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Abstract: 

As cities expand and more megacities emerge, the impacts on the environment are increasingly 

becoming apparent. One of such impacts is the Urban Heat Island (UHI) phenomenon. Several 

studies have identified progressive vegetation losses and decrease in pervious surfaces as two of 

the main factors contributing to UHI. However, location-based studies help determine the pertinent 

contributing factors, thereby providing a valuable basis for the formulation of efficient mitigation 

strategies in such areas. This study investigated the impact of land cover changes on UHI and its 

evolution from the year 2000 to 2018 in Nairobi – a major city in East Africa. Medium resolution 

Landsat TM, ETM+ and OLI data were obtained for assessing the Land cover changes and 

establishing the relationship between the changes and the corresponding Land Surface 

Temperatures (LST). The datasets were acquired in intervals of 2002-2010-2018. A pixel-based 

supervised classification was used for assessing the land cover changes. The NDVI and emissivity 

for each LULC map were estimated. Final LST maps indicating the extents of UHI were developed 

from the emissivities and NDVI values using empirical equations. The results show that there was 

a direct link between the progression of LULC towards urbanisation and the increase in the LST 

in the study area from 2000 to 2018, i.e. as Nairobi became more urban it engendered higher of 

UHI values. The study also reveals that UHI is a dynamic phenomenon usually higher in dryer 

hotter months and lower in colder months.   
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1.0 INTRODUCTION 

The last two decades have seen a surge in the number of researches related to land cover changes, 

urbanisation and their ecological as well as social impacts. One of the identified global 

environmental changes is an observed rise in the near surface temperatures with an increase in 

urbanisation in different parts of the world. The phenomenon is widely referred to as the Urban 

Heat Island (UHI). The UHI phenomenon was studied and first described by Luke Howard in 1810 

as a case where an area of land consistently experience temperatures higher than that of the 

surrounding area (Surawar & Kotharkar, 2017). Aleksandrowicz et al., (2017) termed UHI as the 

inclination towards experiencing temperature values up to 12 K higher than the surrounding rural 

periphery. The intensity of the UHI is invariably the temperature difference between the warmest 

zone in the urban area and the contiguous rural setting (Voogt & Oke, 2004). Global population 

trends show a bias towards urban migration. In a relatively short timeframe, the world's population 

residing in urban areas had passed 50% by 2018, and the percentage is expected to stand at 68% 

by 2050 (UN, 2018). Hence, the issue of UHI and its attendant effects cannot be taken lightly and 

according to Favretto, (2018) UHI should be regarded as a global challenge capable of negatively 

impacting the smooth running and habitability of the urban environments. The impacts of UHI 

may be felt in the areas of human health and comfort, urban planning, energy management, and 

urban air pollution. 

UHI invariably increases peak energy demand and energy consumption in the form of increased 

electricity demand for cooling systems. This is evidenced by studies which reveal that for every 

0.6 ℃ increase in ambient air temperatures, electricity requirement for cooling increases by 1.5 – 

2 % at temperatures higher than 20 ℃, implying that 5 – 10% of the municipal demand for 

electricity goes into UHI compensation (Akbari, 2005). Other possible impacts of UHI include 

increased air pollutants and greenhouse gases emissions, thermal pollution in aquatic systems, 

discomfort and human health risks, alterations to local climate such as wind and rainfall patterns, 

fogs formation and humidity, and impaired water quality (EPA, 2019; Rinkesh, 2019).   

