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THRESHOLD DETERMINATION FOR MAXIMUM PRODUCT OF SPACING 

METHODOLOGY WITH TIES FOR EXTREME EVENTS 

Peter G. Murage1, Joseph K Mung’atu2  and Evelyne Odero3 

Abstract 

Extreme events are defined as values of the event below or above a certain value called threshold.  

A well chosen threshold helps to identify the extreme levels.  Several methods have been used to 

determine threshold so as to analyze and model extreme events. Maximum Product of spacing is 

one of these methods.  However, there is a problem encountered while modeling data through this 

method in that the method breaks down when there is a tie in the exceedances. This study  

improved MPS  method in order to determine an optimal threshold for extreme values in a data set 

containing ties, estimated the GPD parameters with the optimal threshold derived and then applied 

the method to determine the GPD parameters for a real market data that could be containing ties . 

The study applied a method to determine optimal threshold based on improved maximum product 

of spacing method and used Generalized Pareto Distribution (GPD) and Peak over threshold (POT) 

methods as the basis of identifying extreme. The peaks-over-threshold (POT) models are models 

for all large observations which exceed a high threshold. The POT models are generally considered 

to be the most useful for practical applications. The study used the method developed to deal with 

the ties to model the market volume data. This study will help the Statisticians in different sectors 

of our economy to model extreme events involving ties. To Statisticians, the structure of the 

extreme levels which exist in the tails of the ordinary distributions is very important in analyzing, 

predicting and forecasting the likelihood of an occurrence of extreme event. 
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Introduction 

Certain values in the tails of any distribution represent extreme events and they are pointers to 

eventuality. The values in the tails are rare, few, but can have great impact on the conclusion 

arrived at by the analysts. Different sectors of our life experience Extreme events and here we 

mention just but a few. According to (Butterfield, 2009) Extreme low production in agriculture 

results to famine if the agriculture depends on rainfall. This means that the amount of rain 

experienced in that region was too low that crops dried up or very high rainfall that it destroyed all 

crops that had been planted. (Prudhome, 1999) studying extreme rainfall in mountainous region 

and (Geremy, 2012) studying extreme rainfall in west Africa did observe that, how low or high the 

amount of rainfall depends on the threshold attached to the rainfall in that region. In insurance 

industries Box [10] while discussing tools in finance and insurance, noted that extreme high claims 

by the customers that can be very dangerous for the company while extreme low claims by the 

customers can be very beneficial for the company's profit. This means that there is a critical level 

that the insurance company would wish it is not surpassed and if it is, according to (Embretchet, 

1997) it must be prepared for this eventuality. Very high emissions of the waste products from the 

manufacturing industries are detrimental to the environment and ozone layer. However, countries 

must continue to industrialize or expand their industries for economic prosperity. Certain level of 

emissions must not be exceeded otherwise the environment and ozone layer would be destroyed. 

The critical value for which if exceeded an eventuality occurs is called threshold. The events 

beyond this threshold are called extreme events and they happen to be at the tails of the distribution. 

Extreme value theory (EVT) proposed by (Fisher, 1928) is a tool which attempts to provide us 

with the best possible estimate of the tail area of the distribution. In work on the importance of tail 

dependence in Bivariate frequency analysis, there are two principal kinds of model for extreme 

values. The oldest group of models is the block maxima models; these are models for the largest 

observations collected from large samples of identically distributed observations. For example, if 

we record daily or hourly losses and profits from trading a particular instrument or group of 

instruments, the block maxima or minima method provides a model which may be appropriate for 

the quarterly or annual maximum of such values. According to (Balkema, 1974) and (Pickands, 

1975)  the block maxima/minima methods are fitted with the generalized extreme value (GEV) 

distribution. A more modern group of models is the peaks-over-threshold (POT) models; these are 

models for all large observations which exceed a high threshold. The POT models are generally 
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considered to be the most useful for practical applications, due to a number of reasons. First, by 

taking all exceedances over a suitably high threshold into account, they use the data more 

efficiently. Second, they are easily extended to situations where one wants to study how the 

extreme levels of a variable Y depend on some other variable X for instance, Y may be the level 

of tropospheric ozone on a particular day and X a vector of meteorological variables for that day. 

