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Abstract

A model based survey is employed to estimate the unknown values of
the survey variable, using the local linear regression approach. In
particular, alocal linear regression estimator in model based surveysis
studied. Variance comparisons are made between the derived estimator
and the Nadaraya-Watson regression estimator which show that the
two estimators are asymptotically equivaently efficient.

1. Introduction

In survey sampling, auxiliary information on a finite population is
regularly used to increase the precision of estimators of the finite population
total. In general modeling process, complete auxiliary information is
incorporated in the construction of estimators through fitted values.
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One approach to using this auxiliary information in estimation is to
assume a working model & describing the relationship between the study
variable of interest and the auxiliary variables. Estimators are then derived on
the basis of this model. Estimators are sought which are efficient if the model
is true, and which maintain desirable properties like design consistency if the
model is false. Often, a linear model is selected as the working model,
leading to the ratio and regression estimators [10], the best linear and
unbiased estimators (BLUE) [3, 21], and the generalized regression
estimators (GREG) [4].

Wu and Sitter [25] proposed a class of estimators for which the working
models follow a nonlinear parametric shape. However, efficient use of any of
these estimators requires a priori knowledge of the specific structure of the
population. This becomes difficult if the working model is to be used for

many variables of interest, a common occurrence in surveys.

Nonparametric models can also be applied. These nonparametric models
do not restrict the functional form of the distribution nor does it specify the

various stochastic properties such as Eg(-), Ve(+) and MSE¢(+). They allow

for more robust inference than that obtained in parametric approach [11, 7,
6].

Nonparametric regression [19, 24] is such that estimation is frequently
more flexible and robust than inference tied to probability distributions in
design based inference or to parametric regression models in model based

inference [11].

In [1], the traditional local polynomial regression estimator is used to

estimate the unknown regression function m(x). They assumed that m(x) is

a smooth function and obtained an asymptotically unbiased and consistent
estimator of the finite population total. The local polynomial regression
estimator has the form of the generalized regression estimator, but is based
on a nonparametric super population model applicable to a much larger class

of functions.
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In [2], a related nonparametric model-assisted regression estimator is
considered, replacing local polynomial smoothing with penalized splines.
In [17], the local polynomial nonparametric regression estimation is extended
to the two stage sampling, in which a probability sample of clusters is
selected, and then subsamples of elements within each selected cluster are
obtained. In their simulation study, the estimators are linear combinations of
estimators of cluster totals with weights that are calibrated to known control
totals.

In [16], the asymptotic properties of the model-assisted local linear
estimator are studied under the combined inference approach. It is shown that

the bias of the estimator, M(-) is the same as in the identically independent

distribution (iid) case but the variance equaled that from the iid case
multiplied by a correction factor derived from the sampling scheme. In [23],
the local polynomial fitting to a linear heteroscedastic regression mode is
extended. Estimation of the finite population total in the presence of two
auxiliary variables using the bootstrap method and jackknife method is
considered in [20]. A comparison between the different methods is
performed on the basis of mean squared error (MSE), mean absolute error
(MAE) and mean absolute percentage error (MAPE).

The local linear regression procedure has potential advantages over other
popular kernel based methods since it adapts well to bias problems at
boundaries and in regions of high curvature. It can be tailored to work for
many different distributional assumptions due to its simplicity. It does not
require smoothness and regularity conditions. It is also asymptotically
efficient among all linear smoothers including those produced by the kernel,
orthogonal series and penalized spline methods [15, 14, 22]. In this paper, the
local linear regression procedure is studied further leading to derivation of an
asymptotically efficient estimator.

2. Derivation of the Local Linear Regression Estimator, m (X;)

Consider a finite population P of size N labeled U, U,, ..., Uy. The
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pair (%, ¥), i =1,2,.., N is associated with each unit. The values
X, Xy, ..., Xy are known and can be used in the sample design, or in the

estimator, or in both. The selection variable set S denotes sample of size n
from P, for which y values are unknown. S is an ignorable set, that is given
information on X, knowledge of how the sample was taken provides no
additional information about y [11]. Let Ty be the finite population total of

interest. The estimate of the population total is given by,
N
Ty =D %= %+ ¥ (1)
i=l1 ieS ieR
where > oy is known while > y; is unknown such that R is an

indexing set for the y-values which are unknown to the investigator.

Let
Yi = m(Xj) + o(Xj)z. )

Such that

E(Y/Xi =x)

= m(x),

Var (Y /X; = %) = 67 (%),

Cov(Y,, Yj/Xi =%, Xj =x%j)=0, i=],

i=1,2,3.,N, j=123 .., N 3)
The functions m(x ) and c(X ) are assumed to be smooth and strictly

positive.

