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Abstract 

Detection of structural change in volatility of a time series is very important for understanding 

volatility dynamics and the stylized facts observed in financial time series. By applying the 

Nadaraya Watson kernel estimator of the mean function, estimated residuals are obtained. In this 

work, a Kolmogorov Smirnov type test statistic for change point estimation is developed and 

applied to conditional variances obtained from the squared residuals. The consistency of the 

change point estimator is shown through simulations. The developed estimator is then applied to 

KES/USD exchange rate data set to estimate a single change point. 
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Section 1: INTRODUCTION 

When doing change point analysis, the major point of interest is to decide if the observations follow 

one model or if there is at least one time point when the model is believed to have changed. This 

therefore results in two sub-fields of change point analysis; change point detection and change 

point estimation. Change point analysis normally assumes that it is possible to segment the data 

into regimes and that the data structure is homogeneous within each regime. Of importance is that 

the change is assumed to be abrupt (as though each occurs completely between two observations) 

and not gradual or smooth. Although in many settings multiple change-points could be of 

paramount interest, we shall only seek to detect change point through the assumption of At Most 

One change point approach. Change point analysis can be performed in either the offline setting 

or online setting or by estimating single change point versus multiple change point among other 

scenarios. We define change point detection as the problem of finding abrupt changes in data when 

a property of the time series changes. For each observed time series, the instant where these 

structural changes occur are called change points. The time moment when the model has changed 

is called change point. Other synonyms for change point include but not limited to segmentation, 

structural breaks, break points, regime switching, and detecting disorder. Unlike change point 

detection, change point estimation tries to model and interpret known changes in the time series 

rather than identifying that a change has occurred. Change point estimation (estimates) focus on 

describing the nature and degree of the known change. Change points can be found in a wide range 

of literature including quality control, economics, medicine, environment, and even linguistics. 

Detection of large "homogeneous" segments of data enables one to identify "hidden" regularities 

in a time series behavior and to create a mathematical model for each segment of homogeneity. 

One choses change point with the intention of maximizing the separation between two 

segmentation. Thus, the goal of change point detection and estimation is to recover these segments 

as accurately as possible. 

Subsection 1.1: Statement of the problem 

A good change point estimation method in conditional variance (volatility) should be sensitive to 

the skewness of the observations (which does not happen when ranking is done) e.g. when dealing 

with financial data. With returns, there are times of uniquely high returns and others of uniquely 

low returns and thus rank bases test statistics makes the data robust to outliers. This is because, by 
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ranking the observations, there is mitigation of the impact of extremely high or low returns 

(outliers). Reason being that regardless of how extreme an outlier is, it often receives the same 

rank as if it were slightly larger than the second largest observation. This is because all ranks are 

equally far apart from each other violating the stylized facts of returns. Hence, we adopt a non-

ranking method of the observations. Thus, we aim to propose a theory of estimating the change 

point in volatility of a financial time series with USD/KES exchange rate dataset application in 

mind. In this work, the regression function (conditional mean function) and the conditional 

variance function are unknown hence we impose few or no restrictions to our data set. The 

inference based on non-parametric models is usually robust against misspecification of the 

underlying regression model and thus non-parametric models effectively avoid the problem of 

misspecification normally found in parametric approaches, which may yield inconsistent 

estimators. We thus take a non-parametric approach for our results to be robust with respect to 

model specifications. 

Section 2: LITERATURE REVIEW 
 

The first published article concerning change points analysis was done by  (Page, 1954) who 

considered testing for a potential single change point for data from a common parametric 

distribution motivated by a quality control setting in manufacturing. Since then, change point 

analysis has developed rapidly with considerations on either multiple change point detection and 

estimation, different types of data and other assumptions being put into consideration. 

