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Abstract 

In this study we develop a Lévy process driven Ornstein-Uhlenbeck 
daily temperature model. The model takes into account a time-
dependent speed of mean reversion. It is statistically demonstrated that 
historical data and temperature differences are not normally distributed 
and hence we have argued against modeling temperature residuals as a 
Wiener process rather we have used the normal inverse Gaussian 
distribution which can ably describe skewed and heavy tailed data. 
Neural networks have been applied to estimate parameters of the 
detrended and deseasonalized temperature data because there is no 
prior knowledge on the nature of the function that describes the speed 
of mean reversion in the model. 
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1. Introduction 

Climate change remains a serious environment threat to the fight against 
hunger, malnutrition, diseases and poverty in Africa as its impact is 
manifested mainly through serious reduction in agriculture productivity 
(Iboteye and Shaibu [12]). Water shortages and heat stress are the main 
important environmental factors limiting crop growth, development and yield 
especially in maize which is rainfed (Harrison et al. [10]). High temperatures 
coupled with drought can significantly affect the pollination process 
especially if it occurs during and within 10 days of pollination period 
(Harrison et al. [10]) resulting in low yield. Temperature can also have a 
great impact on business like tourism, recreation, energy producers and 
consumers. 

In this study we develop a Lévy based Ornstein-Uhlenbeck (O-U) daily 
temperature process with a varying speed mean of reversion. We assume the 
model is driven by the Lévy process as the available temperature data is 
found not to be normally distributed hence it is modeled using the normal 
inverse Gaussian distribution. Besides the speed at which the temperature 
process reverts to its mean is considered a time varying function since it 
depends on how far the temperature is from its mean on a particular day. 
However the form of the function is not known therefore we use neural 
networks to estimate the temperature process. 

The model presented can be used in forecasting future temperatures of a 
location which is significant in drought and floods risk management. It is 
also important in agriculture which is the backbone of developing countries 
economy as crop yields is greatly affected by temperature of the location. In 
addition temperature is used as underlying variable in pricing weather 
derivatives. As such an accurate daily temperature process helps to correctly 
to price weather derivatives which mitigate the risks arising from the effects 
of climate change in business and agriculture. Daily temperature models are 
preferred in pricing weather derivatives as they can easily incorporate 
metrological forecasts and can used for all available contracts unlike index 
modeling and burn analysis (Alexandridis and Zapranis [2]). 
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The study is organized as follows: Section 2 presents the overview of 
different temperature models sampled from literature. We specify and 
formulate the Lévy process based mean reverting O-U process with a time 
varying speed of mean reversion in Section 3. The discrete form of the model 
is presented in Section 4 since the available temperature data is in discrete 
form. This is followed by parameter estimation and simulation in Section 5. 
Finally we conclude the study in Section 6. 

2. Review of Temperature Process Models 

Temperature process is characterized by four components namely 
seasonality, existence of long term trends, randomness and mean reversion 
(Alaton et al. [1]). The temperature process shows seasonality patterns and 
normally reverts to a mean whose value depends on the time of the year. In 
addition temperature does not grow or fall indefinitely. Therefore it is 
recommended that a well defined model should incorporate all these 
temperature characteristics. 

In literature different forms of stochastic mean reversion models are 
suggested for the time dynamics of temperature with seasonal mean and 
volatility. Most of such models are extension of Dornier and Queruel [9]. We 
hereby analyze some of these models. 

Dornier and Queruel [9] modeled temperature fluctuations as a 
regression between daily deseasonalized temperatures. The proposed model 
separates the daily average temperature evolution into two parts namely 
seasonal trend and random walk. The seasonality is formulated as a sine 
function with both seasonal change and global warming. 

Alaton et al. [1] modified model by Dornier and Queruel [9] by 
expressing volatility as a piece-wise constant function representing monthly 
variation in volatility. It was observed that the quadratic variation of the 
volatility were almost constant over each month in the data set hence 
validating their choice of volatility. Though no statistical test for normality is 
provided the justification of using Wiener process as the driving noise in the 
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model because the observed temperature differences were close to being 
normally distributed. In both studies, there is no mention of possible time 
dependencies in the residuals observed in the regression models. 