This kind of problem is almost impossible to handle through the annual maximum method. In 

order to identify the extreme values, one must understand how the sample data collected is 

analyzed to determine the extreme cases. This involves determination of the threshold and the 

exceedances. These exceedances are then modeled to understand the behavior of the data in the 

tails. Many methods of determining an optimal threshold have been developed. The most common 

one is the graphical method proposed by (Hill, 1975) This method is however subjective and 

requires experts to determine the threshold. The most successful method is the Maximum Product 

of Spacing (MPS) proposed by (Cheng, 1983). This method however encounters a problem 

whenever the exceedances have a tie. To study this problem, the study used simulated data 

containing ties and real data from Nairobi Securities exchange (NSE). Events in the area outside 

three standard deviation in a normal distribution are termed extreme events. Our study was based 

on these extreme events. Extreme events can be either beneficial or destructive. One of the greatest 

challenges to a risk manager according to (Yuejian, 2002) is to implement risk management tools 

which allow for modeling rare but damaging events, and permit the measurement of their 

consequences. Extreme value theory (EVT) plays a vital role in these activities. (Coles, 2001) in 

his book on extreme modeling of extreme values emphasized that, Extreme value theory relates to 

the asymptotic behavior of extreme observations of a random variable. It provides the 

fundamentals for the statistical modeling of rare events, and is used to compute tail risk measures. 

 

Methodology 

Improved MPS Methodology 

The MPS allows efficient estimators in non-regular cases where MLE may not exist. This is 

especially relevant to the GEV distribution in which the MLE does not exist when 1ε < − , Smith 

[38]. Let 1 2, ,...,
n

x x x  be a random sample of independent observations from a continuous 
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distribution 
0

Fθ belonging to 
,Fθ θ ∈ Θ  Applying the probability transform ( )0 .F to the order 

1, 2, ,...n n n nx x x≤ ≤ ≤  yields ( ) ( ) ( )
00, 1, 1,

0 ... 1
n n n n

F x F x FF xθ θ θ +≡ ≤ ≤ ≤ ≡ . We define the 

spacing’s as the gaps between the values of the distribution function at adjacent ordered points 

 ( ) ( ) ( )1i i iD F x F xθ θθ −= − , where 1,2,..., 1i n= +  The maximum spacing estimator of 0θ  is 

defined as value ( )ˆ arg max nS
θ

θ θ
∈Θ

=  that maximizes the logarithm of the geometric mean of 

sample spacing’s.  

( ) ( ) ( ) ( )( )1
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S D D Dθ θ θ θ+

+=                                    (1) 
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The maximum spacing estimator as defined is sensitive to closely spaced observations and 

especially the ties. That is, for any ...
i m i m i

x x x+ += = =  

Then 

( ) ( ) ( )1 ...i m i m iD D Dθ θ θ+ + == = =  

This therefore collapses the method. The modified MPS method proposed here  

is to use grouped data frequency table. Let 
1 2
, ,...,

n
x x x  occur

1 2
, ,...,

n
f f f   times 

respectively. The geometric mean is given by 

( )1 2

1

1 2
. .... nff f N

n
G x x x=  

1

1

i

n Nf

i
i

x
=

 = ∏  
 

                                  
1

1
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n

i i

i

G f x
N =

=                                  (2) 

This leads to the modified MPS method as 

( ) ( ) ( ) ( )( )11 21
1 2 1ln ... nff fn

n nS D D Dθ θ θ θ++
+=  

                                     ( )
1

1

1
ln

1

n

i i
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f D
n
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=

=
+                            (3) 
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If  1 2 1... 1
n

f f f += = = =  then we go back to the standard MPS. The Spacing’s are such that 

( )
1

1
n

i

i

D θ
−

=  : Under MPS, the  ( )iD θ  are defined as: 

( ) ( )
( ) ( ) ( )

( ) ( )

1 1;

; 1;

1 ;

,

, ,

1 ,

n

i i n i n

n n n

D F x

D F x F x

D F x

θ θ

θ θ θ

θ θ
−

+

=

= −

= −

      (4) 

Therefore, Equation 3 can be partitioned as: 

( ) ( ) ( ) ( )1 1 1 1

2

1
; , , ln ln ln

1

n

n i i i n n

i

S x f D f D f D
n

θ ε σ θ θ θ+ +
=

 = + + +  
  (5) 

To estimate the parameters of a Generalized Pareto distribution, we use the equation  

( )

1

1 1 , 0

; , ,

1 exp , 0

x

G x

x

εθε ε
σθ ε σ

θ ε
σ

−
 −   − + ≠     = 

 − − − =   

    (6) 

 Equation 6 was substituted in equation 5 

Case 1: 0ε ≠  

We define, 

( )

( )

( )
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1 1 1
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  

    
 −   −        = − + − − +                       

 
 −   = − − +      

 

  (7) 

Which leads to: 
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If we let , 
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Through partial differentiation  of equation 9 and substituting in equation 8, we get 
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
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      (10) 

Which we optimize  by setting them to zero to get the GPD parameter estimates  ˆ ˆˆ, andθ σ ε  

Case2: 0ε =  

We define  
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We define  
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Through partially differentiating  equation 10 and substituting in equation 12, we obtained  
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     (14) 

 Equation 14 was then set to zero in order to optimize and obtain gpd parameters 

Results and discussion 

We developed an R-code for the standard and improved MPS model where the method of 

optimization was SANN. 

