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Abstract 

A model based survey is employed to estimate the unknown values of 
the survey variable, using the local linear regression approach. In 
particular, a local linear regression estimator in model based surveys is 
studied. Variance comparisons are made between the derived estimator 
and the Nadaraya-Watson regression estimator which show that the 
two estimators are asymptotically equivalently efficient. 

1. Introduction 

In survey sampling, auxiliary information on a finite population is 
regularly used to increase the precision of estimators of the finite population 
total. In general modeling process, complete auxiliary information is 
incorporated in the construction of estimators through fitted values. 
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One approach to using this auxiliary information in estimation is to 
assume a working model ξ describing the relationship between the study 
variable of interest and the auxiliary variables. Estimators are then derived on 
the basis of this model. Estimators are sought which are efficient if the model 
is true, and which maintain desirable properties like design consistency if the 
model is false. Often, a linear model is selected as the working model, 
leading to the ratio and regression estimators [10], the best linear and 
unbiased estimators (BLUE) [3, 21], and the generalized regression 
estimators (GREG) [4]. 

Wu and Sitter [25] proposed a class of estimators for which the working 
models follow a nonlinear parametric shape. However, efficient use of any of 
these estimators requires a priori knowledge of the specific structure of the 
population. This becomes difficult if the working model is to be used for 
many variables of interest, a common occurrence in surveys. 

Nonparametric models can also be applied. These nonparametric models 
do not restrict the functional form of the distribution nor does it specify the 
various stochastic properties such as ( ) ( )⋅⋅ ξξ VE ,  and ( ).⋅ξMSE  They allow 

for more robust inference than that obtained in parametric approach [11, 7, 
6]. 

Nonparametric regression [19, 24] is such that estimation is frequently 
more flexible and robust than inference tied to probability distributions in 
design based inference or to parametric regression models in model based 
inference [11]. 

In [1], the traditional local polynomial regression estimator is used to 
estimate the unknown regression function ( ).xm  They assumed that ( )xm  is 

a smooth function and obtained an asymptotically unbiased and consistent 
estimator of the finite population total. The local polynomial regression 
estimator has the form of the generalized regression estimator, but is based 
on a nonparametric super population model applicable to a much larger class 
of functions. 
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In [2], a related nonparametric model-assisted regression estimator is 
considered, replacing local polynomial smoothing with penalized splines.       
In [17], the local polynomial nonparametric regression estimation is extended 
to the two stage sampling, in which a probability sample of clusters is 
selected, and then subsamples of elements within each selected cluster are 
obtained. In their simulation study, the estimators are linear combinations of 
estimators of cluster totals with weights that are calibrated to known control 
totals. 

In [16], the asymptotic properties of the model-assisted local linear 
estimator are studied under the combined inference approach. It is shown that 
the bias of the estimator, ( )⋅m̂  is the same as in the identically independent 

distribution (iid) case but the variance equaled that from the iid case 
multiplied by a correction factor derived from the sampling scheme. In [23], 
the local polynomial fitting to a linear heteroscedastic regression mode is 
extended. Estimation of the finite population total in the presence of two 
auxiliary variables using the bootstrap method and jackknife method is 
considered in [20]. A comparison between the different methods is 
performed on the basis of mean squared error (MSE), mean absolute error 
(MAE) and mean absolute percentage error (MAPE). 

The local linear regression procedure has potential advantages over other 
popular kernel based methods since it adapts well to bias problems at 
boundaries and in regions of high curvature. It can be tailored to work for 
many different distributional assumptions due to its simplicity. It does not 
require smoothness and regularity conditions. It is also asymptotically 
efficient among all linear smoothers including those produced by the kernel, 
orthogonal series and penalized spline methods [15, 14, 22]. In this paper, the 
local linear regression procedure is studied further leading to derivation of an 
asymptotically efficient estimator. 