In (Brody et al. [8]) the dynamics of temperature is modeled by means of 
a stochastic process known as fractional Brownian motion as follows: The 
change in temperature is regressed on the previous day’s deseasonalized 
temperature. Clear signs of fractional behavior in the temperature 
fluctuations were discovered after removing the seasonal mean based on the 
data series of daily average temperature from Central England. As observed 
by Benth and Šaltytė-Benth [6], the authors did not perform the same 
fractional analysis for the residuals in the model, hence it is not clear if the 
time dependence of the residuals will follow characteristics of fractional 
noise. In accordance with Dornier and Queruel [9] argument one should add 
the changes of seasonal variation ( )tds  in the model to have a consistent 

mean reversion model. 

Based on the O-U model by Dornier and Queruel [9], Benth and Šaltytė-
Benth [6] proposed a mean reverting model driven by a Lévy process. This 
was as result of the rejection of the normality test by empirical Norwegian 
data. In addition the variance of the model is empirically based function 
estimated from observed variances. A generalized hyperbolic distribution is 
suggested as one which is flexible for capturing semi-heavy tails and 
skewness observed in the data. However the model assumes constant speed 
of mean reversion, and the inclusion of the Lévy process complicates the 
model. In addition the use of AR(1) fails to capture the slow time decay of 
the auto correlations of temperature which may lead to significant under 
pricing of weather derivatives. 

In a related work (Benth and Benth [5]) the authors worked on an O-U 
mean reverting model with Brownian motion as the driving noise whereas 
the seasonal mean and volatility were modeled as truncated Fourier series. 
The order of both series was arbitrarily chosen and no statistical tests were 
presented for the significance of each parameter. The model was found to be 
capable to describe temperature dynamics and allowed for a closed form 
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solutions of pricing weather derivatives. Another model different from the 
O-U is proposed in (Benth and Šaltytė-Benth [7]) as a continuous time 
autoregressive model for the temperature dynamics with the volatility 
function as the product of seasonal function and a stochastic process using 
Barndoff-Nielsen and Shephard model for stochastic volatility. 

Zapranis and Alexandridis [16] extended the O-U mean reverting model 
developed by Benth and Šaltytė-Benth [6] with seasonality in the level and 
volatility, validated by more than 100 years of temperature data collected in 
Paris. Unlike Benth and Šaltytė-Benth [6] here wavelet analysis is used to 
identify the seasonality component in the temperature process as well as the 
volatility of the temperature residuals. It was observed that the distribution 
statistics of the residuals of AR(1) showed presence of negative skewness 
and positive kurtosis ( )3>  indicating a significant deviation from the normal 

distribution. In addition the effect of replacing the AR(1) process with 
ARMA, ARFIMA, and ARFIMA-FIGARCH were also explored. However 
all these processes failed to capture the slow time decay of the 
autocorrelations of temperature. 

Zapranis and Alexandridis [17] developed an O-U stochastic temperature 
model driven by the Wiener process and used neural networks to examine the 
time dependence of the speed of mean reversion parameter ( )tk  on time. The 

model is an extension of Benth and Benth [5] which is a generalization of the 
Dornier and Queruel [9] and it is discretized as an AR(1) model. 

Estimating non-parametrically with neural networks the temperature 
process and computing the derivative of the network output with respect to 
the network input, a series of daily values of ( )tk  are obtained. This removes 

the constraint of a constant mean reverting speed which has been assumed in 
several models. The results show daily variation in the speed of mean 
reversion is quiet high hence expressing the speed of mean reversion as a 
function of time improves the accuracy of the model and significantly 
improves pricing of weather derivatives. 

Wang et al. [15] developed a feasible model for daily average 
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temperature for Zhenzhou area which is applied in weather derivative 
pricing. This is an O-U mean reverting model like Alaton et al. [1], Benth 
and Šaltytė-Benth [6] where volatility is expressed as cyclic function using 
the truncated Fourier series for simplicity. 

3. Model Specification and Formulation 

Definition 1. Given a probability space ( )P,, FΩ  a Lévy process 

{ }0, ≥= tLL t  is defined as infinitely divisible continuous time stochastic 

process R→Ω:tL  with stationery and independent increments. 

 

Figure 1. Daily average temperature for Balaka district in Malawi. 

