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Abstract

The estimation of conditional quantiles has become an increasingly important issue in
insurance and financial risk management. The stylized facts of financial time series data
has rendered direct applications of extreme value theory methodologies, in the estimation
of extreme conditional quantiles, inappropriate. On the other hand, quantile regression
based procedures work well in nonextreme parts of a given data but breaks down in
extreme probability levels. In order to solve this problem, we combine nonparametric
regressions for time series and extreme value theory approaches in the estimation of ex-
treme conditional quantiles for financial time series. To do so, a class of time series models
that is similar to nonparametric AR-(G)ARCH models but which does not depend on dis-
tributional and moments assumptions, is introduced. We discuss estimation procedures
for the nonextreme levels using the models and consider the estimates obtained by in-
verting conditional distribution estimators and by direct estimation using Koenker-Basset
(1978) version for kernels. Under some regularity conditions, the asymptotic normality
and uniform convergence, with rates, of the conditional quantile estimator for a-mixing
time series, are established. We study the estimation of scale function in the introduced
models using similar procedures and show that under some regularity conditions, the scale
estimate is weakly consistent and asymptotically normal. The application of introduced
models in the estimation of extreme conditional quantiles is achieved by augmenting them
with methods in extreme value theory. It is shown that the overal extreme conditional
quantiles estimator is consistent. A Monte Carlo study is carried out to illustrate the
good performance of the estimates and real data are used to demonstrate the estimation
of Value-at-Risk and conditional expected shortfall in financial risk management and their

multiperiod predictions discussed.
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1 INTRODUCTION 1
1 Introduction

The increasing awareness in the financial industries (both private and regulators) of the
consequences of extreme risks (the possibility of lossing large amount of money) in trad-
able portfolios has called for effective risk management systems to be put in place for
financial institutions, such as banks and investment firms. This has seen the use of quan-
titative risk measures as essential management alternatives used for internal or external
requirements parallel with other models.

Theoretically, one can quantify risk by using measures such as standard deviation, quan-
tile, interquantile range or expected shortfall. The quantile based Value-at-Risk (hence-
forth VaR) has become a basic tool employed by financial institutions and their regulators
to assess riskness of trading activities. It can formally be defined as the maximum po-
tential change in value of a portfolio of financial instruments with a given probability
over a certain horizon. Specifically, based on negative returns, VaR is defined so that the
probability that a portfolio will lose more than its VaR over a particular time horizon is
equal to 1 — ¢, for the probability level ¢ — 1 prespecified. Its popularity among financial
practitioners stems from the fact that it is very simple: It can be used to summerize risk
of individual positions or of large financial institutions such as dealer-banks in the OTC
derivatives and other portfolios by reducing the (market) risk to just a dollar ammount?,
thereby representing a compromise between the needs of different users. Because of this
simplicity, it has been adopted for regularity purposes. In particular, the 1996 market risk
ammendments? to the Basel Accord stipulates that banks and broker-dealers minimum
capital requirements for market risk should be set based on the ten-day 1% VaR for the
trading portfolios. Detail analysis and application of this measure to risk management
can be found in among others JP Morgan [73], Duffie and Pan [37], Jorion [74], Dowd
[33], Stulz [106].

Despite its simplicity, the factor of its accurate measurement at high values of ¢ (e.g
¢ > 0.95) and subsequent monitoring of high risky activities has remained a challenging

statistical problem. This is because VaR depends on the joint distribution of all intru-

'No matter how complex it is, a single value is provided as a summery.
2Which allows ten-day 1% VaR to be measured as a multiple of one-day 1% VaR.



1 INTRODUCTION 2

ments in a portfolio whose changes are nonnormal® with some hidden information about
market movements. The challenge has therefore been to find a suitable model of the
extreme conditional time varying statistics for risk measurement that is able to adopt to
general returns distribution and simultaneously reflect the latest information. To current,
most literature has focused on the VaR from the marginal distribution, see for example
Alexander and Leigh [5] and Boudoukh et al. [19].

The extreme quantiles can be estimated by using ideas from Extreme Value Theory (
EVT). The use of EVT in financial market calculations is a fairly recent innovation, Em-
brechts et al. [39] surveys the mathematical theory of EV'T and discusses its applications
to both financial and insurance risk management. The E'VT can be used to characterise
the behaviour of the extreme returns or the tail of returns distribution without tying
the analysis down to a single parametric family fitted to a whole distribution. However,
because of the presence of stochastic volatility* in financial data, it is inappropriate to
apply such models® directly. Furthermore Danielsson and de Vries [31] has shown that
this model do not work well in the common low probabilities, such as 0.95. Very few
attempts have been made to develop extensions of extreme value statistical methodol-
ogy to take account of the variable volatility. Among others McNeil and Frey [88] and
Barone-Adesi et al. [7] have taken an approach built arround the GARC H® with heavy
tailed innovation estimated by EV'T'.

A seemingly flexible parametric approach to VaR estimation is being researched in Engle
and Manganelli [42], where the estimation of VaR uses regression quantile methodology
introduced by Koenker and Basset (1978) to determine the unknown parameters, under
the assumption that the quantile process is correctly specified. In nonparametric set up,
the estimation of quantiles with application to finance has been observed in Abberger [1].
However, due to the sparsity of data in high risk areas, the nonparametric kernel methods

do not guaranree reliable description of the tails.

3 Empirically, their peaks and tails are higher than normal, see Mendelbrot [83], Fama [43] and in the

case of equity returns, the losses have longer tail than the profits.
4Changes in portfolio values have the characteristic of being significantly autocorrelated in their

squares or absolutes i.e volatilities of market factors tend to cluster.
5These models are also nested in a framework of iid variables which is not consistent with the af-

foremened charactersistics.
6To take account of the underlying volatility.



1 INTRODUCTION 3

In this thesis a semiparametric approach, to estimating conditional quantiles for time se-
ries in both common and extreme levels of ¢ € (0, 1), that has simple structure, robust and
tailored for general distributions is developed. It is based on the combination of three
pillars: The nonparametric conditional quantile, based directly or indirectly” on local
version of Koenker-Bassett (1978) methodology, constitute a flexible® part of our initial®
estimator for fitting empirical changes. The second one models the randomly changing
volatility as a scale function whose main purpose is to devolatize large observations (or
losses) beyond an initial estimator. The third pillar, which is parametric in nature, ex-
ploits the results from the EVT and fits the transformed (devolatilized) excesses.

The rest of this chapter gives a general overview of the concepts of methodologies used in
the thesis. We state explicitly what we want to estimate and provide a formula for that
purpose. We then propose and define a class of time series models which is similar to
nonparametric AR-(G)ARCH models but does not depend on the form of the conditional
distribution and the finiteness of moments assumptions.

Chapter 2 derives the estimators for various nonparametric functions in the introduced
process by inverting the estimates of conditional distributions. We provide pointwise
consistency and asymptotic normality as well as uniform convergence of the conditional
distribution and respective quantile estimators.

In chaper 3 we present and discuss various forms of regression based approaches for es-
timating, in particular, the purely heteroscedastic part of the introduced model. The
chapter provides the asymptotic properties of the estimators based on direct Koenker and
Basset (1978) version for kernels. We then give a standardization procedure for approxi-
mating and estimating the true volatility.

Chapter 4 uses results from EVT and nonparametric procedures, based on our model
in chapters 2 and 3, to estimate the extreme conditional p-quantile for time series in
(1.2.0.1). Two formulae are derived: The first one is based on a Hill’s estimator of shape
parameter while the second one, on GPD. Heuristically, it is shown that both overall
estimators of the extreme conditional p-quantile function converges in probability to the

true one. Further, a Monte Carlo and backtesting results based on artificial and real data

"By inverting conditional distribution function.
81n the sense that no strict distributional assumptions and variance specifications are made.
9 This can be taken as conditional quantile at common probabitlites.
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respectively, show that the introduced model argumented with EVT performs better than
direct estimators for large levels of ¢. We also confirm that the estimate based on GPD is
superior than the one based on Hill’s, for a wide range of large values of . The chapter
also discusses the problem of multi-period prediction of VaR and derives a formula!? based
on a-root of time rule.

For completeness, chapter 5 extends the VaR formula based on our model to the case of
coherence risk measure. We propose a more general formula for the conditional expected
shortfall, for dependent data, that takes simple form in cases of a continuous distribu-
tion. Lastly we discuss the estimates of the formulae and their corresponding estimates
of multi-period conditional expected shortfall and show heuristically that they converge

in probability to the respective true ones.

10Tt is based on the tail of a Pareto distribution whose shape parameter is obtained by using the Hill’s

estimator.
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1.1 Concepts and definitions
1.1.1 Econometric Model

Let {Yt} be real-valued and {Ft, -0 <t< oo} be an increasing sequence of o-algebras
representing information available at time t. We will assume that Y; is F;-measurable.
Let {Xt} be a d-dimensional process such that X; is F;_;-measurable. In particular, we
have a situation in mind where X; = (Y;_l, . ,Yt_d> are the last observed returns up
to time ¢ — 1, or where X; consist of <Y}_1, .. ,Yt_7> and some exogeneous variable S;
which is F;_j-measurable and forms a (d — 7)-dimensional time series. We will assume
that the sequence of random variables {Yt, Xt} taking values in R x R? is stationary and
that Y; can be considered as the response variable and X, the predictor variable (or the
conditioning covariates). Further, we will assume that the underlying process of interest

is of the form

}/;f:,ut+gt€t7 t:1,2, (11]_]_)
where
1. py is the conditional expectation function of Y; given F, 1,
2. o0y is the conditional volatility function of Y; given F;_1,

3. and e; are variables, independent of F;_;, with mean 0 and variance 1.
The conditional #-quantile of (1.1.1.1) given F,_; is then given by

Jino = o+ 0 B! (9) (1.1.1.2)

where F1 (9) is the #-quantile of ¢; and 6 € (0, 1). For instance, let e; be independent

and identically distributed ( iid) standard normal random variable (rv), then

Y;NN(M,UE), t=1,2.... (1.1.1.3)

If the time series of y; and o7 are known, the conditional f-quantile is then given by
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feo = iy + 0@ (9>

where F ! (9) = ¢! (8) is the inverse of the standard normal distribution at §. This
holds analogously for other known distributions. In practice, however, the misspecifi-
cation of time series structural functions and strict distributional assumptions imposed
on the standardized residuals can lead to serious under or overestimation of conditional
quantiles.
In order to avoid such specification and distributional assumptions, a variety of nonpara-
metric approaches for quantile estimation are available: The Historical simulation (HS)
and the Hybride methods. In HS a random sample of size n, say from (1.1.1.1), is split
up into a number of equally long (overlapping) subsamples of length,k say, called a rolling
window (or window size). Then n — k + 1 subsamples are constructed such that for
any two subsamples, there is all but one datum in common. Next, the §-percentile of
each subsample is picked!! as the f-quantile. A major'? problem of HS is the rareness
of extreme observations. In the interior the sampling observations are very close to each
other and therefore the empirical quantile function is reasonably smooth, i.e does not
show jumps. But as one goes to the extreme, the distance between adjacent observations
becomes large. This results in quantile estimates that are highly variable and therefore
either underpredict or overpredict. The blue curves in figure (1) illustrate this feature.
The returns data is represented in black, while the continuous and dotted blue curves
represents the 0.75 and 0.99-quantile esimates respectively.
The second approach is a variation of HS proposed in Boudoukh et al. [19] that combines
RiskMetrics approach with HS methodologies by applying exponentially declining weights

to the past observations. First, each of the most recent k observations, v, yr—1, ..., Yr—k+1

is associated a weight =3, (ﬁ))\, . (11__/\’\k>)\k_1 respectively!® and then the obser-

vations are ordered in ascending order. The corresponding weights are then accumulated

starting with the smallest observation until the 1000% is reached. The f#-quantile of

HFor intermediate percentile, a linear interpolation is performed.
12 Others include the iid assumption on the observations and equal weight given for all of them within

a window. The problem for determining the size of the window is still open for debate.
13 As there is no statistical method available to estimate ), it is usually taken between 0.97 and 0.99

and the role of % is to ensure that the weights sum to 1.



1 INTRODUCTION 7

the random variable Y; corresponds to the last weight used in the previous sum, i.e the

f-quantile is given as

t k

Z yjI( w; <)"k>1<yt+17i < yj) = 9)

Jj=t—k+1 i=1

where w; (/\, k:) are the weights associated with observation y; and I () is the indicator
function. This approach prevails a significant improvement over the HS as it removes most
of the drawbacks in HS. However, the hybride method is not efficient in allowing for the
volatility, o; in model (1.1.1.1), see Hull and White [69] and they both share the same
sparseness problem.
The following section introduces a method!# that automatically takes account of the
conditional volatility. Note that if {e,} satisfies only martingale difference condition, then
still s becomes the conditional expectation and o2, the conditional variance'®. However,

for the sake of simplicity, we stick to the strong assumption in (1.1.1.1(3)).

1.1.2 Quantile autoregression(QAR)

The regression quantile models were introduced by Koenker and Basset(1978). They rep-
resent a substantially more general and informative method of regression analysis than the
conventional mean-variance regression, since the former fully'® describes the conditional
distribution of a response variable Y, given a covariate X; in F;_;, without imposing any
rigid distributional assumptions. Let 1y € R — R be an unknown smooth function and

define, analogously to Koenker-Bassett, the loss function My as

Ma(y,ﬂ) = 9’y—u‘++ (1 —9)).@—#(7

+
Yy — u) stands for the absolute of negative and positive values

where ‘y — ,u‘_ and

respectively. This equation can be rewritten in terms of indicator function,

Where both hybride and HS are just but special cases.
15 In various forms, see [40] and [13], [70],[26],[104].
16 Quantile regression method can be used to measure the effect of covariates anywhere in unknown

distribution.
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My (y u) = <y - u) (9 - I{y—u§0}> (1.1.2.1)

The conditional #-quantile function is then obtained as

Lo (x) = argmin F [Me (Yt, M) ‘Xt = x] )
I
In the following, we use the abreviation 9 = pg <Xt> for the conditional #-quantile of
Y; given X;. Let {Y;} be conditionally distributed according to

P(Ytgy’Xt:x> :Fx(y>, t=1,2,..... (1.1.2.2)

We assume that Fy has the density fx, and then fx, is the conditional density of Y;
given X;. The conditional #-quantile p g, of Y; given X, satisfying (1.1.2.2) can then be

written as

- /:9 x, (y)dy (1.1.2.3)

or in the usual regression convention as

Y, = o + g

where 1,9 is a r.v with conditional #-quantile 0, i.e

P(ﬁt,e < 0’Xt> =0
The term Quantile Autoregression (QAR) was introduced in literature in Abbegger [1]
to mean the conditional quantile regression of a response, Y;, given its past observations as
a covariate. We will adopt this terminology. For instance, if X; = (Yt,l, cee Y;,d> . 05
is the 0.5 QAR, 005 is the 0.95" QAR and for 6 — 1 or § — 0, e will be
called here 0" extreme QAR. If the conditional returns distribution function, Fl, (y),
of Y; conditional on Xy, is continuous and strictly monotone, then ¢ is its inverse and

hence unique. More generally, the QAR of Y; will be given by

peo = Fx) (0) (1.1.2.4)
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where F)Ztl (0) is the general inverse of F¥, (y) at a fixed . We use the term Quantile
Autoregression in the following slightly more general sense by allowing X; to contain not

only the past observations of Y; but also exogeneous F;_;-measurable random variables.

0.15
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W il
! wwwwwwu ”» i

—0.05 - —
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I I I I I I I
o 100 200 300 400 500 600 700 800
Time (Trading days)

Figure 1: Returns on BASF:1/90-12/92. The difference between the quantile estimates
in the interior and for the level close to 1. The blue and red curves are HS and QAR
estimates respectively. The solid and dotted curves depict estimates at 6 = 0.75 and 0.99

respectively.

The QAR enjoys the robustness property against the effect of the outlying events as
the effect on the #"*-QAR is bounded so long as the number of outlying events is lower
than nmin{f,1 — 6}. The following equivariance properties are exhibited by the QAR.
Analoguous version can be found in Koenker and Basset(1978).

For a F;-measurable r.v n; let Qg (m) = inf{u c R P(nt < ,u‘Xt> > 0} denote the

conditional #-quantile of 7, given X,. If, in particular, n, = Y;, we have Q.4 (Yt = Lt p.

Let a; be a r.v which is a measurable function of X;, then

1. @y is translation -equivariant, that is
Qo <Y;t + @t> = Qo (Yt) + a

2. Qp is positively homogeneous or scale equivariant, that is
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(Z) Qt,e (atY;t) = atQt,e (Yt)

3. Q, is invariant to monotonic transformation: That is, for any random variable Y}

and nondecreasing function g on R, then

Quo (1)) = n(@uo(¥))
i.e the QAR of the transformed random variable u<Yt> are the transformed QAR

of the original variable Y;.

These properties have immediate application in the estimation of scale function in our
model. They constitute part of the definition of a risk measure.
It is noteworthy to mention that, just as in the case of both HS and Hybride, the QAR
is based on the conditional ordering and extrapolation of observations and quantiles re-
spectively and, therefore, the empirical distribution is a step function for data not so
close to each other. In particular, the estimates of the true function far out in the tails
can cause biased results due to sparseness of the data. See the red curves in figure (1)
for an illustration. The solid and dotted red curves correspond to 0.75 and 0.99-quantile
functions respectively. It can be seen that as 6 — 1, the estimate becomes a step function.
This unreliability of the estimate is a very undesirable feature in the prediction of extreme

risks.

1.1.3 The extreme sample quantiles

The drawback for QAR can be remedied by fitting a smooth function through the tail
of the distribution. We propose to use Extreme Value Theory (EVT). EVT concerns the

asymptotic behaviour of extreme order statistics, such as minimum and the maximum.

Let e, € R be iid random variables with distribution F'. The conditional excess

distribution of e; given that it exceeds a threshold value u is

Fu(z> = P<et —u<z

€t>U)
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for 2 > 0. We assume that the threshold is somehow marking the beginning of the
right hand tail. The main principle behind EVT is that for any general distribution, G,
such that

lim  sup
U—€F 0<z<ep—u

Fu(2) —G(z)’ —0 (1.1.3.1)

where ep is the endpoint of the distribution function F, the tail F = 1 — F of F
can be estimated by means of the tail of G. The extreme unconditional quantiles, z,,
are then derived from G<z> for any values of z > 0 or alternatively, for any ¢ > F <u>
The behaviour of the tail forms is an essential part of EVT. The analysis of the extreme
statistics started in 1920’s and still continues. This includes the fundamental results on
the distribution of extremes, obtained by Fisher, Frechet, Tippet, Gnedenko, von Mises,
Galambos, de Haan among others-see Embrechts et al. [39] for an excellent review. Several
monographs and lecture notes focusing on the extreme statistics includes Galambos [54],

Leadbetter et al. [80], Huesler and Reiss [68].

1.1.4 Scale function

The application of EVT in the estimation of extreme quantiles requires that the series
be independent. In the estimation of extreme QAR, the clustering or evolving volatility
in financial time series is found to be significant at high ( also applies to low) levels of ¢
and cannot be disregarded. Adjusting a series of its QAR at such levels, we still find the

excesses to exhibit some siginificant dependence!”.

This dependence can be reduced by
extracting the volatility.

The autoregressive conditional heteroscedasticity (ARCH) model, in Engle [40] and its
variants, were introduced to allow the conditional variance of time series model to depend
on the past information (conditional heteroscedasticity). Because of the well established
empirical facts about financial (returns) data (see Mandelbrot [83] and Fama [43] among
others), Bollerslev [14] and Nelson [91] among others have taken the approach of likelihood

based on the student’s t-distribution to estimate the volatility. However, the misspecifi-

cation of the form of such conditional distribution used to define the likelihood can create

I7 The investigation of this feature is carried out in chapter 4 using real data.



1 INTRODUCTION 12

problems in parameter estimation. The theoretical work on adaptive estimator of ARCH-
type models which provides an alternative approach to the problem has been observed in
Linton [81] and Drost et al. [34]. For recent review of the ARCH literature see among oth-
ers Bollerslev et al. [15] and Bollerslev et al. [16]. The clustering of volatility and heavy
tailedness in financial(returns) data has seen the generalization of ARCH models and its
variants to models such as generalized ARCH(GARCH), Integrated GARCH (IGARCH),
exponential GARCH(EGARCH) and threshold GARCH(TGARCH). In all these models,
the hidden variable volatility depends on lagged values of the process and lagged values of
the volatility. A detailed review of these models and their many variants can be found in
among others Bollerslev et al. [15] and Shephard [102]. There estimation is usually based
on symmetric distribution of the error or a robust quasi-maximum likelihood method, see
Bollerslev and Wooldridge [17]. The former suffers the same consequence as in ARCH.
In mean-variance'®, the latter suffers from the fact that it depends on the properties of
the estimated mean, which is sensitive to model misspecification. Furthermore, Hall and
Yao (2002) have shown that for heteroscedastic data with heavy tailed errors, the method
suffers from the complex limit distributions and slow convergence rates. These problems
have motivated us to look for more flexible methods that are not based on symmetry
assumptions and are in general less sensitive to model misspecification. Thus, in order to

reduce the dependence we have incoporated a scale function of the form
Ot = bUt,

with b being a positive constant at time ¢ but depends on #. The function o; is the
conditional volatility defined in (1.1.1.1).

The estimation of such a scale function is not novel in literature, see variation in Welsh
et al. [111] in the case of heteroscedastic regression with independent variables. Because
quantiles are readily interpretable in location-scale models and are robustly estimable
than moments, Koenker and Zhao [76] has exploited quantile regression ideas of Koenker
and Basset(1978) to ARCH setting. Instead of modeling conditional variance, it focuses
on ARCH models for conditional scale, where the standardized error is assumed to be iid
random variable with zero mean-finite variance. Similar models based on conditional scale

(standard deviation), but restricted to Gaussian context, have been observed in Tayler

18 Examples includes AR-(G)ARCH models
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[107], Shwert [101] and Nelson and Foster [92]. The scale function provide a more natural
concept of dispersion than variance, see Bickel and Lehmann [11], and offers advantages
from robustness viewpoint, see Bickel [12] and Carrol and Ruppert [22] among others.

The nonparametric approach to ARCH/GARCH estimation, see Franke [51], Franke et
al. [52] and Buehlmann and McNeil [18] among others, enjoys the advantage of being less
sensitive to model misspecification. However, the reasons given in Bickel and Lehmann
[11], Bickel [12] and Carrol and Ruppert [22] in the case of parametric models, still
infers. Instead of assuming that the errors are iid with zero mean -finite variance, as
in Koenker and Zhao [76], we are introducing a new nonparametric model which only
assumes that the standardized residuals are zero quantile-unit scale. We believe the
model can also be used in the case of infinite variance distribution. Further, because it is
a combination of nonparametric regression methodology (see Stone [105], Robinson [96],
Haerdle [58], Franke [51]) with quantile regression methodologies, it is less sensitive to
model misspecification. In the application part, the more closely related to our spirit is
the work in Turner and Weigel [109] which analysed the volatility of returns of S&P 500

and Dow Jones indices using the interquartile range and other measures of volatility.

1.2 What we want to estimate

Suppose we are interested in the QAR corresponding to the level of probability . Apart
from the usual threshold problem in EVT, we are also faced with the decision on whether

to really incorporate the EVT or not.

If ¢ &~ 1, the sparseness of data at the extreme right end of the sample makes it hard
to directly estimate the QAR, 1y, reliably. In that case, a similar approach as the
peak-over-threshold (POT)-method of quantile estimation may be useful. The basic idea
is to estimate the QAR, fu 9, for some smaller level 6 < ¢ nonparametrically and correct

it in the following form

T, = Htg + OroZp (1.2.0.1)

with sz'/g%%e and ZD being appropriate estimates for the scale function based on

conditional data and the extreme quantile based on iid assumption respectively. This idea
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has motivated us to introduce a form of nonparametric quantile autoregression conditional
heteroscedastic function described in section (1.1.4), where the heteroscedastic part is in
the form of a scale function depending on 6. Clearly, all functions in (1.2.0.1), have the
advantage of being robust estimators than the ones in contrast to (1.1.1.1), even in cases
where moments do not exist. Secondly, the problem of sparseness of data faced by direct
estimation of extreme quantiles is reduced, since EVT does not necessarily require very
large samples and comprise of various smooth functions.

Let the probability density function (pdf) of X; and the joint pdf of (Y}, Xt) denoted by
g(x) and f (y, x). The joint cumulative distribution function cdf of (Yt, Xt> is given by

F(y,x) = /_: /:of(ul,uz>du1duz

The dependence structure between Y; and X; is described by the conditional pdf of Y;
given X;, defined as

e

and its conditional cdf,

Fe(y) = /: Fe((wr ) dun.

We can estimate put9, or pp via the conditional distribution of Y; on its past or
directly as will be seen in chapters 2 and 3 respectively. Definition 1.2.1 gives a general

definition of the conditional Value-at-Risk (VaR).

Definition 1.2.1 The Value-at-Risk, VaR,,, of negative returns or losses Y; at time t

gien is past information of Xy, s

VaR,, = mf{y c R’Fxt <y) > gp}
for p € (O, 1), i.e VaRy, is just the conditional p-quantile of Y; given X. 11— s
the probability of extreme losses greater than the VaR wusually taking values 5% or 1%

corresponding to one or ten day trading'® periods respectively.

9May refer, for example to stock returns, holdings in banks etc.
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The risk measure VaR, , has the following properties?. For any two random variables

Y® and Y@

1. VaR;,, is monotonic with respect to stochastic dominance of order one (SD(1))*.

That is

Val, (Y1) < VaR,,(v?)
2. VaR,,, is comonotone additive. That is, if Y*) and Y are commonotone, then

ValR, (Y(l) + Y(2)> =VaR,, (Y(1)> + VaRy, (Y(2)>

Recently, there has been an intense discussion on good measures of risk, see Artzner et
al. [6], which provides the requirements for a coherent risk measure. These requirements
have ruled out measures that are based on second moments, including the standard devi-
ation as well as quantile based measures, like VaR. A measure that has gained preference
in the wake of these findings is the expected shortfall. In relation to VaR; ., and by some

appropriate moment condition, we formally define it as

Sy (VaRi,) = B|Y;

Y, > VaRW;Xt] (1.2.0.2)

which is just the conditional expection of those losses exceeding the VaR. In iid and
univariate case, expected shortfall was first proposed in Acerbi and Tasche [4]. Its variants
have been suggested in different names; Conditional VaR in Rockafellar and Uryasev [98]

and conditional expection in Artzner et al. [6].