The estimator we propose is motivated by modeling the finite population
of y;’s, conditioned on the auxiliary variable X; as a realization from an

infinite super population, &, in which

Y, = m(X;) + o(X)s;, 4
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where g are independent random variables, with mean zero and variance
V(X ). Further, m(X ) is a smooth function of X, and v(x) is smooth and

strictly positive.
Given X, then m(x) = Ez(Y;) is referred to as the regression function,

while V(%) = varg(Y;) is referred to as the variance function. The estimators

of T are derived by noting that,

gz

ieS ieR
=i+ D m(x). (5)
ieS ieR

The optimal predictor of this unknown quantity is given by
E[ZYi J = > m(x). (6)
ieR ieR
However, m(x;) is unknown. We estimate m(x;) using the local linear

procedure and then substitute it in equation (6) in order to get a local linear

regression estimator of the finite population total given by

T = Z Yi + ZmLL(Xi)a (7

ieS ieR
where My | (%) is a local linear regression estimator of m(x; ) at point X;.

Letting X; be any point in the non-sample, and as in [11], let

T = DY+ D M (x). ®)
ieS jeR
This defines an estimator of the finite population total, where ™y (x j)

is a local linear regression estimator of m(x i ) at point X j-
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Consider the regression model given in equation (2),

ECY/Xi = %) = m(x),
o*(%), i=]

Cov(Y;, Yj/X; = %, Xj = Xj) = 7 % exjtho (9
0, R

But by the Taylor series expansion, m(X;) is expressed as

h’t2 h’t>
m(% ) = m(x; +ht):m(xj)+htm'(xj)+Tm”(xj)+Tm"’(xj)+---, (10)
T ¢ et D
”‘()(l)—”‘(xj)+()(|_Xj)m(xj)"‘Tm(XJ)
oy )
+(X| 3!XJ) M (x;) . (11)

The Taylor series expansion is written in a general form expressed as
yi=OL+(Xi—Xj)|3+8i, (12)

where % lies in the interval [xj — h, Xj + h] and

(% - )

3 m(x;) + .

=%
=——r m'(x; ) +
Therefore, the task of estimating m(x) is equivalent to a local linear

regression task of estimating the intercept o.. Now, if we consider a weighted

local linear regression, we find o and 3 in order to minimize
n
X = X
Dol - PR 13)
j=1

to obtain least squares estimators of o and f.

Equation (13) is a weighted least squares problem where the weights are

X.
given by the kernel functions K(X' P Jj. The function K(-) is a
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symmetric probability density used in defining the estimator. The notation
used here emphasizes the fact that the local linear regression is a weighted

regression using data centered around X;.

Let o and B be the solutions to the weighted least square problem in

equation (13). Then some mathematical analyses yield the following:
) (14)

where wj is defined in equation (16). We therefore define the local linear

regression estimator by

DY,

m(x)=a= - , (15)
2
j=1
where
W) = K()q ;ij(sn,z (%~ %})Sh1) (16)
and
n L — .
Sn,r:ZK(XI hxlj(xi—xj)r, r=12. (17)
j=1

We determine results in equations (16) and (17) as follows; by letting,

Q=Z(y,~—a—B(n—xj))QK()q;,xj]. (18)

j=1

Differentiating equation (18) with respect to o, we get,

%azl—z(y;—a—B(m—x,-))K[‘;ij. (19)
j=
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For the least value of o, we have

D5l K[

j=1

%
= 0. (20)
This implies that,

eSS

j=1

S

= (S, 0) + B(Sh,1). @)

Differentiating equation (18) with respect to B, we get

j(&—xj)

D% -2ty o pos k5 oy x) e
j=1

For the least value of 3, we have

"y, ot Bix —x,))K(

j=1

0 x)) - )
This implies that

> (Ao, =225
J:

i=1

ij(xi—xj)

+BZK(X' - 'J(x x; )

= a(Sn,1) + B(Sn 2)- 24

Solving equations (21) and (24) simultaneously by the elimination
method, we have

Sn,zz K(Xi;
i-1

% jyj = (S1.0)(Sn2)+ BSh1) (Sna), @s)
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SnlzK[

j(x X)) = (S +BS ) (Sna). (26)

Now, eliminating  from equations (25) and (26), we get

_ SMZ?J(K ij]Vi —%ZLK[& EXjJ(ﬁ = Xj)Y
oo (Sn0)(Sn2)— (S)?
I e T e SR

(Sn,O)(Sn,2)_(Sn,l)2
ZT [(Sn2 (XI_X)Shl)K[ XJY]
(Sn,O)(Sn,z)_(Sn,l)

e (S =06 = %)Sh 1) ( j
- | 27)
g(sn(,)(sng) (S 7 L n )

which is analogous to equation (14).