Lévy process structures allow the representation of jumps, skewness and 
excess kurtosis. In this study we aim to develop a mean reverting O-U 
stochastic model that accurately describes the dynamics of daily average 
temperature. The model is basically an extension of Benth and Šaltytė-Benth 
[6] which is a generalization of Dornier and Queruel [9]. Based on 
observation by several researchers (Alaton et al. [1], Benth and Šaltytė-Benth 
[6], Benth and Benth [5], Zapranis and Alexandridis [16]) a feasible 
temperature model is supposed to take into account the following properties. 
Firstly it should take into account that temperature process follows a 
predicted cycle, and moves around the seasonal mean. It is affected by global 
warming and urban effects and appears to have auto-regressive changes. 
Finally the volatility of temperature is high in the winter than is in the 
summer. Looking at Figure 1 which is an empirical plot for daily average 
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temperature of Balaka district in Malawi, we can as well observe the 
temperature process properties: The mean reverting O-U stochastic model is 
as follows: 

( ) ( ) ( ) ( ) ( )[ ] ( ) ( ),tdLtdttstTtktdstdT σ+−−=  (1) 

where 

( ) 2
minmax TTtT +

=  

is the daily average temperature, ( )ts  is the cyclic seasonal mean, ( )tk  is a 

speed of mean reverting dependent on time t, ( )tσ  is the seasonal volatility 

of daily average temperature which we assume to be strictly positive valued 
measurable and bounded function. The term ( )tds  adjusts the mean ( )ts  so 

that in the long term the temperature process ( )tT  reverts to the seasonal 

mean ( ),ts  since the mean is time dependent function. 

In Benth and Šaltytė-Benth [6], Benth and Benth [5], Alaton et al. [1], 
Dornier and Queruel [9] it was assumed that the speed of mean reversion is 
constant. In Benth and Šaltytė-Benth [6], the yearly variation of the speed of 
mean reversion were found to be very small over the years, however the 
variations were bigger when computed monthly for the same study. Brody et 
al. [8] observed that in general the speed of mean reversion should be a 
function of time though the authors provided no evidence as no studies had 
been undertaken to compute the daily mean reversion as the process is very 
complex. 

So unlike the generalized model of (Benth and Šaltytė-Benth [6]) where 
it was assumed the speed of mean reversion is constant, here we develop a 
model that considers a varying speed of mean reversion. As observed by 
Alexandridis and Zapranis [2] if the temperature today is far from the 
seasonal mean, then it is expected that the speed of mean reversion is higher 
as compared to if the temperature is close to the seasonal mean where then 
the speed of reversion should be slow. Hence this can only be captured if the 
speed of reversion is considered as a function of time. 
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In literature (Alaton et al. [1], Zapranis and Alexandridis [16], Benth and 
Benth [5], Alexandridis and Zapranis [2]) and many more, the driving noise 
of the model is the Wiener process because the temperature differences 
histogram looked normal however no tests were provided. We tested whether 
the temperature differences for Balaka district is normal using the Anderson 
Darling test and the hypothesis was rejected with 889.85=A  and p-value 

.162.2 −< e  We also measured both the skewness and kurtosis of the data 
and found that they were respectively 0.2500 and 3.2083 such that the daily 
average temperature is positively skewed to the right and heavy tailed. Figure 
2 is the histogram of the temperature differences for Balaka district. 

Therefore the Lévy process ( )tL  are used as a suitable noise driving the 

temperature dynamics. The generalized Lévy distributions are flexible family 
of distributions which can model skewed and heavy tailed data. The process 
( )TL  is a cádlág, adapted real value general Lévy process with independent 

stationery increments and stochastically continuous. In this study we use the 
normal inverse Gaussian distribution to model the driving noise of the 
temperature dynamics. 

 

Figure 2. Histogram for temperature differences of Balaka district, Malawi. 

They follow the infinitely divisible distribution with the density function 
(Benth and Šaltytė-Benth [6]), 

( )σβαμλ ,,,,;xfgh  
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( ( ) ) ( )( ) ( ( ) ),exp 22

2
12

2
1

22 μ−+σαμ−βμ−+σ=
−λ

−λ

xKxxc  

where sK  is the modified Bessel function of the third kind with index s and 

c as the normalizing constant given by 

( )

( )
.