2. Derivation of the Local Linear Regression Estimator, ( )jLL xm  

Consider a finite population P of size N labeled ....,,, 21 NUUU  The 
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pair ( ) Niyx ii ...,,2,1,, =  is associated with each unit. The values 

Nxxx ...,,, 21  are known and can be used in the sample design, or in the 

estimator, or in both. The selection variable set S denotes sample of size n 
from P, for which y values are unknown. S is an ignorable set, that is given 
information on x, knowledge of how the sample was taken provides no 
additional information about y [11]. Let yT  be the finite population total of 

interest. The estimate of the population total is given by, 

∑ ∑ ∑
= ∈ ∈

+==
N

i Si Ri
iiiy yyYT

1
,  (1) 

where ∑∈Si iy  is known while ∑∈Ri iy  is unknown such that R is an 

indexing set for the y-values which are unknown to the investigator. 

Let 

( ) ( ) .iiii XXmY εσ+=  (2) 

Such that 

( )iii xXYE =  

( ),ixm=  

( ) ( ),2
iiii xxXYVar σ==  

( ) ,,0,, jixXxXYYCov jjiiji ≠===  

....,,3,2,1,...,,3,2,1 NjNi ==  (3) 

The functions ( )ixm  and ( )ix2σ  are assumed to be smooth and strictly 

positive. 

The estimator we propose is motivated by modeling the finite population 
of ,’ syi  conditioned on the auxiliary variable iX  as a realization from an 

infinite super population, ξ, in which 

( ) ( ) ,iiii XXmY εσ+=  (4) 
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where iε  are independent random variables, with mean zero and variance 

( ).ixv  Further, ( )ixm  is a smooth function of ,ix  and ( )ixv  is smooth and 

strictly positive. 

Given ,ix  then ( ) ( )ii YExm ξ=  is referred to as the regression function, 

while ( ) ( )ii Yxv ξ= var  is referred to as the variance function. The estimators 

of T are derived by noting that, 

∑ ∑
∈ ∈ ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=

Si Ri
ii YEyT  

( )∑ ∑
∈ ∈

+=
Si Ri

ii xmy .  (5) 

The optimal predictor of this unknown quantity is given by 

( )∑∑
∈∈

=
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

Ri
i

Ri
i xmYE .  (6) 

However, ( )ixm  is unknown. We estimate ( )ixm  using the local linear 

procedure and then substitute it in equation (6) in order to get a local linear 
regression estimator of the finite population total given by 

( )∑ ∑
∈ ∈

+=
Si Ri

iLLiLL xmyT ,  (7) 

where ( )iLL xm  is a local linear regression estimator of ( )ixm  at point .ix  

Letting jx  be any point in the non-sample, and as in [11], let 

( )∑ ∑
∈ ∈

+=
Si Rj

jLLiLL xmYT .  (8) 

This defines an estimator of the finite population total, where ( )jLL xm  

is a local linear regression estimator of ( )jxm  at point .jx  
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Consider the regression model given in equation (2), 

( ) ( ),iiii xmxXYE ==  

( ) ( )
⎩
⎨
⎧

±∈
≠
=σ=== .

,,0
,,,,

2
hxx

ji
jixxXxXYYCov ji

i
jjiiji  (9) 

But by the Taylor series expansion, ( )ixm  is expressed as 

( ) ( ) ( ) ( ) ( ) ( ) ,32

3322
+′′′+′′+′+=+= jjjjji xmthxmthxmhtxmhtxmxm  (10) 

( ) ( ) ( ) ( )
( )

( )j
ji

jjiji xm
xx

xmxxxmxm ′′
−

+′−+= !2

2
 

( )
( ) .!3

3

j
ji xm

xx
′′′

−
+  (11) 

The Taylor series expansion is written in a general form expressed as 

( ) ,ijii xxy ε+β−+α=  (12) 

where ix  lies in the interval [ ]hxhx jj +− ,  and 

( )
( )

( )
( ) .!3!2

32
+′′′

−
+′′

−
=ε j

ji
j

ji
i xm

xx
xm

xx
 

Therefore, the task of estimating ( )xm  is equivalent to a local linear 

regression task of estimating the intercept α. Now, if we consider a weighted 
local linear regression, we find α and β in order to minimize 

( ( ))∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−β−α−

n

j

ji
jij h

xx
Kxxy

1

2 ,  (13) 

to obtain least squares estimators of α and β. 