1.3 Nonparametric Method

Later on, we consider the nonparametric estimation of ji; 9 and o;. Their properties will

be studied under a-mixing conditions. For convenience, the following definition is refered.

20Properties formulated in terms of preference structures induced by dominance relations, see Fishburn
[50] and Georg [95].
21 The relationship Y1) =<sD(1) Y ) hold if and only if E {u (YU))} <FE {u (Y@))} for all (integrable)

monotonic function p.
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Definition 1.3.1 (Strong mixing) Let {nt} be a stationary time series and let Fy and
F! denote o-fields generated, respectively, by n;, —oo < 1 <t and n;,t < i < co. Given a

positive number s, then

OF p{ p(an8) - p(4)r(B) \}

18 the strong mizing coefficient. If

lim a(s) =0

the process is called strongly mizing or c-mizing.

The mixing conditions indicate the maximum dependence between two time events
which are a least s-steps apart. For instance if a stationary sequence is m-dependent,
namely Y; depends only on previous m observations, then the mixing coefficient is zero
for s > m. There are a number of mixing conditions in literature, among them a-mixing is
reasonably weak and known to be fulfilled for many time series models. For instance, under
the conditions derived in Gorodetskii [55] and Withers [112], a linear process is a-mixing.
Chen and Tsay [25] has shown that the functional autoregressive process is geometrically
ergodic under certain conditions. Franke et al. [53] provide sufficient conditions for general
markov chain process to be geometrically ergodic, with coefficient which depend on some
explicit constants. Futhermore Masry and Tjostheim ([84],[85]) have demonstrated that
under some conditions both autoregressive conditional heteroscedastic (ARCH) process
and nonlinear additive autoregressive models with exogeneous variables, which are popular
in finance and econometrics, are stationary and a-mixing.

Let 7 () and ]2<.> be real valued, measurable functions. Set J; = j; (nt>, Jo = o (W>~
The proof of the following lemma can be found on page 10 of Doukhan [32].

Lemma 1.1 (Covariance inequality) Suppose that Jy and Jy are bounded random vari-

ables with respect to F; and F! respectively, then

‘cov(Jl, Jg)) < ca(tl — t)HJl

gl

‘OO‘
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where ¢ 1s a generic constant and

HVH = ess.sup|V| = inf{c € R‘P(|V| > c) = 0}

1.3.1 Kernel method

We assume, for d € N, our data consist of a realization of <Yt,Xt),t =1,...,n, which
may correspond to the observed returns information Y; and X, € R variables as in
(1.1.1.1) at several dates. We assume that the conditional distribution function F, (y),
of Y; given X; = x; € RY, i =1,2,...,n is such that the equation F}, (y) = 0 admits
a unique solution, iy (xi), for each x;. Let k;; : R — R be bounded and symmetric

functions such that

/ki,j<u>du:1, i=1,....,n, j=1,...,d.

The kernel functions &; ; assign weights to the observation X;; € R which decreases
with the distance between the point of estimation z; ; € R and X, ;. The various forms of
kernel functions include Uniform,Triangle, Epanechnikov, Bisquare, Triweight, Gaussian
among others for univariate. The latter one has an infinite support while the rest are

bounded in [—1,1]. The Bisquare kernel has the form

1) = B )10

and that of normal takes the form

1 1
ki <u> = %exp<—§u2>, for —o0o<u < o0.

We evaluate it at the point z; ; for observation X, ; for

_ Tij— Xt
hi ;
The bandwidth A, ; plays an important role in determining the number of data in
a local neighborhood of the estimation point, x;;. Hence a very small bandwidth will
lead to a wiggly curve of the estimated quantile function, while at the same time, a

large bandwidth gives a smooth curve but with a possibility of obscuring the interesting
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structures. Detailed information on this subject can be found in Haerdle [58].
For x; € R? , a multivariate kernel K : R — R, is used. In this case we may choose a

norm kernel,

K(u) = ki(

for some univariate kernel k;. For further details on the norm kernel, see Michels [89],

‘u‘), where u e RY

page 16. In connection with time series application, a frequently used multivariate kernel

alternative, is the product kernel. We define the product kernel as

K(u>:jﬁlki,j(uj), =1

where the multivariate bandwidth h® is a diagonal matrix with elements (hi,j> whose

determinant is ‘h(i) = H;l hi ;. In terms of the random variable (Yt, Xt>,

; i1 — X o — Xpo xz‘d—Xtd
K( i—X-h“)) _ K[
XA ha | b ha

d (o X,
= H k <Uh—t]>’ for product kernel (1.3.1.1)
j

j=1

where k is a fixed univariate kernel.

The following conditions are imposed on the kernel, densities, bandwidth and the pro-
cess. Conditions (B1)-(B5), (C1)-(C2), (D1) and (E1) are standard regularity conditions.
Additional conditions (B6), (C3)-(C5) and (D2) are used for deriving the asymptotic
properties of the conditional distribution estimator. The asymptotic properties of QAR
are studied under further conditions, (C6)-(C7). The letter ¢ and ¢;, 1,2 ... will denote a

generic constant which might take a different value at different places.

Conditions 1.3.1

(B1) fRdK<u)du —1,

(B2) K(u> <K<oo, ucR?

(B3) K is a compactly supported density
(B4) K<u> >0, YueRY
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(B5) K, is symmetric i.e K(u) = K(—u), ueR?

(B6) K satisfies Lipschitz condition, K(u) — K(V)‘ < ck’u — V),VU,V € R ¢, > 0.

Conditions 1.3.2
(C1) (Yt,Xt) has a joint density f(x, y) Then, the density g(xl-) of Xy, exists too.

(C2) For fixed (y,x), Fy, (y) € (0,1) and g(xi> > 0 are continuous in a neighbor-
hood of x;, where we want to estimate the quantile function. Then, the conditional density

Ix; <y> exist at X;

The following derivatives exist for x =

o) =) =70

where V2 is the Hessian w.r.t X evaluated at X for

fixed y "
(C4) Vg (x) = 895,(:) and V is the gradient w.r.t X
(C5) Vg (x) = 8223; )

(C6)The conditional density f, (y) s continuous in a neighborhood of x;

(C7) fx, <M9<X¢)> > 0.

Conditions 1.3.3

With [0 and ||
diagonal bandwidth matriz h® = diag (hi,j> g=1,...,d:
(D1) h;j; >0, h;; —0andn

(02) (V/in®

denoting the determinant, respectively the Fuchlidean norm, of the

-2
> — 00, as N — Q.

Conditions 1.3.4
(E1) The process {(Yt,Xt>} 18 - maxing with coefficient satisfying a(s) = 0(8*(2”)),

for some 6 > 0

d
If the kernel function K has support [—1, 1] , then we expect the relevant estimator,
for instance of the conditional distribution F, (y), to use the observations in the intervals

(xz- — hOT, x; + h(i)f>, where I is a unit vector of dimension d. In situation where the
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dependent observations are used, the local estimator is affected only by the dependence
of observations in a small window and not by the whole data. The rate on which «a(s)
in (E1) goes to zero plays an important role in showing the asymptotic behaviour of
the estimators. In general we use the following lemma, due to Volkonskii and Rozanov
(1959), to shows that dependent random variables can be approximated by a sequence of

independent random variables having the same marginal distributions.

Lemma 1.2 Let Vi, ..., Vy, be random variables measurable with respect to the o-algebras

Fll, ... ,Fff respectively with i1 — 51 > w > 1 and |V;| <1 for j=1,...,L. Then

DS COIRTEHRE

where V; = exp (ithj>, is the characteristic function of the random variable X .

1.4 Model definition

Let {Vt,t € Z} be a real-valued financial time series on a complete probability space
(Q, F, P), where P is such that either

1. {Vt} is an iid process or
2. {V}} is a stationary a-mixing process such that condition (E1) holds.

We assume that V; can be partitioned as (Yt, Xt>, where Y; € R is F;,-measurable

and X; € R? is F;,_;-measurable, and that V; may have representation (1.1.1.1).
In the time series case 2., we consider the quantile autoregression-heteroscedastic process

of the form

Y = o+ 0192, t=1,2,..., (1.4.0.2)

where 11,9 = 11 (Xt) is the conditional #-quantile of Y; given X; and 0,9 = 0y (Xt> is
the conditional scale function of Y; given X;. The residuals Z; are iid with zero #-quantile

and unit scale, i.e they satisfy the following conditions,
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Conditions 1.4.1 Z; and M, (Zt, FZ_t1 (0)) — 1 have a continuous positive density in a
neighborhood of 0 and

P<Zt < o) _y (1.4.0.3)

and

P(My(2, F5' (0)) <1) =0 (1.4.0.4)

Condition (1.4.1) ensures that both E[M@ (Zt, ,u) — My <Zt, Oﬂ and

E [Mg (Mg (Zt> -1, 0> — My (Mg (Zt> -1, 0)} are nonnegative and have a unique mini-
mum at 0 with respect to u and . The second terms in the brackets of both expectations
ensure the respective first moments are finite, see Huber [67] and Kozek [77] for similar

expressions and arguments.

In the following we use the notation

0(2) = (z.57(0)

for any real random variable Z with distribution function Fy, i.e we evaluate the

distance function M, (y, u) at the random point y = Z and at its f-quantile y = F* (9)

If we take the residuals in (1.1.1.1) and define

e — qg
Ly = —2
t Mae
where ¢f is the 6-quantile of e; and M the #-quantile of M, <et>, then the resulting

Z, satisfies (1.4.0.3) and (1.4.0.4) by the following lemma:

Lemma 1.3 Let U be a real random variable with absolutely continuous distribution Fy
and 0-quantile qg = F(jl (6’)

() P(My(U) <) = Pas— 55 SU <ap+ ), forall 0<p< oo

(b) Let My be the 0-quantile of My (U) Then W = Uﬁge has zero 0-quantile and unit
scale, i.e it satisfies (1.4.0.3) and (1.4.0.4).
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Proof of lemma 1.3

(a) By definition of Mg( ) = M, (U, q9U>:

(V) <u) = P(U>ao(V

—dq
= P<Q9<U<qg+

J<) (v 2n(-0)(w-0) <)

)<
>—|—P(q9—1’u—9<U<q9>
<

a+h).

= P(Qe S 7

(b) P(W < O) = P(U —qo < O) = 0, ie the #-quantile of W is 0 and, therefore, using

() =) = rlhzw <))

where, again we have used (a)

[l

If we choose X; = <Yt,1, e Y 1.0, s =105 St> to consist of a finite past of the
observed process Y;, the corresponding conditional #-quantiles and an exogeneous series

St, then in (1.4.0.2) we assume that

Hto = H(K*l: s 7}/tfd7 St)

(1.4.0.5)
O1p = 0¢ (Yt—l — 1,05 Yi—g — Hi—q,, St)

i.e we let the volatility be a function of the past residuals instead of the data them-
selves. Instead, we could as well take the past information as (Mg <Yt_1), oo, My (Y;_q>> )
That is a special case of (1.4.0.5) as 0y ¢ is an arbitrary function and Y;_p—p;—x ¢ determines
M, (Yt_k> uniquely. In this case, regressing M, <Yt> against (Mg (Yt_1) ... My (Yt_q) ) 22

produces a linear surface which could easily be fitted by linear parametric, if desired, as

22 As in Engle [40], in the case of square.
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Figure 2: Example of linear regression surface

We will call processes of the form (1.4.0.2) satisfying (1.4.0.3) and (1.4.0.4) Quan-

tile Autoregressive-Quantile Autoregressive Conditional Heteroscedastic of orders d and ¢

(QAR(d)-QARCH(q)), where again we do not explicitly denote the presence of the exoge-

neous variable S; which allows for a considerable degree of flexibility. If, for example, we

0 and because our interest here is to give an example of a heteroscedastic part, we

,0.75 —

23 With Mt
have set Mg to be equal to 1, so that Z; is just (et

H(0.75)).

e

- F
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Figure 3: Example of nonlinear regression surface

24

choose S; = (at,l,g, ey at,Tﬁ) in (1.4.0.5) then we get a nonparametric quantile analogue

to an AR-GARCH-process which we call Quantile Autoregressive-Generalized Quantile

Autoregressive Conditional Heteroscedastic (QAR(d)-GQARCH(p,q)), where d,p and ¢
are the respective orders. The QAR of ¥; in (1.4.0.2) under condition (1.4.1) given the

information, F;_;, are seen as

Qo <Yt> = [t

and the scale function at §* QAR

Qo (Mo (K)) = 019

where @t is the quantile operator defined in section (1.1.2) and, for a time series

Y, My (Y}) = My (Y}, uug) denotes the distance function evaluated at the conditional

f-quantile.
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1.4.1 Parametric examples

1. For a parametric QAR(d) — QARCH(q), the components in (1.4.0.2) would take

the form

d q
fo = wo+ Y wiY i+ Y v My (YH> (1.4.1.1)

i=1 j=1

and

q
Otp = 0 + ZOéjMe (Yi,fj>

j=1

where w, > 0,00 >0 vj,w; >0,Vi=1,...,d, o; >0, Vj=1,2,...,q. Note
that in (1.1.1.1), if e; is zero-mean random variable with symmetric distribution,
F., and 0 = 0.5, we obtain the QAR which is in exact form as the one represented
in Koenker and Zhao [76]. The paper considers a stochastic process {Yt} generated

by the autoregressive process of the form

Yioj — te—j

d q
Y; :wg—l—Zint_i—F (Oé()‘FZOéj
i=1 j=1

/

where ag > 0 (al,...,aq> € R% are the parameters and e; are iid random

>et (1.4.1.2)

variables with zero mean-unit variance.

Both the parametric form (1.4.1.1) and model (1.4.1.2) could be viewed as a general
type introduced by Engle (1982). However, the difference comes in via the way
heteroscedastic structures and the innovations are defined. In Engle’s model the

heteroscedastic term is given by

N

o= (ao + iaj (Y;_j — Mt—j>2> (1.4.1.3)

J=1

where ; is the conditional expectation and {et} are iid N (O, 1>. Because of mo-
ment conditions in (1.4.1.2) and (1.4.1.3), it is apparent that symmetry in the distri-

bution of e; plays an important role in the asymptotic behaviour of the corresponding
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estimators. In the case of homoscedasticity, the parametric form of (1.4.0.2) and

(1.4.1.2) have the same conditional quantile.

2. For a parameric QAR(d) — GQARC H (g, p) which includes stochastic volatility pro-
cess of order (g, p) that allows a more complicated dependence of the present scale

function on the past volatility, it can be written as

q p
Y, = Ui o + (Oéo + Z Oéng (YZ,J) + Z ﬁkat,k)Zt (1414)
k=1

j=1
where 0;_j, = coy_j, ¢ for some rescaling constant ¢ > 0. The constants ay, a;-s, and ﬁ,;s
are non-negative parameters with Z; satisfying condition (1.4.1). Other derivatives

of GARCH, like TGARCH could be reformulated in a similar manner, as will be

seen later on.

In chapter 2, we start by giving the asymptotic properties of the estimators of p y and
o9 when they are obtained through the inverse of conditional distribution. In chapter
(3), we give the asymptotic properties for the estimators obtained by direct minimization

involving QAR-QARCH in detail and its extensions to QAR-GQARCH.

1.5 Conclusion

This chapter has stated the problem at hand and discussed the estimation methodologies.
We have proposed a class of time series models which is similar to nonparametric AR-
(G)ARCH models but which is more suitable for estimating quantiles even in cases of

infinite variance.
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2 Estimation via conditional distribution

In this chapter, we assume {Y}, Xt} follows the process in (1.1.1.1) and estimate the QAR
and the scale function in (1.4.0.2). We present the consistency and asymptotic normality
results of the conditional #-quantile functional estimator for QAR. These results are then
subsequently used to derive further consistency and asymptotic normality results on the

the scale functional estimator of oy (xi>, both under known and unknown QAR cases.

2.1 The kernel estimator for QAR

The following definitions of the estimators will be used. The pdf g of X; at x; will be

3(xi) = (n|n]) ZK( - X;:h), (2.1.0.5)

see Parzen [94], Rosenblatt [97]. The joint pdf f(y,x) of <Yt,Xt> at (yj,xi> will be

estimated by

estimated by

F(9irx:) = (nn]n ) Ze (% Yt) K (xi - X;:h), (2.1.0.6)

where the functions ¢; : R — R, and h; € R are the kernel and bandwidth respectively
for Y; at point {yj}24. The conditional pdf fx, (y) of Y; given that X; = x; will be

estimated by

fxi <y> = — = (2.1.0.7)
§<Xz>
The conditional cdf Fk, <y> of Y; given X; = x; at distinct points y can be obtained by
integrating (2.1.0.7)

- J/C\ u,X; |du

0= [y
oK) (5
h > Ki (Xi — Xy h(i)>

24 For convenience, the subscript is henceforth dropped.
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An alternative estimator for Fy, (y) proposed in Colomb [27] is the empirical estimator;

13 ( > K (Xi — Xy h(i))I{Ytﬁy}
o (v) .
Y K (i = X h®)

_ M (2.1.0.8)

where the indicator function Iy, <y = Ij,<; (nt — .), will be used throughout. We will
base our estimator of the conditional distribution function on (2.1.0.8). The conditional

QAR estimator is then obtained by inverting (2.1.0.8) at ¢

() = ) 2 )

Because 0 < Fy, (y) < 1 and is strictly monotone in y, fy (x,) exist and is unique.

2.1.1 The asymptotic properties of the conditional distribution estimator

N .
Let W = (n’h(z) > > me where n, = K<Xi — Xy h(l)) (I{Yéy} — Fx, <y>> In order

to establish the order of the bias and the variability of the estimator, the following lemma

is necessary.

Lemma 2.1 Under regularity conditions (B1)-(B5), (C1)-(C5), (D1)-(D2) and (E1),

(1)
o] = (i) V) e) ol (] ) e
o ¥e0) =5 (5 ) = ) )

(2)

ﬁ(xZ) P g(xl) (2.1.1.2)
(3)
Tx; (y) —P ry, (y) (2.1.1.3)
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Proof of lemma 2.1(1

oo ) o] 232 (-t 1)eo ]

n

) (- e (o)}

(2.1.1.4)

Observe that E[ ] = 0 since E [nt Xt} =0 and
var [W] = (n h® ) _QUCLT (i Ut)
= <n h® ) Q{Zvar[m} +§cov[nt,nt}}
(
(v

[

) o] 2

by stationarity. Now

E[nf] —E [KQ (x,- ~ X, h“)) (FX (y) ~ 2, (y))] (2.1.1.5)

Using conditions (C3)-(C5), the taylor expansion of Fx, (y) about Fy, (y) and the re-
sulting terms involving the density about g(xi>, we get

B[] = (1) v2 () () + o[

Next, we show that the second term on the right hand side of (2.1.1.4) is of negligible

>. (2.1.1.6)

magnitude,
T\ 2w t—1
< o) 5o~ S en(n)
n
=2
N2 —
< 2<\/ﬁ‘h(’)> Z)cov(nl,m> (2.1.1.7)
=2
By condition (B2) and lemma 1.1, (2.1.1.7) becomes
L1\ 72—
< (vapOD) "> ea(t = 1) lmlllindl
T 2 e
< (ﬂ‘h(l)> an(t—l) — 0,
=2

Where in the last part we have used condition (D2) and (E1). This together with (2.1.1.6)
establishes (2.1.1.1).
To show (2.1.1.2) and (2.1.1.3) is straightforward, see also for example, in Robinson [96].
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We therefore only give the leading terms in the necessary steps. The resulting covariance
terms are approached in precisely the same way as above. Under conditions (B1-B5),

(C1-C5) and (E1), the bias of the density estimator is obtained as

2

E [ﬁ(m)] - g(xz-) = Hh% /uTV2g (x> ukK (u) du + 0(‘ ‘h“)

and the variance,
)] = () () oo
The mean squared error of §<xi> then becomes of the following order
wss(3(x)) <o() - o () )

which goes to zero as n increases. Hence §<XZ> —P g(xi>. In (2.1.1.3), we use similar

5) (2.1.1.8)

)1 (2.1.1.9)

lines as the preceeding steps to obtain the bias,
TSI
E[?Xz’ (?/)] - Iy (y)g(xi) = 5‘ ‘h(l) Fy, <y> /UTVZQ (Xz> uK <u> du
N T
+ Hh(l) VF, (y) /qu (XZ> uK (u) du
1 2 ,
S e (o o o
and the same arguments as in the proof of (2.1.1.1) to get the variance,
N N -1
var [?xi (y)] = (n‘h(” ) Fy, (y)g<x@-> /K2 (u)du+o<<n‘h@ ) ) (2.1.1.11)

NI .
The mean squared error for 7y, (y) is of order O( ’h(l) + (n‘h(z)
(D1), it goes to zero with n and hence 7y, (y) —P 1y, (y) O

3)(2.1.1.10)

‘hu)

-1
> > and by condition

Considering (2.1.0.8), both the numerator and denominator are consistent and hence

-1
) —o

as n — oo. Hence, F, (y) is a consistent estimator for Fy, (y), i.e F\xi (y) —P Py, <y>

by, <y> ~ .
by Slutsky’s theorem, this is true also of = Fy, (y) for Hh(Z)
b{ x;

(e

This result will be used to obtain the bias for ﬁxi <y for subsequent use throughout this
chapter.
The definition of V2 <y> will be used throughout this chapter.

The following lemma gives bias and variance for ﬁxi (y)
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Lemma 2.2 Suppose the conditions in lemma 2.1 hold. Then

BB (3) 1)) = .6) o

3) (2.1.1.12)

‘hm

and the variance

o[ 0] = o

)_1> (2.1.1.13)

)" V(s) ol

where

i) = o ) o) o
+ %g( ) / WV, (y>uK(u>du}

Proof of lemma 2.2 :
Because the numerator and denomenator of (2.1.0.8) are stochastic, we proceed by lin-

earizing the estimator;

B (y> = (y) + - <y> ~ <y>§(x> 1

+
g Xi)

RORSONAORIS)

(2.1.1.14)

From lemma 2.1, the consistency of 7y, (y) and fq\<xl> implies that for large n and ‘h(i) —
~ 112

0, we have F, <y> — I, <y> = 0,,(1). And because g<xi> — §<xl> = Op< ‘h(l) ), the

product of the two quantities is of smaller order in probability. Hence by using ( 2.1.1.8)
and (2.1.1.10) in

. 0)] - ) - OO

results in (2.2). And by using (2.1.1.9), (2.1.1.11) and (2.1.1.14) in

2) (2.1.1.15)

’hu)

var [ B (v)] ~ 2(;.) (var e (o) | +75 (o ) 33 ) | =2 () 7 (). 93|

(2.1.1.16)
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where

cov [?xi (y) , ”g‘(xzﬂ = (n‘h(i)
‘ ) R Z cov [K (Xi — Xy hu)) Ly,<pp, K (Xi — Xy h(i)ﬂ

£t
) (e - e ]
_E [K (xi ~ X, h@'))I{YtSy}} E [Kz (xi ~ X, h@)] } + A(xi)

) e o) [ o) )

(2.1.1.17)

%
—

with A(Xi> evaluated as in lemma 2.1, we obtain (2.1.1.13).

O

4

From lemma 2.2, the order of the mean squared error for F\xi (y) is again O (‘ ‘h(i) +

(n‘h(l) ) ), and so for n — oo we have M SE (in (y)) — 0. Hence Fy, (y) —P Fy, (y)

with a rate implying consistency, as in lemma 2.1.

have to be
~1

) and

large bandwidth would be prefered. Hence to get a compromise of both effects, we choose

. , 4
Hh(z) such that n‘h(’) ‘h(z) = ¢, where c is a positive constant. In particular, for
equal bandwidths, we have Hh(i)

Note that the bias is quadratic in Hh(i)

and therefore the sequence Hh(i)

small to reduce it. On the other hand the variance is proportional to (n‘h(i)

= ch and h has to be choosen so that h = cnil%d.

The definition of B, (y) will be used throughout this chapter.
Using lemma 2.2, we now present the asymptotic normality of the conditional distribution

estimator results in theorem 2.1 below.

Theorem 2.1 (Asymptotic normality) Under the conditions (B1)-(B5), (C1)-(C5),
(D1)-(D2) and (E1),

)é [ﬁn (3/> - Fy, (y) - Bn(y> + 0p< 2)} D N(O,V2 <y>) (2.1.1.18)

where V? (y) and B, <y) are the variance and bias defined in lemmas 2.1 and 2.2 respec-

(n‘h@)

‘hu)

tively.
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Proof of theorem 2.1 :

We observe that the remainder after adjusting for the bias is
LR 2 ) 1
) [B(v) = B () = Ba(v) + 0 )] = (nn® )2—(W) +0,(1)

g\ Xi
(2.1.1.19)
Let J; = (n’h(i) >§W = \/iﬁ > iy T, where 7j, = <‘h(i)‘>_§nt. It suffice to establish the

(e

‘hm

asymptotic normality of J; by (2.1.1.19). We employ Doob’s small-block and large-block
techniques (see Ibragimov and Linnik, 1971, page 316). That is, we partition {1,2,...,n}
into 2b,, + 1 subset with large-block of size r = r, and small block of size s = s,,. Let

b=0b, = ]NT( - >, where INT (:L‘) denotes the integer part of z. Define the random

Tn+Sn

variables, for 0 < 7 <b—1,

J(r+s)+r—1 (+1)(r+s)—1 n—1
vi= > T %= Y, T and n= Y 7
i=j(r+s) i=j(r+s)+r i=b(r+s)

Then

We then need to show the following, as n — oo:

1. The sum over the residual blocks T,,» and T, 3 are asymptotically negligible in

probability,
2. The summands v; in large blocks, T}, ; are asymptotically independent and

3. The standard Lindeberg-Feller conditions for asymptotic normality of 7}, ; under

independence assumption hold.