2
12 22

222

β−ασσ−απ

β−α
=

λ
λλ

λ

K
c  

The parameter α controls the fatness of the tail which is the steepness of the 
distribution, μ is the location of the distribution, β determines the skewness 
and σ is the scaling parameter. In this study we adopt the Normal Inverse 

Gaussian (NIG) distribution ⎟
⎠
⎞⎜

⎝
⎛ −=λ 2

1  to model the noise process with 

density function 

( )μσβα ,,,;xfnig  

( ( ) ( )) ( ( ) )

( )
,exp

22

22
122

μ−+σ

μ−+σα
μ−β+β−ασ

π
ασ

=
x

xKx  

where 

( ) ( )∫
∞ −

⎟
⎠
⎞

⎜
⎝
⎛ +−=

0
1

1 2
1exp

2
1 dtttxxK  

is the modified Bessel function of third kind. The normal inverse Gaussian 
distribution is suitable for data that is hevy or semi tailed, skewed and non-
normal since the distribution can model heavy tailed, excess kurtosis and 
jumps in addition it has closed form solution for its parameters. It is the only 
subclass of the generalized hyperbolic distributions which is closed under the 
convolution and it is a normal variance mixture where the mixing distribution 
is a generalized inverse gamma distribution which generalizes the Gamma 
distribution (Necula [14]). 
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The seasonal mean is modeled as sinusoidal function as it can be 
observed from Figure 1, the dynamic of temperatures mean is cyclic. We also 
observe that there is a small trend in the temperature data which can be due 
to global warming and urban heating effects which can be expressed as a 
linear function. Therefore the trend and the seasonal mean can be expressed 
as follows: 

( ) ( ) ,
365
2,sin π

=ωθ+ω++= tcbtats  

where c is the amplitude, θ is phase shift as the maximum and minimum 
temperature do not occur at the beginning and middle of the year. Similarly 

we express the function 2σ  as a cyclic function based on empirical results 
from (Benth and Benth [5], Zapranis and Alexandridis [16]) 

∑ ∑
= =

⎟
⎠
⎞

⎜
⎝
⎛ π

+⎟
⎠
⎞

⎜
⎝
⎛ π

+=σ
I

i

J

j
ii

jcicc
1 1

2 .
365
2cos

365
2sin  (2) 

4. Discrete Model Formulation 

Before discretizing the model to estimate the parameters we show that 
the proposed model reverts to the seasonal mean by the addition of the term 
( )tds  and try to find its analytic solution in closed form: 

Proposition 2. If the mean of the temperature process ( )ts  is not a 

constant, then the temperature process ( )tT  such that: 

( ) ( ) ( ) ( )( ) ( ) ( )tdLtdttstTktdstdT σ+−+=  

reverts to the mean ( ),ts  i.e., ( )[ ] ( )tstT =E  by the addition of ( )tds  to the 

model. 

Proof. Let ( ) ( ) ( )[ ].0 tstTetZ
t kds

−
∫

=  By Itó lemma we have 

( ) ( ) ( ) ( )[ ] dTedttstTketsetdZ
ttt kdskdskds ∫

+−
∫

+′∫
−= 000  
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[ ( ) ( ) ( )( ) ( )tsdttstTktse
t kds

′+−−′−
∫

= 0  

( ) ( )( ) ( ) ( )]tdLtdttstTk σ+−+  

( ) ( )tdLte
t kds

σ
∫

= 0  

( ) ( ) ( ) ( )∫ σ
∫

+=
t kds

udLueZtZ
t

0
.0 0  

Setting ( ) ( ) csT == 00  we have the following 

( ) ( )[ ] ( ) ( )∫ σ
∫

=−
∫ t kdskds

udLuetstTe
tt

0
00  

( ) ( ) ( ) ( )∫ σ
∫∫

+=
− t kdskds

udLueetstT
tt

0
.00  

Taking expectation, 

( )[ ] ( ) ( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
σ

∫∫
+= ∫

− t kdskds
udLueetstT

tt

0
00EE  

( ).ts=  

By direct application Ito Lemma coupled with the fact that Lévy 
processes are semi-martingales, the explicit solution of the model (1) is as 
follows: 

( ) ( ) ( ) ( ) ( )[ ] ( ) ( )[ ] ( )∫ −σ+−−+=
t

udLutkusTkttstT
0

.exp00exp  (3) 

The explicit solution ( )tT  shows that daily average temperature follows a 

Lévy distribution at each instant time and also reverts to the seasonal mean 

( )ts  while the variance moves along the volatility ( ).2 tσ  
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The stochastic integral ( ) ( )[ ] ( )∫ −σ
t

udLutku
0

exp  is the Wiener-Lévy 

integral which is well defined as 2L  limiting approximating Riemann-
Stieltjes sums (Applebaum [4]). 