The body of research on UHI has grown steadily in the past two decades with Asia leading the 

park in the number of studies done, while Africa is the least researched. Ngie et al., (2014) provides 

a comprehensive review of some few UHI related studies done in Africa and provides further 

insights on remote sensing approaches to the UHI study in the wake of the growth of megacities 

in the continent and the resulting energy and sustainability challenges. Two factors identified as 

significant causes or contributors to UHI are urbanisation and human activities due to the changes 

they induce on the physical characteristics of the earth's surface and the alterations to near-surface 

flow and radioactive fluxes. Physical parameters on the earth's surface which undergo the changes 

include the thermal capacity, albedo, moisture, and heat conductivity (Ngie et al., 2014). These 

changes occur because urbanisation and anthropogenic activities lead to the conversion of hitherto 

pervious and natural surfaces such as forests, and natural swarms into impervious surfaces like 

roads and cemented surfaces. Studies demonstrating how increases in impervious surfaces 

positively correlate with an increase in UHI are abundant in the literature   (Madanian, et al., 2018; 
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Mohajerani, Bakaric, & Jeffrey-Bailey, 2017; Zhang, Ji, Shu, Deng, & Wu, 2008). Other causative 

factors with no less impact include the urban geometry (e.g. narrow streets and tall buildings); 

wind and cloud cover; climate and topography;  and the changes in land use/land cover (LULC) 

patterns (Ngie et al., 2014). 

When the geometry of the urban settings tends towards narrow streets and tall buildings, the ease 

of air circulation and wind flow are easily impeded. Unobstructed air movement and wind flow 

contribute to the cooling of the near-surface thereby reducing the build-up of UHI. Cloud cover 

and strong winds have been observed to reduce the impacts of UHI while clear skies and calmer 

winds achieve the opposite because they help make the most out of the solar energy hitting the 

surface and minimise surface heat being lost by convection (Kim & Baik, 2005). Climate and 

topography may also influence the formation of UHI. For instance, the presence of abundant water 

bodies close to an urban setting can produce cooling effects while mountain ranges may affect the 

local wind patterns in an area which will invariably impact UHI formation either positively or 

negatively. Finally, the spatial changes in LULC with respect to urbanization have been observed 

to have noticeable effects on UHI patterns in many studies with temperatures over built-up areas 

relatively higher than that of vegetative areas (Lo & Quattrochi, 2003; Obiefuna, Nwilo, Okolie, 

Emmanuel, & Daramola, 2018; Surawar & Kotharkar, 2017). 

The oldest approach to the assessment of UHI has been with the use of fixed-thermometer 

networks for taking ground-based readings or the use of thermometers mounted on vehicles which 

form transverses and generates empirical data. This approach measures the air temperature at 

specific heights above the ground. A typical example is the 1973 study by Oke where data were 

gathered with the use of automobile transverses and then compared with previously published 

literature for establishing the relationship between city sizes and UHI (Oke, 1973) The second and 

relatively more recent and more widely used approach, is the use of satellite remote sensing. This 

approach involves the measurement of Land Surface Temperatures (LST) on the premise that all 

surfaces emit thermal energy in specific wavelength ranges. Sensors mounted on satellites can 

detect and take the readings of these wavelengths. It has therefore been established that satellite 

imagery is capable of providing measurements of energy reflecting and being emitted from 

different land surface types such as paved surfaces, roofs, water, bare ground and vegetation (Ngie 

et al., 2014). For instance, the Landsat Thematic Mapper (4, 5) and Enhanced Thematic Mapper 

plus (7) are multispectral images with bands 2, 3 and 4 used for land cover classification while the 

band 6 is a thermal band which can be used for determining the LST and subsequently identifying 

the UHI. 

The advantages satellite remote sensing-based surface measurements hold over air measurements 

are its ability to provide more extensive spatial coverage, the comparatively low cost of imagery 

and the recent milestones made in image processing techniques. However, surface measurement 

approach is not without its limitations. The first limitation is that the images do not entirely capture 

the thermal emissions from vertical surfaces like the walls of tall buildings but only the horizontal 

surfaces like the rooftops (Goldreich, 2006). Another major challenge in the past is how to manage 
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the inaccuracies generated as radiations travel to the earth’s surface and reflected. However, these 

issues have been worked on and currently, many satellite image providers now provide corrected 

images. For instance, it is now possible to download Top of Atmosphere (TOA) corrected Landsat 

TM, ETM+ and OLI images. Air temperature measurements usually taken at about 1.5 m above 

the ground using hand-held devices or equipment (sensors) mounted on vehicles and aircrafts 

(Kraaijenbrink et al., 2018; Wong & Yu, 2005) is also a viable alternative. However, the demerits 

of air temperature measurement approach seem to outweigh the limitations associated with satellite 

remote sensing based LST measurements.       