[un

To accomplish this, we define the large-block size r,, by r, = IN T((n‘h(i) >§> and the
%
)’
small-block size s, = INT (T) . Then as n — oo,
2,0 and 304(3“) =0 (2.1.1.20)
rn TTL
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Now, to establish (1), we need to show that
1 2 1 2
BTl =0, SE|T =0, as nooo (2.1.1.21)
n n

The variance of T}, 5 is

9 b—1
E|:Tn,2:| => war(y;)+2 ) cov (%%‘) =T + 1 (2.1.1.22)
=0

0<i<j<b—1

From stationarity and lemma 2.1, it follows that

T5, = byvar <’yl) = b,var (SZ" ﬁj) = b, S, [VQ (y) g (XZ> + 0(1)} (2.1.1.23)

Consider the second term Ty on the right -hand side of (2.1.1.22). Let 7} = j(r, + s,),

then r;-‘ —r}f >r, for all j > ¢ and therefore

S S
T =2 ), D Tty DT
22 cov My e s
0<i<j<b—1 j1=1 j2=1

Sn

> Y Yy

0<i<j<b—1 jl 32

IN

cov (7]7’:‘ +ran+jlo 777~; +rn +j2>

n—rn n

S UDS

j1 j2=jl+rn

cov (ﬁj17ﬁj2> ’

By stationarity and lemma 2.1, we have

ol <20 37 |eov(7,7,) | + o(n) (2.1.1.24)
Jj=rn+1
Hence, by (2.1.1.20)-(2.1.1.24), we have
| 2 B
—E[Tn,g} - O(bnsnn ) n o(1> (2.1.1.25)
n

It follows from stationarity, (2.1.1.20) and lemma 2.1 that

n—>bn, (Tn +5n)

var |:Tn,3i| = var( Z ﬁj> = O(n — by (1 + sn)) = 0(n>. (2.1.1.26)

=1

and therefore %E[Tn,g} 0. Combining (2.1.1.20)-(2.1.1.26), (1) is established.
To show (2) we need to show that

’E[exp (itTmlﬂ — jlj] E[exp(itz@-)] ) —0, as n— o
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We use (2.1.1.20) and lemma 1.2 to obtain

el ()] T el o2

=0
which tend to zero by (2.1.1.20).
To establsh the third statement, we need to show that

b—1 b1

1 2 2 2 1 2

- > E(u ) -V (y)g <X) - >, E[’/jI{lujlzevay)g%xn\/ﬁ}} —0
=0 =0

for every € > 0. By stationarity, (A12) and lemma 2.1, we obtain

1% b born 1
w2 B() = TE() == aw(Zm) = V3 (u)o*(x)
=

To establish the last part, we employ a truncation argument as follows. Let U, =

Uil{u, <y, where L is a fixed truncation point. Correspondingly, let us denote the super-
script L to indicate the quantities that involve {U Lﬂ-} instead of {Ul} Then J, = J& —i-le

where le = \/Lﬁ oy (ﬁt — ﬁf) Since K is bounded with compact support, we have
1

(’ ) ’ ( x; — Xy hm) (I{Ytéy} — Fx, (y))

1

()

for some constant ¢. Then using (2.1.1.20), it follows that
maXOStSb,l \/Lﬁ T_]tL S Cry, <n‘h(l)

nhl > eVy (y) g(xz-> \/ﬁ} becomes an empty set and hence

b—1
o E[Vf1{|uj|>evL<y>g<xi)\/ﬁ}] — 0.
O

)_5 — 0. Therefore, for n — o0, the set

2.1.2 The asymptotic properties of the QAR function estimator
This subsection establishes the asymptotic normality of the QAR estimator, fig <xz>

Lemma 2.3 Assume conditions (B1)-(B5),(C1)-(C6) and (E1). Then for 6, — 0, we

have

i >1) (2.1.2.1)

Fulire )~ Fu(3) = 1) (8 o
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Proof of lemma 2.3 :

Express the left hand side of (2.1.2.1) as

)—1 > K (Xi — X4 hm) (I{Ytswén} - I{Yt§y}>

i)

We first use equation (2.1.1.14) to simplify (2.1.2.2). Then follow the same arguments

F, <y + 5n) _ P, (y) _ <n)h<i>

(2.1.2.2)

as in lemma 2.2, by taking the expectation on both sides. Lastly, expand the resulting

Fy, (y + 5n) and other terms involving d,, about their corresponding functions of y. We
arrive at E [F\XZ <y + 5n> — Z/fxi <y>} = 0 fx, <y> + 0<5n‘ ‘h(i)
(2.1.2.2) becomes var [ﬁx <y + 5n> — ﬁxi (y)] = O((Sn (n‘h(i)

error goes to zero as n — oo, hence (2.1.2.2) holds. O

). Similarly the variance of

-1
) > The mean squared

Note from this lemma that, we can approximate the variance of F\xi (y + 5n) by the
variance of the sum of F\xi (y) and 9, fx, (y) This fact will become important in deriving

the asymptotic properties of the scale functional estimator.

Theorem 2.2 Assume conditions (B1)-(B5), (C1)-(C6), (D1)-(D2) and (E1) hold. Then
Lo <Xl> s consistent

7o (x> P g1 (x) (2.1.2.3)

Furthermore if conditions (C7) hold, then it is asymptotically normal:

) <ﬁ9(xi)_M(Xi)_B(M(Xi») HN@%) 212

=

(n’h(n

where B(ﬂg()g)) B M (2.1.2.5)

- fxi Lo (Xz>

Proof of theorem 2.2 :

First we proof (2.1.2.3). From lemmas 2.1 and 2.2, we have for all x; € R? and y,

~

E, (y) — Fy, <y>, in probability.
Because Fy, (y) is a distribution function it follows from Glivenko-Cantelli theorem, in

Krishnaiah [78], for generalized®® empirical processes based on strong mixing sequences

2Where in the present case we choose C; = %, fort=1,...,n.
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that

~

Fy, (y) — I, (y)‘ — 0, in probability (2.1.2.6)

sup
yeR

The uniqueness assumption of 1 <Xl> implies that, for any fixed x; € R?, there exist a

e >0 and 5(6) > () such that

This implies that

P{lfn(x) = (x)| > e} < P[P (B (x:)) - P () )| > o}
< Pl i(e)) - R (o) - )
< P{sup o (y) ~F,, (y) > 5’} (2.1.2.7)

Y

for arbitrary ¢’ < § and n large enough. Here, we used Fy, <u9 XZ>> =6 and
0 < Fy, (ﬁg (Xl>> < 0+ +. (2.1.2.7) tends to zero by (2.1.2.6 ). Hence (2.1.2.3) holds
true. To prove (2.1.2.4),

)

) = P<ﬁ9 (i) = o (x:) = <)

= p(n(x) < mlx) + ot )

~

As Fy, (y) is increasing, but not necessarily strictly, we have

P05 x)) < elon(x) b +)) = )
P () < () 0 )

By the same argument as in (2.1.2.7), we may replace ﬁxi <ﬁ9 (xz)) by Fx, <,u9 (xz>) up

IA

to an error of n=! at most, and we get, neglecting the n~!-term which is asymptotically

negligible anyhow,

(v
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with 6, = b, + vw, where we have used lemma 2.3 and neglected the 0<6n> and

oo

-1
> ) Using theorem 2.1 with yy = pg (Xi>, we get

LY ORLAORCO
() ~ () =0

- (y"\);z‘yo B (1) (n[n®]) é)
AR R

by our choice of b, and v. This proofs the theorem. [J

Y

This result could be used to construct confidence interval for the estimators as well
as other relevant inferences. In the estimation of the scale function, both asymptotic
properties for the conditional distribution and QAR estimator will be important. We will

use the definition of B (,ug <X,>> throughout.

2.2 Bandwidth selection

In nonparametric kernel estimation, the bandwidth play an important role in the be-
haviour of the estimates. This can be seen for example in theorem 2.1, where the consis-
tency of the estimators are basically based on the sum of the bias and variance. Since the

-1
) _ the bandwidth has

2 )
and variance proportional to (’h(’)

bias is proportional to ’ ‘h(i)
to be taken neither too large nor too small so as not to increase respective bias and vari-
ance of the estimates. The problem can be solved theoretically by choosing a bandwidth
that balances the trade-off between the bias and variance components. For instance, if
‘hm

we assumed that all bandwidths are equal and set = ch, the theoretical optimal

bandwidth can be taken to be proportional to n_ﬁ, as seen in the proof of lemma 2.2.
The importance of the appropriate bandwidth is illustrated by the following example.

Consider the data generated from the autoregressive process,
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Y, = ,u(Xt> + 0<Xt>et, t=1,....500 (2.2.0.9)

where e; are independent random variables from student-t distribution with 4 degrees

of freedom. Let the true quantile autoregression function pg (Xt> at 0 = 0.75 be

143X, + 0(2log X, — §) + (0.007 + 252 ) a5 X, >0
M0.75< t) =
0 : Otherwise
(2.2.0.10)

with ¢ being standard normal density. The data is shown in figure 4(a). In order to

estimate (2.2.0.10) nonparametrically, we used a bisquare (biweight) kernel function,

15 2

K(u) = 5(1-+2),
The effect of the bandwidth on the behavior of the estimate are shown in figures 4(b-
d). Figure 4(b) shows the graph of true function g .75 (Xt> defined by (2.2.0.10) with its
kernel estimate at # = 0.75 and constant bandwidth h = 0.013. Clearly the bandwidth
used is too small and the estimate is undersmoothed; the estimate has a marked variance.
Figure 4(c) shows the same curves, but with the bandwidth taken to be h = 0.065. In
this case the bandwidth was too big, resulting in oversmoothed estimation; the corre-
sponding estimate has high bias. Figure 4(d) shows what happens when the bandwidth is
h = 0.031. This value of the smoothing parameter gives a fairly better estimation, than
the other two, because it tends to balance the effects of variance and bias (or between

undersmoothing and oversmoothing respectively).

Obviously, practical situations require automatic determination of the appropriate
smoothing parameter, as a bad choice may lead to poor estimation (see again figure
(4)). The bandwidth that depends only on data and is easy to compute (a data-driven
bandwidth) is prefered. One of the practical methods that is used to solve the smoothness
problem, is the cross-validation procedure. This aims at finding a data-driven smoothing
parameter (bandwidth) that asymptotically minimizes some loss function of the error.

In particular Haerdle and Marron [59] and Haerdle et al. [60], have used the square loss



2 ESTIMATION VIA CONDITIONAL DISTRIBUTION 40

(a): Data, n=500 (b): Undersmoothed Estimate: h=0.013

Y0
0.75Q
10

0.75-Q
0.75-Q
10

Figure 4: Bandwidth problem

function to investigate the parameters in the setting of independent variables and Haerdle

et al. [61] under dependence.

2.2.1 Cross-validation
n

For a-mixing {Y}, Xt} . a pair of random variables in R'*¢ and the conditional dis-
t=1

tribution estimator F\xi (y), Abbegger [1] proposed a bandwidth selection procedure that

minimizes an expression of the form

v(4) = = o Wk (%) ().

where w : RY — R? is some nonnegative weight function used to omit observation at
the boundaries, and n(w), the number of observation that take values of zero in w(X;)

and ﬂéft) <Xz), is the leave one(block) out estimate obtained as

m (X) - mf{y c R‘ﬁg“ <y> > 9}, 0<f<1
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where

FX <y> = ‘
z|t’—t|>d+bln K{ (Xz — Xt,; h(%)) }Z(t _ t')

The function 2 is such that

/(0) =0
z(t - t’) —1, it t—t >d+bl, (2.2.1.1)
0<o(t=t) <1, i b=t <d+ b,
It gives less weight to data closer in time to <Yt, Xt) than those which are further away
in time. The positive sequence of integers (bln>, indicates the number of observations

(or a block of observations) left out in the #* estimation point. In particular, o(t —t') is

considered as a weight of the form

Z(t — t/) = I[flbn,Jrlbn] (2212)

whose role is to classify the blocks of data according to their closseness in time. The

estimator of the bandwith, h(, is then given by

h® =  min (JV(h“)) (2.2.1.3)

(hi1,hi2,eshiq)
We adopt this selection procedure in this chapter.
2.3 Uniform convergence

In this section, the uniform convergence for the estimators of the conditional distribution
and QAR functions are presented. These results will be used later in the estimation of

the scale functions in QA-QARCH in section (2.4).

2.3.1 Conditional distribution

In the usual mean regression based on Nadaraya-Watson estimation, the following as-

sumptions obtained from Gyoerfi et al. [56], pages 24-25 are used to show uniform con-
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vergence of the conditional mean function. Let G,, be a compact subset of R?, and G be

a e-neighborhood of G,, (G, C G).

Conditions 2.3.1 (On probability distribution)

(A1) I < 0o, VB € B(Rd) P(Xt € B) < FA(B)

and Iy, e >0, VB € B<G> P(Xt c B> > fyA(B),

where B(Rd> (respectively B(G)) is the o-algebra of the Borel sets on R® (respectively
on G), and X\ is the Lebesgue measure on R

(A2) Some absolute moment for random variables Y; of degree 2 exists, i.e

Jv >0, dc< oo E[}Q2+U]§c.

(A3) The conditional variances are bounded on G, i.e

W <00, VxeG E[(K—p(x))QXt:x]SV.

Conditions 2.3.2 (On kernel)

(K1) Assume (B2),i.e 3K, Yu e R?, ’K(u)’ <K < o0.
(K2) HquK(u> — 0 as
(K3) 3K, ’fK2 (u)du‘ <K < oo.

(K4) K is Hoelder continuous of order v on R?, for v € (0,1). That is
Iy >0, ¢ < oo such that ’K(u) - K(g)’ < ¢y, 7, Vu,u € R%.

[ul| = o0,

u—-u

Conditions 2.3.3 (On process)
(E2) (Yt,Xt) is a-mixing with mizing coefficients {a(n),n € N} and let {sn,n € N}

be an increasing sequence of integers such that

2sn

nag"

dJA < o0, VneN, 1<s,< and

|3

< A (2.3.1.1)

Sn

Denote Ijy,<,) in (2.1.0.8) by I, and observe that F\xi (y) estimates
E [Ityy X, = XZ} = I, (y) We consider ﬁxi <y> as the Nadaraya-Watson estimate of

the conditional expectation of I, given X;. As in Gyoerfi et al. [56], in order to deal
with possible high?® values for the random variables Y, let M,, be an increasing sequence
of real numbers satisfying M,, = n¢, for some ¢ € (4 (U + 4) _1, 1> and v defined as in
condition (A2). The following theorem gives the uniform convergence of the conditional

distribution estimator for F, (y)

26 Although this is trivial in the case of I, as it is bounded in (0,1). Henceforth we will take M,, = 1.
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Theorem 2.3 Assume that (Y}, Xt> is a-mizing with a(n), s, satisfying (E2) and that
conditions (A1)-(A3) and (K1)-(K4) hold. If the function F, (y) is continuous in x; on
G and if the bandwidth \h®)

)
<3nMn logn) — 00 as n — oo, then
F,, (y) converges completely® (co), i.e

is such that n’h(i)

7, <y> ~ Py, <y>’ ~0, co. (2.3.1.2)

sup
x;EG

The proof of theorem 2.3 is as a direct consequence of theorem 3.3.5 page 37 in Gyoerfi
et al. [56]. We only show that conditions (A1)-(A3) are satisfied.
Condition (A1) is equivalent to saying that the law of X, is equivalent to the Lebesgue
measure A on (G, i.e X; have a density g(x) at X; = x and A\ has a density with respect
to the law of X;. This is satisfied if X; has a bounded almost everywhere (a.e) continuous
I, 2+Ui| e
for some v > 01is trivial as 0 < I, < 1 and in condition (A3), £ [(It,y—FXt <y>)2 X, = X]
<1and Fx(y> <1.

density which is bounded away from 0 on any finite interval. For (A2), £ [

is bounded for x € G for any set G. This is trivially satisfied as |I;,

Note that it is not assumed in the theorem of Gyoerfi et al. that I, should have a density.
The rate of convergence of F\xi (y) will be discussed in the proof of the theorem 2.4 in the

next section.

2.3.2 QAR function

To show the uniform convergence of the estimator for the quantile function g (xi), we
combine the ideas from the Nadaraya-Watson type estimation of the conditional distri-
bution and quantiles already presented in the previous sections of this chapter with the
concepts of M-estimation. The function pug (x), being defined for all x € R?, can be seen

as a zero in the argument g of the following function,

2T A sequence (W")N of random variables is said to converge completely to O if there exist some
positive real number a such that we have > P(W” > a,) < 00, see Gyoerfi et al. [56]. The complete

convergence implies convergence in probability as well as a.s.
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(es) = Bo) B (()
- ofte (-

— E[\I/x (Yt - M) )Xt - x} (2.3.2.1)
where Uy (u ) ooy (1) = Fe(po(x)) i, () =T soy(w) — 0 if
Fe(1o(x) ) = 0. The estimate of 7 (x, 1) at x = x; is

H, (Xz, u) = Iy <M> ~ F, <M9 <X1>>
(o) 5506 = Xm0 (= P ()
(n‘h(z’) )‘1 s K(Xi - X h(i))
n E

_ w <Xz> <It,u — I (“9 (XZ>>>

t=1
w; <x) T, (Yt — (2.3.2.2)

I
NE

t=1

It follows immediately that the solution of (2.3.2.2) satisfies
i, (x u) —0. (2.3.2.3)

Mark that since Wy <Yt — ,u) is nondecreasing and right-continuous in pu so is H (X, u)
and I;Tn<x,,u>. As \IJX<Y; —,u> — —6 for 4 — —oo and \IIX<YQ —u) —1—0 for p — oo
if Fy (,ug (x)) = 0, we have for n large that inf, f[n (X, u) < 0 < sup, f[n <X, ,u), c.f
(2.1.2.7) of the proof of theorem 2.2.

We will assume the following further conditions.

Conditions 2.3.4

(Q1) The density, g(x), is bounded by T, ie = supxeRdg<x> < 00.

(Q2) supyeq, §<X> - g(x)‘ — 0.

(Q3) The conditional density, fx (u), 1s bounded in x and p by cy which is independent

of x and p.
(Q4) For some compact neighborhood ©,, of 0 and a constant cy,
infuee)n infxeGn fx (MQ (X> + M) > co > 0.
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Mark that (Q2) follows from lemma 2.4. In (Q3) E[\I/x (Y} — ,u) ’Xt = X] is uniformly
bounded in absolute value by 1 by the definition of W,. As
%E [\le (Yt — p) ‘Xt = x] = fx <,u>, it is also strictly increasing and continuously differ-

entiable in x and p. Therefore Fy (i) is assumed to be Lipschitz in x and p.

Theorem 2.4 Let ©,, ba a compact neighborhood of 0 in R and assume (A1)-(A3),(K1)-

(K3), (E2) and (Q1)-(Q4). Suppose h;;,j = 1,2,...,d is a sequence of bandwidths

- , ~1
depending on n € N such that S, = n|h® (sn log n> — 00 as n — 00,

12 ~_1
Sy = Hh(l) + Sp ? satisfies S, — 0 as n — oo for all x; € G,, and there
~1 <112
3C, >0, C,<oo suchthat SZ||h®|| <C,, (2.3.2.4)
Vn € N, then we have
sup |y (XZ> — lg <Xl> = O(Sn> a.s. (2.3.2.5)
x,€Gn

The prove of theorem 2.4 is close in lines with the proof in Collomb and Haerdle [29]
and Gyoerfi et al. [56] chapter III. Note that it is complicated to deal with H (X, u)
directly, so we decompose the difference in the following manner:

Let
Hn<x,,u> = (n’h(i)

>_1 i K(" — X h(i))‘l’x <Yt - u) (2.3.2.6)

) Yo K(x - Xt;h(’)), as in (2.1.0.5). Then the difference can

978) " Observe that
gb

and §<x) = (n‘h(i)

be expressed as H, — o= Hnb—H 4 HC

~ = |H, — H| Hl|.
sup sup |H, — H| < sup sup ———— + sup sup —|g—g¢g
xEG, HEOB, xEG, HEO, g x€Gn €0, 99
H,—H 1 q—
< sup sup Q + — sup ]g_/\g]’ (2.3.2.7)
x€Gp M@n g 6 x€Gn g

as |H| <1and g >6>0on G, Now, if SUDyxcq, ’/g\— g‘ <€, we have

1 1 1
= < — <
9+@—9) " g—1lg—g| ~d—c¢

1
g

on G,. Therefore, to proof that FIn —H uniformly in x € G,,, u € O, it suffice to show

that H, — H and g — ¢ uniformly in x € G,,, u € ©,,, and also the rate of convergence
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will be given by the slower of the two rates of convergence of supycc, SUp,co, )H —H ‘

and sup,cq, ’g g|. The following lemma gives the rate of convergence of g<xz>

Lemma 2.4 Under the assumptions of theorem 3.3.6 of Gyoerfi et al. [56], for G,, com-

i(5) ol | 0(5) s
#lix)] -o(s)| =)

pact

(1) supy.cq,

(ii) supx,ec,,

The proof of this result follows directly from the proof of theorem 3.3.6 of Gyoerfi et al.
[56]. The sum of (i) and (ii) gives the rate. Therefore, we consider only the convergence
of H, (xi, u).

In this regard, the following exponential inequality for a-mixing variables obtained by Car-
bon (1983) and stated in Gyoerfi et al. [56] and the lemmas on convergence of H,, (xi, u)
that follow thereafter, will be used.

Theorem 2.5 If (At) 1S a-maxing with E[At] =0,
N

< ¢ and E[A?] < D, then

we have

P

where o 1s a real number and s an integer satisfying 1 < s <n and 0 < a < *F.

2s
> en> < 2exp{ ae, + 6a’e(D + 8¢ Zat n+2y/ens! 3”} (2.3.2.8)

t=1

Lemma 2.5 Under assumptions (K1)-(K4),(Q1)-(Q3) and (E2) we have for any compact
G, CR% 0O, cR,

sup sup Hn(xi,u) —E[Hn<xz-,,u>”20<§;%) a.s.

x,€Gp, He@ﬂ

with §n = n’h(i)

~1
<3n logn> — 00, S, — 00.

Proof of lemma 2.5
We follow essentially the proof of theorem 5.2.6 of Gyoerfi et al. [56] which gives a rate

for the Glivenko-Cantelli theorem in the case of a-mixing random variables. Denote

) (om0 (5 1) i) 1))

A, = (n‘h(i)
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then Hn<xi,p> — E[Hn<xi,,u>] = >, A and E[At] = 0. We have by (K1) and

boundedness of Wy

‘At )_12K—c<oo.

< (n‘h(i)

We also have
el = 2o e 300 o 1))

Using conditions (K3) and (Q1) and the fact that ’\Ifxi

< 1, we have

E [A?] h

IN

1 )
K? (xi ' h(’)}

) el

_1~/\
) 'K =D < . (2.3.2.9)

2 (n2

< 2(n2

h®

As in the proof of lemma 3.3.3 in Gyoerfi et al. [56], choose o = con|h®|s-* and

N -
Cy = as, (n’h(l) ) K > 7 and get, by applying theorem 2.5 for any sequence <€n> ,
N

> en> < exp{—02n|h(i)|eis;1}, (2.3.2.10)

P
t=1
uniformly in x; € R% and ;1 € R with some constants ¢, ¢, > 0.

Next, using the compactness of én, we cover it with M intervals I,,, of length C'y; and:

:CM,m:L...,M.

6, C UM, I = [Mmfl,um}, ‘Mm — Hm—1
Mark that for allm =1,..., M,
E [Hn (xi, um_1>] < SUp,er,, [Hn (xi, ,uﬂ =F [Hn (xi, ,um>] and
H, (x um_1> < Sup,er,, Hn (X u) = H, (x um>-

Therefore, we have for any u € I, using monotonicity of I, , and F, <,u> in pu:

) £

IN

)~ [ x0)

el )] - [

) [ sm)

|
el x| - [t ).

IN +

+
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and
el ()] ) = [ ()] [
B Ho (% ) | = Ho (it )
< efr)] - £
+ K _Hn (xi,um_lﬂ H, (xi,um_1>.
Using condition (Q3),
el )] - Bl )] = e o) SR s3]
t=1

= cyCyF [g (xz)} )

We get for all p € 1,,,

L R o e P e e P o
i) - £l )|} eecneli(e)]

and, therefore,

sup |Hn (i, ) = E[H (xip) || < max VB (i, 00 ) = B[ Ha (30 ) | |[+es O [5(x)
Meén m=0,1,...,M
(2.3.2.11)

We first consider the first term and get, using (2.3.2.10),
P max | Ho (i) = E[Ha(xi ) ]| > )
M
S Z P<‘Hn (Xi7ﬂm> - E[Hn (Xia Mm>i| ’ > En)
m=0

< (M+1)g eXp{—CQTL h(i)‘eisgl}.

We choose Oy = csn~! for some c3 > 0 and, therefore, M +1 < ¢yn. Using the definition

of gn, we have
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P( maxM )Hn (xi,um> — E[Hn (Xmﬁbmﬂ ‘ > (—:n) < cieyn exp{—02§n log nei}

_ 2
_ C104n1 c2Snez

2.2
— clc4n1 co€“ay,

IA

const.n~"

~_1
for arbitrary r > 0 if n is choosen large enough. Here, we have chosen ¢, = €S, *a,, for

some arbitrary sequence a,, — oco(n — 00). Choosing, e.g r = 2, we get

S P(5 e |1 () [ () || = ) <

@y, 0yees M

which implies maX,,—o.. . M — 0 a.s. by the Borel-

) £l

Cantelli lemma. As a,, — oo arbitrarily slowly, this implies that
Sz max H, (xi,pm> — E[Hn (Xi,umﬂ ‘ is bounded a.s. (2.3.2.12)

1

, ~1 ~1
Now as )h(z) — 0, s, — 00, we have S;Cy = Sicsn™ — 0 for n — oo. By lemma 2.4,

E [ﬁ(xzﬂ converges a.s to g(xi) uniformly in x; € G,,, and therefore, it is bounded. This
implies CQCME[@\(Xi)} - c\yc3n*1E[:q\<xi>] 0. Combining (2.3.2.11) with (2.3.2.12)

and the boundness of g( x; ) we finally get

sup ‘Hn <Xi,,u) — E[Hn (xi,u)} ‘ = O(Sn %) a.s. uniformly in  x; € G,,.

ued,
[

Define H,, <Xi, I <Xl> +u) = (n’h(i) )1 2?21 K (xi — X h(i)> Uy, (Y} — Lty (xz> - pJ>

Lemma 2.6 In addition to the assumptions of lemma 2.5 assume iy (XZ> 15 continuous,

then we have for any compact G, C R%, 0, CR

() ) - () )] <0(51) s

sup sup
XiEGn /—’«E@n

Proof of lemma 2.6
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As g <X,> is continuous, ©,, = {1/ = lg <Xl> +u,x; € G, b € @n} is compact too.