Equation (13) is a weighted least squares problem where the weights are 

given by the kernel functions .⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
h

xx
K ji  The function ( )⋅K  is a 
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symmetric probability density used in defining the estimator. The notation 
used here emphasizes the fact that the local linear regression is a weighted 
regression using data centered around .jx  

Let α  and β  be the solutions to the weighted least square problem in 

equation (13). Then some mathematical analyses yield the following: 

,

1

1

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=α
∑
∑

=

=
n
j j

n
j jj

w

yw
 (14) 

where jw  is defined in equation (16). We therefore define the local linear 

regression estimator by 

( ) ,

1

1

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=α=
∑
∑

=

=
n
j j

n
j jj

LL
w

yw
xm  (15) 

where 

( ( ) )1,2, njin
ji

j SxxSh
xx

Kw −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=  (16) 

and 

( )∑
=

=−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

n

j

r
ji

ji
rn rxxh

xx
KS

1
, .2,1,  (17) 

We determine results in equations (16) and (17) as follows; by letting, 

( ( ))∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−β−α−=

n

j

ji
jij h

xx
KxxyQ

1

2 .  (18) 

Differentiating equation (18) with respect to α, we get, 

( ( ))∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−β−α−−=

α∂
∂

n

j

ji
jij h

xx
KxxyQ

1
.2  (19) 
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For the least value of α, we have 

( ( ))∑
=

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−β−α−

n

j

ji
jij h

xx
Kxxy

1
.0  (20) 

This implies that, 

( )∑ ∑ ∑
= = =

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
β+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
α=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −n

j

n

j

n

j
ji

jiji
j

ji xxh
xx

Kh
xx

Kyh
xx

K
1 1 1

 

 ( ) ( ).1,0, nn SS β+α=  (21) 

Differentiating equation (18) with respect to β, we get 

( ( )) ( )∑
=

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−β−α−−=

β∂
∂

n

j
ji

ji
jij xxh

xx
KxxyQ

1
.2  (22) 

For the least value of β, we have 

( ( )) ( )∑
=

=−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−β−α−

n

j
ji

ji
jij xxh

xx
Kxxy

1
.0  (23) 

This implies that 

( ) ( )∑ ∑
= =

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
α=−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −n

j

n

j
ji

ji
jji

ji xxh
xx

Kyxxh
xx

K
1 1

 

( )∑
=

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
β+

n

j
ji

ji xxh
xx

K
1

2  

( ) ( ).2,1, nn SS β+α=  (24) 

Solving equations (21) and (24) simultaneously by the elimination 
method, we have 

( ) ( ) ( ) ( ),
1

2,1,2,0,2, ∑
=

β+α=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −n

j
nnnnj

ji
n SSSSyh

xx
KS  (25) 
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( ) ( ) ( ) ( )∑
=

β+α=−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −n

j
nnnjji

ji
n SSSyxxh

xx
KS

1
2,1,

2
1,1, .  (26) 

Now, eliminating β from equations (25) and (26), we get 

( )

( ) ( ) ( )21,2,0,

1 11,2,

nnn

n
j

n
j jji

ji
nj

ji
n

SSS

yxxh
xx

KSyh
xx

kS

−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −

=α
∑ ∑= =

 

( )

( ) ( ) ( )21,2,0,

1 1,2,

nnn

n
j jji

ji
nj

ji
n

SSS

yxxh
xx

KSyh
xx

kS

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −

=
∑ =

 

( ( ) )

( ) ( ) ( )21,2,0,

1 1,2,

nnn

n
j j

ji
njin

SSS

yh
xx

KSxxS

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−−

=
∑ =

 

( ( ) )

( ) ( ) ( )∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

−

−−
=

n

j
j

ji

nnn

njin yh
xx

K
SSS

SxxS

1
2

1,2,0,

1,2,  (27) 

which is analogous to equation (14). 