Mirzaei & Haghighat, (2010) identified 3 significant limitations of air temperature measurements; 

a) the need for weather station data both within and outside the city which are oftentimes 

challenging to obtain; b) changes in instrumentation and data collection need to be considered in 

each microclimate; c) comparing central urban areas with the surrounding non-urban regions is a 

challenge, since many weather stations are usually situated close to airports which become 

urbanized over time. Hence, remote-sensing based measurements using satellite imagery seems to 

be the preferred approach to UHI studies. 

The study of UHI based on LST deduced from satellite imagery requires an in-depth understanding 

of the nature of imagery available for use. Some currently available and widely used images 

containing Thermal-Infrared region (TIR) bands include NOAA, AVHRR, MODIS, ASTER, 

Landsat (MSS, TM, ETM+, OLI), SENTINEL-2A, and SENTINEL-3 SLSTR. These datasets 

come in different spatial and temporal resolutions broadly classified as high, medium or low 

resolutions. The fine (0.6 – 4 m), medium (4 – 30m) and low (30 m) resolution images do not have 

uniform band resolutions. In the bid to harmonise the trade-offs between image resolutions and 

data availability, it has been observed that most researches on UHI apply the medium resolution 

images containing TIR bands (Ngie et al., 2014). The Landsat, a widely used medium resolution 

multispectral image has its TIR on band 6 for MSS, TM and ETM+ although the spatial resolutions 

are 120m and 60m for the MSS and TM/ETM+ respectively. The TIR is captured in Bands 10 and 

11 of the Landsat 8 (OLI) both at 100m resolutions. Similarly, SENTINEL-3 SLSTR’s thermal-

infrared ambient bands are S7, S8 and S9 bands (NASA, 2019). Other medium resolution data 

include ASTER with a 15m-resolution visible & near infrared (VNIR) data. 

The broad approaches to the analyses of LST such as reference channel, emissivity normalisation, 

spectral ratios, alpha residuals methods are highlighted by Ngie et al., (2014). However, several 

improvements have been made in recent studies, especially for emissivity normalisation. For 

instance, the distribution pattern of LST has been studied in association with LULC surface types 

(Obiefuna et al., 2018; Surawar & Kotharkar, 2017). In these studies, the Normalized Difference 

Vegetation Index (NDVI), a measure of the extent of vegetation has been used to estimate spectral 

emissivity of data. This data together with the Top of Atmosphere Brightness Temperature 

(TOABT) can be used to calculate the LST using linear regression equations (Favretto, 2018). In 

this paper, preprocessed Top of Atmosphere (TOA) Landsat TM, ETM+ AND OLI images with 

<1 % cloud cover were sourced covering the 16 years from 2002 to 2018. The LULC changes 
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were detected using a pixel-based supervised classification approach. NDVI values were further 

estimated, and the LSTs for each map were derived. Subsequently, these results were used to 

establish the relationships between the LULC/degree of urbanisation and the UHI. The insights 

gained from the results are further discussed.  

2. STUDY AREA 

Nairobi county is located on latitude 1016’59.99” S and longitude 36049'0.01" E of the Greenwich 

meridian, slightly below the equatorial belt. It is one of the 47 counties in the country and the most-

urbanised county. It is not just the nation's capital but, its city is the largest and most populous in 

Kenya. On the other hand, it is one of the smallest counties in terms of landmass covering only an 

area of 696 km2 and is sub-divided into 17 sub-counties. Nairobi has over the years experienced 

rapid urban growth, and this growth is projected to continue at over 4% growth rate per annum 

which is well above the national average of approximately 3% per year (UNDESA, 2014). The 

county is home to over 6.5 million residents, and the current population density stands at about 

4,850 residents per square km (World Population Review, 2019).  It lies on the River Athi in the 

southern part of the country and has an average elevation of 1795m above sea level. Nairobi 

County can be described as a warm and temperate climate with a dry season in July – September 

and two rainy periods, April – May and November. The average rainfall is 869 mm, and the 

temperature is 19.0 0C. Figure 1 below shows a map of the study area. 