Therefore
sup sup |H, (x Mo <X> +u> —F [Hn (x Lo (X> +u>] < sup sup H, (x V) —-FE [Hn (x 1/)] ‘ :
x;€Gpn HEO, x;€Gn 1O,

Hence, the assertion follows from lemma 2.5. [

Lemma 2.7 Under assumptions (A1)-(A3) and (K1)-(K3), we have

)

B Hy (i 0 (i) + )] = H (xio 0 () + u)‘ _ O(Hmz’)

sup sup
x;€EGp HEO,

Proof of lemma 2.7

Since the bias term does not depend on probability distribution of the time series {Y;, Xt> } ,
t=1
it can be treated exactly as in the independent case. Its manipulation is based on Taylor

expansion of F [\I/xi (Yt — lig <Xl> - ,u) ’Xt = x} up to order two (say),

‘E[Hn (Xi,[j,g <XZ> + ,uﬂ — H(Xi,,ug <Xl> + ,u)’ < 05‘ ‘h(i)H2 for some 0 < ¢5 < 00,
(2.3.2.13)
uniformly for x; € GG,, and u € 6, c.f lemma 2.2 and also see Haerdle and Luckhaus
[57]. For the constant on the right hand of (2.3.2.13), we have assumed that
SUPy, SUP,co ‘VQE [\I/xi (Y} — Lo (XZ> — ,u) ‘Xt = X,-]
O

<cs <00

Proof of theorem 2.4
Observe that for n — oo, lemmas 2.4,2.5 and 2.6 and the fact that by lemma 2.7 the bias

sup ‘E[Hn (xi, 146 (x,L) + u)} — H(Xi,/ig (XZ> + u)‘ —0 as n—oo, (2.3.2.14)

xiEGn
imply that under conditions (A1)-(A3),(K1)-(K3),(E2),(Q1)-(Q2) and §n — 00 asn —
ply

00, we have

H, (xi,ug (xl> + /L) — H(xi,,ug (XZ> + ,u)‘ — 0asn— oo as. and

i) - afx)

Supxi cGn

sup —0 as n—o00 as (2.3.2.15)

x,€Gn
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Hence, by the remarks following (2.3.2.7),

sup
x¢€Gn

f]n (xi,,ug <Xl> + u) — f[(xi,ug (xl) + u)‘ —0 as n—oo as. (2.3.2.16)

Using a similar technique as in Collomb and Haerdle [29], fix ¢ > 0. The strict
monotonicity?® of F [\Px} and positivity of g on G, imply Vx; € G, H <xi, Lo (XZ> —e) <
0< H (Xi, o <X1> + E). The convergence in (2.3.2.16) implies that for all sufficiently
large n, Vx; € G, }NIn (Xi,ﬂg (xz) — e) <0< }NIn (xi,ug (xz) + 6) a.s. and by the
definition (2.3.2.3), the positivity of the weights, and the monotonicity of ﬁ]n in 1 we have
Vx; € G, g <xl> —€ < [lg (XZ> < g <X1> + €, which can be written as

— 0 as. as n— oo. (2.3.2.17)

sup ‘ﬂe (X7,> — M <Xz>
XiGGn
Also observe that lemmas 2.6 and 2.7 and the Borel-Cantelli lemma show that under the

~1
additional conditions, using also S, ! < S2? by definition of S,,,

SUPy,eq, SUP,co,, ‘Hn (Xi, 149 <X,> + u) — H(Xi, 149 <X,> + u) ‘ = O(Sn> and therefore,
with (2.3.2.15), we have

sup sup H, (Xi,,ug <xl> + u) — f[(x“ug (xl) + u)‘ = O(Sn>. (2.3.2.18)
x;€Gn ,U«E@n

The definition of g (Xl) and J[ig (X,) shows that for all x; € RY, we have

o)) 1)) = () - ()

A Taylor expansion of H (xi, > = Fi, <> — 6 gives

() () = (o) () (). 23220

where [ig <X2> is between fi (XZ' and [ig (X,) Using result (2.3.2.17) and for ny
sufficiently large, we have sup, cq. |l (xz) — Uy (xl> — 0, i.e [y <Xl> — Ly (x,) € 0,
a.s. Vn > ng. From condition (Q4), we have infy cq, %E[\Ifxi (Y} — lig <X1>>‘Xt =
XZ} infy, fx, (,Eg <Xz>> > cp >0 a.s. and

sup ‘ﬁ]n<xi7ﬁ0<xi>)_ﬁ<xiaﬁ@(xi>>‘ < sup sup ﬁn<xivﬂﬁ(xi>+ﬂ>_ﬁ(Xi7M0<Xi>+M>)'
XiEGn xiEGn /116671
(2.3.2.20)

281t is monotone and right continuous.
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Using (2.3.2.19) in (2.3.2.20), we get

() ) 7 els) )

sup |l (X) — 11 (X) < ¢! sup sup
x; €EGp, X;€Gn HEO,
= 0(8.), by (23218) (2.3.2.21)

This completes the proof.
O

Note that the difference ﬁxi (y) — Fy, (y) =H, (xi, y> — ]TI(XI», y) and hence the rate

of convergence of the former expression is implied by the latter one.

2.4 Scale function in QAR — QARCH

This section derives results on consistency and asymptotic normality for various scale
functional value estimators for the process given in (1.4.0.2). The results are based on

prior knowledge of the results in section (2.1) and (2.3).

2.4.1 Consistency and asymptotic normality of the estimator in QARCH

We begin by considering only the heteroscedastic part of process (1.4.0.2), while assuming

the QAR, up = 0. That is we consider

Yt :O-t,QZta t= 1,...,7’L. (2411)

where now Mj <Yt> = My (Yt, 0). Observe that (2.4.1.1) can be written in terms of

additive?? noise as follows

M, <Yt> = 019+ Oup <M9<Zt> - 1) (2.4.1.2)

where the last term on the right hand can be considered stationary with zero condi-
tional f-quantile. It then follows that ;¢ (Mg <Y}>) = 0. Thus , 019 can be obtained
as a solution to the equation, P(M@ <Yt> —0 < O‘Xt = X> = 0, where we assume

o :R? — R, to be a smooth but unknown nonparametric function at point x. At a fixed

29Gee chapter 3 for more formulations.
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0 and a fixed point x; € R? the kernel estimator, 7y <xi>, of gy (xz> will be defined as
a solution to the equation ﬁxi (O’) = f. Hence we only need to estimate the conditional
distribution of My (Y}, 0> at point y given x;, and obtain the scale function estimator as
the inverse, oy (XZ> = F\,;_ ! (0) Since the error term in (2.4.1.2) has a zero conditional
0-quantile, the stochastic process (2.4.1.2) can be modelled with the method described in
section 2, by replacing the dependent variable Y; by Mj (Yt) The following theorem es-
tablishes consistency and asymptotic normality of the conditional scale function estimator

when 19 = 0.

Theorem 2.6 Let F, (y) be the conditional distribution function of My (Y},O) given
X; = x;. In model (2.4.1.1), assume conditions (B1)-(B5),(C1)-(C6), (D1)-(D2) and
(E1) and that (1.4.0.3) and (1.4.0.4) hold. Then

or) <xl> — 0g (XZ> —P 0 in probability (2.4.1.3)

In addition, if conditions (C7) are satisfied, then

(n‘h(i) )5(89(&) _ ga<xi) - B<09<xi>> +0p( ‘h(") 2)) oo M
(2.4.1.4)

where the bias B<09 <xz>> and V? (0’9 <x1>> are as defined in theorem 2.2 and lemma 2.1

respectively.

The prove of theorem 2.6 proceeds in the same lines as the prove of theorem 2.2 with
an initial estimator of a consistent conditional distribution function as in theorem 2.1.
If the errors e;, in (1.1.1.1), are symmetrically distributed, the relationship between the
conditional distribution function of M, (Y}) given X; = x; and Y; given X; = x; at a
fixed # = 0.5, becomes P(Moﬁ (Yt> < 095 <Xz> Xi) = 2P <Yt < 095 (xz> xz) —1=0.5,

by lemma 1.3. This implies the conditional median absolute deviation, og5(%; ), can be

estimated by [ig.75 (XZ), when the conditional median is zero.
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2.4.2 Consistency of the scale function estimator in QAR — QARCH

Consider again (1.4.0.2). When the QAR,  p, is unknown, modeling the heteroscedas-
ticity part can be based on the estimated residuals after removing the effect of the p g
component. In the mean-variance models or in time series AR — ARC'H model, Engle
[40] and Koenker and Zhao [76], have carried out the study in two stages: In the former
the first step involves estimating the mean component by least squares and computing
the residuals and then estimating the ARCH part by regressing the squared residuals on
the lagged squared residuals. The latter paper also studies the asymptotic behaviour of
quantile regression estimator when applied to the estimated absolute residuals in (1.4.1.2).
In this subsection we will present the consistency and asymptotic normality results of the
kernel estimator of oy (Xt>, at x;, when applied to the residuals in model (1.4.0.2). Our
first step involves estimating the g (XZ) as in section (2.1) and computing the residuals.
In the second step, we pass the residuals through the loss function My. Finally, we es-
timate the function by applying the methods in section 2.1 to the transformed residuals
conditional on X,.

1
In section (2.1), it was proved that fig <x1> is (n‘h(i) ) *_consistent estimator for g <x2>

Let fig <Xt) be the estimated conditional #-quantile of Y; on X; at point (y,xi> and
define the residuals as (Yt — g <Xt)> First note that the consistency of fig (Xt) implies
that 7ig (Xt) = 1 (Xt) 46, with 8, = o((n‘h@‘)
n. The estimated residuals can then be written as

Y, — ﬁ(Xt> = 0y <Xt> Z; — 0, and the transformed ones, which we denote as ﬁt, as

~1
) ) > 0, which is constant for fixed

R, = M, (Yt — Tig (Xt>,0> — M, (09 <Xt) 7, — 6, o). (2.4.2.1)
Let
R, = M, (Yt ~ o (Xt),o) (2.4.2.2)
be the true residuals, where g (Xt> is known . The estimator of the conditional distri-

bution can be written as
F\xi (r/> = (n‘h(i)

where w, (XZ> is defined as in (2.3.2.2) and 7 is fixed real-valued on R, in the neigh-

3

>_1 We (Xi>1{nt9«/}, (2.4.2.3)

t=1
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borhood of r, based on (2.4.2.2). For the asymptotic properties of ﬁx,— (7") and subse-
quent properties of the scale function estimator, we will deal with r instead of . In
this case we make use of the uniform convergence and express Et in terms of R; as
R =R, — R, + R, = R, + 0, now with 0, = o(sn) being the bound of the error. Ob-
serve that the indicator function Iyg,<,, implies I, y5,<r45,) = 1 (Ry<r+6,} For n — oo,
(2.4.2.1) and (2.4.2.3) suggest that the conditional distribution estimator of R, on X, is
consistent with bias of similar form as in the zero conditional #-quantile case. Theorem 2.7
below gives the consistency and asymptotic normalitiy of the conditional scale function

estimator as the inverse of (2.4.2.3) at a fixed 6.

Theorem 2.7 Suppose conditions (B1)-(B5), (C1)-(C7),(D1)-(D2), (E1) and (1.4.1)
hold for y =r € Ry, then under conditions of theorem 2./

) (mos) =) = o)) = (s (o)) )

D N<0, %) (2.4.2.4)

where the conditional density functions, fx, <>, are based on appropriate(response)

random variables.

Proof of theorem 2.7
We first proof that ﬁxi (r') is a consistent estimator for F, (7“) Let r' = r—l—O(Sn) with
O(Sn> — 0 as n — o0o. Then by lemma 2.3,

7., (7“) _ R, (r> — P, (7“) oy (r) + O(Sn> fu, (r) (2.4.2.5)

and taking expectation on both sides and making use of lemma 2.2, it results in the bias

E [ﬁxi (r) _F, (r)] - B, (r) + O(Sn> Fu, (r) (2.4.2.6)

In similar lines as in lemma 2.2, we obtain the variance as
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var [ﬁxi (7“) _F, (r)] ~ (n‘h“) >_1V2 (r) (2.4.2.7)

where var [ﬁx (r) — I, (7“)] is obtained from lemma 2.2. In both the bias and

variance, terms of smaller order in probability have been left out. Because B, (7“) is of

order O (‘ ’h(i)

2
), the mean squared error is seen to go to zero as n goes to infinity and
hence ﬁxi <r'> — Fy, (r) in probability with a rate which implies ]?xi (r’) is consistent.

To show that

(nn®))* (B (1) = B (1) = Ba (1) = O(Su(an)) V1(r))  2a2g)

is asymptotically normal, we proceed as in theorem 2.1, by replacing var [ﬁx (y)} by the

~

estimated variance, var [in (r’)]. Finally, to proof that the left hand side of (2.4.2.4)

is asymptotically normally distributed with mean zero, we note that by Krishnaiah [78],

~

X (r) — F, (r) ’ — 0, in probability. The uniqueness assumption of oy (xi), for

SUp,.cR

any fixed x; € R?, implies that there exist a € > 0 and § (e), such that

> cf < P{R(u(x))) — P (0(x))| > o}
P (7") FXZ( )‘ >5} (2.4.2.9)

which goes to zero by above argument. At the same time O(Sn> goes to zero, from

SP{

theorem 2.4. Lastly, observe that since ﬁxi (r/) is asymptotically normally distributed, so
is ﬁxi <39 <xz>> and hence using the same arguments again as in theorem 2.2, we arrive

at (2.4.2.4) with the specified quantities. [J

Note that equation (2.4.2.5) shows that under conditions of theorem 2.4, with Y;
replaced by My <Yt — Ilg <Xt) , 0), F\xi (7’/) converges uniformly over x; € G,,, i.e

() =B ()] = o B () = B(r) [ 0(s))
x,€Gn
- O<S;> + O(Sn> a.5.
where S, apart from the bandwidths, is of the same form as S,. Further, equations

(2.3.2.20) and (2.3.2.21) shows that sup, ... )89 <x> s <x> - O(S; v Sn>.
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Suppose F® is the conditional distribution of M, (Y}, Lo (Xt>> at point x; and F( the
conditional distribution of Y; at point x;. Then as in remark of theorem 2.6, observe that

for a symmetric F") and 6 = 0.5

F,g) <0'0.5 (Xz)> = 2F>({11) </JJ0.5 (Xl) + g0.5 (Xz>> —1= 05

and in (,uoﬁ <X1> + 0o5 <Xz>> = 0.75 implies Ho.5 <X,> + 0o5 (Xl> = M0.75 (Xz> The
estimator of og 5 (xz> can be obtained as 0 5 <X1> = lo.75 <XZ> — o5 (XZ)
To assess the performance of oy (Xi , just as iy x; ), use its asymptotic mean squared

error (AMSE). Using theorem 2.7 and equal bandwidths, only for brevity,

V2(og(x;
AMSE (39 <X1>) = B} (U@ (X,)) + nhdf,g (60<0 ()1))) (2.4.2.10)
where B; (09 (xl>) =B <O’9 <X1>) +0 (Sn> Ixi <O’9 (XZ) > . The optimal bandwidth can be
choosen such that the AMSFE (89 (xz>> is minimum.

The estimator of the QAR obtained from the conditional distribution can be con-
sidered as an estimator of conditional #-quantile using the kernel based method of the
implicit equation in Huber [67]. If we consider a minimization problem involving the
kernel estimator for the loss function (1.1.2.1), we immediately note that the explicit

equation is

for) = Fale) -5 ()
- g (XZ> n‘h(i) >_1 YK (Xt — x;; hw) (I{Yt%O} — I (“9 (Xl>>)

t=1

which is measurable in (Yt, Xt> and monotonically decreasing in . The equation also

satisfies further assumptions on page 49 of Huber [67]. If we are interested in the consis-

) () () r (os) (x)-

o) (x)) in the case of zero conditional #-quantile, we only have to impose a few assump-

tency and asymptotic normality for (n‘h(i)

tions for dependent data and then directly show the estimator to be consistent and asymp-

totically normal using some standard rules. In the case of unknown conditional #-quantile,
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and using explicit equations, the sandwich theorem, corollary 3.2 in Huber [67], continues
to apply so long as the additional set of assumptions on page 131 are met. The advantage
here is that the asymptotic properties of the simultaneous conditional #-quantile and scale

function could be carried out and investigated using again some prespecified rules.

2.5 Alternative methods

It is known that the Nadaraya-Watson estimator of the conditional distribution, can be
considered as a local constant estimator obtained by the least square method. It has poor
behaviour at the boundaries for unbalanced design matrix among other disadvantages,
see Fan et al. [46]. The estimation could be improved by using either of the alternative

methods described below.

(1) The first alternative is to use the Weighted Nadaraya-Watson estimator of the condi-
tional distribution proposed in Hall et al. [62]. The conditional distribution estimator at

the design point x;, can be written as

S P )K (X = xish) Ly,
W) =-=%n () (X0 = x50

where the weight function P, <Xl> at point x; is such that P, (XZ> > 0,
Yo R(Xi) =1 and

(e

)1 é(xt - Xi>Pt<Xi>K(Xt - Xi} hm) =0 (2.5.0.11)

The P, (xl> is choosen such that Y ;" | log (Pt (xl>> is minimized subject to the con-
straints ZlePt<xi> = 1 and (2.5.0.11) through the Langrange multiplier rule. Then

{Pt <X1>} is given as

. -1 . —1
P, (x> - n*1{1 + A(’h@ ) K(xl- ~ X, h@}

where A, which is a function of the data and design point x;, is uniquely defined by

(2.5.0.11). For detailed set up, we make reference to the above mentioned paper.



2 ESTIMATION VIA CONDITIONAL DISTRIBUTION 59

(2) The second method is based on local polynomial approximation and extends a local
constant fit to a local linear estimator of the conditional distribution, see Yu and Jones
[114]. Tts motivation lies on the fact that any smooth function can locally be expanded

into a Taylor series around a point, say x; in a compact subset G,, C R?. Consider the

conditional mean regression curve ,u(Xt> =F [Yt Xt], as an example. If we assume that
the p'" derivative exist at point x;, then u(Xt> can be expressed as a local polynomial of

degree p — 1 centered around x; as

(%) =S ax) (%)’ e (x)
o) o)

for X, sufficiently close to x;, where 3; (xl) = e = J=1,2,...,p—

1 and Rem (Xt) is the remainder term consisting of terms with derivative greater than
p — 1. The local polynomial approximation is then given by disregarding the remainder

term,
p—1 j
N(Xt) ~ Zﬁg <Xz> (Xt - Xi)
5=0
For practical purpose, the polynomial is usually restricted to degree 1, i.e. local linear.
The estimation of conditional density and its derivatives with local quadratic for strictly
stationary process is investigated in Fan et al. [47], where a double-kernel idea is proposed.

Let K be a kernel function (a nonnegative density function) , then as h—0, E [l?g (Y}—
y) ‘Xt} ~ f X (y) where the left hand side can be regarded as the regression of [?ﬁ (Yt —y)

on X;. It can be seen that the Taylor series expansion about x; = <Xt’1, . ,Xt,d>T yields
B[R (=) [x] = Bln) # VA (o) (%) 5 (%) 9 ) (- x)
= b (Xz> + b (Xi)T (Xt - Xi) + 2 (Xz> { (Xt - Xi) <Xt - Xi>T}

The estimators are then given by ?m (y) = B\o <X2> and V?xi (y) = Bl <Xl> which
are solutions of a convex loss function. In similar approach local linear double-kernel
smoothing can be used in the context of conditional quantile estimation, see Yu and
Jones [114], for the asymptotic properties of the resulting estimators in the case of scalar

design variable and iid data including the bandwidth choice. If K is the second kernel
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function, the corresponding cdf is given as F (v) = ffoo K (u) du. For observation Y;, we
have ffoo [?ﬁ (Y} — v) dv=F (%) and as h — 0 we have the conditional expectation
giving F [ﬁ(%) ‘Xt] ~ ﬁxt (%) and therefore the local linear approximation at x;
becomes

Bu) = 1) + 95 () (k%) + %) R ) %)

This motivates a local linear regression estimator of the conditional distribution at

point x; as

~

Fh(i>ﬁ (y

SE

n

) SIFC ) ) (o))

t=1

where

(b)) =i o

The conditional #-quantile estimator is then obtained as the inverse of the estimated

. . . ~ -1
distribution, g <X1) = Fh(i)’ﬁ (9

Yu and Jones [114] holds also for the scale functions based on zero conditional #-quantile

Xi), if 7ig (Xl> is uniquely defined. The asymptotics in

for iid data. It would also be interesting to apply the double kernel method in the case of
non-zero conditional #-quantile, as was done in subsection 2.4.2, in the case of Nadaraya-
Watson estimator. We must also point out that there has not been attempts to use the
distributional based local polynomial to estimate the conditional #-quantile function for
the time series data. However, we do not discuss this further but leave it for future

research prospects.

2.6 Conclusion

In this chapter, we derived the QAR estimator by inverting conditional distribution func-
tion estimator. It has been shown that the estimator is consistent and asymptotically
normally distributed and that, under suitable conditions, it converges uniformly with an
appropriate rate. We have derived the scale function estimator by inverting conditional
distribution estimator. The consistency and asymptotic normality for the estimators

based on both known and unknown QAR have also been established.
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3 Direct estimation method

In this chapter, we present results based on direct estimation of the scale (or QAR)
function, using direct minimization of a loss function. In section (3.1) various forms of
the estimators which could be derived from model (1.4.0.2) are outlined. Section (3.2)
treats the estimation as a local constant problem and presents consistency and asymptotic
normality for the estimator. In section (3.3) we base the estimation of the scale function on
local polynomials, which also provides estimators for the derivative of the scale function.
The consistency of the scale estimate is provided through the work in Honda [65]. The rest
of the sections in the chapter provide numerical comparison results and proposes a method
for standardizing the scale function. Lastly, we extend the approach to nonparametric
GQARCH type models similar to GARCH models.

Throughout we will assume equal bandwidths, for simplicity, and concentrate on the

modeling scale function.

3.1 The estimators

For intuitive understanding make reference to quantile-scale model (1.4.0.2). We can

estimate yu; 9 and oy such that the following equation is simultaneously satisfied,

P(Yi < g

X, = x) = P(My(Yispus) < 000

X, = x) —9 (3.1.0.12)

The second equation is just another way of expressing that o, ¢ is the conditional scale
function of the variable Y;. The structure of model (1.4.0.2), provides various estimating
directions: A two stage procedure can be used to estimate o0,y by first obtaining the
consistent estimator of ji; ¢, as in chapter 2, which is then substituted in the second part
of (3.1.0.12) to derive the estimate of oy nonparametrically. Note that M, (Yt, Mtﬂ) =
oo Mp (Zt, O) and observe the following alternatives for estimating oy .

Write
=y (Yoo o) =1+ Zuy (3.1.0.13)

Ot

where Z, 1 = My (Zt, O) —1 has zero f-quantile. This leads to an asymmetric least absolute
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deviations estimator of o,
_ R~ 1
01 = arg min E K <x,~ — Xt> Moy (—Mg (Yt, Mtﬁ), 1) (3.1.0.14)
o g
t=1

where Ky, (u) = #K(u; h) and o € R,.

The second estimator is motivated by the regression equation
My (Yer t40) = 010 + Zas (3.1.0.15)

where Z, 9 = 049 (Mg (Zt, 0> — 1), which also has zero #-quantile. The asymmetric abso-

lute least deviations estimator is then obtained as

09 = arg min Z K, (Xi — Xt> M, <M9 (Y}, ,u,;g) , a) (3.1.0.16)
t=1

Our third absolute deviations estimator is motivated by the regression relationship
log (Mg (Y;/, pmg)) = log (O’t79> +Z3 (3.1.0.17)

where Z; 3 = log (Mg (Zt, O)) again has zero f-quantile. The asymmetric least absolute
deviation estimator for log (O't,g) is defined by

¢ = argmin Z Ky <X,- — Xt> Moy <log (M@ (Yt, [Lt@) ) , §> (3.1.0.18)
S

where the estimator for o, is exp (?) We consider all the errors Z;;, Z; 5 and Z,3 as
stationary time series and (3.1.0.13),(3.1.0.15) and (3.1.0.17), as general nonparametric
quantile regression problems. However, we will later base our estimation on (3.1.0.17).
The reason is two fold: First, because of its intuitive conformation with the common
assumptions underlying regression models, i.e the error 7,3 are iid. Secondly, the fact
that the unknown function is on R implies the properties of the loss function would be
identical to the one we would have used for estimating the the QAR of Y; and thus avoiding
repetitions. Whereas considering (3.1.0.14) with also iid Z;; leads to a more complicated
function to minimize, and we would have to study it separately. On the contrary, the
errors in (3.1.0.15) are clearly not independent and therefore some additional weights

reflecting the dependence would need to be incorporated on to the weight function. At
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the same time the unknown function ¢ is only defined on R.,. However, we would like to

remark that the structure of the model (1.4.0.2) also allows direct estimation of o7 in all

the alternatives. For instance the square would motivate the regression of the form
L 2

— M, <Y2> Mtﬁ) =1+ 27,

Ot

)

where Z7, = <M92 (Zt,()> - 1) which still has zero §-quantile. The estimator is then

obtained as
1

Ef = arg rrgn ; K. (Xi — Xt) Moy (;Mg (Y}, Mt,e) , 1)
which is just the square of the estimator obtained in (3.1.0.14). We will assume throughout

the following section that Y; has zero conditional #-quantile, 1y and we write 57} =

log (M9 (Yt o)).

3.2 Local constant estimator of the scale function

Now, we consider the transformed data Y, which satisfy the QAR~-model
Y=o+ 2, t=12 .., (3.2.0.19)

where Z; = Z, 3 are as defined in the previous section and o4 corresponds to log <0t79>
in model (1.4.0.2), i.e 019 = exp(stp) from the previous section. We assume the quantile
regression function oy <Xt> is at least once differentiable and therefore can be expressed as
oL (Xt> = 0y <x1> + T(Xt, xi>, for X, € R in the neighborhood of x; € R? using Taylor
expansion. Here r( Xy, x; | is the remainder term comprising of terms of derivatives of
g (XZ) of order one and higher. In this section we will discard the remainder term and
approximate the quantile regression oy (Xt) locally at x; as oy (Xt> ~ U(Xi). This
reduces the problem to a local constant approximation. We fit the local constant by using
the weighted asymmetric least absolute regression. For x; = <a:i717 - ,:Bi7d>, a point in
R¢ and X; = (XM, - ,X@d), we define a local constant estimator for oy (xl) as the

minimizer of

zn: Kn (xi - Xt) M, (fg 0) (3.2.0.20)
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with respective to o. Denote the estimator of oy <Xl> as oy (XZ> = o and define the true

objective function at point x; € R¢ as

Q(Xi7‘7> = E[(Me (Z o) — My (fft 0)) ‘Xt - x] (3.2.0.21)
where the additional last term ensures that Q(xi, cr) is finite. To estimate oy <Xi>, we

define the kernel estimator of ) <Xi, 0) as

Qu(xi,0) = %i K (xi = X, ) (M (Vi o) = My (¥:,0)). (3.2.0.22)

where now (3.2.0.22) replaces (3.2.0.20) . The kernel estimator of oy (XZ> is then given
by

5o (x) — arg min Oy, (x a) (3.2.0.23)

O'E@n

where ©,, C R, is a compact subset of R. The following section derives the consistency

for the estimator oy <x,>

3.2.1 Consistency and asymptotic distribution

Let Q, (xi, a) =3, Kn <XZ' — Xt> Q (Xt, a) where

0(x,0) = £[(3(7.0) - 0(710)

09| x; ) is weakly consistent to oy ( Xx; |, the idea is first to show that @n (xi, 0) is weakly

Xt} , is a deterministic function. To show that

consistent to Q(Xi,0> for all x;. We shall need a few technical properties of My (),

expressed in the following lemmas.