The stochastic model (3) is time continuous mean reverting process, 
however the available daily average temperature data is in discrete form, 
measured in days. Hence there is a need to reformulate the time continuous 
model into a discrete-time model for purposes of fitting the data and 
estimating its various parameters obtained by subtracting ( )tT  from 

( ) :1+tT  

( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( )∫
+ −σ+−−−Δ=Δ

1
,1

t

t
utkkk udLeuetstTetstT  

where ( ) ( ).1 tYtYY −+=Δ  

The stochastic integral can be approximated by 

( ) ( ) ( ) ( ) ( )[ ] ( ) ( ).1 tLtetstTetstT kk Δσ+−−−Δ=Δ  

This model can be reorganized as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( )tLtetstTetststTtT kk Δσ+−−−−+=−+ 111  

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ).111 tLtetstTetstTtstT kk Δσ+−−−−=+−+  

Letting ( ) ( ) ( )111~ +−+=+ tstTtT  we have 

( ) ( ) ( ),~~1~ ttTetT k ξ+=+   where ( ) ( ) ( ).~,1 tLtete kk Δσ=ξ≤  (4) 

The time-discretized model (4) represents the temperature dynamics that has 

been deseasonalized and detrended where ( )tξ
~  is the randomness in the 

model. This will be our basic model when analysing the daily average 
temperature data to estimate various parameters. 
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5. Parameter Estimation 

5.1. Data description 

In this study, daily average temperature data measured in degrees 
Celsius, observed in Balaka district, Malawi is analyzed. The data covers a 
period from 1995-2015, resulting in 7300 data series. For uniformity across 
the years we have removed temperature observations on 29th February of 
each leap year. Balaka district is located in the southern region of Malawi. 

The 20 year length period is considered a better sample to study 
temperature dynamics compared to a very large sample which may run the 
danger of estimated parameters being affected by dynamics that do not 
represent future behavior of temperature anymore like urban effects whereas 
if the period is very small there is a possibility that important dynamics may 
not be revealed which may lead to an incorrect model (Alexandridis and 
Zapranis [2]). 

In order to better understand the dynamics of temperature, we compute 
the descriptive statistics of the data namely maximum, minimum, mean, 
median, mode, standard deviation, skewness, and kurtosis as shown in 
Table 1. 

It can be observed that the data is slightly skewed and non-normal since 
its kurtosis is in the excess of 0.2083, it is heavily tailed to the right. 

Table 1. Descriptive statistics of temperature for Balaka 
Maximum 34.7 

Minimum 11.4 

Mean 22.307 

Median 22.3 

Mode 22.3 

Variance 12.8455 

Standard Deviation 3.5841 

Skewness 0.2500 

Kurtosis 3.2083 
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5.2. Trend and seasonality 

From Figure 1 it can be observed that the temperature process follows a 
seasonal pattern. Therefore we model the seasonal mean which also takes 
into account the trend as 

( ) ( ) ,
365
2,sin π

=ωθ+ω++= tcbtats  

where bta +  is the trend due to urban effects and global warming, c is the 
amplitude and θ controls when we have maximum or minimum temperature 
since such occurrences do not occur at exactly the beginning and middle of 
the year. The ( )ts  takes into account a yearly cyclic for the temperature 

process. 

Using trigonometric formula we have 

( ) ( )θ+ω++= tcbtats sin  

( ) ( ),cossin 21 tctcbta ω+ω++=  

where 

2
2

2
1 ccc +=  

.arctan
1
2 π−⎟
⎠
⎞⎜

⎝
⎛=θ c

c  

Therefore we fit ( )ts  using method of least squares so that we find 

parameters { }21 ˆ,ˆ,ˆ,ˆ ccbaA =  that solves the optimization problem 

( ) ( ) ,min tXtsA −  

where ( )tX  is the data vector. In Table 2 we report the estimated values of 

the parameters which indicated that all of them are significant. Inserting the 
estimated values into ( )ts  we have 

( ) .33.4
365
2sin9968.20074.0946.1 ⎟

⎠
⎞

⎜
⎝
⎛ −

π
++= tts  (5) 
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It can be observed in equation (5) that the constant mean level of the 
temperature process is 1.946 and the amplitude of the seasonal mean is 
2.9968 with a phase shift of 4.33 hence the difference between a typical 
winter day and a summer day is about 13°C. The trend is minimal probably 
due to the length of period under study though it is still significant in the 
model. 