In a similar way, eliminating α from equations (24) and (25), we get 

( ( ) )

( ) ( ) ( )∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

−

−−
=β

n

j
j

ji

nnn

njin yh
xx

K
SSS

SxxS

1
2

1,2,0,

1,0, ,  (28) 

where ( ) ( )∑ = =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−= n

i
jir

jijr rh
xx

KxxhxS 1 .2,1,0,;  

In this section, the estimator β  is determined using the set of data 

provided. Therefore from equation (12), we have 

( )β−+α= jii xxy  (29) 
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such that 

( )
( ( ) ( ) ( ))

( ) ( ) ( )∑
∈ ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

−

−−
=

Si
j

ji

jjj

jijj
jLL yh

xx
K

hxShxShxS

xxhxShxS
xm 2

120

12

;;;

;;
 

( )
( ( ) ( ) ( ))

( ) ( ) ( )∑
∈ ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

−

−−
−+

Si
j

ji

jjj

jijj
ji yh

xx
K

hxShxShxS

xxhxShxS
xx 2

120

10

;;;

;;
 

( ) ( ) ( )∑ ∑
∈ ∈

′−+=
Si Si

jjijijji yxwxxyxw ,  (30) 

where 

( )
( ( ) ( ) ( ))

( ) ( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

−

−−
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xxhxShxS
xw ji

jjj

jijj
ji 2

120

12

;;;

;;
 (31) 

and 

( )
( ( ) ( ) ( ))

( ) ( ) ( )
.

;;;

;;
2
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⎜⎜
⎝

⎛ −

−
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=′

h
xx

K
hxShxShxS

xxhxShxS
xw ji

jjj

jijj
ji  (32) 

3. Properties of the Local Linear Regression Estimator, ( )jLL xm  

In deriving the properties of the local linear regression estimator, we 
need to make the following assumptions as in [22], namely, 

  (i) the jx  variables lie in the interval (0, 1), 

 (ii) the function ( )⋅′′m  is bounded and continuous on (0, 1), 

(iii) the kernel ( )tK  is symmetric and supported on (–1, 1). Also ( )tK  is 
bounded and continuous satisfying the following: 

( ) ( ) ( )∫ ∫ ∫
∞

∞−

∞

∞−

∞

∞−
>== ,0,0,1 2 dxxKxdxxxKdxxK  

( ) ,, 22∫ ∫
∞

∞−

∞

∞−
=∞< dttKdxdxK k  



On Local Linear Regression Estimation in Sampling Surveys 301 

(iv) the bandwidth h is a sequence of values which depend on the sample 
size n and satisfying 0→h  and ,∞→nh  as ,∞→n  

(v) the point jx  at which the estimation is taking place satisfies 

.1 hxh j −<<  

In [15] some conditions are imposed on ( )⋅K  which are used only for 

convenience in terms of technical arguments and thus can be relaxed. 

3.1. Expectation of the local linear regression estimator, ( )jLL xm  

Therefore, it follows from the definition of the estimator in equation (30) 
that the expectation of ( )jLL xm  is 

( ( )) ( ) ( ) ( ) ( ) ( )∑ ∑
∈ ∈

′−+=
Si Si

jjijijjijLL yExwxxyExwxmE  

( ( ))

( ) ( ) ( )
( )∑

∈ ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

−

−−
=

Si
j

ji

nnn

jinn yEh
xx

K
SSS

xxSS
2

1,2,0,

1,2,  
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⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
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−+

Si
j
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SSS
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Consider the Taylor series, 

( ) ( ) ( ) ( )
( )

( ) ,!2

2
+′′

−
+′−+= j

ji
jjiji xm

xx
xmxxxmxm  (34) 

for the local linear regression procedure in a small neighbourhood of a point 
.jx  

Theorem 3 in [15] is such that, under the conditions given in (i)-(v), 

( ( ))jLL xmE  
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⎬
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⎨
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22
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3.2. The biasness of the local linear regression estimator, ( )jLL xm  