Lemma 3.1 Let (y,,u) be real-valued random variables and define q(y, ,u) as

Q(y,u) = My (y,u) — M, (y,o).

Then for all vy, q(y,,u) 15 Lipschitz continuous in pu with Lipschitz constant 1, i.e

D R e P

Proof of lemma 3.1 :
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Note that

q<y7 u) - Q<y,/v/> = 9(// — u) — <(y — u) Liy <oy — (y - /L/>I{y*u/§0})' (3.2.1.1)

For u <y < p', we have Iy, <oy =0, I, /<oy =1, and (3.2.1.1) becomes

q(y,u) - q(%u’) = 9(// —u) - (y—M)
(y=r) = (1-0)(w —n) (3.2.1.2)

For (y —p') > 0 and (y — p) > 0, the last two expressions on the right of (3.2.1.2) both

imply

—(1 - 9) (u/ - u) < q(%u) - q(y,yf> < 9(#' - u)-

and therefore ‘q(y, u) — q<y, //) ‘ is bounded from above by at least one of 9(// — u)
and (1 — 9) <// — u). Similarly, for p < p' < y and y < p < u', we have respectively
Lyu<oy =0, Ty ycqy = 0 implying q(%u) - q(%u') = 9(;/ - u) and Iy <oy =
L Iy <=1 implying q(y,u) — q<y,,u/) = (1 — 0) <p, — ,u/>. Hence

o) - afo)| < (o)l

< ‘M—M/

(3.2.1.3)

immediately implies the assertion. [

Lemma 3.1 implies that the function q(y, u) is not only convex, but also continuous
in u € R. In the case of y € R and u = </L1,/L2, . ,ud) € RY, the lemma continues to
which

apply. In this case equation (3.2.1.3) becomes q(y, u) — q(y, u’) < Zle [ — I

is an L; norm. We will denote the norm as p(u, ul> and use it whenever it is necessary in
the rest of this chapter. The following lemma will be used to establish the existance and
uniqueness of the minimum, when we take F [(q (y, u) — q(y, 0)) ‘Xt] as an objective

function for minimization.

Lemma 3.2 Let q(y,u) be defined as in lemma 3.1. Let (Yt,Xt) € R x R? with con-
ditional density and quantile functions, of Y; on X; given as fx, (y) : R'"" — R and
Yo = Yo (Xt) respectively. Then
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1.
E[(Y—u)l , X] W<y
E[q<n’u)‘xt] _E[Q<Y;€,y9>‘xt] = ¢ [,y |43t 0
EKM_ Kf)hye,u} Xt], CVu >y
(3.2.1.4)
2. Let |u — yo‘ > 6 > 0. Then for a suitable lower bound C<Xt> of fx, (y) on
[%—&m+ﬂ,

52
Ela(vin) o] = Ela(vm) %] = o(x:) 3
3. Assume f(Xt,y> s continuous and positive in the neighborhood of (xi,yg (X,))

and let ‘u — Yy (XZ> >0 >0 for some x;. Then

2

E[q(Yt,u) )Xt - xz} _ E[q(y;,y(, <x)) ‘Xt _ xi] > c% (3.2.1.5)

for some constant ¢ > 0 which is uniform lower bound of fx, (y) on [yg (xl) — 5*]

for all X in a neighborhood around x; and some §* > 0.

Proof of lemma 3.2 :

For part (1), consider first the case when p < yy. Then

(k] — Fla(]x] = (Ela(v) ] - £ o (m) X e
([o(o)] ~ (350 XYoo

(<fo0) %] E[a) ] e

= Oyl + (1 - 9) (u - ye) Lco)

+ (Y=o — (1-0)5)

= 0= 1) Taneo = (1=0) (10 = )l

w0t (1= 0)) + (1=0) (o0 )

where I is an indicator function with respect to Y, i.e Ii_oo ) = L(—ooyy) <Yt> The

_|_

+

expectation of the first sum goes to zero as the law of iterated expections gives
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El(o 1) (o (1) 5]
[ P R (0 PR %)

=0 (3.2.1.6)

The second part is just (Yt — u)I[%yg}, and the assertion follows for p < yy. The
statement for yy < p follows completely analogously.
In part (2), observe that, if u < yy, we have even pu < yg — . Then using part(1) of this

lemma

o]~ Efa(n)lx,

S (0

= [ (e ()
/ngé(u _ u) fx, <u> du
o(Xe) [ (w )i
- (o)
)

where for the first inequality, the integrand is assumed to be nonnegative. In the

IV

IV

second inequality, we assumed that fx, <u> > c(Xt> > 0 for ‘ w— yg‘ < 0 and for the

third one, that y9 — u > 0. The case when u > yg can be delt with analogously.

In the third part, observe that under the given assumption together with condition
(C2) on continuity of g(xi>, we have that fy (y) > ¢ > 0 for all x,y in the neighborhood
of (xi, Yo <Xl>> Therefore, the arguments in the proof of part (2) can be made uniform.

O

From lemmas 3.1 and 3.2 and the convexity of ¢ (y, ) , we conclude that the minimum,

argming,ce, &/ [(q (Yt, M) - (q (Yt, 0> ’Xt} , in a compact convex subset ©,, C R exists and
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is unique. The results of lemmas 3.1 and 3.2 also applies to the loss function defined in
Chaudhuri [24], i.e for any (y, ,u> as defined above, M, (y, ,u) = y—,u‘ + (26 - 1) (y —u)
. This is because for any fixed # the relationship, My (y, [L> = %]\79 (y, ,u), holds. In the

following two results, it is shown that the kernel estimator, (3.2.0.22), converges uniformly

in probability to Q(xi, 0'> with respect to o.

Lemma 3.3 Suppose conditions (B1),(B4),(C2) forg(xi> > 0 on a compact subset G,, €
R? hold and that the uniform equicontinuity condition Ye > 0,35 > 0 such that

sup  sup

S s Q(x.0) - Q(xi,a)‘ <e (3.2.1.7)

is satisfied for all fized o. If condition (D1) for h;; = h hold, then for all x; € G, and

sufficiently large n, we have

E[@\n<xi,a>] —Q(Xi,aﬂ -0 (3.2.1.8)

sup
x,€Gn

Proof of lemma 3.3

The equicontinuity of the couples (Y}, Xt> implies that

Bl (o)) @) = Eilx —Xt) (@(x00) ~@(x0)) )
— [ k(=) (@(mr)a() ~ (. ) )

using Bochner’s theorem in Parzen [94] as applied in Collomb and Haerdle [29] completes

the proof. [

Let ©,, be a compact subset of an open subset © of R, then since both £ [@n <xi, O')]
and Q(Xi, 0) are Lipschitz continuous functions with respect to o, it follows from lemma

3.3, see also lemma 2.7, that for each x; € (G,, and fixed 0

sup sup ‘E[@n<xi,a>] — Q(Xi,a)‘ = O(h2> (3.2.1.9)

x,€Gn 0€EO,

This is clearly seen by taking Taylor expansion of (3.2.1.9) up to the second or-
der and using the symmetric condition (B5), we get ’E[@n (xi,aﬂ — Q(xi,aﬂ <
%Qa f u2K<u> du uniformly for x; in G,, and ¢ in ©,,, where

sup sup sup V2{Kh(xl- — Xt)Q<Xt,U>H <a< o

€0, x;€Gn, xER
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and V? is taken with respect to x;.

The following lemma establishes uniform convergence in probability of @n (xi, a) to
Q (xi, 0) :

Lemma 3.4 Suppose conditions in lemma 3.3 hold, then for x; € Gy, @n (Xi, 0) con-
verges to Q) (xi, 0) in probability uniformly on any compact set ©,, of R containing oy <x1> ,

i.e for all e >0,

lim P( sup sup ‘@,L(Xi,a) — Q(Xi,(T)‘ > e) =0 (3.2.1.10)

n—0oo x,€Gy 0€EO,

Proof of lemma 3.4

We use the triangle inequality and lemma 3.3:

@n<xi,0) — Qn<xi,a> + Qn<xi,a> — Q(Xi,0>
@ (sur) (s ) [0 ) - o)
x?lelen as;l@pn @n <Xi,0) —Qn (xi,a) + sup sup )Qn (x,;,a) — Q(xi,a)‘

x,€Gp 0€EOy,
sup sup @, (xi,a> + sup sup @, (Xi,0'>
x;€Gpn 0€EO, x;€Gp 0€O,

IN

A

where then by (3.2.1.9) and for all § > 0, lim;, o P(supxl_egn SUP,co, ‘@n (xi, 0'> ) >

£)=0

Next, we show that

P( sup sup ‘@n (xi,aﬂ > %) —0, n—oo (3.2.1.11)

XiEGn oEO,

The left hand side of (3.2.1.11) is equivalent to

P(‘an<xi,o>’ > g, for some cr)

(U {5

VAN
o
/N
Q

3
N
2%
Q
N—
V

o |
N—
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Since O is not countable, we use the following trivial form:

sup sup (@, <X 0)’
x;EGn 0€EO,,

< max sup|@, <xi,ak>’ + sup sup sup|@,, (Xi,0k> - Q, <Xi,0')’
k:172 7777 m((s) X; k‘:172 ..... m((5) ‘O’—O’k‘gd X

where for each ¢ € ©,,, 0} denotes the nearest neighbor for o such that ‘0’ — crk’ <4

and m(d) = card{a: O’—Uk‘ <0, k= 1,...,n}. We have then

P< sup sup ‘@n(xi,cr)‘ > g) < P( sup sup ’@n<xi,ak>‘ > %)

x;€Gpn 0€EO, k=1,2,....,m(8) x;€Gn

= = €
o o T
Xi€Gn |o—0p| <6 k=1,2,....m(5) 2

(3.2.1.12)

By lemma 3.1 and condition (B2),

~

@n(xi70,> —5n<xi,0)‘ < QK‘UI — O" < 2K(5,

with probability say, m, — 1, as n — oo uniformly in (a',a) € 0O,. Therefore the

Supxi eGn SupUEGn

second part on the right of (3.2.1.12) becomes

P( sup sup )5n<xi,ak) —5n<xi,a>‘ > %) <1l-m,
(9)

X, €Gn |o—0k|<8k=12,....m

which goes to zero as n — oo. The first part is the same as

, for some k)

DO | ™

. (x)] -

P( sup
X¢€Gn
(9)

1 xiEGn 2
= ¢
On(xx)| > 3)

Following the argument of lemma 3 in Collomb and Haerdle [29], their exist a constant as

such that P(‘an (xz-, 0k>’ > 5) < agm(§)n=3,¥n € N. By choosing m(d) = n, we obtain

3

i

< m(9) mgxP( sup

x,€Gp

P(’@n (xi, crk> ‘ > %) — 0. This completes the proof.

O
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The uniform convergence of @n (xi, a) with an appropriate rate can be established

using similar arguments as in lemmas 2.5,2.6 and 2.7.

Theorem 3.1 Suppose conditions (B1)-(B6), (C1)-(C2), (D1) and (E1) hold for Y, and
org of model (3.2.0.19). Then Gy <X1> is weakly consistent, i.e oy (Xl> —P gy (xz) for

each x; € G,,.

Proof of theorem 3.1:

The theorem follows if we can show the following three properties, see corollary 2.6 of
White and Wooldridge [113] in the case of dependent observations and lemma (A) of
Newey and Powell [93] in the case of independent obsrvations:

(1) @n (Xi, a) converges to @ (xi, 0) in probability uniformly on any compact set ©,, € ©
containing oy (xz> ,

(2) Q(Xi, a> has a unique minimum on ©,, at gy (Xi>,

(3) Q(Xi, a) is continuous and convex in o.

Now (1) has been shown in lemma 3.4, whereas (3) follows immediately from lemma
3.1, the definition of Q(X, 0’> and the convexity of My (y, 0') in o. It remains to show
(2). Obseve that

£[0 )] - [ ()]
- LS el (0 i) -2 (i (x)) )

_ %gE[Kh(X - X)) (Q(Xuo) - Q(Xnon(x)))]

From lemma 3.2 part (2), Q(Xt, a) — Q(Xt, oL (XZ)> > c(XJ%, where C(Xt> >0
is the lower bound of fx, (y) on [09 (Xt> — 0,09 (Xt> + 5]. Therefore, we have, using

stationarity for the second line,
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n 2

£[a (o)) Bfanlmn())] = 1B X))
- (%))

52
> o (3.2.1.13)

v

for some ¢ > 0 and all sufficiently large n as K}, has support [—h, h] and, therefore, the

expectation runs only over those X; with |x; — X;| < h, i.e for X; arbitrary close to x;

for n — oco. Now, using part (3) of lemma 3.2, the assertion follows. [

The fact that @n <xi, 0) is stricly convex, continuous as a function of ¢ and bounded
for any two o's, implies that the minimizer, oy (xi>, of @n <xi, 0) exists uniquely and is
a solution of

%@n <x 0) —0 (3.2.1.14)
Re-arranging equation (3.2.1.14), we immediately note that the bias and asymptotic vari-
ance for oy (xZ), are precisely of the same form as those presented in chapter 2, with the
appropriate bandwidth. The asymptotic normality of the estimator, oy <Xi>, can there-
fore be shown by proceeding in the same lines as in chapter 2. We therefore state the

following theorem without proof.

Theorem 3.2 Suppose conditions (B1)-(B5),(C1)-(C7), (D1)-(D3), (E1) and (1.4.1)
hold for Y;. Then we have

(Y (30 () - B{o0(x))) ~ ¥ 0% 32119

where the bias B (09 (xz)) and V? (U@ (xz)) are defined in similar forms, with appropriate

bandwidth, as in theorem 2.3 and lemma 2.1 respectively.

3.3 Local polynomial estimator of the scale function

Let A = <)\1, e )\d> be a d-dimensional vector of nonnegative integers and [A] = 2?21 Aj.

Let G be some fixed open neighborhood of x; € R?. For a fixed nonnegative integer p and
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real number ¢; and ¢y such that ¢; > 0 and 0 < ¢ < 1, let H(cl,p, 02> be a collection of
all real valued functions oy (Xt> on G such that

(i) V*oe <Xt) exists and is continuous in X; for all X; € G and [\] < p.
(ii) For any X;,x; € G and [\] = p, we have V*oy (Xt) —Voy (xl> <

Co =

C

2
X —X; for

is an Euclidean norm.

, where H

N =

Then the functions H (cl,p, 02), with the order of smoothness of <p + cz> at x; =
(xivl, e 7Xi,d>a are continuously differentiable up to order p on GG and their p-th deriva-
tive are uniformly Hoelder continuous at x; with exponent at least % We will assume the
conditional #-quantile of 37,5 on X, is an element of H (cl, D, 02) for some fixed ¢y, p and cs.
Let us now consider a sequence of positive real numbers h = en” %74 and let G, denote a
cube [—h, h]? in RY. Here h is the bandwidth which depends on n such that as n — oo,
the cube shrinks and becomes completely contained in open subset GG. Henceforth, it is
assumed that n is such that G,, C GG. Let A be the set of all d-dimensional vectors A with
nonnegative integer components such that [A\] < p and denote [A] to be the size of of the
set A. Given X; € R? in the neighborhood of x;, the Taylor expansion of oy (Xt> up to
(p — 1)-th order can be written as

p—1 d

s
op (Xt> = Z Z TON, A H BN <Xt7j — x”> T r(Xt, Xi>
AJ=0 A1+ Ag =[] j=1
p—1 d Aj
= Z Z O9x, ..., ,\dh_[/\] H(Xt,j - SE”> — 7“<Xt, Xz’)
AN=0 A+ X g=[N] Jj=1

Q

=
~—~

S

S
I~

X
~—

e

%
~——

(3.3.0.16)

where Dy ) (XZ) = {Dgy)\l ..... Ay (xz) D VI S +Xa=[A and [A=0,1,...,p— 1}
is a [A]-dimensional vector of coefficients, <Xt —Xi) ’ = H;l:l (th —:Em) v with the usual
convention 0° = 1. Observe that when X; = x;, then P, <D97A (xi),0> = Dyyo..0 (xl>
and therefore we estimate oy <Xz> by the local estimator of Dy \ (XZ>

Let ]39 <Xl> be the minimizer of
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0, (500) = 380 (% ) 1. (DX, %) 307

where M,y (y, ,u) = %]\%(y, u). Because we are using only the values of X; that fall
in G, then for a fixed value say n' of the number of X;,¢t = 1,...,n that fall in G, the
minimization is a problem of minimizing continuous function over bounded and closed
subset of linear subspace R” . Futhermore from lemma 3.2, the minimization problem
has a unique solution. The estimator for oy <Xl> is obtained as the first element of
the estimate of Dy \ (XZ> The derivatives for oy <Xl> are obtained by multiplying the
corresponding elements of ]/:\)9’)\ (Xl) by C\h~P, where C, depends on .
The results in Honda [65] provides Bahadur-type expansions of the estimator of the form
]397 A <X,> as well as the derivatives, which we will readily adopt for our purpose. Arrange
h~IA <Xt — Xi)/\ and Dy (xi>, where both quantities depend on h, in ascending order
with respect to A and denote them by X, — x; € R™ and D, <xl> e RM respectively.

3.3.1 Consistency and asymptotic distribution

Assume the following conditions

Conditions 3.3.1

(L1) For any j1 < ..... <Jup Xy =X, X

jia) — Xi U8 linearly independent for any

x; with probability 1.

(L2) K(u) 1s bounded nonnegative kernel function with the compact support {‘u‘ < 1} C
R? and Lipschitz continuous. Assume the bandwidth to be h = cniTlﬂl, c>0.

(L3) X; has a density, g(xl-> which is bounded for x; € G,

(L4) 03hdI[A] < E{Kh <X1 — Xi> <X1 — x,-) <X1 — XZ->Tg (Xl,xi>} < c4hdI[A]

E{Kh (Xt — xi>Kh (Xk — x,>} < csh@*! for t # k, where I}z @s an identity matriz of
size [A].

(L5) The conditional distribution ofﬁ given Fy;_1 has no atom with probability 1.

The following theorems give the uniform Bahadur representation and uniform conver-

gence of the estimator for Dy (XZ>
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Theorem 3.3 Let {(Yt,Xt>} satisfy the assumptions of model (1.4.0.2). Suppose as-

sumptions (L1)-(L5) hold and Oé<8> < ¢s7" and for some £ < n < p,r > % Y

(Bdotiptd—dn) _ 1y, (3dpr2p3dy  Tpep
n p

D)~ Pule) = (3 (5 x) () () o))
SRt ) -6 (r ()

+ O(th_”>, uniformly on G, almost sure (a.s). (3.3.1.1)

where sgn(u) = 1(u > 0), O0(u =0), and —1(u < 0) and G(X, z) = P(Zt’g < z}Xt =
X) = Fy <O’9 (X2> + z)

Theorem 3.4 Suppose that assumptions (L1)-(L4) hold and that a(s) < ¢87", for

r > ?)Clpzw. Then

Bi(x) 0i(x)

The proofs for theorems 3.3 and 3.4 are found in Honda [65], where also the asymptotic

=0 (hp (log n) §> , uniformly on G, a.s

distribution for f)@ (xz> — Dy (xz) is given. The consistency of f)g (XZ> at a fixed point

shares the same representation with the uniform convergence. That is, at a fixed point

By(x) = Do (x,)| = O(h(1ogn) ) as.

The estimation of the QARCH in the presence of unknown QAR, pg (Xt), using local

say x; € G,, we have

polynomial proceeds in a similar manner as in chapter 2. So long as the estimator for the
QAR is uniformly consistent, then under similar arguments as in chapter (2), the estimator
for the scale function would be consistent. Simultaneous estimation of the QAR and
scale function in QAR-QARCH processes could be investigated using methods similar to

simultaneous M-estimation in Huber [67]. For instance, taking (,u, O’) € RxR one could

base the theoretical objective function on E |:<M9 (Mg <Yt, px> , a) — My (Yt, O)) X; = x]

,where 11, depends on x through some weight functions, and maximize its kernel estimate
with respect to p and o. Koenker and Zhao [76] discusses analogous parametric version
applied to AR-ARCH with absolute errors.

In the remaining part of this chapter, we will adopt local polynomials of degree one for

various estimations.
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3.4 Numerical comparison

In this section we compare numerically estimators (3.1.0.16) and (3.1.0.18). We use the
bandwidth of the form hg = hmean{ﬁ <1—6’> )20 (@1(9)>2}é and proposed in Yu and Jones
[114], where ¢ and ® are standard normal density and distribution functions respectively.
We select hneqn using the leave-block out cross-validation based on local constant fit of
the conditional mean. It should be noted that this bandwidth only serves as a thumb of
rule and better procedures may need to be studied in the context of local polynomial in

time series set up. We simulated the data from a heteroscedastic ARCH process

Y, = (0.075 +0.3Y2, + 0.62Y3_2) e, t=1,2,..., (3.4.0.2)

with iid Student’s t-distributed error e; and took ¢ = 3,...1002. The true volatility is
shown in figure (5). Because our interest was to obtain the conditional scale function using
model (1.4.0.2), we adjusted Y; in (3.4.0.2) of its conditional 0.75-quantile and estimated
the scale at 8 = 0.75 from the assumed nonparametric model, Y; = oq.75 (Y;_l, Y;_2> Zy,
where Z, is a zero 0.75-quantile. Figures (6) and (7) presents the surfaces of the esti-
mated regression using (3.1.0.16) and (3.1.0.18) respectively, with the latter transformed
accordingly. In both cases 400 data points were used for the estimation. Visually, they

do not seem to be quite different from each other.

In order to provide a quantitative assessment of the accuracy of these estimators, we
generated 500 replicates of size 1000 from the process (3.4.0.2). Then we calculated the

mean average squared error (MASE) for a few values of 6 using the following formula,

1 500 1 1000 ] ) 2
MASE (8’9 <X2>> = % z; [m Z; <a\éj) <Xz> - Uéj) <Xz>> } )
= i=

The M ASEy <89 <Xl>> are depicted in table (1), where in each distributional error, the
second rows represent results obtained by using the estimator (3.1.0.16). As expected the
MASE for both estimators increase as one moves away from 6 = 0.5, with the difference
between them growing faster outside the range (0.4,0.6). In particular, for heavy tailed
and asymmetric distributions, the MASE at 6§ = 0.8 is more than 12% smaller for the
estimator based on (3.1.0.18). This could be attributed to the dependence effect of the
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Figure 5: True volatility

scale function o, in the errors.

3.5 Estimation of the true volatility

In this section the original variable, Y; instead of the log-transformed, will be used. Recall

that using model (1.4.0.2) with reference to (1.1.1.1), we have

0¢0 = O'tMge (3503)

as the volatility (conditional standard deviation) up to a multiplicative constant. We
consider the constant as a nuisance parameter and use the standardization method similar
to the one in Huber [67] to remove it. Let b > 0 be a rescaling constant for the conditional
scale function o,9. Then b will be such that when multiplied across (3.5.0.3) leaves us
with the volatility, i.e b = (M;)_l. Lets us consider the conditional median absolute
deviation (CMAD) from a symmetric distribution F'. This can be expressed as o;05 =
He0.75 — [t,0.5 = Oy (qg.% - q8.5>, with ¢§ 5 = 0. To standardize it, we will need to multiply

~1
by a rescaling constant b = (q8_75> . Observe that if F'is a normal distribution with
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Figure 6: Surface of scale estimate based on (3.1.0.16)

-1
conditional mean zero, then b reduces to b = [Cbgl (0.75)} ~ 1.482. For a student
t-distributed random variable e; with v degrees of freedom, we have

-1
b= [t;1(0.75> - t;l(O.E)ﬂ (3.5.0.4)
For general symmetrically distributed random variables, Y;,t = 1,2

.. and assuming
the existence of the first two moments, it is not difficult to see that the constant b can be
obtained as

Y, —
h— t

0t.0.5

(3.5.0.5)

N |—=

where 1, is the conditional expectation and ||y||2 is the Lg-norm; ||.||s = (E [yQD
Based on a realization (Y}, Xt> t=1,2

n, we can estimate the volatility as

/O'\ (Xt> = /56'\0.5 <Xt> 5 for t

N

(3.5.0.6)

78
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where

n—1 t=1 005 <Xt>

and u(Xt> is a least square estimate based on local linear, see (4.2.0.14) in chapter

(4). For general distribution, one can use conditional quantile range (CQR) to estimate
the volatility. For 8 > 0.5, it can be defined as

CQRp

Heo — Mt 1-6

- Ut(qg—qie) (3.5.0.7)
Like in symmetric case, o; can be obtained by multiplying through (3.5.0.7) by a

-1
constant b = (qg - qie) , which is the same as || 24

CoR,s|| - The estimator of the
2
volatility then becomes

8<Xt> —5CQR, (Xt>

where

(3.5.0.8)



3 DIRECT ESTIMATION METHOD 30

Table 1: M ASEy for two methods. Second row is M ASEy for (3.1.0.16)
0 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Normal 0.88200  0.54700  0.46800  0.24800  0.47200  0.50100 1.01700
0.93400  0.76700  0.46700 0.24900 0.45300 0.88200 1.02300
Student-t(4) | 1.24700  0.70400 0.56100 0.45200 0.60500  0.94600 1.56800
1.69600  1.03600 0.57300 0.49100 0.61400 0.92100 1.77800
Cauchy 4.25500  1.64500  0.94500 0.62500  0.91400  1.42200 3.84700
5.93400 1.93700 0.96600 0.69000 0.91900  1.83000  5.02600
Gamma(2,2) | 3.35700  1.53400  0.90300 0.59100 0.88100 1.34700  3.09400
4.33400  1.79300 0.95100 0.68700  0.93100 1.96400  4.85600

2\ 3

1 n Y, — ﬁ(Xt>

"= n—1 t=1 C@(;(Xt)

Now going back to our general scale function in (3.5.0.3), the following proposition can

easily be checked by the method of moments.