(Chen G. a., 2005) proposed a procedure that was able to combine the least squares approach which 

does not require specific forms of the marginal or the transitional density functions (i.e the 

regression and conditional variance functions) to estimate the change points in the conditional 

variance {volatility} of a non-parametric model of time series in which the regression and the 

conditional variance were unknown. Further, the asymptotic properties of the estimators and test 

statistics were established. The location of the change point(s) was not been specified a priori like 

some other studies from previous scholars had assumed. Finally, the proposed test was consistent 

and more powerful than the non-parametric ones already existing tests in literature. Finally, the 

practicality of the methods was by application to the Hong Kong stock market index (HSI) series. 
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Change point analysis by (Gichuhi, 2008) in Bernoulli random variables based on neural networks 

motivated by a regression setting was the focus of the researcher. The parameters of the model 

were estimated using neural network method with the evidence that parameter estimates were only 

identifiable up to a given family of transformations and further derived the consistency and 

asymptotic normality of the network parameter estimates. A neural network based likelihood ratio 

test statistic to detect a change point in a given set of data was determined. The limiting distribution 

of the change point estimator was established. The results showed that the sample size, change 

point location and the size of change had an influence on change point detection. Through 

simulation, percentile bootstrap method showed superiority to profile log-likelihood ratio method 

in determining the change point confidence intervals. 

Modeling of financial volatility in the presence of abrupt changes is a research done by (Ross, 

2013) where the author incorporated the ICSS GARCH algorithm to detect changes in volatility 

of financial returns. Although the algorithm was simple to implement, its parameters were based 

on the assumption of the financial returns following a Gaussian distribution and thus can produce 

very many spurious jump points if this assumption is violated. By applying ICSS to heavy tailed 

series, poor results were found since extreme observations were misinterpreted as regime shifts. 

This indicated that the ICSS algorithm was only applicable to detect change points to weekly 

returns and using the algorithm to daily returns could generate too many spurious false positives 

for it to be useful because of the number of extreme values. Thus, due to this problem of ICSS 

GARCH algorithm, the author replaced the ICSS segmentation step with a technique which was 

purely based on non-parametric statistics which makes no assumptions on the true returns 

distribution and which in turn allows one to ignore the Gaussian assumptions and allows for its 

deployment on the daily returns which he coined NPCPM-GARCH. The author further analyzes 

several stock indices for change points in volatility mainly the Dow Jones Industrial Average, the 

German DAX, the VIX volatility index and the Japanese Nikkei 225. He further compared his 

results with those obtained from ICSS GARCH and found that his method gave a better fit to the 

data sets when measured using a standard criteria i.e at the same level of significance. The research 

showed that the ICSS algorithm was not able to ignore the assumption of Gaussian, which 

contradicted with the stylized facts of returns leading to the detection of very many change points 

some of which did not correspond to genuine long-term changes in volatility (false positives). This 
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prompted the researcher to adopt the Mood test statistic in a sequential setting and which was 

found to work and detect true change points with non-Gaussian data. 

Section 3: NON-PARAMETRIC TIME SERIES MODELLING 

For a given time series ��; � = 1,2, … 
 non-parametric methods are used to analyze the features 

of interest. Conditional variances or conditional quartiles are required if interval forecasts or 

estimates of future volatility are desired as shall be necessary in this work. Suppose we let �� =
log ( ������) be the return process in period � for � = 1,2, … 
 and ����, ����, … , ���� be the return 

processes at any time periods less than �, �� is the price process of the stock in period � for � =
1,2, … 
. We assume that there is a non-parametric and non-linear relationship between the current 

return values and the previous return values, modeled by a non-parametric autoregressive process 

of this form 

�� = �(����, ����, … , ����) + ��          � = 1,2, … , 
                                (1) 

where ��  a series of innovations (random shocks) which is independent of  ����, … , ���� 

satisfying 

�(��|����, ����, … , ����) = 0       (2) 

�(. )  is the conditional mean (smooth) function in period �  given past time periods 

����, ����, … , ���� and it is the minimum mean squared error (MSE) 1-step predictor of ��. The 

approximation precision of �(. ), increases with the sample size. Since in many situations point 

forecasting is too limited an objective, and the future volatility and higher order moments are of 

interest in addition to the conditional mean, we therefore let the following representation of the 

innovations �� to hold  

�� = !(����, ����, … , ����)"�                                                                     (3) 

and thus extend equation 1 above to a more general non-parametric conditional heteroskedastic 

model as in equation 4 below  

�� = �(����, ����, … , ����) + !(����, ����, … , ����)"�                                             (4) 



6 

 

�(��|���� = %�, ���� = %�, … , ���� = %�) = �(%���, %���, … , %���)  is the non-linear 

autoregressive conditional mean (smooth) function of the returns. 