In a similar way, eliminating o from equations (24) and (25), we get

5 (Sho — (6 = x))S1) ( j
B= i (28)
é(snoxsnz) S, P L h )

where S (xj; h) = Zinzl(xi - X; ) K[%}, r=0,12.

In this section, the estimator B is determined using the set of data

provided. Therefore from equation (12), we have

Vi=a+(x-x)B (29)
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such that

o (%wpm—awpmm—mp>(m—mJ_
) gﬁ%ﬁpM%&pm—%mme h )Y

o (S ) = Six55 h) (5 - %4)) (Xi_ij |
" XJ)Z{%(Xj;h)Sz(XJ;h)—S(Xj?h)ZK e

ieS
= > w0G)yj + 05 = %)Y wW0)Yj, (30)
ieS ieS
where
_f%@pm—SUpmM—M»KV—MJ
(X)) = (€29)
) g NS g M-S0 L
and
(So(xj; h) = Si(xj; ) (% = X)) (Xi _XjJ
W(x;) = K . (32)
i) S(xj: Sy (xj; h) - S(x;: h)? h

3. Properties of the Local Linear Regression Estimator, m (X;)

In deriving the properties of the local linear regression estimator, we

need to make the following assumptions as in [22], namely,

(i) the X;j variables lie in the interval (0, 1),
(ii) the function m'(-) is bounded and continuous on (0, 1),

(iii) the kernel K(t) is symmetric and supported on (-1, 1). Also K(t) is

bounded and continuous satisfying the following:

K(x)dx =1, xK(x)dx = 0, X*K (x)dx > 0,
I I I

—00

Ji K2xdx < oo, dy = Ii K2(t)dt,
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(iv) the bandwidth h is a sequence of values which depend on the sample
size N and satisfying h — 0 and nh — o, as n — o,

(v) the point X; at which the estimation is taking place satisfies

h<xj <1-h

In [15] some conditions are imposed on K(-) which are used only for

convenience in terms of technical arguments and thus can be relaxed.

3.1. Expectation of thelocal linear regression estimator, M (X;)

Therefore, it follows from the definition of the estimator in equation (30)
that the expectation of M (x;) is

E(m (%)) = ZV\f.(Xj)E(yj)+ (% = X; )ZV\/.(XJ')E(YJ)

ieS ieS

_ Z{(Sh,z = Sy1(% = X)) K(Xi ;]XjJE(Yj)}

icS (31,0)(31,2)—(31,1)2

+(% =X )Z{ o =S ~%)) K(Xi ;]Xj JE(YJ' )} (33)

2
== 1 (Sn.0)(Sh2)—(Sh1)
Consider the Taylor series,

. )2
mx) = i)+ - x i)+ X

3 m'(xj) + -, 34

for the local linear regression procedure in a small neighbourhood of a point
Xi.
J

Theorem 3 in [15] is such that, under the conditions given in (i)-(v),

E(mL (%))

242
= Z{V\ﬂ (Xj)(m(Xj )+ htn’f(xj)+ hTtm”(xj)+ ]}

ieS
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2.2
+ (% = X; )Z {\N;(Xj){n(xj')-i- htm/(x; ) + hTtm"(xj )+ J}

ieS

(Sh,2)

}{(snwm(x,w(sm)m(xjw m<x,>+--}

{(Sn 0)(5n 2 (Sn D)

{(Sh )(Sh ) Sh )zH(Snl)m(x +(Sn2)M(X)) +—— m(xj)+..}
0 2 1

+{ (% = Xj)Sh1

(51.0)(Sn2)-(S, )QH(Snl)m(X )+ (Sh2)m(x) )+~
,0 ,2) 1

(Sn 2)

_{ (% = X})Sh1 m(xj)+--}

(Sn,0)(Sh2)— (S )2}{(310)”‘(X1)+(Sm)m( x; )42
,0)(5h,2) = (51

~ ((Sn.0)(Sn.2) = (Sn.1)*) + (% =% )((Sn,0)(Sn.1) = (Sn.0)(Sn1) _
- 2 rn(xj)
(Sn,0)(Sn,2)=(Sn1)

{«sn)(snz) (S01)(S.2)+ (5 = %))((Sn.0)(Sh,2) = (Sn.) >}m(x_)
(S00)(Sn2)—(Snp)? |

{«snz)z (Sn.1)(Sn.3)+ (% =% )((Sn.0)(Sn3) <sn1><sqz))}rrf(x,)
(Sn.0)(Sh2)- (Snl)