4+

5
Proposition 3.1 Let <Y},Xt),t =1,2,..., be a-mizing with E|Y; < 00 and d > 0,

then for any real random variable Yy, the constant b is given by

Y, —
b= ||t (3.5.0.9)
Ot,0 )
The estimator of (3.5.0.9) follows as
Y, — (X ’
~ 1 < t— M( t>
= | (o
=14 Tp (Xt>
This gives an estimator of the true volatility function as
E(Xt> — b4 (Xt> (3.5.0.10)

~

The estimator, b, is a sample unconditional standard deviation of the mean adjusted-

scaled random variable Y;. It is not a robust or reliable estimator in small sample samples,
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but in a large sample it can be expected to provide a reliable estimate as will be seen
in the simulation that follows. It can, however, be improved by omiting the 2.5% of the

largest and smallest values of the scaled variable. That is, if we let
Y- ii(X.)
(/7\9 (Xt> ’

Then the estimator for b can be defined as b = —= 3 s?I{Fs_tl(O_O%)SStSFS_tl(0_975)}

where nx = card{t D F1(0.025) < sy < F1(0.975), ¢ = 1,2,...,n}, as are robust

St = t=1,2,...,n

estimators like trimmed mean in Jaeckel [72].
To conclude this section, we generated 500, 800 and 1000 from an AR(1)-TARCH(1)

process

Yio1| — Yy

2
; ) ent=2,..., (35.0.11)

Y, = 0.5+ 0.3Y,_, + \/0.01 +0.1Y2, + 0.35(

under four different distribution®® of the error e;, as shown in tables (2)-(4). The
samples were then replicated 500 times. We estimated the conditional median absolute
deviation (CMAD), the conditional quantile range (CQR)*! and QARCH?*2. The true
volatilities were estimated using the formula (3.5.0.6),(3.5.0.8) and (3.5.0.10). The per-

formance was then assessed by their average mean absolute proportionate error (AMAPE)

nare(o(5) - [5G -

The results are shown in tables (2),(3) and (4).

The AMAPE tends to be the same for all the estimators at a given distributional error
and sample size. This indicates some sort of standardization of the scale functional esti-
mators into the same quantity (volatility). As the sample size, n, increases, the AMAPE
decreases confirming the theoretical result on convergence. Thus it is expected that as

n — oo, b — b and hence 8<Xt> — O’(Xt>. This result indicate further investigations

30 With the errors from stdudent’s-t and Gamma distribution adjusted and scaled appropriately.
31 At 6 = 0.75-level
32 At 6 = 0.75-level
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Table 2: n; = 500: AMAPE

Error CMAD QARCH CQR
Normal 0.2472 0.2480 0.2424
Student-t(4) | 0.2974 0.3068 0.3069
Cauchy 0.7005 0.6940 0.6733
Gamma(2,2) | 0.5946 0.5890 0.5704
Table 3: n; = 800: AMAPE
Error CMAD QARCH CQR
Normal 0.2005 0.2005 0.2004
Student-t(4) | 0.2469 0.2467 0.2470
Cauchy 0.6846 0.6745 0.6654
Gamma(2,2) | 0.5592 0.5434 0.5346
Table 4: n; = 1000: AMAPE
Error CMAD QARCH CQR
Normal 0.1840 0.1844 0.1842
Student-t(4) | 0.2068 0.2495 0.1985
Cauchy 0.5476 0.5406 0.5434
Gamma(2,2) | 0.5067 0.4956 0.4900

82
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could be carried out to determine among others things of interest, the rate of convergence.
It is important to mention that in some case, it is of interest to determine b that varies
with time ¢. This brings about the phenomenon of scale changes observed in Beran and
Ocker [10]. In this case we could use the least square estimator based on local linear
approximation to obtain,

> . - 2 g t—0.5_~>)2 (t—0.5_~>
b; —arg(b07b1%1£+XRZ<st bo bl( - t)) ky - t

t=1

where k is a univariate kernel function, h the bandwidth and ¢ is a fixed point in (0,1).
The asymptotic properties of Ef can be obtained precisely in the same lines and in exact

forms as the ones outlined in Feng [48].

3.6 Extensions to GQARCH

Let {Yt,t € Z} be stationary stochastic process adopted to filtration {Ft;t € Z} and

having the form

Y, = Ut,GZt
ot = 0 (Xt75t> (3.6.0.12)
where we take S; = (af_l,...,atz_T) with o7 ; = 0o} 4, @ = 1,2,...,7. The

bis are the rescaling constants which may be constant or time dependent within some
periods and o0;_; ¢ are the lagged values of the conditional scale function based on QARCH.
Let {Zt,t € Z} be iid innovations with zero f-quantile and finite fourth moment?33.
Assume all other assumptions specified in model (1.4.0.2). Observe that (3.6.0.12) can
be written in terms of an additive noise M} (Y},O) = o] (Xt,St> + Z;5 where as in
(3.1.0.15), Zi5 = o3 (Xt, St) (Mg2 (Zt,0> — 1) and has zero #-quantile. The stochastic
function o} (Xt, St> can be estimated by regressing M} (Yt, O) on X; and S; using the
asymmetric least absolute based on local linear.

Using the method in section (3.5), denote S, to be a variable consisting of the estimates
given by 02 . = 3228}2%-79, 1 =1,...,7. The consistency of this extension can be given
through the contraction property with respect to the hidden variable, c¢.f Buehlmann and

McNeil [18]. That is for x; € R4 and S}, §t € R7 we assume

33This is for the purpose of estimationg b's
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2 2 ~2 ~2
09<xi,01,...,07) — Jg(xi,al,...,07>

sup
X; eRdff

for some 0 < ¢,...,¢, < 1 with Z]T.Zl ¢; < 1. By assuming that for any ¢ > 0, and

07 — 07| <0 — 0 with n, similar arguments used in section (3.2) or (3.3) could

Supl<j <t |Yj

be applied to show consistency.
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Figure 8: Real data: Scale function estimate in (c)

In the following example, we applied the method to real data consisting of DAX prices
for the period ranging from (1/1/1997) to (6/11/2000). The data is shown in figure 8(a)
with a decreasing trend. The calculated returns shown in figure 8(b) contain periods of

high volatilites around the times 200 and 500. The nonparametric scale function estimate,
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shown in figure 8(c) at # = 0.55, is high for both low and high values of the returns.

3.7 Conclusion

This chapter provided results on consistency and asymptotic distribution for the estimator
of QARCH based on local constant and polynomials, under the assumption that the QAR
of Y} is zero. The comparison between (3.1.0.16) and (3.1.0.18) reveals the estimator based
on the former could be suffering from correlation problems. Numerical results based on
the proposed standardization method indicates the CMAD, QARCH and CQR could be
used to estimate the volatility. However, extracting the volatility from a too asymmetric

distribution, the CQR is more appropriate.
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4 Extreme Quantile Autoregression (Extreme QAR)

Usually the applications of quantiles to financial risk analysis are not only restricted to
moderate or relatively high probability levels, but also high and sometimes beyond the
maximum observation, or in other words, out-of-sample. We call the quantiles, which
are located among the largest observations or even beyond the data maximum, extreme
quantiles. In this chapter we combine the QAR results presented in chapters 2 and 3,
for the interior parts of the data, with results from extreme value theory for the extreme

parts to provide approximate extreme QAR and its estimate.

4.1 Result from extreme value theory

Extreme value theory is a classical topic in probability theory. For a survey on the subject,
see for example Leadbetter et al. [80], or Embrechts et al. [39]. In this section we give
some intuition and basic results of extreme value theory (EVT) which can be considered
as a complement of central limit (for cumulative sums) that deals with fluctuations of

sample maxima.

4.1.1 Generalized Extreme Value distribution

The limiting behaviour of sample extrema (maxima) are studied under the family of
extreme value distributions. One of the main results is due to Fisher and Tippett (1928)
who specified the form of the limit distributions®* for an appropriately normalized maxima,

as summarized in theorem 4.1.

Theorem 4.1 Suppose ey, e, ..., is a sequence of iid random variables from unknown
distribution F' and M, = max(el,eg, e en> denotes the maximum of the first n obser-

vations. If a sequence of real numbers a, > 0 and b, € R can be found such that the

Myp—by

sequence of normalized mazxima, , converges in distribution( law or weakly),i.e

M. —
lim Pr{n—bn < e} = lim F"(ane+bn> = H(e), e€R,

n—00 a n—o0

34 And was generalized by von Mises [90]
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for some non-degenerate d.f H, then H belongs to one of the three distribution types:

He(e) = opi-(L+&ef et = £#0 (4.1.1.1)

exp{—exp(—e)} : £=0
where® e is such that 1+&e > 0, & is the shape parameter and the special case Hy(e)

is interpreted as lime_o He(e).

H; is called the Generalized Extreme Value distribution (GEV). An important con-
cept for the application of extreme value theory to VaR (or extreme quantile) estimation
is the Maximum Domain of Attraction (MDA). In simple terms, a random variable e; is
said to belong to the maximum domain of attraction of the extreme value distribution H
({e;} € MDA(H)) if and only if the Fisher-Tippet theorem holds for {e;}. The result is
very significant, since the asymptotic distribution of the maxima always belongs to one
of these distributions, whatever the underlying distribution function and therefore the
asymptotic distribution of the maxima can be estimated without making strict assump-

tions about the nature of the underlying distribution function of the observation.

The shape parameter £ is crucial in determining the class (type) of the GEV distribu-
tion;
(i) The distribution He for £ = 1 > 0 is known as the Fréchet. The distributions in
MDA <H§,§ > 0) are fat-tailed and their tails decay like a power function (see green and
red curves in figure (9), for £ > 0). The tail index, «, can be related to the number of finite
moments. For t-distribution, « is the degrees of freedom and for stable distribution « is
the characteristic exponent. The red and green curve depicts the tail of distributions with
first and fourth moments being finite respectively. The relatively slow decline in the tails
generates moments that are not necessarily finite. The class includes the Pareto, Burr,
Loggamma, Cauchy and t-distribution and has been found to be the most appropriate for
modelling fat-tailed financial data.
(i) For £ < 0 the distributions are said to be in the maximum domain of attraction of the

Weibull (Hg, E< O). Such processes are short tailed or bounded; this is depicted by the

35 Here and throughout this thesis, e denotes a real value of random variables, say e;,t = 1,... and

not the usual convention for the exponential.
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light blue curve in figure 9, for £ < 0. They include the uniform and beta distributions.
(iii) The distributions with £ — 0 or @ — o0, belong to the maximum domain of attrac-
tion of the Gumbel distribution M DA(Hy). This class is characterized by medium tails,
shown by dark blue curve in figure (9). They include gamma, normal, lognormal.

In connection to theorem 4.1 is that the upper tail (also applies trivially to the lower

1-GEV

Figure 9: A plot of excess distribution of the GEV against a sequence of real numbers.

Green(§ = 1), Red(§ = 0.25), Dark blue (¢ — 0), Light blue ({ = —0.5)

tail as well) of any fat tailed random variable e; has the following property:

- 1—-F (ce)

=00 | _ F(e)

where F' can be interpreted as any distribution function which varies regularly at

_1
=c &, &ce>N0.

1
3

underlying distribution of e;, the tails have the same general shape, where only the shape

infinity with tail index o = £. From this, it is important to note that regardless of the

parameter is important. If the data are generated by a heavy tailed distribution, then to

a first order approximation, its distribution has a Pareto type tail,

P{et > e} = F(e) ~ ae_%, aeR,, £>0, for e— oc. (4.1.1.2)

Theorem 4.1 was proved by Gnedenko (1946) who showed that for £ > 0, F €
MDA(H¢, & > 0) if and only if
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F<e> —etLe>0 (4.1.1.3)

for some slowly varying functions L3°. This is a necessary and sufficient condition for
the tail of any distribution function F' to belong to the maximum domain of attraction of

a Fréchet distribution.

4.2 Extreme QAR functon: Part I

In this section, we explore a semiparametric estimation procedure for extreme QAR. We
take the QAR in the interior parts of a data based on relatively high probability level,
say 6, to be an initial as well as the beginning of the right-hand tail of a heavy tailed
distribution. This is then combined with quantiles obtained by using Gnedenko’s result
and a Hill’s estimator of the tail index to arrive at an approximate extreme QAR function
at high probability levels, say ¢ > 6.

For intuitive understanding, we first consider the iid random variables ¢, . .. based on the
process given in (1.1.1.1). To derive an estimate of an extreme quantile ¢g, for ¢ ~ 1,
we also consider a high quantile gj where 6 < ¢ is large but not so close to 1 as ¢.
Later on, we choose 6 large, but still small enough that the procedure of the previous
chapters provide reliable estimates of ¢j. ¢ is so large that we have non or only few data
in our sample around ¢g, and the purely nonparametric approaches do no longer provide
good estimates of gi. The quantiles, g5 and ¢, correspond, respectively, to the excess
probabilities F(q(S) =1—6and F(qu) = 1— . Then, using Gnedenko’s result (4.1.1.3),

the excess probabilities also satisfy

a) = (a) “2(a) (4.2.0.4)

F(e) = 67%[/(6) , e>qp. (4.2.0.5)
Dividing (4.2.0.5) by (4.2.0.4) and noting that for large 6, LL(Ejg)) ~ 1, we obtain,
36 A positive, Lebesgue measurable function L on (0, 00) is slowly varying if lim_, LL((t:)) =1, t>0.

See theorem 3.3.7 page 131 Embrechts et al. [39] for more details and other variations.



4 EXTREME QUANTILE AUTOREGRESSION (EXTREME QAR) 90

1—- F(e) =
e~ |~y qy, forlarge 0 (4.2.0.6)

It F (e) = ¢ > 0, then the p-quantile can be obtained as the inverse,

=£
1—
5 ~ <J> q5, forlarge 6 and ¢ >0 (4.2.0.7)

1-6
-
~e 1_90 —~e
Gb=\17—0] %

Under the assumption that the threshold gj is known and that F(e) — e E fore > a5

whose estimate is

and an appropriate constant ¢ > 0, the maximum likelihood estimator of the reciprocal

of the tail index & = é, is easily obtained by

-~ 1 ~ €
= — S tog &1 4.2.0.8
3 Ng; g<q5> {er>45) ( )

with Ny, the number of exceedances. This is known as the Hill estimator, introduced
and shown, in Hill [64] that it is consistent. In practice the threshold level needs to
be determined. We have to recall that we are not necessarily dealing with a Pareto
distribution, but rather with a distribution whose tail belongs to M DA (Hg,f > O) and
therefore looks like a Pareto tail. Consequently, we are looking for some level, say g, above
which the Pareto law applies to a good approximation. So long as we know that £ > 0, 6
can be set high enough, and we obtain ¢ parametrically by minimizing M, (et, u) , defined
in (1.1.2.1), with respect to pu. This results in nothing but a sample quantile estimator at
6, which is consistent and asymptotically normal as shown in Koenker and Basset [75].
The empirical study of the daily log-returns have shown that the frequently encountered
values of o = % based on the excesses are between 3 and 4, see Longin [82] and Embrechts
et al. [39] for example.
The properties of the quantile and tail probability estimators follow directly from the
properties of the Hill estimator of the tail index a = %) The consistency of the shape

parameter, 5 and g implies that E]‘; is consistent. An inverse estimator can be obtained

in a similar way from (4.2.0.6) as
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ﬁ(e) —1-(1-0) (g)‘é’ (4.2.0.9)
e

The above derivations enable us to present our first result in this chapter. The propo-

sition below extends the estimation of extreme quantiles in the iid case to the dependent

case, by augmenting the QAR with Gnedenko’s result and Hill’s estimator of the shape

parameter in (4.2.0.8).

Proposition 4.1 Assume the random variable Yy, t = 1,...,, in model (1.1.1.1) and the
ud errors e; with d.f F € MDA(Hg,f > O). The conditional extreme time varying

—£
1 —
Lt = [ + 0:qp < (ﬁ) — 1) (4.2.0.10)

Proof of Proposition (4.1

quantile is given by

From (1.4.0.2) and lemma 1.3
Yimmo _, @ G

4.2.0.11
O't’g Mee Mee ( )

Consider { ]5;6} to be iid random variables and A‘Z—i to be the threshold, then equation
0 0

Mg 1-0 Mg

=€
Pro — Mo . g L—¢
Pro 7160 _ e d0 [ [ 7% ) 4.2.0.12
o1 e = g ((1—9) ) ( )

Rearrangement completes the proof.

—£
(4.2.0.6) and (4.2.0.7) give F-22t0 4 g (1—‘f> %_ resulting in

O

We now assume again that p. 9 = pg (Xt> is the conditional #-quantile of Y, given
X;. We also assume that u; = ;z(Xt), the conditional expectation of Y; given X;, exists.
Because the estimator of ;g5 would involve the second moment, we replace it by (fu0—fit),

which requires only the first one. The extreme conditional p-quantile estimator is then

e) =)+ ((x) 7 (20 ) 2oy
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where £ = NLB Yoy 10g<%>lm>pg(xt)} and Ny is the number of exceedances of

Y; over fig( X; ). We obtain the estimator for u( X; ) by using local linear method in Fan

and Gijbels [45]. With {(Yt, Xt) }”

t=1
partial derivative so that it can be approximated by a linear function in the neighborhood

of a point x; as ,u(Xt> ~ by (xl> + Z;l:l b; <x1> (Xtﬁj — x,]) with u(xz-> = by <x2> and

, we assume that the function M(XZ) has the second

()
= b, (Xi)7 j=1,...,d. The estimate, ﬁ(xi>, is obtained as the first element of

0x; ;
the minimizer of

n d

So(vi—bo = by(Xis - xi,j>)2Kh (% - x) (4.2.0.14)

t=1 j=1

’

with respect to a vector b = (bo, e ,bd) . Masry [86] has shown under the assumptions

h — 0, nh?— oo and boundedness of nh®**, among others that

ﬁ(xi> . ,u(xi) ~0 ( (bi:f)) 2) (4.2.0.15)

almost surely for each point x;. Note that if the conditional expectation, yu, is assumed

to be equal to zero, then 7iy <Xt> can be taken as the scale function.

0.5 O©. 7= .72 O.85 .23 T

el
|

T T T T
.01 .02 .03 .04

Qunatile adjusted-scaled residunls

Figure 10: Shape estimate against threshold

We applied formula (4.2.0.13) in the estimation of the extreme conditional quantile on
real data (negative returns), from BASF in the period ranging from 1/1990 to 12/1992.
First we estimated the QAR of Y; at 6 = 0.9 by the procedure described in chapter (3)
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Figure 11: Hill estimates of tail distribution

and the conditional mean. Then we adjusted and scaled the resulting residuals. We
then estimated the shape parameter from the scaled excesses over the QAR using Hill’s
estimator. Figure (10) depicts a plot of the Hill’s estimates of the shape against the
excesses. We choose £ = 0.31 ( corresponding to the stable areas) and estimated the
tail distribution, which is depicted in figure (11) as a red curve. The circle represent the
empirical distribution. The blue and green curves represent the Hill estimates of the tail
distribution when the threshold is fixed at § = 0.6 and 0.85. Estimation for the latter
two were done with their respective estimates of the shape parameter. For low threshold,
the Hill’s estimator underestimate the degree of heavy tailedness of the distribution. At
6 = 0.90, it produces almost the same distribution as the empirical. For higher threshold,
we expect it to produce even heavier tail than the empirical. The estimate of the QAR at
v = 0.95 and 0.99 are shown in figure (12) with blue and red colored curves respectively.
We deffer all other comments to section (4.6), where a detailed simulation study is carried

out.

4.3 Parametric estimation of extreme quantile(iid case)

This section presents some results on parametric fitting of distribution to a series of iid
excesses beyond a high threshold. This results are useful for the work in the following

section.



4 EXTREME QUANTILE AUTOREGRESSION (EXTREME QAR) 94

0.25

0.15

-Retum

0.05

—0.05

I I I I I I I
o 100 200 300 400 500 600 700 800
Time

Figure 12: Hill estimates( blue at 0.95 and red at 0.99) superimposed on daily negative
returns on BASF.

Definition 4.3.1 Let e, be id random wvariables and zi,...,zn, be the series of ex-
ceedances over the threshold w = q5. The excess distribution function of the random

variable ey with the distribution function F over the threshold u is defined as

Fu(z> = Pr(et —u<z

e > u> 2> 0 (4.3.0.16)

It is assumed that the excesses are iid with distribution function F,, and u is less than

er®” . In terms of distribution function, (4.3.0.16 ) can be written as

F, (z) - F(u:Zl(u]; <u) (4.3.0.17)

which, when rearranged, one arrives at the tail distribution of the random variable e,

above the threshold u

F(u+z) = F(u).F,(2) (4.3.0.18)

This result makes it possible to estimate the tail of the original distribution, by sep-

arately estimating F' and F, in (4.3.0.18 ). The Peak Over Threshold (POT), due to

Tep = SUp.cr {F (e) < 1}, the right- hand endpoint of the distribution, usually but not necessarily,

assumed to be +oo
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Todorovic and Zelenhasic (1970), can be used to model all large observations exceeding
a high threshold u. In this context a fully parametric model based on the generalized

Pareto distribution (GPD), defined below, can be fitted to the excesses.

Definition 4.3.2 (Standard generalized Pareto distribution (GPD)) .
The generalized Pareto d.f Ge, 1s defined by

Ge(z) = t-(wgzye s i ££0 (4.3.0.19)
l—exp(—2) : if £€=0

wherezZOif§20and0§z<—%,if £ <.

The location-scale family, denoted as Ge¢, g(e), of (4.3.0.19) is obtained by replacing
z by eg” forveR, [>0,ie

Gewple) = 1 e (4.3.0.20)
_ exp(—
where
[0,00) : if £€>0
cepen = [0 —‘—1 L if £<0
) £ .

and Gy, 5 = lime_o Ge o g (e). For 0 < £ < 3, the random variable e, which follows a

Ge¢, 3 has the mean and variance equal to

E[et] :1/~|—1’%€

and

BT -2)
var [et] = 25—3m

respectively. As an abbreviation, we write G¢ g = G¢ g for the GPD with location

parameter v = 0.

Two approaches can be considered when fitting a GPD. The first one is based on
the assumption that the unknown distribution function F' has an exact GPD tail: Let

ey, ..., e, beiid with distribution function F’ whose tail above a threshold u follows exactly

a GPD tail, i.e.
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Fu(2) = Gepu(2) =1 - (1 + %z) N (4.3.0.21)

The estimates for ¢ and [(u) can be otained by maximum likehood estimation. The
estimates exist so long as & > —1 and are asymptotically normal and efficient when
&> —%, see Smith [103]. For high u, the density of the excesses can be approximated at
an arbitrary Z; by

fea (=) = 567 (1+ 505

whose log-likelihood function is

L(&, 6(u)> = Nplog (ﬁ(@) - e + 1) ilogo + 5@))

as given in Embrechts et al. [39]. Hosking and Wallis (1987) have shown that the MLE,
although asymptotically most efficient, it is not as efficient as the method of moment even
in samples as large as 500. The GPD estimators based on the method of moments are of

the form

fA _ 1(1_2—u>

2 52

B(U) _ E—u(?—u+1>

2 52

where Z and s? are empirical mean and variance respectively.

To relax the strictness of the exact type of the distribution a more realistic approach
is to use, that for any heavy tailed distribution F', the following result due to Balkema-de

Haan and Pickands(1975) holds.

Theorem 4.2 (Limiting distribution of F,(z))
For F € MDA(H¢, & > 0) , the generalised Pareto distribution (GPD) is the limiting
distribution for the distribution of excesses, as the threshold tends to the far right endpoint

er .i.€
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lim  sup |F.(2) — Gep)(2)| =0 (4.3.0.22)

U—CF 0<z<ep—u

So

F(u+ z) = F(u).Ge g (2) (4.3.0.23)

The result states that if [’ is in the maximum domain of attraction of a Fréchet dis-
tribution, then as the threshold u approaches the endpoint of F', the GPD asymptotically

approximates the excess distribution function F, (z)

In order to exploit theorem 4.2 in our problem, we summarize the asymptotic prop-
erties of the ML estimates of the GPD parameter estimates in the following lemma. For

the proof, see Smith [103]

Lemma 4.1 (Asymptotic properties)
Let F € MDA(Hg,f > 0), i.e L(e) = 6%F<6) 15 slowly varying at oo and suppose

-~

N, — o0, u — ep simultaneously. Then the ML estimates, | _ , are consistent
B(u)

and asymptotically normal with

£~ 0
V Ny ;) . —P N[ M ] (4.3.0.24)
dw) .
] 2 1 . o . , :
where M = o@D is the Fisher information matriz for (£, B(u))
1 1+¢
1+¢ —1
and M~ = [1 +£]
-1 2

This result can be used to make inferences on the estimates. The next section develops

a procedure, similar to section (4.2), for dependent data.

4.4 Extreme QAR: Part II

In Chapters (2) and (3), we gave consistent estimators for (Xl> and scale function,

0p (XZ> via conditional distribution function estimators and direct minimization. These
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two approaches were shown to work with dependent data under strong mixing conditions.
As already seen, in order to exploit results from extreme value theory, independence in the
series is required. We propose to filter the trend due to stochastic location or in general,
QAR, and volatility by adjusting the QAR and then scaling the difference. Let us denote

the filtered excess residuals by

Yy — po(Xy)
Jh=—2==""1>0, t=1,... 4.4.0.25
t ( UG(Xt) ) ) , 1 ( )

Note that the assumption of independence are relaxed up to some high levels of 6.
That is, whereas the mean-variance method®® assumes standardized excesses over the
conditional mean are iid , our proposed approach only assumes independence for only Z,"
corresponding to large #. In practice, if we replace g (Xt> and oy (Xt> by their esti-
mates, this assumption is only approximately satisfied. However, the following discussion
shows that the resulting estimates of the Z* are at least uncorrelated to a good degree of
approximation.