We simulated data from a gamma distribution with the parameters shape=2.6, scale=1:1000. 

Repetitions were later introduced in the order of 0, 20, 40 and 60. The repeated values gave rise to 
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situations of ties. Gamma distribution is known to have fairly heavy tails. To determine our 

threshold, we simulated a set of data constituting of 300 values. 100 values did not have a repetition 

while 100 values had each a repetition making them to have a frequency of 2 each. This set of data 

was used in the improved MPS model . After the simulation, this set of data was reorganized in 

such a way that the 300 values had a frequency of 1 each regardless of whether it was repeated or 

not. This set of data was used in the standard MPS model. The normal equations derived above 

were used as the model for the improved MPS methodology. For our improved three parameter 

MPS method, each tie formed a frequency 
i

f   . When the values have not tied, the frequency  
i

f  

is 1. The frequency of the first value is 1f  while that of the last value is 1n
f + . The simulated data 

was used to optimize the model equation 10  for the three parameter and equation  14 for the two 

parameter. The threshold ,scale and shape of the GPD parameters were therefore determined 

through the optimization of model 10 and 14 using the simulated data. 

The simulated values had a distribution with the density shown in the figure 1 

 

 

.  

                                              Figure 1:Gamma density 

The density is skewed towards right figure 1. Meaning that the distribution had some extreme 

values. The performance of the standard and improved MPS model was then compared  using the 

obtained values from the optimized results. 
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The table gives the results of the performance of the two parameter model for the standard and 

improved MPS model. 

 

 

Table 1 .Two Parameter model 

 Location scale 

improved 736.476 13.72969 

standard 725.5767 16.31062 

 

From Table 1, the threshold of the improved model was higher than the threshold of obtained 

through the standard model. The scale of the improved model was lower than the scale of the 

standard model. 

The same data was used to compare the performance of the three parameter  improved and standard 

models and the results are as in Table 2 

Table 2:Three parameter  

 location scale shape 

improved 738.1303 9.483573 -0.84884 

standard 726.3707 13.33941 -5.49648 

 

In Table 2, the threshold obtained from the improved MPS model was 738.130 as compared to that 

of the standard MPS model which was 726.370. The improved MPS model performed better than 

the standard model. The scale parameter of the improved model was 9.48373 while that of the 

standard MPS model was 13.33941. The scale parameter of the standard MPS model was higher 

than that of the improved model.. The shape parameter of the improved model was 0.8488 and that 

of the standard model was 5.49648. The standard MPS model had a higher shape parameter 

compared to that of improved model. 
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To investigate how the parameters were behaving, we created repetitions within our simulated data 

of 300 values. The repetitions were in the order of 0 repetitions, 20 repetitions, 40 repetitions and 

60 repetitions. The results are shown in Table 3 for two parameter model and Table 4 for the three 

parameter model. 

 

 

 

 

 

 

 

 

Table 3 

 

 

location    

Repetitions 0 20 40 60 

Improved  1111.954 1129.368 1133.003 1139.156 

Standard  1111.473 1118.298 1120.145 1121.647 

 

 

Figure.1:Locatition parameter and Repetitions 
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In Table 3 and figure 1,both locations were improving as the number of repetitions increased but 

the improved model indicated a higher increase in the location as the number of repetitions 

increases. As compared to standard model. 

 

 

 

 

 

Table4:scale    

Repetitions 0 20 40 60 

Improved 4.097801 7.830554 5.119941 4.395648 

Standard 9.993496 9.99465 2.056949 3.373637 

 

 

 

Figure. 2;Scale parameter and Repetitions 

In  Table 4 and figure 2 , the scale of the standard model indicates a decrease up to the 40th 

repetition and then shows some increase. 

The three parameter MPS model exhibited the behavior shown in figure 3, figure 4 and figure 5 
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Improved 1111.954 1129.3679 1133.003 1139.156 

Standard 1111.473 1118.29819 1120.145 1121.647 

 

 

Figure.3 :Location parameter and Repetitions 

Both location parameters showed an improvement as repetitions increases but the improved MPS 

model in Table 5 and figure 3  indicated a higher increase. Meaning that it had a more optimal 

threshold than the standard model. 