Table 2. Estimated parameter values for the seasonal mean 

Parameter Estimated Std Error t value ( )tPr >  

â  1.946 02391.5 −e  361.03 ∗∗∗−< 162e  

b̂  0.00742 05218.1 −e  60.88 ∗∗∗−< 162e  

1̂c  –1.124 02812.3 −e  –29.48 ∗∗∗−< 162e  

2ĉ  2.778 02810.3 −e  72.93 ∗∗∗−< 162e  

 

Figure 3. Predicted season mean and the daily average temperature. 

Figure 3 shows a plot of the seasonal mean and the daily average 
temperature. Clearly the mean fits the data fairly well. 

5.3. Estimating the cyclic component with the varying speed of mean 
reversion ( )tk  

In the model (4) k has been assumed to be a constant in several studies. 
However such studies have shown that such a model is not complex enough 
to completely remove the autocorrelations of the residuals (Alaton et al. [1], 
Benth and Šaltytė-Benth [6], Benth and Benth [5], Dornier and Queruel [9]). 
In addition there has been suggestions that the speed of mean reversion 
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cannot be a constant function (Brody et al. [8], Alexandridis and Zapranis 
[2]) though no one has taken the task of calculating the daily values of the 
speed of mean reversion until (Alexandridis and Zapranis [2]). 

Therefore we generalize the model (4) and estimate it nonparametrically 
as 

( ) ( ( ) ( ) ) ( )....,2~,1~~ ttTtTtT ξ+−−Φ=  (6) 

The model (6) uses past detrended and deseasonalized temperature like the 
AR(1) model of (4). 

In this model, today’s detrended and deseasonalized daily average 
temperature data is regressed against those of previous day. This process was 
observed to perform better than fitting an autoregressive lags (Benth and 
Šaltytė-Benth [6]). However there is no prior knowledge and assumptions 
about ( )tΦ  which makes approximating its estimator by parametric 

regression methods impossible. Therefore in order to estimate the function 
( )tΦ  requires procedures that can model a nonlinear function whose nature 

of form is not known and does not require any assumptions about the 
function. 

In this study we estimate the speed of mean reversion using neural 
networks modeling since little is known about the form of the function of the 
speed of mean reversion. These are nonparametric data driven approaches 
which can capture nonlinear data structures without prior assumptions about 
the underlying relationship in the particular problem (Zhang et al. [18]). It 
has been proved that neural networks models are capable of approximating 
any deterministic nonlinear function with little knowledge and no prior 
assumptions hence making this applicable in our case (Hornik et al. [11], 
Lantz [13]). In addition neural networks are attractive due to their flexibility 
as well as capable of dealing with noisy and seasonal data compared to the 
auto-regressive models. 

Neural networks mimic the structure of animal brain to model an 
arbitrary function and despite their complexity, can easily be applied to real 
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world problems as they do not require any prior knowledge of the process. 
They comprises of an activation function which transforms a neuron’s 
combined input into an output. Each neural network model has a typical 
topology which tells the number of layers and neurons in the model in 
addition there is a training algorithm which specifies how the connections 
weights are set in order to inhibit the neurons (Lantz [13]). 

In this study the neural network model is based on the multilayer 
perceptron (MLP) feed forward neural network which comprises of three 
layers namely the input, hidden and output layer. The input layer receives the 
data whereas the output layer sends data out of the network. In between the 
hidden layer transforms the input variables based on the activation function 
for use in the output layer (Alexandridis and Zapranis [3]). The MLP 
overcomes the limitation of the single layer perceptron by adding several 
layers which enables neural networks to solve complex problems. 

We define the neural model as follows: 

( ) ,ˆ
1 1

00
0 ⎥

⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++=Φ ∑ ∑

= =

p

j

n

i

h
ji

h
ijhjkk bxwfwbft  (7) 

where h
ijw  are the weights for the connections between ith input and jth 

hidden layer, 0
jkw  are weights between the jth hidden unit and the kth output 

layer. h
jb  is the bias for the hidden unit j and similarly 0

kb  is the bias for the 

kth output layer. 