We note that scaling a conditional variable, helps to reduce the dependence structure in
the data. This is clearly evident from figures ((13),(14) and (15)), where the maximum
autocorrelation for the first five lags® are plotted against the increasing levels of # corre-
sponding to the threshold estimate 7iy (Xt) . In all the plots, the continuous line represents

the 95% confidence level of the autocorrelation, computed as @—\1/%95)’ of the events in

excess of the threshold. The dotted line represents the maximum autocorrelation from
the unscaled residuals and the thick dotted, the autocorrelation from the scaled residuals
in (4.4.0.25). In all cases, we observe that as the threshold increases, the autocorrelations
for the scaled excesses become statistically insignificant. It should be noted that that
because of sparseness of the extremes, the level @ for the scale function should neither be

too high nor too low.

Let fx, (z) be the conditional density of Z on X;. The following assumption is im-
posed on the QAR adjusted-scaled residuals, Z.

38 Which involves historical simulation (HS) in finding the threshold.
39For various excesses obtained on returns from Commerzbank, Deutsche Bank and DAX30 over three

year periods.
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Figure 13: Commerzbank: Maximum autocorrelation for the first 5 lags against the in-

creasing threshold(theta). The upper curve was obtained from the unscaled QAR adjusted

negative returns. The lower was obtained from the QAR adjusted-scaled returns.

Conditions 4.4.1 Let Z = % be the sample residuals approximating the Z,. We
assume that, at least, to a good approrimation the conditional density function g, <z> of

the excesses of Z over the threshold q; given X; = x; is such that

Ox; <z> = g(z), Vx; and G(Z) € MDA(HE,ﬁ > 0). (4.4.0.26)

The condition states that the excess conditional distribution of the QAR adjusted-
scaled residuals is heavy tailed and independent of the covariate beyond the threshold at
high probability level, (i.e from the definition of Z;, they are iid ). Our main interest is
now to find the distribution function of the data well above the threshold u = ¢ = 0,
whose inverse gives the QAR-scaled extreme quantile. From (4.3.0.18), the implicit form

of this distribution can be written as

F<qg + z) - F<qg> + (1 - F@;))Fqg (z) (4.4.0.27)

whose estimate we denote as

P +2) - P(@) + (- F@) ()

From chapter (2), see also Cai, Z and Roussas [20], we have

ﬁ(a;) - F<qg> —9 (4.4.0.28)
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Figure 14: Deutsche Bank: Maximum autocorrelation for the first 5 lags against the in-
creasing threshold(theta). The upper curve was obtained from the unscaled QAR adjusted

negative returns. The lower was obtained from the QAR adjusted-scaled returns.

Therefore F (@3 + z) =0+ (1 — 9) ]3@5 <z> Since j.9 and o have already been
consistently estimated in chapters (2) and (3), we assume they are known. This simplifes

our tail estimator to

Fag+2) =0+ (1-0)F,(2) & F(z) =0+ (1-0) (=) (4.4.0.20)

where z > 0 and g = 0 by the definition of our model. The following lemma shows

that ﬁ(z) is asymptotically a generalized Pareto distribution function estimator.

Lemma 4.2 (Tail distribution)
Let Zy,t =1,...,n be independent random variables with zero 0-quantile, i.e ¢; = 0, and

let their excess distribution Fy (z) above q; be a GPD with parameters § and (3. Then,

P(=) =0+ (1-0)Fo(2) =G 6(2)

~ 3
is again a GPD with the same shape parameter &, scale parameter [ = ﬁ(l — 9) and

location parameter v = g((l — 9)§ — 1) = ?(1 — (1 — 9) _£>.

Proof of lemma 4.2
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Figure 15: DAX30: Maximum autocorrelation for the first 5 lags against the increasing

threshold(theta). The upper curve was obtained from the unscaled QAR adjusted negative

returns. The lower was obtained from the QAR adjusted-scaled returns.

As F <z) =Geop (z),

£(5)

0+ (1—0)Geos(2)

()]
- 1_:<119)§+6(1€—9)5
- -
_ L_}+Ba§gﬁ¢+
_ L_}+BH§5¥¢+

= G5 (z)

N
| I |
|
=

o

(4.4.0.30)

where 3 = 8(1—6)¢ is the scale parameter and v = § ((1—9)5—1> , the location parameter.

O

If our original data Y; follow a QAR-model Y; = ji; g + 04 9Z; with innovation Z; having

zero f-quantile, then p, ¢ is the QAR of Y; at . If we choose the threshold u = p g, the
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excess distribution function of Y} is

Fg<y> = P(Y}guYt>u>
- P(Zt < Llz, > 0) - F()(i) (4.4.0.31)
0¢.0 0¢.0

Heuristically, for § — 1, we have ;9 = u — oo, and by theorem 4.2, we can expect FY
and, then, Fy to be well approximated by a GPD. By lemma 4.2, this will also hold for
F.

Let gg, be the quantile above a threshold g = 0 based on Z; and derived by inverting
the distribution F' (z) at a particular level of ¢ > 6. That is for a fixed ¢ € (0,1),

q, = inf

{F(2) =
- inf{1 - (1 . 9) (1 o) (z>> > gp}, from (4.4.0.27)

—}, for #—1 and G=1-G

Q
n N
c
&3
—
S
= ®
=
N
N—
—_
|
>

13
_ B ((1—_@> L 1) (4.4.0.32)

Compare (4.2.0.12). We denote its estimate by g7, = infz>0{ﬁ(q5 + z) > go} =

9(9) b ~
T((%) — 1). Intuitively, Ef; will be a consistent estimate of ¢;. Since /Ny <§ —

&, % — 1) is consistent and asymptotically normal with zero mean and covariance given

in lemma 4.1, it follows that (E— 6,3(0) —5(«9)) —P (O, O) as 0 — 1 and Ny — oo. Then

-b
by by corollary 6.3.14 (iv) in Dudewicz and Mishra [35], page 323, %((%) — 1)

1_“”> consistently. The latter coincides approximately with ¢ by the

: —-1
estimates G g9 (ﬂ

heuristic arguments we have given above for F’ (z) being approximately a GPD. For an
exact proof, however, we would need a version of theorem 4.2 for dependent data, i.e. in
particular for our QAR-process Y;. As the extreme value theory for financial time series
models is still in its infancy, such a result is beyond the scope of this thesis.

For random variables Y, ¢ = 1,2, ..., generated by the process (1.4.0.2) with Z,,t =1,...,
being iid with FF € MDA (Hg,f > O), the conditional QAR of Y; at ¢ is given by
Moo = o (Xt) + 09 (Xt) q5- In the following section, it is argued heuristically that the

estimator for jg o (Xt> is consistent.
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4.4.1 Consistency of the extreme QAR function estimator

In the QAR model the conditional quantile estimate of Y; given X;, iy (Xt>, becomes
the initial estimate as well as the conditional threshold. The GPD is parametrically fitted

to the excesses over jig (Xt> The overall estimator at point, X; = x;, then becomes

/79#,(}(2-) :ﬁ9<Xi> +6'\9(Xi>21\;, 1= 1,...,n, (4411)
where @7, is estimated from the residuals Z = %@St) by fitting a GPD as described in the

previous section. The intuition for the estimate fig ., (XZ) which combines a nonparametric
quantile estimate with a parametric fit in the extreme tail using theorem 4.2 is quite similar
to the VaR-estimates of McNeil and Frey (2000) based on the POT-model.

The following heuristic argument shows that we can expect

116, (Xz) — [o,p (Xz> —P0 (4.4.1.2)

forn — 00, Ny — 00,0 —1andf <y <.
The left hand of (4.4.1.2) can be expressed as

Ho,» (xz> — o <X2> = g (xz> — g (XZ> + 0g <x2> q, — 09 <x2> qa (4.4.1.3)

Under conditions (B1)-(B6), (C1)-(C6), (D1), (E1) and for n — oo, we have fig (x) -
Lo <X,> —P 0, and 7y <X,> —0p <X2> —P (), see chapters (2) and (3). For F € MDA (Hg,{“ >
0) and Ny — oo, 6 — 1, we have heuristically fffp —" ¢ by the argument in previous
section. By using corollary 6.3.14(iii), page 323 in Dudewicz and Mishra [35]), we get
09 (xJE[@ — 0y (xl) q, —"0, as 6 —1, n — oo. Finally, the application of corollary
6.3.14(i), Dudewicz and Mishra [35], on fig, (xz) completes the argument. For exact

proof, again we would need theorem 4.2 for QAR-processes.

4.4.2 Estimation strategy

In all we adopt the following strategy in the estimation of the extreme QAR function:
Assume Y;, t=1,2,...,n+d are generated by the QAR-QARCH process.

(1) For m equally spaced 0 € (0.55,0.9) and 7 = 1,2,...,m, use the QAR-QARCH
model to estimate the conditional threshold, s, (Xt), and scale function, 09, (Xt> at
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X;,1 = 1,...,n. Denote the estimates at X; = x; as [y, (x,) and 0y, <X2> Adjust Y;

of flo, <X2> and scale the resulting residuals to obtain a series of scaled excess quantile

Yi—Ppo, (x:)
bgj (x4)

(2) For equally spaced ¢ € [0.95,1] fit the GPD on the excesses in (1) and graph the set

residuals over the scaled threshold; >0, 2=1,...,nforevery j=1,...,m.
of fitted quantiles for the respective thresholds.

(3) Make visual judgement to see whether the required level of # (in this case ¢) falls
in an appropriate region (the peak area). Proceed to step (4) if the finding is positive,
otherwise, use other appropriate method. As an illustration of this step, we generated
a series of iid random variables, e; of size 1000 from a t-distribution with 3 degrees of
freedom. We then fitted a set of quantiles on the excesses over the quantile adjusted ran-
dom variable e;. The surface of the estimated quantiles is shown in figure (16). Clearly
for low quantiles (corresponding to (vartheta)), the GPD underestimates as the thresh-
old increases. For higher quantiles the GPD gives the peak quantiles as the threshold
increases. Let us note such visual observation helps in deciding whether the estimation
of the required quantile corresponding to a probability level needs a combination of EVT
or not. If one is interested in the quantile at ¢ = 0.98, say, the GPD and high threshold
would underestimate the quantile. On the other hand, taking a high threshold would
deliver the desired quantile at high levels above 0.990, because the peak over threshold
(POT) quantiles are generated. That is high threshold delivers the peak of the required
quantile in heavy tailed distribution.

(4) Choose a final high level threshold iy (xz-), by setting 0 € (0.85, 0.92)7 depending on
the size of the series or by using the mean excess graph to select the # where the curve
appears to strech out linearly.

(5) Fit the GPD over the excesses and extract the required quantile.

Step (5) completes the main computation required. To get back the extreme QAR,

bo, (Xz> —ho <XZ>
— ijp,

by | x;

rearrange

If the underlying process is assumed to be an AR-ARCH, with the conditional mean

known ( or equal to zero), step (1) of the strategy can be omitted. In this case, the
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simplest scale function is fig <Xz> for # > 0.5 in step (2). The scaled excesses become

Y,
— L —1>0, 6>05 (4.4.2.1)
Ho <X2>

Quantiles

05 015N

Figure 16: Surface plot of the fitted ¢-quantile on the excesses over threshold 6( cor-

resonding to ¢)

We applied the above strategy in the estimation of the extreme QAR at ¢ = 0.95 and
0.99 from negative returns on BASF, see figure (12). The normal quantile-quantile plot
in figure (17) shows the returns have heavier tail than normal distribution. In order to
determine the shape parameter, £, we fitted the GPD on the excesses over the quantile
residuals corresponding to 100 equally spaced 6 € (0.45,0.92) and plotted the estimated
shape against the level (1 — #) shown in figure (18). From the graph we chose £=025
which correspond to the fairly stable areas (between 1 — 6 = 0.10 and 0.3). This area is
also supported by the plot of mean excess function (MEF) in figure (19) which indicate a
linear stretch in areas beginning 6 = 0.65 ( given on the third axis) corresponding to the
threshold value of about 0.015, on the first axis. The estimated tail distribution is given in

figure (20), where the dots represent the empirical estimates. Both of the estimated tails
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(blue and green) are heavier than the empirical distribution in 1—F € (0.019,0.15). Below
0.019, the estimate obtained by using the threshold at 6 = 0.85, provides a heavier tail
then the other one at § = 0.6. As compared to the Hill’s estimate of the tail distribution
(see figure (11)), the GPD appears to be capable of capturing large values at relatively
high levels of ¢ as opposed to the Hill’s estimator which produces tails thinner then the
empirical distribution at § = 0.85 for relatively high quantiles. The estimates of the
conditional quantile functions at ¢ = 0.95 using direct conditional quantile regression
(QAR) method, QAR augmented with GPD based on unscaled QAR adjusted residuals
(QAR+GPD) and QAR augmented with GPD based on QAR adjusted-scaled residuals
(QAR+sc.GPD) are respectively shown in figure (21) as blue, green and red curves. The
threshold was taken to be at 8 = 0.85. The QAR estimates for all the three approaches do
not seem to be quite different from each other, with the exception of the QAR+GPD which
appears to underestimate in cases of high volatlities. We again applied the three methods
in the estimation of the extreme QAR, on the same data, at ¢ = 0.99. The result is shown
in figure (22), where the blue, green and red curves represent estimates obtained by QAR,
QAR+GPD and QAR+sc.GPD respectively. Clearly the estimates are different. The
QAR ( so is QAR4GPD), do not appear to exhibit the characteristics of the underlying
volatility. On the other hand, the QAR+sc.GPD appears to adjust quite well according
to the underlying volatility. Lastly, we superimposed the estimates of extreme QAR at
¢ = 0.99 in figure (23), obtained by using the QAR augmented with the Hill estimator
(QAR+sc.Hill) and QAR+sc.GPD, represented in green and blue curves respectively.
Both estimates appear to adjust according to the underlying volatility. However, there
is marked diffference in the estimates where the volatility is high. The above discussion
repesents only the beginning of a detailed numerical study of the performance of the

introduced model and its variants in section (4.6)

4.5 Threshold problem

An important issue in the estimation of extreme quantile by EVT, is the choice of an
appropriate threshold, g (Xt>, that determines the number of order statistics to be used
in the estimation procedure. If the threshold is too high, there are too few exceedances

resulting in a high variable estimator. On the other hand, a low threshold produces a



4 EXTREME QUANTILE AUTOREGRESSION (EXTREME QAR) 107

Remn

-3 -= -1 o s = 2

Quantiles of Standard INorImsl

Figure 17: Returns on BASF: Quantile-quantile plot of residuals against normal distribu-

tion shows the quantile residuals to be leptokurtic

biased estimator, because the asymptotic approximation becomes very poor. This was
cleary seen in figure (11), in the estimation of the tail distribution through the Hill’s
estimate of shape parameter; as the threshold increased the tail estimator become thicker
and better for heavy tailed. A small monte-Carlo study was performed to illustrate the
sensitivity of the estimator to the threshold. We generated 500 samples of size 1000 using
student t-distribution with 4 degrees of freedoms. Then we estimated 95%,99%, and
99.5% quantiles using the GPD formula. The threshold values 6 corresponding to g were
chosen by decreasing the proportion?® (1 —#) of the sample exceeded from § = 0.6 to 0.95

using 200 equal intervals. The bias and variance were computed, respectively, as

500 a(j)
Bms@gk,@) -y 50860 - q¢>, k=1,... 200.

j=1

and

500
. 1 . 2 ) R
var (%%cp) - % Z(Z]\gﬂ)’@ — q¢,> — BZCLS2 (QQHP, k= 1, . ,200

j=1
where g, is the true quantile. The results were the plotted in figures (24), (25) and

(26). Clearly, there seem to be a compromise between the variance and the bias, which

40That is by reducing the number of exceedances n(1 — )
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Figure 18: The shape estimate against increasing threhold (1 — 6), where 6 varies from

high levels to low. The shape was taken as 0.25

theoretically could be obtained by minimizing the mean squared error. But because quan-
tiles are not observable, in practice, basing the selection on minimum MSE would result in
a biased estimator. Some recent statistical developments in threshold selection have been
oberved in Danielsson and de Vries [31], where a two step bootstrap method to select the
sample fraction on which Hill estimator is based, is proposed. To current, threshold selec-
tion when using the GPD has remained a graphical solution, see for example figure (19)
and Embrechts et al. [39] for more details. Moreover there is a consensus in literature*!
that taking a very high threshold suffices. This is in line with the fact that the GPD
quantile estimation are usually repeated several times to have a graph of quantiles depict-
ing the quantile of stable areas and the POT quantiles, see again figure (16). Seemingly,
the latter one is more important as in the estimation of risk, one better overestimate than

underestimate.

41See for example McNeil [87].
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ajusted-scaled excesses. The third axis indicate the increasing proportion of the ordered

€XCesses.
4.6 The performance of extreme QAR models

In this section we evaluate the performance of various quantile models in the estimation of
extreme QAR using artificial*? and real data. In particular, we will estimate the extreme
QAR using Historical simulation (HS), direct estimation by generalized Pareto distri-
bution (GPD), direct estimation through the Hill’s estimator (Hill), direct QAR-ARCH
model (QAR), the QAR augmented with GPD on unscaled residuals (QAR+GPD), the
QAR augmented with Hill estimator on unscaled residuals (QAR+Hill), the QAR aug-
mented with GPD on scaled residuals (QAR-+sc.GPD) and the QAR augmented with
(Hill) on scaled residuals (QAR+sc.Hill). The QAR4+GPD and QAR+Hill can be thought
as a combination of GPD, respectively Hill, with the usual quantile regression model where
the unscaled quantile residuals residuals are assumed to be iid. The QAR+sc.GPD and
QAR+sc.Hill are a combination of GPD (respectively Hill) with quantile regression model

where the unscaled quantile residuals are not assumed independent.

42 The advantage of working with artificial data is that the true (extreme) QAR is known. This makes

it possible to quantify the errors associated with a particular method for measuring extreme QAR.
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Figure 20: Reurn on BASF: Estimates of the tail distribution. Dot represent the empirical.
Green and blue are estimates obtained by setting the threshold to § = 0.6 and 0.85,

respectively.

4.6.1 A monte Carlo study

We perform a Monte Carlo study to compare our estimates with various direct estimators
and their combination. We generated 500 samples of size 1280 observations for four

different threshold processes, AR(1)-TARCH(1),

(|Ytl’ —-Yi

2
Y, =054 0.3Y,_; + \/0.01 +0.1Y2, 4 0.35 ) e, t=2,,, (4.6.1.1)

where e; are zero mean-unit variance iid errors. The errors were generated using random
number generator with the following distributions: standard normal, student**-t with 3
& 4 degrees of freedom and Gamma?** with (2,2) degrees of freedom. Considering only the
student-t distributed error with 4 d.f, an example of the scale function estimate is given
in figure (27), where the dotted represents an estimate of the true scale function, solid,

at 0 = 0.90.

The performance of the models were then evaluated using the mean average squared

43To make the errors iid with zero mean-unit variance, we scaled the t-ditributed errors by , [ 755,

where v is the degrees of freedom.
44The mean, ab, was first subtracted from the errors and the result divided by the standard deviation

Vab?.
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Figure 21: Returns on BASF: Plot of negative returns against time. Superimposed are

the estmated conditional quantile at ¢ = 0.95

error (MASE):

s (i (0)) = o3[l () ()] o

j=1

where ||.|| denote the Euclidean norm, ﬂéj; (Xt> and ugzp (Xt> are (1000 x 1) vectors
of estimated and true functions of extreme QAR at ¢ respectively, for the j* sample.
We used 280 less observations in all the models, except in HS where 281 were used in
the rolling window. The results are shown in table (6). The GPD, Hill and HS did
worse than the QAR and the combination at the 95% level. This is partly due to poor
asymptotic approximation at 6 = 0.95 and their underlying assumptions do not conform
with the simulated process. Under normal errors, the GPD appears to perform better
than HS, although both assumes iid. The stars indicate no evaluation was performed as
the estimator is only suitable for heavy tailed distributions. As the level of ¢ increases
to 0.995, the MASE for both GPD and Hill tend to decrease , under nonnormal errors.
Calculating the ratios of the MASE for the direct methods;

MASE (Hm) MASE (GPD)

and

MASE (QAR) MASE (QAR)

at ¢ = 0.95,0.99,0.995 and for all errors, we observe the ratio goes to below 1 from above
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Figure 22: Returns on BASF: Plot of the negative returns against time. Superimposed

are conditional 0.99-quantile estimates

1. This indicates clearly that the rate at which the MASE increase with the increasing ¢
is slower®® for the estimates obtained by direct application of Hill and GPD than for the
direct QAR. Thus the estimates from Hill and GPD tend to be better than QAR in the
extremes than in the interior where the QAR is good. This support our idea of combining
the direct quantile regression with extreme value theory for high levels. From the table,
it is noted that all the QAR models and their combinations produces similar estimates at
¢ = 0.95, but increasingly differ as ¢ increases. This confirm the observations made in
figures (21),(22) and (23). By introducing the scale, we observe that the QAR + sc.GPD
and QAR + sc.Hill are clearly superior in terms of the efficiency gained, to the direct
QAR and QAR + GPD. However, the estimates from QA+sc.GPD outperforms the cor-
responding ones from QAR+sc.Hill.

4.6.2 Backtesting

Many banks that use VaR* models routinely test the performance of the models by

comparing the daily profit and losses with model-generated risk measures to guage the

45 Given that at ¢ = 0.95, the MASE for the Hill and GPD were at least 4 times as large as the MASE

for the QAR.
46 See definition (1.2.1).
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Figure 23: Returns on BASF': Plot of negative returns against time. Superimposed are the
conditiona 0.99-quantile estimates obtained by QAR+sc.Hill(green) and QAR+sc.GPD
(blue).

accuracy of their risk measurement systems. Such testing is refered to as backtesting.
There are quite a number of techniques that test the performance of VaR models, see for
example Kupiec [79] and Cassidy and Gizycki [23]. Kupiec [79] presents an approach to
analyse exceptions®” based on the observations that a comparison between daily profit
and loss outcomes and the corresponding VaR gives rise to a binomial experiment. Under
the assumption that the daily VaR measures are independent, the binomial outcomes
represent a sequence of independent Bernoulli trials each with probability of failure equal
to 1 minus the models specified level of confidence. For instance a 95% level gives a 5%
as the probability of failure on each triall. Hence testing the accuracy of the model is
equivalent to testing the null hypothesis that the probability of failure on each trials equals
the model’s specified probability. The test we consider is known as Kupiec’s POF-Test
which is based on the proportion of failures observed over the entire sample period. The
null hypothesis test that the VaR model’s stated level is equal to the realized probability
level covered by the model (H, : ¢ = @) is achieved by the Likelihood-Ratio-Tests (LR)

statistics given by

47If the actual trading loss exceed the VaR estimate the result is recorded as a failure or exception.
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Figure 24: The variance (solid) and bias (dotted) for the estimate at ¢ = 0.95 against the
threshold (theta)

Table 5: Model Verification: Nonrejection regions. Number of failures at 5% level

Probability level,p | T=250 days T=500 days T=750 days T=1000 days
0.0500 T<N<19 1T<N<35 21<N <49 38 <N <64
0.010 1<N<L6 2< N9 3<NL13 5 < N<L16
0.0050 0<N<4 1<N<G6 I1<N<S8 2<N<9
0.0010 0<N<I1 0<N<2 0<N<3 0<N<3
0.0001 0<N<O 0<N<O 0<N<I1 0<N<I1

N T-N

(1-¢)

LR = —2In - TN

(1-2)
where T represents the number of backtesting points, N denotes a Bernoulli random
variable representing the total number of observed failures and ¢ is the maximum likeli-
hood estimator, given by %, for N > 1. The statistic is asymptotically distributed as a
chi-square disribution with 1 degrees of freedom. If the LR statistics exceed the critical
value, 99% quantile of the %, the hypothesis H, : ¢ = ¢ against a two sided is rejected.
In accordance with the convention, we will set the size of the test to 5%. For a number of

left tail probabilities and evaluation sample sizes, table (5) gives the nonrejection regions.

To perform the backtest we considered a one period ahead returns data and used the
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Figure 25: The variance (solid) and bias (dotted) for the estimate at ¢ = 0.99 against the
threshold (theta)

first 501 observations to estimate ;11 9 and 0441 9. This means we effectively had 500 pairs
of observations (Ytﬂ, Xt) for the estimation of p;416,, under the assumption that the
underlying process is QAR-QARCH. In the case of historical simulation, we considered
the first 680 returns from which we used the first 181 as a rolling window. The result is
depicted in table (7), for the levels ¢ = 0.95,0.99 and 0.995.

At ¢ = 0.95, the Kupiec test rejects the direct GPD and Hill methods under BASF,
because of overestimation. At 99%, the QAR+GPD and QAR~+Hill models significantly
overestimate the risk in BMW and DBK companies, whereas the HS method significantly
underestimate the risks in BMW and DAX. At 99.5%, except QAR, QAR+sc.GPD and
QAR+sc.Hill, all other methods either under-or overestimate the risk in most of the
portfolios. According to the Basel accord directives, it is only the histotical simulation
the would be penalized, for example at 99% level, because it underestimate the VaR
in DAX. However, for banks, it is not only important to know whether their model
underpredicts the VaR but also if the model is too conservative, because the latter would
unnecessarily jeopardize their profit opportunities. Hence, for the banks, all the models
which significantly overestimate would also be unfavourable. We however remark that the
Kupiec’s test does not seem to be reliable for high values of ¢. This is seen, for example,
in the case of QAR, which is not significant at ¢ = 0.995 but appears to be poor in terms
of the MASE provided in section (4.6)
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Figure 26: The variance (solid) and bias (dotted) for the estimate at ¢ = 0.995 against
the threshold (theta)

4.6.3 T-periods extreme Value-at-Risk

For prediction purpose, usually a portfolio returns is split up into estimation and evalua-
tion sample for each VaR technique. The estimation sample is used to estimate the model
in question and predict the VaR of the portfolio and then the adequacy of the model is
assessed by the means of evaluation sample. This procedure works well with parametric
models, where the estimation sample is used to estimate the parameters of the model (
e.g normal GARCH), which is then used in the second sample. In nonparametric set up,
such parameters are not there and to our knowledge, one has to estimate directly the
T-periods ahead VaR by conditionally regressing the T-periods returns on the current.
The estimated function is then used for backtesting. This turns out to work well when
T is small, for instance, the one period backtesting that we carried out in section (4.6.2).
However as T increases such estimates are known to be unreliable. In this section, we
propose an approach for T-periods estimation of VaR, in terms of negative returns, which
could be thought as a partial solution to the problem.