Table 6  scale    

 0 20 40 60 

Improved 15.4904 2.0094715 8.335507 21.42994 

Standard 17.44149 12.0415209 4.716338 3.950339 
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Figure.4:Scale parameter and Repetitions 

The scale parameter of the standard model in Table 6 and figure 4 indicate a decrease all through 

until the 40th repetition when it indicate some  stability. The improved model initially indicated a 

decrease up to the 20th repetition where it started increasing as the repetitions increased. The two 

models had the same scale at the 35th repetition. 

Table7 shape    

 0 20 40 60 

Improved 0.05365 1.586433 5.54892 -4.74385 

Standard -0.05918 -0.0409754 -1.90142 -6.59819 

 

 

Figure.5:Shape parameter and Repetitions 

In Table 7 and figure 5, at 0 repetition, both MPS model had the same shape . The standard model 

then showed a decrease of the size of the shape as repetitions increased. The improved model 

indicated a slow upward trend up to the 40th repetition after which it indicated a downward trend. 

A real market data was used to investigate whether the data we simulated has some similar 

behavior with market data. A data was sought from NSE in the sector of Investment service called 

Nairobi securities exchange limited. The density of this data was plotted and compared to that of 

Gamma distribution. The data was then analyzed through both the standard MPS and the improved 

MPS model. Both two parameter and three parameter models were used. 
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Figure. 6: Density of investment service 

Figure 6 shows that there were many trading volumes concentrated between 0 and about 400000  

However there were several other values that were extreme. This figure is very much similar to 

figure 1. Meaning that real data are skewed and sometimes contains heavy tails. 

Table  8 :MLE and MPLE Estimates-

NSE         

              Two parameter            Three parameter 

Estimate Standard Improved Standard Improved 

Threshold 573942.1463 1025881.322 573933.6022 1025908.743 

Number above threshold 30 21 30 21 

Proportion above 0.0508 0.0515 0.0508 0.0515 

Scale Estimate 8.14E+05 6.06E+05 8.14E+05 6.06E+05 

Scale standard error 5933.39 2.07E+05 2.12E+05 2.07E+05 

Shape Estimate 7.76E-03 2.24E-01 2.09E-02 2.24E-01 

Shape standard error 0.108 2.67E-01 1.86E-01 2.67E-01 

Asymptotic var cov for scale 3.52E+07 4.28E+10 4.51E+10 4.28E+10 

Asymptotic var cov for shape 1.17E-02 7.14E-02 3.47E-02 7.14E-02 

Deviance 876.5707 599.1953 876.5713 5.99E+02 

Penalized Deviance 8.77E+02 599.668 876.5999 599.6657 
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AIC 880.5707 603.1953 8.81E+02 603.1929 

Penalized  AIC 603.1953 603.668 880.5999 603.6657 

 

From Table 8, the threshold for the two parameter standard model was 573942.146 while that of 

the improved model was 1025881.322. The improved model was better. The three parameter 

standard model had a threshold of 573933.602 while the improved model had a threshold of 

1025908.743. The threshold in the improved MPS model is better than that of the standard MPS 

model. The Proportions above these threshold indicates that the cases of standard models had more 

exceedances than the improved model. The AIC criterion used to select the competing models 

indicates that the improved model was better than the standard model in both cases of two and 

three parameter model. 

 

Conclusion 

The results of this study indicate that The improved MPS model performed well in determining a 

more optimal threshold than the standard MPS model. When the threshold improves, it is expected 

that the values above this threshold will reduce. This will in turn impact on the scale parameter 

and shape parameter. Depending on how many the exceedances are, the scale may decrease or 

increase. The case of standard model is to drop the values that exhibit ties and only one value is 

left among the ones that had tied. The improved model does not drop of the values even if they 

have a tie. It takes care of them through the frequencies. In both models, the sample size will 

reduce but in case of improved model, all the values will still be taken care of by frequencies. The 

case of standard model drops the values out of the sample otherwise, it would fail. Many practical 

situations particularly in trading sector, exhibits the situations of ties. Therefore, in order to model 

such a data, the improved model is the best tool to help in preparing for full impact of any extreme 

event. This study therefore attains its objective by improving MPS methodology so that it takes 

care of all situations whether they contain ties or not. Further study need to be done to establish 

the actual at about 35th repetition, there was  a drop in the threshold and that at this point both scale 

and the shape had a changing behavior. 
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