of S True mean of δ True mean of r Ab. error in S Ab. error in δ Ab. error in r
0 2.658897758 −0.265611268 0.69674544 2.658897758 −0.265611268 −0.265611268 0 0 0.962356708

0.1 2.954985686 −0.202849649 0.659492936 2.91942026 −0.229401124 −0.229401124 0.035565426 0.026551475 0.88889406
0.2 2.975497172 −0.251518667 0.644811285 3.181260525 −0.196434354 −0.196434354 0.205763353 0.055084313 0.841245639
0.3 3.453187632 −0.144718969 0.646907219 3.480092229 −0.158283892 −0.158283892 0.026904597 0.013564923 0.80519111
0.4 3.624502244 −0.079915515 0.65186253 3.763128822 −0.124788895 −0.124788895 0.138626579 0.04487338 0.776651425
0.5 3.93889452 −0.031159645 0.632323953 4.079599242 −0.090808489 −0.090808489 0.140704722 0.059648844 0.723132442
0.6 4.505903711 0.021775318 0.611972641 4.4167477 −0.058013842 −0.058013842 0.089156011 0.07978916 0.669986483
0.7 5.051100521 0.071794115 0.590921649 4.80783989 −0.026132385 −0.026132385 0.243260631 0.0979265 0.617054034
0.8 5.512461959 0.10741752 0.608322118 5.183422184 0.007771102 0.007771102 0.329039775 0.099646418 0.600551016
0.9 6.370158275 0.159780054 0.614945852 5.568159396 0.039803189 0.039803189 0.801998879 0.119976865 0.575142663
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Figure 11: Simulation of spot price for �t = 10−5 and 103 simulation paths, T = 1

Figure 12: Simulation of spot price for �t = 0.1 and 103 simulation paths, T = 25

Figure 13: Simulation of convenience yield for �t = 10−5 and 103 simulation paths,
T = 1

3. Conclusion

We can easily noted that the mean of 103 simulation paths indicated in blue is closer to
the true mean indicated in black than the mean of 102 simulation paths for Milstein and
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Figure 14: Simulation of convenience yield for �t = 0.1 and 103 simulation paths,
T = 25

Figure 15: Simulation of interest rate for �t = 10−5 and 103 simulation paths, T = 1

Figure 16: Simulation of interest rate for �t = 0.1 and 103 simulation paths, T = 25
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Euler discretization scheme. We can conclude that as the time interval (�t) decreases the
simulation result for both Milstein and Euler schemes achieves better approximations.

Since in reduced form three factor valuation model the diffusion coefficients in the
spot price process, S, and interest rate process, r, unlike Schwartz (1997) three factor
model, are not constant, the Milstein scheme and Euler scheme generates different results
for spot price and interest rate so that we easily distinguish Milstein and Euler scheme
discretization.

It can be concluded that as maturity, T, increases, there appear more uncertainty in
both Euler and Milstein schemes simulation results. These leads to a less accuracy in the
simulations obtained by both Milstein and Euler schemes. To get the best approximation
for spot price, convenience yield and interest rate in reduced form three factor valuation
model one can use less maturity and less time interval for both dscretization schemes.
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