Variance (��|���� = %�, ���� = %�, … , ���� = %�) = !�(%���, %���, … , %���)  is the non-linear 

autoregressive conditional variance (smooth) function of the returns, 

"� is an independent and identically distributed sequence of random variables with   

    �("�|����, … , ����) = 0 , 
Variance ("�|����, … , ����) = 1 

and independent of ����, ����, … , ����  

Equation 4 above is a non-parametric autoregressive conditional heteroscedastic model and is the 

most flexible non-parametric time series model because it does not impose any (parametric) 

particular form on the conditional mean and conditional variance functions. Due to curse of 

dimensionality problem, where by as the dimension &  grows, statistical and computational 

inefficiency comes in, we set & = 1 so that equation 4 above becomes   

�� = �(����) + !(����)"�                                                                                  (5) 

Estimates of the functions �(%) and !�(%) are obtained by applying the Nadaraya Watson 

estimator of the unknown regression function (conditional mean at the evaluation points) and its 

properties such that 

�( )(%) = ∑ +)�,� -.����/
01 2 ��

∑ +)�,� -.����/
01 2                                                    (6) 

!4)�(%) = ∑ + -.����/
01 2 5�� − �((����)7�)�

∑ + -.����/
01 2)�,�

                                                         (7) 

Under some assumptions, it can be shown that �( )(%)  is a consistent estimator of �(%) . 

+(. ): ℝ → ℝ is a kernel function, which is continuous, symmetric, integrating to one with bounded 

support [−1,1] in that the estimator only uses the observations in the interval (% − >/, % + >/) and 

>/ is the bandwidth parameter or the tuning parameter. The bandwidth (smoothing parameter) 
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controls the level of neighboring such that for a given kernel function +  and a fixed  %  , 

observations (����, ��) with ���� far from % are given more weights as  >/ increases.This means 

that the larger the bandwidth is chosen, the less the mean function �( )(%)  is changing with % . 

Therefore, we can conclude that the degree of smoothness of the conditional mean function 

increases with the bandwidth. Therefore, it means that a weighted average of the observations is 

used as an estimator for the conditional mean function . 
The Nadaraya Watson kernel regression estimator was first proposed independently by (Nadaraya, 

1964) and (Watson, 1964) 

The estimators of the mean function and conditional variance function have shown to be strongly 

consistent and asymptotically normal for ? mixing observations. In this research, utilize the 

Epanechnikov kernel since it is the most efficient in minimizing the Mean Integrated Squared error 

putting in mind that the choice of the kernel is not as important as the choice of the bandwidth (this 

does not mean we disregard the choice of the kernel). 

It is important to remember that when a kernel estimator is applied to dependent data, e.g. in 

financial time series returns data like in the case of this work, then it is affected only by the 

dependence among the observations in a small window and not by that between all data. This fact 

therefore reduces the dependence between the estimates so that most of the techniques developed 

for independent data are applicable as well. This is what we shall refer to as the Whitening by 

window principle. Also, the memory of the underlying process decreases with distance between 

events and that the rate of decay can be estimated by the mixing conditions some of which include 

the strong ? mixing condition and the ɸ mixing condition as below 

i. ? (Strong) mixing condition. A sequence A��B  is said to be ? mixing if  

C�DE ∈ ℱ�HI ∈ ℱHJKL |D(E ∩ I) − D(E)D(I)| ≤ ?K   O = 1,2, … and ?K → 0 as P → ∞ and 

ℱRS
 is the ! −field generated by �R, … , �S 

ii. ɸ (Uniformly) mixing condition. This is a stronger condition which establishes that a 

sequence A��B  is said to be ɸ mixing if 

|D(E ∩ I) − D(E)D(I)| ≤ ɸK D(E) for any E ∈ ℱ�Hand I ∈ ℱHJKL  and ɸK →0 as P → ∞. 

For more on this, visit (Robinson, 1983). 
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The mixing conditions above control the dependency between �R and �Sas the time distance T − U 

increases. The rate at which ?K and ɸK goes to zero plays a noble role in showing the asymptotic 

properties of the non-parametric smoothing procedure. These conditions are usually difficult to 

check but if the process follows a stationary Markov chain, then geometric ergodicity imply 

absolute regularity, which in turn implies strong mixing conditions. Proposition 6 in subsection 

2.4.2.3 of (Doukhan, 2012) give conditions on �, ! and the innovations that imply geometric 

ergodicity of A��B. This implies strong mixing properties with exponential mixing rates. 