=m(x; )+ (% —X;)m(x;)

{«%)2—(311)(513))4& X )((Sn.0)(Sh.3) - (511)(5112))}
(Sh.0)(Sh.2) - (Sh1)?
m'(x;)
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3.2. The biasness of the local linear regression estimator, m (x;)

The bias of the estimator M (X; ) is expressed as

Bias(My( (x})) = (% — X;)m(x;)

. {((sn,z)z ~ (S (Sna)) + (% - x,-)((sn,o><sn,3>—<sn,1)<sn,z)>}
(Sw,o)(Sw,z)—(Sw,l)z
m'(x;)

x—. (36)

The asymptotic expression of the bias of m_L(Xj) may be obtained by

making the assumption that, X’s are fixed uniform design points in (0, 1)
[18, 13]. Therefore,

Z(XI _ Xj )| k(xl ;X] J _ nh|+1k| n 0(nh|+3), (37)

ieS
is almost surely uniform for xe (0,1) and he H, where H, =
[cn B, Cn 2] 0<E, <E <1, and C, C, > 0.
This implies that,

Svo =nh+o(nh’),  S,; =o(nh?), S, =nh’k, +o(nh’),

Sh3 = nh*k; + o(nh®) and Sha = nh’k, + o(nh’)
such that
(Sh,0)(Sh,2) — (Sy,1)7 = {nh+ o(nh? )} {nh’ky + o(nh®)} {o(nh*)}>

= n*h*k, + o(n’h®), (38)
(Sn2)” = (Sh.1)(Sh,3) = {nh’ky + o(nh?)}> — {o(nh*)} {nh*k; + o(nh®)}

= n*h®k3 + o(n*h®), (39)
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Sh,0Sh,3 ~ Sh,15h,2 = {nh-+ o(nh™)} {nh*ks + o(nh®)} ~ {o(nh)} {nh’k, + o(nh)}
= n’h’k; + o(n’h’), (40)
Biasasy (M (X))
= (% — xj)m(x;)

{n h'ks + o(n*h®) + (x — x;) (n*°ky + o(n*h” ) m'(x;)
2(n?h*k,y + o(n*h%))

h(hk2 + (% — X; )k )
(% - X)) + 2+m2£”3) . 41

3.3. Variance of thelocal linear regression estimator, My (X;j)

Var(m (%)) = Var{zwl(xj Wi + (% =X )Z W (X )Yi}

ieS ieS

= D e (x)a”(x) + (5 = )P D W (x)o” (%), (42)

ieS ieS
where
2
(Sn,2 — Sni(% = %)) ( J}
wi(x;) = ‘ (43)
09 = L%OX%z)(%o h
and

2

(Sn.o(% = X)) - sm( _Xj}

URES ‘ Ll (44)
)= {mxsm) (&P LD

The asymptotic expression of the variance of M| (X i ) is obtained as

W (x;)
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- . X
z{s“’zk(& hXJJ_S“’M ‘Xi)k[& = D(Sn,osn,z—(sn,l)z)-l}

. {L (53] (n’h'l, + o(nzhﬁn}2
oL he ) (n?htk, + o(n”h®))

1 2 X =% J
~ k , (45)
n*h? ( h

(Sh.0Sh1 = Sh.0Sh1)
(Sh.0Sn.2 = (S01)*)(Sh,0501 — Sn.oSh1)

(Sn,o(xi —Xj)k(xi ;ij—%,lk(xi ;Xj D}z

. { 1 k[& - X J (o(n2h%) + o(n?h’) — o(n2h’) — o(n2h7))}2
h (n*h*k, + o(n*h%))

Wllz(xj):{

~ 0. (46)

Varaw(mu_(xj )) = %Z kz(LhXJJGZ(XI )(XI _hxl—l)

ieS

+ (% =)D 0.5%(x)

ieS

- Z%cz(xj), (47)
jeR

where

di =jk2(t)dt.
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3.4. The M SE of thelocal linear regression estimator, m (x;)

Theorem 1 in [14] allows that under condition (ii) we have

MSE(M_L(X;))

= {Bias(m,( (x}))}* +Var (M (x}))

e xomit o[ (512" = S1103) 065 )(SnoShs = Snih.o) m(x,>
R (S10)(Sn2)~(Sn.1)

+ D W 0G)0”(4) + (4 = x))P D W (%)) 0 (). (48)

ieS ieS
The asymptotic expression of the mean square error is also obtained

using the asymptotic bias and asymptotic variance expressions of mLL(Xj)

such that,
h(hk2 + (% — x: )ks)m(x()]
Mseasy<m(x,~>>={m—xj>m<xj>+ ) (X’)}
+%02(xj). (49)

3.5. Unbiasedness and efficiency of the local linear regression estimator,

m (%)

The efficiency of an estimator refers to how much information it extracts
about the parameter of interest from the sample. A more efficient estimator
extracts more information, in some sense, from a sample of a given size.
Efficiency measures information extracted by the variance of an unbiased
estimator, that is, smaller variance means greater efficiency.