The function 0f  and hf  are the activation function at the output and 

hidden layers respectively. This is a nonlinear function applied to the net 
input to produce output. The most commonly used activation is the sigmoid 
activation function also called a logistic function defined as ( )1,0: →Rf  

such that 

( ) .
1

1
xe

xf −+
=  
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Clearly ( )xf  is differentiable, hence it is possible to calculate 

derivatives across the entire range of inputs. 

After initializing the weights of the neural network model, it is trained 
further to find the weights that minimize the error function: 

( )∑
=

−=
n

i
ii yynE

1

2,ˆ
2
1  (8) 

where ,0≥E  iy  is the target value and iŷ  is the output value. The error 

function describes the deviation of the predicted outcomes from the observed 
values such that large deviation suggests a poorly fitted model and the 
weights have to be adjusted. 

In this study the model is trained by backpropagation whereby the 
weights and biases are adjusted so that they minimize the mean sum of 
square error by propagating the error backwards at each step. 
Backpropagation is a popular algorithm used in training neural models since 
it is insensitive to initial conditions. In backpropagation the weights are 
modified and adjusted until weights that minimizes the error function are 
found, by calculating the gradient of the function with respect to the weights 

∑
=

∂
∂

∂
∂

=
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i
i
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1
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ˆ
ˆ2
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2
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∂
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yyyn

1
.

ˆˆ1  

The weights iw  are iteratively calculated as follows: 

,1
t

ii w
Eww

∂
∂η−=+  

where η is called a learning rate that is normally fixed in the algorithm. 

A multilayer perceptron feed forward neural model is fitted to four lags 
of the detrended and deseasonalised data with one hidden layer since it is 
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capable of estimating the nonlinear function. The number of neurons were 
varied from 2 to 6 so that a better model could be selected based on the error, 
number of iterations and AIC. In selecting a good model we base our choice 
depending on small error, few number of iterations and a small AIC. The 
error which is the sum of squares of the errors defined by (8) helps to 
estimate the model performance on the training data whereas the number of 
iterations helps to check whether the model is overfitted or not. 

It was found that the model with 4 neurons performed better in terms of 
error and number of iterations but not AIC as shown in Table 3. However 
neural network is a nonparametric method, the main objective is to minimize 
the error with minimal number of iterations so as to avoid overfitting data, a 
model of 4 neurons was selected as best model for the study. 

 
Figure 4. Neural network model. 

Figure 4 shows the neural network model with the weights and biases 
indicated by the blue line. The { }4....,,1. XX  are the input variables 

representing daily average temperature lags, with corresponding weights to 
each neuron. The number in blue at each neuron is a bias term. 
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The neural network model was fitted using 75% of the available data, 
and the 25% was used for testing and predicting so as to compare if the 
model really fits the data. Figure 5 compares the observed data and the 
network output values. It can be shown that the fitted model fits the data very 
well as there are not many variations in pattern and values. The correlation of 
the predicted values and the test values was found to be 0.4714 which 
indicates positive relationship between the target values and the predicted 
values confirming a well fitted model. 

 

Table 3. Different neural network models based on number of neurons 
Number of Neurons Error AIC Number of Iterations 

2 16.0943 58.1687 13556 

3 16.0961 70.1922 6379 

4 16.0870 82.174 3750 

5 16.9354 83.0907 13497 

6 16.9466 82.3162 10455 

 

 

Figure 5. Test data vs predicted values. 

We compared the results from the neural network model with and those 
of Benth and Šaltytė-Benth [6], where the speed of mean reversion is 
assumed constant on the same data from Balaka district in Malawi. From 
Figure 6, it was observed that the model underestimates in most instances 
unlike the one where neural networks were used. 
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Figure 6. Observed temperature and predicted temperature. 

5.4. Estimating the volatility of the temperature process ( )t2σ  

The residuals of the neural network model are shown in Figure 7. From 
the plot it can be concluded that the residuals are not normally distributed as 
many points have deviated from the normal line. 

 

Figure 7. Plot of the residuals. 

The autocorrelation functions (ACFs) for the both the residuals and 
squared residuals are shown in Figures 8a and 8b. There are high values of 
autocorrelation for several lags in both ACFs which may prompt the use of 
higher order autoregressive models. In addition the ACFs reveal seasonality 
presence in the residuals and time dependency in the variance of residuals. 