Equation 5 can generate heavy tailed distributions and we demonstrate this by considering a simple 

model  

                  �� = !(����)"�                                                                                                      (8) 

with  "� having a standard normal distribution. By Jensen’s inequality (Pishro-Nik, 2016), 

Kurtosis (��) = �(.�W)
[�5.�X7]X = �[YW(.���)Z�W]

[�5YX(.���)Z�X7]X = 3 �[YW(.���)]
[�5YX(.���)7X] ≥ 3                                                      (9) 

  

This heavy tailed-ness feature implied by equation 5 makes it a successful mode for modelling 

data, which exhibit heavy tails e.g. financial time series data of returns. It is important to note that 

non-parametric time series approach has been highly appreciated by practitioners as a preliminary 

search method aimed at establishing the final parametric model. 

Subsection 3.1: Single change point test statistic 

In this section, we derive an estimator for change point in volatility of a non-parametric regression 

model for time series as shown in equation 5. Since we are in the off-line setting and only the 

conditional variance function that is changing with time, with the assumption that the conditional 

mean function is not changing with time, we shall formulate the change point problem as a 

hypothesis testing procedure of the following form 

]^: !��(����)  = !(�)� (����)         � = 1,2, … , 
                                      (10) 

While the at most one change point alternative is  
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]�: _ !��(����)  = !(�)� (����)   for � = 1,2, … , b  
!��(����)  = !(�)� (����)   for � = b + 1, … , 
                (11) 

We want to locate (estimate) the change point position b̂ and probably the number of change point 

(s) (Chen J. a., 2001). The regression function (conditional mean function) �(%), the conditional 

variance function !(�), the distribution of the covariate as well as the distribution of the errors is 

completely unknown and we have not made any parametric form for them meaning our approach 

is fully non-parametric.  

If we consider ]^ when we do not have a change point in volatility, we can rewrite equation 5  

�� = �(����) + !(����)"R       → ��� = A�� − �(����)B�  = !�(����)"��                  (12) 

� = 1,2, … , 
. 

Which in turn implies that the conditional variance function of d�. 

�A(�� − �(����)B� = !�(����)                                                                          (13) 

If we consider the alternative hypothesis,  ]� we can re-write the non-parametric model 3 with a 

single change point in volatility as  

     �� = �(����) + !�(����)"� →  ��� = A�� − �(����)B� = !��(����)"��                    (14) 

This means that under the alternative hypothesis,  

�A(�� − �(����)B� = !��(����)                                                                  (15) 

� = 1,2, … , b, b + 1, … , 
. 

In this work, we assume that the conditional mean function (regression function) is stable and does 

not change with time but the conditional variance function is not stable and that �("�|����) = 0, 
var("�|����) = 1  �("�)e < ∞ with  "� being a sequence of random variables.  

Suppose d� = .��g( (.���)
Y((.���) , � = 1,2, … , 
 . We are concerned with testing non-parametrically our 

hypothesis above by defining the partial sum of the squared residuals across all possible sample 

segments as shown in equation 16 below 



10 

 

d) = h d��
)

�,�
, di = h d��

i

�,�
,   diJ� = h d��

)

�,iJ�
                                        (16) 

Where 1 ≤ b ≤ 
  where !(�)� (����) and !(�)� (����)  for � = 1,2, … , 
 denotes the conditional 

variance functions of the sequence Ad��B�,�i  and Ad��B�,iJ�)  before change point instant and after the 

change point instant respectively. We propose a change point test statistic which is able to quantify 

the deviation between !(�)� (����)and !(�)� (����) written as jk(!(�)� (����) - !(�)� (����)) where for 

D ≥ 1 

jk5!(�)� (����)   − !(�)� (����)7 = lh mi|di − diJ�|k)

�,�
n

�o                                                  (17) 

Motivated by the jk norm and properties of jk space, the change point test statistic and change 

point estimator is constructed. We set D = 2 and work in j� norm. mi is a weight function, which 

is measurable and which depends on the sample size O and the change point position b . It gives 

the sensitivity of the test statistic against different alternatives in the sense of the position of 

change. The weight function is arbitrary chosen so that it satisfies the condition that  

h d��
)

�,�
= b
 h d��

)

�,�
→ 1
 lh d��

i

�,�
− b
 h d��

)

�,�
n = 0                                                     (18) 

Simple Algebra will help derive the Kolmogorov Smirnov type statistic for change point detection. 