 

Figure 1: Map of Nairobi County 
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3. DATA AND METHODS 

3.1. Data 

In obtaining data for LULC classification and further analysis like the UHI studies, the importance 

of cloud-free images cannot be overemphasised. Hence cloud-free images (below 1%) with fairly 

even intervals were sourced. Details on the Landsat types and band characteristics are well 

documented in the literature (Barsi et al., 2014; USGS, 2018). Based on availability and fairly even 

interval of 2002, 2010 and 2018, the multitemporal images used in this study are; Landsat 5 TM 

(Thematic Mapper), Landsat 7 ETM + (Enhanced Thematic Mapper Plus) and Landsat 8 OLI 

(Operational Land Imager) images. The images were downloaded for path/row 168/061 from the 

USGS website and projected to WGS84 zone 37S UTM projection. Table 1 represents the 

summary of the information on the satellite imagery used in this study.   

Table 1: Satellite Imagery Used in the Study 

SN Landsat Sensor Acquisition 

date 

Acquisition 

time 

Sun 

Elevation 

LULC Bands Thermal 

Bands 

1 Landsat 7 (ETM+) 10-02-2002 07:32:05 54.45805777 4(NIR), 3(Red), 

2(Green) 

6 

2 Landsat 5 (TM) 19-08-2010 07:33:29 56.58427677 4(NIR), 3(Red), 

2(Green) 

6 

3 Landsat 8 (OLI) 29-01-2018 07:43:05 55.92707521 5(NIR), 4(Red), 

3(Green) 

10 (TIRS 1), 

11 (TIRS 2) 
NIR – Near Infrared; TIRS – Thermal Infrared 

The study area boundary shapefile was obtained from the Regional Centre of Mapping for 

Development (RCMD), Kenya in shapefile format. 

3.2. Methods 

The Landsat 7 (ETM+), Landsat 5 (TM) and Landsat 8 (OLI) obtained for the years 2002, 2010 

and 2018 respectively were used to acquire land use/cover characteristics as well as land surface 

temperatures for each year. The boundary shapefile was used to clip the images into the area of 

interest before processing. Software used include; ENVI 5.3, Impact Tool and ArcGIS 10.3. ENVI 

5.3 was used in land use/ land cover classification and the determination of land surface 

temperature. Impact tool which is an online based software was used to perform pre-processing on 

the raw images for LULC classifications. ArcGIS 10.3 was used in post classification editing and 

map layer production.  

The study’s methodology is summarised in Figure 2. 
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Figure 2: Study Methodology 

3.2.1. Land Use/Land Cover Classification 

Analysis of the land use/land cover (LULC) changes progressed with layer-stacking, followed by 

the pre-processing of the downloaded images using the impact tool for their radiometric and 

atmospheric corrections. A pixel-based supervised classification was done on the three images 

using Maximum likelihood algorithm in ENVI 5.3. Colour infrared band combination comprising 

the NIR, Red and Green bands were used for the LULC change detection and classification (Table 

1). The identified five LULC categories based on the progression of urbanisation are; Built-Up, 

Mixed built-up, Other vegetation, Forest and water. Each category is briefly explained below; 

Built-Up – Fully urbanised region, void of any green vegetation. Typical examples are downtown 

areas or central business districts of most major cities. 

Mixed built-up – Urbanized area with few vegetative components like public spaces with some 

ornamental trees, shrubs and green playgrounds. 

Other vegetation – This encompasses land cover classes like shrublands, grasslands, agricultural 

areas and general vegetative area that cannot be regarded as forests.  

Forest – An area of land with over 10% tree canopy larger than 0.005 km2 (0.5 ha), whose primary 

land use is not agricultural or other non-forest related land use.  