Therefore we need to extract the ( )t2σ  from the residuals before analyzing 

and modeling the random noise process. 
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(a) ACF of residuals    (b) ACF of squared residuals 

Figure 8 

The volatility is extracted as described in (Benth and Benth [5]). We 
group the residuals into 365 groups each corresponding to a day of the year. 
Then we find the mean of the squared residuals in each group being the 
estimate of the expected daily residuals 

( ) [( ( ) ( )) ].~ˆ 22 ttt ξσ=σ E  

These values are taken as empirical values of the daily variance based on 
the observations over the years for that particular day as shown in Figure 9. It 
can be seen that temperature volatility is higher during dry season as 
compared to the rainy season. However contrary to the perception that 
temperature volatility is higher in winter as compared to summer, but this 
result was also observed on Stockholm data by the work of Benth and Benth 
[5]. 

 

Figure 9. Empirical volatility. 

Then based on volatility model (9) with 1== JI  we fit the data to 
obtain the volatility model 

( ) .
365
2sin8219.17541.2ˆ 2

⎟
⎠
⎞

⎜
⎝
⎛ π

−=σ
tt  
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We compared the empirical volatility and the estimated model as shown 
in Figure 9 which shows that the estimated model fits the empirical data very 
well. After removing temperature volatility the distribution of the residuals 
deviates from normality as observed by the Jarque-Bera test where X-squared 
is 1329.4 and the P-value of .162.2 −< e  With the skewness of                           
– 0.4911 and kurtosis of 1.7865 we can conclude that the residuals are not 
normally distributed. 

Therefore it is not effective to describe the random noise as Brownian 
motion as some researchers (Alexandridis and Zapranis [2], Alaton et al. [1], 
Benth and Benth [5]) have done. As such we try to model the random process 
by using generalized hyperbolic distributions. 

 

Figure 10. Residuals. 

Table 4. Parameters for NIG and HY 

 μ δ α β 

NIG 0.2962 1.4108 1.4536 –0.2882 

GHY 0.2948 0.2948 1.8876 –0.2872 

5.5. Modeling residuals using a Lévy distribution 

We modeled the randomness of the temperature process by two different 
distributions namely the normal inverse Gaussian (NIG) and hyperbolic (HY) 
distribution. Based on the results of estimation and goodness-of-fit looking at 
the quantile plots, it was found out that the NIG fitted the residuals better 
than the hyperbolic distribution. The likelihood of NIG was found to be                            



Nelson Christopher Dzupire, Philip Ngare and Leo Odongo 222 

–10781.97 compared to –10786.23 for generalized hyperbolic distribution. 
Table 4 shows the estimated parameters for both distributions: The quantile 
plot for the two distributions are as shown in Figures 11 and 12. 

 

Figure 11. Histogram and Q-Q plot of residuals for NIG. 

 

Figure 12. Histogram and Q-Q plot of residuals for HY. 

6. Conclusion 

In this study we developed a normal inverse Gaussian mean reverting 
Orstein-Uhlenbeck temperature model. The model is driven by Lévy process 
unlike several models in literature which are driven by the Wiener process by 
assuming that temperature differences are nearly normally distributed. We 
showed that both the historical average temperature data and temperature 
differences are not normally distributed and hence we argued against 
modeling the residuals by Wiener process preferring a Lévy distribution, the 
normal inverse Gaussian, which is able to capture the skewness and 
heaviness of the tails of the data. Both the seasonal mean and volatility are 
modeled as cyclic functions. 

Another unique feature of this model is that the speed at which 
temperature reverts to its mean is modeled as nonlinear function. In literature 
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several authors have assumed that the speed is a constant (Alaton et al. [1], 
Benth and Šaltytė-Benth [6], Benth and Benth [5], Dornier and Queruel [9]), 
however in this study we argue that the speed at which temperature reverts to 
its mean depends on how far the temperature of that particular day is from 
the mean and therefore cannot be modeled as a constant. However little is 
known about the nature of the nonlinear function and hence it is difficult to 
calculate daily values of the speed of mean reversion. Therefore we estimate 
the parameters of the model using neural networks as they do not require 
prior knowledge of the function. Employing the neural networks in the 
estimation led to a significant improvement regarding the cyclic component 
of the deseasonalized and detrended temperature. 
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