3.5.1. Introduction

An estimator is efficient if it is the minimum variance unbiased

estimator. Let Xi, ..., X,; be a random sample from some distribution which
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depends on a parameter T and let T = T(X|, ..., X;;) be an estimator of T.
Then T is an unbiased estimator of Tif E(T) =T, T is an asymptotically

unbiased estimator of T if lim,_,,, E(T) =T, T is an efficient estimator of

T if it is unbiased and its variance achieves the Cramer-Rao lower bound;
that is if

(50)

and the efficiency of an unbiased estimator T of T is the ratio of the Cramer-
Rao lower bound to the variance of the estimator; that is,

Eff (T) = 3;'((%) (51)

We remark that it must be true that Eff (T) < 1. The smaller the value of

the efficiency, the less efficient the estimator. Also T is an asymptotically
efficient estimator of T if it is unbiased or asymptotically unbiased such that
lim Eff(T)=1. (52)
n—oo
In what follows, we make variance comparisons between the Nadaraya-

Watson regression estimator [19] and the proposed local linear regression
estimator, in terms of their asymptotic relative efficiency.

3.5.2. Asymptotic relative efficiency

The relative efficiency of two procedures is the ratio of their efficiencies,
although often this concept is used where the comparison is made between a
given procedure and a notional best possible procedure. The efficiencies and
the relative efficiency of two procedures theoretically depend on the sample
size available for the given procedure, but it is often possible to use
the asymptotic relative efficiency, defined as the limit of the relative
efficiencies as the sample size grows, as the principal comparison measure.

If T, and T, are both unbiased estimators of T, then the relative

efficiency of T, to T, is given by
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Var (T, )
Var(Ty)

Eff (T, T) = (53)

If Eff(T;, T,) < 1, then T, has a smaller variance than T; and T; is less

efficient than T,.

If T, and T, are both unbiased or asymptotically unbiased estimators of

T, then the asymptotic relative efficiency of T; to T, is given by,

ARE(T, ) = lim Eff (T}, ) = lim v (T2) (54)
n—oo

n—o Var(T))
The mean regression functions, mM(x) for the Nadaraya-Watson

regression estimator and the proposed local linear regression estimator,

respectively, can be expressed as follows:

Mhw (X)) = D W (X)y;, (55)
i=1

m (xj) = Z\NI(Xj)yj + (% — X; )ZW{(XJ)YJ- (56)
ieS ieS

The variance of the Nadaraya-Watson regression estimator m(xj) is

given by [19],
Var (Mg (X)) = dyo”(x;)
, h2t2 "
+ Z{w;z(xj )[htcz (X)) + =50 (%)) + J} (57)
ies

The asymptotic expression for the variance of the Nadaraya-Watson

regression estimator My (X;) is estimated by [19],

_ d
Varasy (M (X)) = DK 0%(%;). (58)
jeR
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The variance of the local linear regression estimator mu_(xj) is given
by
= 2 2 2 2
Var (ML (%)) = D W (x))6(6) + (4 = %)) D w2 (x))a? (). (59)
ieS ieS
The asymptotic expression for the variance of the local linear regression

estimator M| (Xj) is estimated by

_ d¢ 2
Varag (M (%)) = Zn—lﬁﬁ (Xj)- (60)
jeR
Thus, the asymptotic relative efficiency of the Nadaraya-Watson
regression estimator to the proposed local linear regression estimator is given

by

d
Var(my () Djern® i)

Vargs, (Maw (X)) ZjeR%cz(Xj )

ARE (M (X)), M (X)) =

=1. (61)

4. Discussion

The main objective was to obtain a consistent robust estimator using the
procedure of local linear regression in model based surveys. The procedure is
based on locally fitting a line rather than a constant. Unlike kernel regression,
locally linear estimation would have no bias if the true model were linear.
The resulting local linear estimator has minimal asymptotic variance in

comparison with the Nadaraya-Watson estimator.

Asymptotically, there is no difference in the performance of the
Nadaraya-Watson regression estimator and the proposed local linear
regression estimator. The reason for this being that their ratio converges to 1
as N becomes large, see equation (61). Thus, the two estimators are

equivalently asymptotically efficient.
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