Water – includes waterbodies such as rivers, perennial streams, lakes etc. 
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3.2.2. Land Surface Temperature 

As highlighted in Table 1, Band 6 of the Landsat TM and ETM + and band 10 and 11 of Landsat 

8 OLI were used for the assessment of the Land Surface Temperatures (LST). Band 10 was chosen 

based on the caution given by USGS on the potential unreliability of Band 11 in terms of 

calibration caused by stray light (USGS, 2019). The general methodology adopted in this study 

takes its cues from a wide range of studies (Avdan & Jovanovska, 2016; Favretto, 2018; Jiménez-

Muñoz, 2003; Kaplan, Avdan, & Yigit Avdan, 2018; Lo & Quattrochi, 2003; Sobrino, Jiménez-

Muñoz, & Paolini, 2004; Surawar & Kotharkar, 2017) and is represented by Figure 2.  

The first step involved determining the Top of Atmosphere Spectral Radiance ��. This was carried 

out using USGS formulas as shown in Avdan & Jovanovska, (2016). The second step involved the 

conversion of the �� to Brightness Temperature (BT). The conversion formula is as shown in (2) 

(Avdan & Jovanovska, 2016). 

                                        (1) 

Where: 

“BT = TOA Brightness Temperature, in Kelvin. 

Lλ = Spectral radiance (Watts/ (m2* sr * μm))  

K1 =Thermal conversion constant for the band (from the metadata)  

K2 =Thermal conversion constant for the band ( from the metadata)” 

The 273.15 in (1) indicates the conversion of the temperature values from degree kelvin into 

Celsius. The calibration constants K1 and K2 for Landsat 5TM and Landsat 7 ETM+ were obtained 

from the metadata and also shown in Chander & Markham, (2003).  

The third step involved generating the Normalized Difference Vegetation Index (NDVI) for 

estimating the vegetation cover of the study area. The NDVI which ranges from -1.0 to +1.0 is 

essential for assessing the extent of vegetation cover of various land cover types. The formula for 

achieving this step is represented as Equation (2) 

���� =  

�� 
����� 
���


�� 
����� 
���
    ( 2) 

Where; NIR is the near infrared band values for the multispectral image (Band 4 for TM and ETM+ 

and Band 5 for OLI); RED is the red band value of the image (Band 3 for TM and ETM+ and Band 

4 for OLI). Calculation of NDVI is necessary to further calculate the proportion of vegetation (Pv) 

and emissivity (ԑ). Details of the role of NDVI in retrieving LST are well documented (Jiménez-

Muñoz, 2003; Sobrino et al., 2004).  

The fourth step involved the calculation of land surface emissivity using NDVI. The method 

adopted for emissivity calculation in this study was proposed by Zhang, Wang, & Li, (2006) and 

applied by Surawar & Kotharkar, (2017). It is worth noting that the land surface emissivity (LSE) 

is required to estimate LST. This is because LSE is a proportionality factor that calibates blackbody 
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radiance based on Planck’s law to predict emitted radiance. It represents the efficiency of 

transmitting thermal energy into the atmosphere from the surface (Jiménez-Muñoz et al., 2009).  

The fifth step was to calculate the LST using brightness temperature (BT) of bands 6 for Landsat 

TM and ETM+ and band 10 for Landsat 8 (OLI) and Land Surface Emissivity derived from NDVI. 

Land Surface Temperature was retrieved using (3).  

                                                                   (3) 

Where, Ts is the Land Surface Temperature in Celsius (C℃), BT is at- sensor Brightness 

Temperature (oC), λ is the average wavelength of band 6 and 10 (for Landsat 5, 7 and 8 

respectively), ԑλ is the emissivity. And ρ was calculated as shown in (4). 

                                                             (4) 

 Where σ is the Boltzmann constant (1.38 × 10−23 J/K), h is Planck’s constant (6.626 × 10−34 Js), 

and c is the velocity of light (2.998 × 108 m/s) (Weng, Lu, & Schubring, 2004). The LSTs were 

determined for each image, and the general trends in the datasets were observed. Different 

representative areas were selected for observation of point land surface temperatures for a more 

comprehensive comparison of the evolution of the LULC with the LST over the years observed. 