The bias of the estimator ( )jLL xm  is expressed as 

( ( )) ( ) ( )jjijLL xmxxxmBias ′−=  

(( ) ( ) ( )) ( ) (( ) ( ) ( ) ( ))

( ) ( ) ( ) ⎪⎭
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⎬
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nnnnjinnn
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( )
.2

jxm ′′
×  (36) 

The asymptotic expression of the bias of ( )jLL xm  may be obtained by 

making the assumption that, s’ix  are fixed uniform design points in (0, 1) 

[18, 13]. Therefore, 

( ) ( )∑
∈

++ +=⎟⎟
⎠

⎞
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⎝

⎛ −
−

Si

l
l

ljil
ji nhoknhh

xx
kxx ,31  (37) 

is almost surely uniform for ( )1,0∈x  and ,nHh ∈  where =nH  

[ ] ,10,, 1221 21 <<<−− EEnCnC EE  and .0, 21 >CC  

This implies that, 

( ) ( ) ( ),,, 5
2

3
2,

4
1,

3
0, nhoknhSnhoSnhonhS nnn +==+=  

( )6
3

4
3, nhoknhSn +=   and  ( )7

4
5

4, nhoknhSn +=  

such that 

( ) ( ) ( ) { ( )}{ ( )}{ ( )}245
2

332
1,2,0, nhonhoknhnhonhSSS nnn ++=−  

( ),62
2

42 hnokhn +=  (38) 

( ) ( ) ( ) { ( )} { ( )}{ ( )}6
3

4425
2

3
3,1,

2
2, nhoknhnhonhoknhSSS nnn +−+=−  

( ),822
2

62 hnokhn +=  (39) 
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{ ( )}{ ( )} { ( )}{ ( )}5
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3.3. Variance of the local linear regression estimator, ( )jLL xm  
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The asymptotic expression of the variance of ( )jLL xm  is obtained as 

( )ji xw2  
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where  

( )∫= .2 dttkdk  
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3.4. The MSE of the local linear regression estimator, ( )jLL xm  

Theorem 1 in [14] allows that under condition (ii) we have 

 ( ( ))jLL xmMSE  

{ ( ( ))} ( ( ))jLLjLL xmVarxmBias += 2  
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Si Si

ijijiiji xxwxxxxw .22222  (48) 

The asymptotic expression of the mean square error is also obtained 
using the asymptotic bias and asymptotic variance expressions of ( )jLL xm  

such that, 

( ( )) ( ) ( )
( ( ) ) ( )

2
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2
2
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⎪
⎬
⎫
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⎨
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+′−= k
xmkxxhkh

xmxxxmMSE jji
jjijLLasy  

( ).2
j

k xnh
d

σ+  (49) 

3.5. Unbiasedness and efficiency of the local linear regression estimator, 
( )jLL xm  

The efficiency of an estimator refers to how much information it extracts 
about the parameter of interest from the sample. A more efficient estimator 
extracts more information, in some sense, from a sample of a given size. 
Efficiency measures information extracted by the variance of an unbiased 
estimator, that is, smaller variance means greater efficiency. 

3.5.1. Introduction 

An estimator is efficient if it is the minimum variance unbiased 
estimator. Let nXX ...,,1  be a random sample from some distribution which 
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depends on a parameter T and let ( )nXXTT ...,,1=  be an estimator of T. 

Then T  is an unbiased estimator of T if ( ) TTTE ,=  is an asymptotically 

unbiased estimator of T if ( ) TTTEn ,lim =∞→  is an efficient estimator of 

T if it is unbiased and its variance achieves the Cramer-Rao lower bound; 
that is if 

( ) ( ) ,1
TnITVar =  (50) 

and the efficiency of an unbiased estimator T  of T is the ratio of the Cramer-
Rao lower bound to the variance of the estimator; that is, 

( ) ( )
( )

.1
TVar
TnITEff =  (51) 

We remark that it must be true that ( ) .1≤TEff  The smaller the value of 

the efficiency, the less efficient the estimator. Also T  is an asymptotically 
efficient estimator of T if it is unbiased or asymptotically unbiased such that 

( ) .1lim =
∞→

TEff
n

 (52) 

In what follows, we make variance comparisons between the Nadaraya-
Watson regression estimator [19] and the proposed local linear regression 
estimator, in terms of their asymptotic relative efficiency. 