The Kolmogorov Smirnov type statistic upon derivation becomes 

pi = qb
 -1 − b
2r
�X s1b h d�� − 1
 − b h d��

)

�,iJ�

i

�,�
s                                                          (19) 

The KS type test statistic above gives more weight to the observations at the tails of a distribution 

and hence it is an appropriate statistic for change point detection especially when handling 

financial time series data, which exhibit heavy tails. 
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   Subsection 3.2: Single change point estimator 
 

The KS type estimator of change point will be the point where the KS type test statistic has its 

global maximum. This is because, the global maximum will often occur at the area of true change 

point (The point where we have maximum distance between the conditional variances of the 

residuals). Hence, a good choice of the estimator for the time of change is as given in equation 20 

below as 

b̂ =Arg maxi |pi|                                                                                          (20) 

The estimate b̂ is the point at which there is maximal sample evidence for a break in the squared 

residual process. In the presence of a single break, we shall show, through simulation, that b̂ is a 

consistent estimator of the unknown change point b∗ .  

Section 4: APPLICATION OF THE KS TYPE ESTIMATOR 

 Consider the model below   

�� = �(����) + !(����)"�                                                                                                         (21)  
Suppose the model has a single change point in the volatility function defined as  

!(����) = _2 + 0.7d����                xyz � = 1,2, … , b                                                                               1 + 0.035d����      xyz � = b + 1, … , 
                                                               (22)  
�(%) → �� = 0.35���� + d� + 0.4d��� 

Where d� =  !(����)"�  and "�  is a sequence of independent and identically distributed random 

variables with mean zero and variance 1 assumed from a normal distribution. 

 

We thus create a table under different sample sizes with 1000 bootstrap samples in each. We fix 

the change point at �{ 
,  
�
� 
 and 

�
{ 
. In each simulation, the estimates of the change point highly 

depended on the locations of the change points and the sample size. The estimates were most 

accurate if b∗ was fixed around the middle of the sample. 

To demonstrate consistency of the change point estimator, the distance between an estimation and 

the true change point index is obtained, then normalized by the size of sample (Truong, 2018). 
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This error was found to be decreasing to zero as the size of the samples grew unbounded which 

further verified the asymptotic consistency of the change point estimator. Consistency results only 

deal with change point fractions and not the time indexes themselves. We investigate the 

consistency of the estimator when the change point is fixed at 
�
{ 
,  

�
� 
 and 

�
{ 
 . Note that we are 

losing two observations in each simulation due to curse of dimensionality problem. The results 

from table 1 below showed that the change point estimator b̂ was a consistent estimator of b∗. 

Table 1 : Table to demonstrate consistency of the change point estimator 

Sample 

size T  

True change 

point instant b∗ 

Estimated change 

point instant b̂ 

|b| − b∗|
 k→ 0 

50  �
{ 
 → b∗ =16 

12 
 → b∗ = 24 

23 
 → b∗ = 32 

14 

17 

20 

0.04167 

0.14583 

0.27083 

100 �
{ 
 → b∗=32 

12 
 → b∗ = 49 

23 
 → b∗ = 66 

26 

36 

48 

0.06122 

0.13265 

0.18367 

200 �
{ 
 → b∗=66 

12 
 → b∗ = 99 

23 
 → b∗ = 132 

53 

80 

107 

0.06566 

0.09596 

0.12626 

500 �
{ 
 → b∗=166 

12 
 → b∗ = 249 

23 
 → b∗ = 332 

149 

226 

309 

0.03414 

0.04619 

0.04619 

1000 �
{ 
 → b∗=332 

12 
 → b∗ = 499 

23 
 → b∗ = 668 

317 

484 

645 

0.00751 

0.01503 

0.01151 
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Section 4.2: Data analysis and results 

We apply the change point estimator to historical data set of USD/KES exchange rate data set from 

2 January 2013 to 18 March 2019 to estimate change point in the conditional variance function 

(volatility) of exchange rate returns. The data set consisted of 2444 daily observations and the plot 

of the exchange rates is as shown in figure 1 below 

 

Figure 1: USD /KSH exchange rate 

A plot of the returns is as shown in the figures 2 and 3 below 

 

Figure 2: Returns ����    Figure 3: Returns �� 
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A plot of the squared residuals is as shown in figure 4 below 

 

Figure 4: plot of the squared residuals 

A plot of the estimated conditional variances and residuals is as shown below 

 

Figure 5: Estimated conditional variances.   Figure 6: Estimated residuals. 