A comparison of the intensity of urban heat island from 2002 to 2018 was made to understand the 

changes in the temperature of Nairobi County. 

3.2.3 Urban Heat Island 

Identification of the UHI is based on the estimation of threshold temperatures as described in Ma, 

Kuang, & Huang, (2010) and applied by Kaplan et al., (2018): as follows 

LST > μ + (0.5 �)   - refers to UHI area 

0 < LST ≤ μ + (0.5 �)  - denotes non-UHI areas 

Where μ is the mean LST value of the study area, and σ is the standard deviation of the LST. The 

UHI intensity the further obtained by subtracting the LST of the referenced least urbanised area 

(forested) from that of the UHI area (Ma et al., 2010). 

4.  RESULTS AND DISCUSSION 

The study throws some light on the progression of the LULC change of the study area over the 16-

year period from 2002 to 2018 and how the LST has changed correspondingly over the same 

period. First, the general trend shows that progressive increases were observed in built-up and 

mixed built-up categories while other vegetation and forest categories experienced declines. 

Waterbody category, on the other hand, has only experienced slight changes tilting towards the 

positive. The summary of the LULC changes is represented in Table 2. It can be observed from 

Table 2 that built-up areas experienced the highest growth in the period under study with an overall 

increase of 7.29% between 2002 and 2018. Conversely, Forest cover experienced the highest 
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decrease in the same period with an overall decrease of 5.74%. A high progressive increase in 

built-up areas and a large matching decrease in forestland is perhaps the major contributor to the 

increase in UHI intensity in urban areas. Figure 3a-c represents the LULC maps. 

Table 2 LULC Feature Classification 

 

The daytime LST values are shown in Figure 4 a-c and represented in Tables 3. Twelve strategic 

observational points representative of the LULC features were taken across the study area. The 

computed threshold UHI temperatures and the corresponding daytime UHI intensities were also 

calculated as shown in Table 3.  

Table 3 Variation of LST at representative points with changed LULC between 2002 and 2018 

SN Observation Location LULC Feature LST 2002 LST 2010 LST 2018 

A Mwiki Built-up 31.76 26.15 35.24 

B Shauri Moyo Estate Built-up 33.65 25.71 34.51 

C JKIA Built-up 35.52 28.57 39.57 

D University of Nairobi Mixed built-up 24.88 19.79 28.10 

E St. Mary's School Off Waiyaki Way Mixed built-up 28.85 20.22 29.18 

F Kikuyu Road, Waithaka Built-up 31.26 24.48 34.98 

G Nairobi City Park Forest 24.87 17.60 26.66 

H Wastewater Plant, Eastern Bypass Water 22.35 26.53 26.35 

I Karura Forest - ICRAF Road Forest 23.86 16.26 24.85 

J Karura Environ Other Vegetation 24.37 16.26 24.83 

K Karura Forest - From Kiambu Road Forest 23.36 16.71 24.44 

L Nairobi National Park Other Vegetation 30.09 23.22 35.59 

  UHI Threshold 30.15 24.22 33 

  Daytime UHI Intensity 12.16 11.86 15.12 

 Differences in UHI Intensity between 2002 and 2018   2.96 

 

LULC Classes 

LULC AREAS (km2) LULC Change Detection 

2002 2002 (%) 2010 2010 (%) 2018 2018 (%) 

2002 – 2010 

(%) 

2010 – 2018 

(%) 

2002 – 2018  

(%) 

Built-up 102.80 14.77 138.54 19.91 153.51 22.06 5.13 2.15 7.29 

Mixed Built-up  93.32 13.41 102.67 14.75 116.69 16.77 1.34 2.01 3.36 

Other Vegetation 320.66 46.07 305.47 43.89 286.12 41.11 -2.18 -2.78 -4.96 

Forest 175.20 25.17 144.96 20.83 135.28 19.44 -4.34 -1.39 -5.74 

Waterbody 4.02 0.58 4.35 0.62 4.41 0.63 0.05 0.01 0.06 

TOTAL 696 100.00 696 100.00 696 100.00    
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                                                                                    Figure 3: a) LULC 2002; b) LULC 2010; c) LULC 2018 