3.5.2. Asymptotic relative efficiency 

The relative efficiency of two procedures is the ratio of their efficiencies, 
although often this concept is used where the comparison is made between a 
given procedure and a notional best possible procedure. The efficiencies and 
the relative efficiency of two procedures theoretically depend on the sample 
size available for the given procedure, but it is often possible to use 
the asymptotic relative efficiency, defined as the limit of the relative 
efficiencies as the sample size grows, as the principal comparison measure. 

If 1T  and 2T  are both unbiased estimators of T, then the relative 

efficiency of 1T  to 2T  is given by 
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( ) ( )
( )

.,
1

2
21 TVar

TVarTTEff =  (53) 

If ( ) ,1, 21 <TTEff  then 2T  has a smaller variance than 1T  and 1T  is less 

efficient than .2T  

If 1T  and 2T  are both unbiased or asymptotically unbiased estimators of 

T, then the asymptotic relative efficiency of 1T  to 2T  is given by, 

( ) ( ) ( )
( )

.lim,lim,
1

2
2121 TVar

TVarTTEffTTARE
nn ∞→∞→

==  (54) 

The mean regression functions, ( )xm  for the Nadaraya-Watson 

regression estimator and the proposed local linear regression estimator, 
respectively, can be expressed as follows: 

( ) ( )∑
=

=
n

i
iijNW yxwxm

1
,  (55) 

( ) ( ) ( ) ( )∑ ∑
∈ ∈

′−+=
Si Si

jjijijjijLL yxwxxyxwxm .  (56) 

The variance of the Nadaraya-Watson regression estimator ( )jxm  is 

given by [19], 

( ( )) ( )jkjNW xdxmVar 2σ=  

( ) ( ) ( )∑
∈
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⎭
⎬
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⎩
⎨
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⎞
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2
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The asymptotic expression for the variance of the Nadaraya-Watson 
regression estimator ( )jNW xm  is estimated by [19], 

( ( )) ( )∑
∈

σ≈
Rj

j
k

jNWasy xnh
dxmVar .2  (58) 
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The variance of the local linear regression estimator ( )jLL xm  is given 

by 

( ( )) ( ) ( ) ( ) ( ) ( )∑ ∑
∈ ∈

σ′−+σ=
Si Si

ijijiijijLL xxwxxxxwxmVar .22222  (59) 

The asymptotic expression for the variance of the local linear regression 
estimator ( )jLL xm  is estimated by 

( ( )) ( )∑
∈

σ=
Rj

j
k

jLLasy xnh
dxmVar .2  (60) 

Thus, the asymptotic relative efficiency of the Nadaraya-Watson 
regression estimator to the proposed local linear regression estimator is given 
by 

( ( ) ( ))
( ( ))
( ( ))

( )

( )
.1,

2

2

=
σ

σ
==

∑
∑

∈

∈

Rj j
k

Rj j
k

jNWasy

jLL
jLLjNW

xnh
d

xnh
d

xmVar
xmVar

xmxmARE  (61) 

4. Discussion 

The main objective was to obtain a consistent robust estimator using the 
procedure of local linear regression in model based surveys. The procedure is 
based on locally fitting a line rather than a constant. Unlike kernel regression, 
locally linear estimation would have no bias if the true model were linear. 
The resulting local linear estimator has minimal asymptotic variance in 
comparison with the Nadaraya-Watson estimator. 

Asymptotically, there is no difference in the performance of the 
Nadaraya-Watson regression estimator and the proposed local linear 
regression estimator. The reason for this being that their ratio converges to 1 
as n becomes large, see equation (61). Thus, the two estimators are 
equivalently asymptotically efficient. 
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