 

 

Figure 7: Returns with change point           Figure 8:  Returns with estimated change 

   at 551     points at 551 and 358



15 

 

From figure 2, we investigated the possibility of a single change point and were able to estimate it 

at point 551 corresponding to 13 February 2012. We also investigated the possibility of another 

change point by applying binary segmentation approach. Binary segmentation procedure allows 

for estimating the position of a single change point at each stage. The change point estimator is 

further applied to each sub-sequence of the returns. The next change point was estimated at point 

358, which corresponded to 17 May 2011 and was as shown in figure 8 above. 

The corresponding plots of the change point statistics at b̂=551 and b̂=358 were as shown in figures 

9 and 10 below respectively 

 

Figure 9: Change point statistic with estimated  Figure 10: Change point statistic with 

Change point at point 551 estimated change point at point 358. 

      

Subsection 4.3: Results and discussions 

From figure 1, there is an increasing trend between January 2010 and October 2011 where the 

exchange rate prices were at the peak. Afterwards, one observes a decreasing trend after which the 

exchange rates started to rise again. The historical events associated with the behavior of the 

exchange rate plot were established. In 2011, there was the August 2011 stock market fall (Kibiy, 

2016) because of price drop of stock prices in the stock exchanges across the major world markets 

in North America, Europe and Asia. The evidence from the seventh Bi-Annual Monetary Policy 

Committee Report issued by Central Bank of Kenya, in October 2011, can further support these 

results. A combination of both domestic and International economic developments during the six 
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months period to October 2011 determined the conduct of monetary policy for Central Bank of 

Kenya overall mandate of price stability. These developments hence resulted in an escalation of 

inflationary pressure and exchange rate volatility, hence distorting the economy's recovery from 

the adverse effects of the global financial crisis. The USD/KSH exchange rate depreciated from 

83.89 to 101.39 in the period April 2011 to October 2011. The depreciation of the shilling against 

US dollar could have been due to the buildup in the deficit in the current account. Current account 

is the gap between imports and exports of goods. This was because of a rise in imports of 

machinery and transport equipment, which are key inputs for the manufacturing sector required 

for the economic recovery process as well as the uncertainty in the global financial markets, caused 

by the debt crisis in the Eurozone. 

From figure 7, to account for the change point at 17 May 2011, the foreign exchange market 

witnessed significant volatility between May 2011 and October 2011 reflecting the general 

volatility in the global financial markets as well as increase in demand for foreign exchange to 

finance imports. The result was that the Kenyan Shilling just like other currencies in the region 

and other global markets therefore weakened substantially e.g. the Kenyan shilling against the US 

dollar depreciated from an average of 84.2 in March 2011 to 101.39 in October 2011 (20.42% in 

percentage depreciation). Other reasons attributed to the change point in volatility on 17 May 2011 

were high international food and fuel prices, the drought compounded by the conflict experienced 

in the Horn of Africa, the Euro crisis and major inefficiencies in Kenya’s agriculture sector.  

To account for the change point in 13 February 2012, in both Kenya and Uganda, the economies 

reported slow growth at the beginning of 2012 following high inflation and high commercial bank 

interest rates. 

Section 5: CONCLUSION AND RECOMMENDATIONS 
 

In this paper, we have proposed a procedure to estimate change point in volatility of a time series 

modelled using a non-parametric approach. This non-parametric modeling is important in finance 

and non-parametric estimators are very powerful in distinguishing among many models like 

derivative pricing models. We have demonstrated the consistency of the change point estimator 
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through simulations and seen that our estimator is consistent. One can easily extend the method to 

multidimensional non-parametric models (models of higher dimension) of the form 

  X~ = m(X~��, X~��, … , X~��) + σ(X~��, X~��, … , X~��)z~  where the regression function and the 

conditional variance functions should be estimated using multivariate kernel methods. m (.) , σ(. ) 

are multiple variable & functions, while at the same time being careful on how to deal with the 

curse of dimensionality problem which may lead to poor performance in higher dimensional 

regression problem since for & > 2, the subspace of ℝ�J� spanned by the data is rather empty. 
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