 

    

                                                                                  Figure 4: a) LST 2002; b) LST 2010; c) LST 2018 
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Firstly, it was observed that LST values taken in August 2010 were generally lower. This is likely 

because air surface temperatures in August are equally lower, as the coldest time of the year is the 

3-month period from June to August (HWC, 2019). This finding implies that UHI is not static but 

more of a dynamic phenomenon which tends to increase during dryer and hotter months and tend 

to be lower in the colder months. It is worthy of note that Nairobi’s daytime surface air 

temperatures (SAT) now peaks at values above 30 ℃ especially from January to March – the 

hottest times of the year (AccuWeather, 2019; HWC, 2019). Although Land Surface Temperatures 

are not the same as surface air temperatures, different studies have shown that there is a direct 

relationship between the two. The daytime LST has been observed to be generally higher than 

daytime SAT values especially in rougher terrains with a mean difference as high as 7 ℃ 

(Mutiibwa, Strachan, & Albright, 2015). This explains the relatively high values of the daytime 

LST with respect to the average surface air temperatures in the study area.      

Table 3 shows built-up areas (points A, B, C, F) had consistently higher LST values than forested 

areas (points G, I, K). Also, the study shows that the LST of Nairobi increased at every observation 

point between 2002 and 2018 with Nairobi National Park experiencing the highest increase in LST 

from 30,09℃ to 35.50℃ (a 5.50℃ rise in temperature). The causes of the observed general increase 

in LST are likely to be a holistic one, encompassing not just increased urbanisation and generation 

of Greenhouse Gases but other broader concerns like climate change and deforestation. However, 

the role of urbanisation and anthropogenic influences are likely to have been substantial as depicted 

by the changes in LULC over the years. For instance, since urbanisation causes a decrease in 

pervious surfaces, engenders  

 

Fig 5: a) The LST map of the study area in 2002 showing the observation points 
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Fig 5: b) The LST map of the study area in 2018 showing the observation points 

high industrial energy consumption, automobile exhaust emissions, domestic heating and 

decreases in vegetation and water surfaces, these ultimately alters the thermal conditions of the 

study area in various ways and thus affect the local temperature. The daytime UHI intensity was 

observed to increase by a value of 2.96 between 2002 and 2018 (Table 3). Some previous studies 

on UHI on the study area focused on portions of the city such as the Central Business District 

(Odongo, 2016); and Upper hill (Mwangi, Karanja, & Kamau, 2018). The studies considered short 

observation periods (2013/2014) and more extended periods from 1987 to 2017 (30 years) 

respectively. Another study by Oyugi, Karanja, & Odenyo, (2017) also observed the impact of 

LULC changes on surface temperatures from 1988 to 2015. An overarching conclusion from all 

these studies is that LST has been on the rise in Nairobi as also observed in the current study.  

5. CONCLUSION AND RECOMMENDATION 

This study shows that LULC in Nairobi County has changed from 2002 to 2018 with an increase 

of 7.29 % in built-up land, 3.36 % mixed built up and 0.06% in water bodies and decreases of 

4.96% and 5.74% in forested and other vegetation areas respectively. Furthermore, urban growth 

trends implied an increase in LST from 2002 to 2018. Built-up areas represented by points A, B, 

C and F experienced a high rise in temperatures in comparison to forested areas represented by G, 

I, K. The highest increase in temperature was observed at Nairobi National Park with an LST 

increase from 30.00℃ to 35.50℃ (a 5.50℃ increase). This may be a cause for ecological concern 

for the national park as progressively high LST temperatures could put more stress on wildlife.  

The study also shows that UHI varies with months and tends to be highest in the peak of the dry 

season. The findings of this study, therefore, necessitates more concerted efforts towards achieving 

a greener environment. Lastly, further studies need to be done to provide a more detailed 

understanding of the impacts of urban morphology on UHI in the study area.  
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