Before we go into details, let us note that most VaR models based on variance tech-
niques assume normality, despite the well known fact that high frequency financial data
have fatter tails than can be explained by the normal distribution. For good reasons,

the parameters of normal distribution are usually easier to estimate as there is often an
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Figure 27: Scale function at # = 0.9 based on AR(1)-TARCH(1) data, n = 1000:-Dotted

is estimate and solid, the true function.

analytical solution for them. Second and perhaps the most important, is the additivity
of the normal*® distribution: The sum of two normally distributed random variables is
also normally distributed. This characteristic is very important for the calculation of
multi-days VaRs based on one-day VaR- a feature of the Basel guidlines. Let us define a

T-period ahead returns as

e = log<B+T) Zl g( Lo ) (4.6.3.1)

PtJr] 1

where P, and P, are the current and T-periods ahead stock prices respectively. If
we assume that the returns are iid with zero mean-constant( or unit) variance, it is well
known, see Dacorogna et al. [30], that self additivity implies the VT scaling factor for

the T-periods ahead risk of a portfolio on the basis of one-period ahead risk:

VaRiir, =~ VTVaR 1. (4.6.3.2)

Approximation (4.6.3.2), which is already implimented in Riskmetrics, is known as

48Normal distribution belongs to a class of sum-stable distributions which is characterised by the fact

that sums of random variables from a sum-stable distribution again follow that sum-stable distribution.
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the square root of time rule.
Suppose we now assume that a one period returns are iid with fat tailed distribution.
Then we know the tail distribution belongs to the MDA (H 1 ,é > O) and looks like a

Pareto tail distribution. To the first order approximation, see (4.2.0.6), we have

1—P(et+1§e>zﬁ(e)%(1—0)(%)_a, e>qs>0, 0—1
dp

where ¢j is the threshold above which a Pareto like tail holds, e can be regarded as a
portfolio’s loss and « is the tail index. The method of obtaining a T-step period prediction
can be based on the work in Feller [49](VIII. 8) where it is shown that the tail risk for
fat tailed distributions is, to a first approximation, linearly additive. Hence for T-period

ahead returns, we have

1 P(et+T < e) ~ T(1 - 0) (%)_a. (4.6.3.3)
o

Such result has been discussed in the case of nonnormal stable distribution ( with o < 2)

in Fama and Miller [44], page 270. Because of additivity of the tails of heavy tailed

distributions it is easy to see from (4.6.3.3), see also in Danielsson and de Vries [31], that

for a T-periods ahead VaR based on one period VaR a factor of T= is needed, i.e

VaRy 7, ~ T§VaRt+17(p, based on iid data

This is called a-root of time rule.

If we now turn back to our problem, clearly the a- root of time rule cannot be applied
directly to the random variable Y;,, because it is not iid. However, if we assume the
functions pit41, and o419 are fairly constant within a specified period, T, we can use the

rule to predict a T-period ahead risk. Consider a one period QAR adjusted-scaled returns

which we assume to be iid with Pareto like beyond AZ—S(S, see equation (4.2.0.11). The

extreme unconditional quantile of Z;, is given as
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Hit+1,0,0 — Ht+1,0

0¢4+1,0
The T-periods prediction based on the unconditional random variable Z;,; is cleary

seen as

Mt+T.0,0 — Ht+1,0 1
z ~ Taq;
0¢4+1,0

Hence, by rearranging we obtain the a T-periods VaR as

1
~ - z
V aRt+T,9,gp R 1,0 + T"Ut+1,9q@

where the quantile g7, is based on Pareto distribution with é > 0, as in (4.2.0.12). The

T-periods estimate of VaR, VaR; 7, is then given by
—(7) R 1. —
V‘IRW (Xz> = o <Xz> + Taoy <Xz> Qs (4.6.3.4)

where the components fiy (Xi>, 0p <X1> and @\; are consistent estimates.

4.7 Conclusion

We have combined the QAR-QARCH model, based on nonparametric quantile regression
methodology, with extreme value theory, in the estimation of extreme QAR. We have
argued that the overall estimator is heuristically consistent for the true one. The per-
formance of different models were evaluated by using artificial and real data. The result
shows that QAR-QARCH augmented with GPD performs best: It overcomes the problem
in QAR alone (caused by the sparseness of data in high levels) and the direct application
of EVT which do not cope with the volatility clustering and low thresholds, clearly noted
in the Monte Carlo results. The problem of multiperiod estimation has been discussed
and procedure proposed.

However, the method only models the behaviour of profit and loss (P& L) of a portfolio
and therefore has the following disadvantages: In the case a portfolio consist of multiple
risk factors (market rates), and VaR estimates based on the model indicates an increase
in risk, the source of the increase will not be apparent because the approach does not

model the behaviour of individual risk factors.
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Table 6: Monte Carlo simulation. The thresholds were fixed at § = 0.90

¢ =0.95 Norm. Stud.-t(3) Stud.-t(4) Gamm.(2,2)
HS 1.9900 12.140 7.9200 8.0400
GPD 1.8600 9.4600 4.8900 5.2100
Hill ok otk 10.787 6.7623 7.3456
QAR 0.3900 1.1400 0.8600 1.2600
QAR+ GPD 0.5800 1.6100 1.2000 1.4200
QAR+ Hill ok etk 1.8100 1.4700 1.4920
QAR+sc.GPD | 0.3500 1.0200 0.8740 1.1000
QAR+sc. Hill | * #okkx 1.3140 1.1734 1.4672
o = 0.99

HS 6.2300 64.410 44.100 27.810
GPD 3.6000 16.280 15.460 13.530
Hill ok etk 18.490 14.740 15.140
QAR 1.3700 15.640 9.8400 13.010
QAR+ GPD 0.8800 6.3200 3.8000 6.8300
QAR+ Hill ok etk 6.2200 4.0000 6.7600
QAR+sc.GPD | 0.7200 3.8000 2.9000 4.0000
QARAsc.Hill | oo 4.3670 3.4010 4.4607
© = 0.995

HS 26.010 94.760 80.520 82.460
GPD 10.570 70.640 54.410 57.320
Hill ok etk 71.440 69.260 59.124
QAR 19.780 80.43 70.600 67.840
QAR+ GPD 4.9400 51.46 43.660 40.470
QAR+ Hill ok ok 51.46 44.780 39.280
QAR+sc.GPD | 3.9400 9.960 7.4200 7.2800
QAR+sc. Hill | * otk 11.60 7.7410 8.9978

120
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Table 7: Backtesting on 510 points. Threshold taken at 6§ = 0.80.

¢ =0.95 (25) | BASF(745) BMW(744) DAX(745) DBK(745) BAI(745)
HS 00028 00027 00024 00026 00024
GPD 00016 00020 00017 00022 00022
Hill 00016 00018 00018 00020 00021
QAR 00025 00024 00025 00025 00023
QAR+GPD 00020 00021 00019 00019 00020
QAR-+Hill 00019 00018 00019 00021 00020
QAR+sc.GPD | 00022 00023 00024 00024 00025
QAR+sc.Hill | 00017 00020 00019 00020 00019
v =10.99 (5)

HS 00008 00010 00010 00006 00007
GPD 00004 00003 00005 00004 00006
Hill 00002 00004 00006 00004 00003
QAR 00005 00005 00004 00005 00006
QAR+GPD 00003 00001 00004 00001 00004
QAR+-Hill 00002 00001 00003 00001 00003
QAR+sc.GPD | 00005 00006 00005 00005 00005
QAR+sc.Hill | 00005 00006 00004 00004 00006
v =0.995 (3)

HS 00007 00005 00009 00006 00004
GPD 00000 00000 00002 00002 00000
Hill 00000 00000 00000 00002 00001
QAR 00003 00002 00002 00005 00001
QAR+GPD 00000 00000 00001 00001 00000
QAR+Hill 00000 00000 00000 00001 00000
QAR+sc.GPD | 00002 00003 00002 00002 00003
QAR-+sc.Hill | 00001 00002 00001 00002 00002
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5 Conditional expected shortfall

In the last decade, there has been regulatory concerns in the financial sector on the
question of how to evaluate portfolio risk. Artzner, Delbaen, Eber and Heath (1999),

provides an axiomatic foundation for ”coherent” risk measures.

5.1 Coherent risk measure

Definition 5.1.1 (Artzner et al. [6])
Consider a set V' of real-valued random variables on some probability space <Q7F,P>
with finite first moment (tail index o > 1) for all e € V.. The function p: V — R is a

coherent risk measure if the following axioms( or properties) hold

Monotonicity: ej, ey € V,with e < ey = p<e1> > p<e2>

) and
P

for a numeraire 1.

The sub-additivity axiom is of particular interest here. It expresses the fact that
a portfolio made up of sub-portfolios will risk an amount which is at most the sum of
separate amounts risked by its sub-portfolios. The global risk of a portfolio will be the
sum of the risks of its parts only in the case when the latter can be triggered by concurrent
events, namely if the sources of these risks conspire to act together. In all other cases, the
global risk of the portfolio will be strictly less than the sum of its partial risks. Thus if a
measure is sub-additive, the portfolio diversification will always lead to risk reduction. If
a risk measure is not sub-additive, diversification could produce an increase in their value
even when partial risks arise from independent ( or mutually exclusive) events, Acerbi et
al. [2].
An obvious area in the financial industry, where sub-additivity plays a great role, is in
capital adequacy requirements in banking supervision: If a bank is made up of several

branches such that the capital requirement of each branch is dimensioned on its own,
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then under sub-additivity, the regulator is confident that also the overall bank capital is
an adequate one. Outside sub-additivity, the risk of the whole bank may turn out to be
much bigger than the sum of the branches risks.

Unfortunately, risk measures based on second moments including the standard deviation,
as well as quantile based measures like VaR are not necessarily subadditive and hence not
coherent risk measure, Artzner et al. [6]. This happens in situations where a portfolio
is split into subportfolios such that the sum of the VaR for individual subportfolio is
required to be at least the global portfolio one. The second disadvantage is that it only
gives a bound on the losses that occur with a given frequency; it tells nothing about the
potential size of a loss given that it has exceeded the bound. To correct these problems,
we take the (conditional) average of those events exceeding the VaR. In the following

section, we consider the case for iid data.

5.2 Expected shortfall under iid case

Let F <z> be a probability distribution function of iid random variables Z;,t = 1, ... based
on the process (1.4.0.2) and for some probability ¢ € (0,1) such that 0 << 0 < ¢ < 1,

consider the p-quantile as

= inf{z € R‘F(z) > 90} (5.2.0.5)

If F'is continuous, then P (Zt = qé) =0 and F (qé) = ¢, while if F' is discontinuous
in ¢, then P(Zt = qu) > (0 and F(qé) = P(Zt < qZ) > .

Consider the order statistics z,, < ... < Zks15 < Zkpn < ...21, as the sorted values of
the n-tuple <Zl, . .,Zn> and let & = [n(1 — go)](: maxmeN{m < n(l-— go)}) be the
integer part of n(1—¢) . The set of observations which constitute the 100(1 — )% largest
of the total values in the sample is represented by the largest k& observations (outcomes)
{zk,n o ,zl,n}. As usual, 2j4+1,, denotes the empirical quantile which we may write as,
5, Where ¢ stands for the proportion of observations below zy,. The average of the

observations or losses in the 100(1 — ¢)% worst cases, denoted as Sy, (q;;,n), can be

obtained as
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1
1
%Zt (Q;,n> = E E Ztn- (5206)
t=k

It is simply the mean of the k largest observations. By including all the observation

in a sample, one derives a theoretical limit value for (5.2.0.6):

1
1
a(a) = 3 ; Anlusiy
1
1
- Ezzt,nl{zt,n>z;c+1,n}
t=n
1 1
= EZZtI{Zt>Zk+Ln}
t=n

1
nl
= Eﬁ Z ZtI{Zt>Zk+1,n}
t=n

(5.2.0.7)

where we assume that F' has a density and, therefore, P(zk,n > Zk:+1,n> = 1. With

n—k=np-+ o(n%>, ie. % =1—p+ o(n_%>, the central limit theorem gives,

QUpn ~ N (q;, M) . (5.2.0.8)
| nf*(e)

by theorem 7.4.2.1, page 374 in Dudewicz and Mishra [35]. Moreover, if lim,, Qom = 45

with probability 1, then

1
lim Sy, <qu’n> - TSOE[ZJ{ZM;}] (5.2.0.9)

n—00 1

with probability 1. Hence we give a general definition of the expected shortfall in the

upper tail of a distribution:

Definition 5.2.1 ( Acerbi and Tasche [}])
Let {Zt,t =1,... ,n} be iid random variables representing negative returns of a portfolio

on some specified length of time, and p € (0,1) be some specified probability level. The
expected 100(1 — )% shortfall of the random variable Z, is defined as
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P(Z > g
1 t qcp>
%Zt (q;) = HE |:ZtI{Zt>qu}i| + q; (1 - ?> (52010)

This definition was first introduced in Acerbi and Tasche [4] where it is shown that the
simple sub-additive nature of the sample expected shortfall estimator generalizes easily
to (5.2.0.10). The second part on the right hand side is a correction term to allow also
for discrete distributions with a point mass at g;,. If F" has a density, this term vanishes

as the P(Zt > qZ) =1 — ¢, and the expected shortfall becomes

1
%Zﬁ <q;> — EE

Zt]{Zt>qé}] . (5.2.0.11)

The idea of fitting a GPD to the extreme tail, explained in chapter 4,is easily adapted to
estimating the conditional expected shortfall. Since from the definition of Z; in (1.4.0.2),

45 =495, > g5 = 0, the excesses over ¢, given that Z; exceeds g7, can be written as
Zi— 3\ %> @& = (Zi — q5) — (4, — ) |(Zi — 45) > (¢, — q5) (5.2.0.12)

The following lemma shows that the conditional distribution of Z; — ¢, given Z; > ¢,

is also a GPD if Z; — qj given Z; > ¢j is.

Lemma 5.1 Let Fqg (z) = P(Zt —q; <z

Zy > q§> = Ge p(6) <z> with 0 < & < 1. Then,
for v >0, the conditional distribution of Z; — q, given Z; > ¢, is also a GPD

P(2 - q

Ly > qu) = G 8() (Z), (5.2.0.13)

with the same shape parameter £ and scale 3(¢) = B(0) + £q;, and the expected shortfall

18

o < ) _ G+ +60) g+ 6()

= 2.0.14

Proof of lemma 5.1

Let F' denote the conditional distribution of Z, — ¢, F = 1 — F. The conditional

probability, Fy: (z), of the excesses is given by
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P(Zt—qégz

Zt>q§,> = P<<Zt—QS>—(q;—QS) SzZt—Q§>q;—q§)

This implies 1 — F: (z> =

Hence, by our assumptions,

Fuels) = Gl 1)

Ge s0) (qé)
= Gepoyrea (2), (5.2.0.15)
.= B ¢\ ¢
using Gegly ) = 1+35y)
The second part,
S <q> _ L gl
Zi\ Yo 1— o t4{Zi>qz}

1
= q,+ 11— (pE [(Zt - q;)I{Zt—Q$>O}i| 3

(5.2.0.16)
where the second term on the right is the mean excess function (MEF) over the

threshold ¢3. We know that the mean excess function for the GPD with { < 1 and

threshold u has the following expression

b+ &u
1-¢&7
and therefore combining (5.2.0.15) and (5.2.0.17), we get

MEF(u) - E[Zt —u

7, > u} - B4 €u>0 (5.2.0.17)

Sz(az) = @+ MEF(q,)
&+ 6(9[;)_2&%’
q; —|—ﬁ((p) B QZ(l +£> +ﬁ(0)
1-¢ 1-¢ '

(5.2.0.18)
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O

A general result concerning the existence of moments is that if Z; is a GPD, then for
all integers r, such that r < £ 1 , the 7" first moments exist, see Embrechts et al. [39], page

165. Denote the estimate of the expected shortfall in (5.2.0.18) by

Sz, (%) = %1—2 (—)g (5.2.0.19)

Since §A and B () are obtained by ordinary M L or moment methods, and @7 is intuitively
consistent by the heuristics (from chapter (4)), then Sy, (E]Z) —P g, (qj,) heuristically.
By the same argument as in section (4.4), §Zt (@j) should also be a consistent estimate
of the expected shortfall if Fi <z> is not exactlty a GPD but only in the limit for § — 1

using theorem 4.2.

5.2.1 Alternative Expected shortfall

An equivalent alternative representation of expected shortfall which reveals in a transpar-
ent way its direct dependence on ¢ is obtained via the inverse of a distribution function

F (z) = P(Zt < z). Define the quantile function, ¢j, as usual as

¢ = inf{Zt e R(F(z) > 19}, 9 € (0,1)
Then Sy, (qé) can be expressed as the mean of ¢} on the interval [1 — ¢, 1), i.e

1

Iy, (q¢> : i G, (5.2.1.1)

1—¢
see Acerbi and Tasche [3]. The second alternative which can be derived from (5.2.0.10)

has been formulated in Rockafellar and Uryasev [99] where the expected shortfall is given

by

55(.¢) =TCB(.p) + (1) (TCE(.,SD) _ v@R<.,¢>>

P <Zt >qz>
with A\ = ?@w > 1 and T'CE stands for tail conditional expectation. For the case

that F' has a density, A = 1, and the second term vanishes.
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5.3 Conditional expected shortfall for the dependent case

This section uses the extreme QAR or VaR,; ., for ¢ > 0.95, and proposes the conditional
expected shortfall for dependent data. Recall the model (1.4.0.2) has VaR given as

VaRy, = pite + Ut,eq; (5.3.0.2)

where ¢ is the marginal ¢-quantile of Z;. The conditional extreme VaR given the

past information satisfies the following probability

» = P<Yt <VaR:, Ft—l) (5.3.0.3)

where (1 — ¢) is the loss probability and VaR;, = p,. Note that for nonnegative
returns, the VaR is usually a function of the loss probability ranging from 1% to 5%
while stock returns are usually measured over one day or ten day period. However, to
be consistent with previous notations, we will continue working with negative log returns
which means the VaR will remain a function of ¢ > 0.95. The conditional expected loss

knowing that the loss is above the VaR is then defined by

%n(vaRmJ - E[n

Y: > pg Ft—l]

:4ﬂnn>wmij] (5.3.0.4)

Proposition 5.1 Let u : RY — R be unknown function and (Y;,X;) € R be real
random variables on the probability space (0, F,P) from model (1.4.0.2). For a fized
© > 0.95, define H : R — R as

}{<M> ::Z?[A4¢<}Q,u) Py,l}. (5.3.0.5)

The conditional expected shortfall given that Yy > VaR, , is given as

1
%n<VaRMJ::IT:EH(VaRmJ—+pt (5.3.0.6)

mmM:E@
F ..

Ft_l} being the conditional expectation of Yy given the information in
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Proof of Proposition (5.1)
H(,u> is convex ( and continuous) with limj,— H(u) = oco. We can take VaR,, as

a unique minimizer of the objective function, (5.3.0.5), at a fixed ¢. The expansion of

H(VaR,,) yields

H(VaR,,) = E F,_,

(Y; - VaRtW) (I{Y,57VaRt,<p>O} —(1- @))

E[Yiliyi var, >0 |Fr-1]
l—¢

Fi)) }

= —(1- sa)E[Yt

Ft—l] +(1 - ‘P){

(1 - P<Yt —VaRy, >0
VaRt,go

+ -
= —(1—¢)u+ (1 —-¢)Sy, (VaRt,go) (5.3.0.7)
and hence,
1
Sy, (VaRt,<p> = E]‘I(VCLRt,@) + e (5.3.0.8)

This result is similar to ”a-risk” in Bassett et al. [8] for iid case. For Y; having a

continuous distribution, then 1 — ¢ = P(Yt —VaR;, >0 Ft_1> and putting H(VaRt,gO)

in equation (5.3.0.8), we get

1
%Yt (VaRW> = —QDE [KI{Y}>VaRt,<p}

1 —

FH} (5.3.0.9)

5.3.1 Estimation under EVT framework

We assume that the excess residuals over the initial QAR adjusted-scaled threshold, ¢,
are iid with distribution that belong to the MDA(H@O <é< 1). From (5.3.0.2), the
VaR is given

VaRy, (Xt> _ (Xt> + o (Xt>qj,, o> 0 (5.3.1.1)
with ¢ being the quantile of Z; obtained from the GPD fitted to the excesses over gj. Note
that we write ValRRy,, (Xt> to emphasise that the estimation of VaRR, (Xt) is done via
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an initial estimator of g (Xt> Because the continuity assumption holds, the conditional

expected shortfall at point x; can be written using (5.3.0.9) as

1
S (VaRas(x)) = T=5B[(VaRao(Xi) +00(X:) (2 - 7))
LivaRy,,(Xo)+00(Xe)(Zi—a2)>VaRy o (X0)} ‘Xt = Xi]

oe(X;)

— VaRy, (xi> HooE [(Zt - q;> I{Zt,qpo}}

o9\ X;
= L (xl> + 19<_ gp)E [ZtI{Zt—qg,>0}]

— <x> + 09(x:)37, (g@) (5.3.1.2)

with Sy (qé) given by (5.2.0.18) and Z;, = %ggt) Denote the estimator for (5.3.1.2)

as

Sy, <%?29,¢ (x)) 3 (xl-) s (xi)§zt (a;) (5.3.1.3)
We note that by the previous heuristic arguments all the quantities in (5.3.1.3) should
be consistent estimators for their respective true functions at point x;. Therefore, the
expected shortfall estimator given by (5.3.1.3) should intuitively also be a consistent
estimator of (5.3.1.2) asn — o0, 0 —1, Ny — 0.
The procedure presented holds in general set up, which include AR-(T)ARCH processes
with their extensions like AR-GARCH. Simplified versions for the expected shortfall could
be derived, but they may not hold in general. For example, consider the case where the
conditional mean of an AR-(T)ARCH process is zero. The expected shorfall estimator,

at point x;, can be written in a manner that does not involve gy (Xi>, ie

§Yt (@w <X1>> = ,ag <X1> + ﬁg <X1> %et (@:), for 0.5 <6< p < 1,

Yi—ho(Xt)
Po(X:)

QAR, Jig (Xt>, becomes the threshold as well as the scale function. This setting do not

where e; = at X; = x; are assumed approximately iid with zero #-quantile. The

hold when the conditional mean of the process is non zero.
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5.3.2 Estimation under general framework

The straightforwardness of equation (5.3.0.6) motivates direct estimation of the expected
shortfall without transforming the excesses over the VaR into iid. At point X; = x;, the

expected shortfall estimator is

Sy, (@g,w (x)) - ﬁﬂ(@g,@ (x)) v ﬁ(xz) (5.3.2.1)

where ﬁ<x1> is a conditional mean function estimator for u(Xt) at x; obatined as in
(4.2.0.14). The expected shortfall estimator, (5.3.2.1), is consistent if mgﬁp <x,> and
ﬁ(xl) are consistent.
A simple estimation algorithm would be to start by estimating the functions in QAR-
QARCH model. Then fit the GPD on the scaled excesses over the QAR estimator and
derive the unconditional quantile which is then used to estimate VaR, (X1> Finally,
obtain a local linear estimate of ,u(xi> and put the estimated quantities in (5.3.2.1).
Note that for more robust estimator, the quantity ﬁ<x1> could be replaced by a consistent
estimator for pg s <Xi>, see chapters 2 and 3.
Under the assumption that the conditional mean function, u(xi), is zero, the expected
shortfall estimator reduces to the simplest form;

Sy, (%7%9#, (x)) - ﬁ[{ (@W (x>> (5.3.2.2)
which is faster to compute.
Note that both results on expected shortfall estimators in (5.3.1.3) and (5.3.2.1) assume
that the first moment is finite. However, from practical point of view the latter result can
be used not only with the integrable variables or variables with continuous distributions,

but also in situations where discontinuities arises.

5.4 T-periods conditional expected shortfall and backtesting

This section formulates T-periods ahead prediction of the expected shortfall with either
of the approaches presented in sections (5.3.1) or (5.3.2). Let us define a T-period ahead

returns by

Rir Ryy;
Yiq——1 ( ):— 1 (—J ) t=1,...,
(7)< Sm)
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where R; and R, 7 are the current and T-period ahead, for instance of stock prices,

respectively.

(1) Based on a-root of time rule
In this case, we have a T-period ahead estimator of the expected shortfall, c.f (4.6.3.4),
as
Sy, (@Zw <x)> — (x) + sl (x) ) (a;) (5.4.0.3)
where ﬁgl) (X,) and 8(S1) (XZ> are 1-period ahead estimates of QAR and scale function, at
point X;,; = x;, respectively. The expected shortfall estimator, %(th) ((’jfp>, is based on iid
random variable Z;,; whose quantile g7 is obtained using (4.2.0.12). The random variable

Xy11 is Fy-measurable.

(2) Under GPD framework

Here a T-periods expected shortfall, at point x;, is defined as

——(T) 1
i (VaR (x)) = " Yot ) Kot =%
— (x> +5D (x)gg ) (zf;) (5.4.0.4)
with ﬁ(gT) <XZ> and GéT) <X2> being T-periods estimates of QAR and scale function re-

spectively, and %(ZTt) (éz)is the expected shortfall estimate derived from GPD and based

on iid random variable Z,, .
(3) Under general framework

We define a T-periods expected shortfall as
—(T 1 —(T
Sy, (VaR;; (%)) = T (VaR;; (x:)) +a" (x) (5.4.0.5)
where (") (Xl> is the estimate for the conditional mean function, (™) (Xt+1>, of Y,.r at

Xit1 = X;.

An extensive Monte Carlo study would need to be carried out to determine which of

these formulae is better for periods 7" > 1. One way of performing such study would be
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—(T
to determine the mean average squared error (MASE) for Sy, (VaRé’@) <xi>), at levels
© = 0.95,0.99,0.995, against T, for T"=2,...,. On real data situation, the performance
of the expected shortfall formulae may be investigated by evaluating the magnitude of the
—(T7)

descrepancy between Y;,r and estimate, Sy, (VaRe,SD (Xtﬂ)), in the event of failures in

the VaR models for T'=2...,10 and at levels ¢ = 0.95,0.99, 0.995. Define the theoretical

residuals as

Tetvr =
0 éT) (Xt+1>

— Ziir—Su(a)

Since Zy,r in our model are iid with zero 6-quantile and unit scale, then r 7Lz, ;42 >0}
are also iid with zero expectation and some constant variance. The empirical version of

the failures can be formulated as 7 71 where 7;,7 is the estimate

(Ve —VEBg ) (Xo11)>0}
of r,y7 using the estimated quantities. Under the null hypothesis that the functions
VaRgo) (Xt+1> , a(gT) (Xt+l> and the first moment of the truncated errors, £/ [Zt+TI{ Zoyr>ai} |
are correctly estimated, the residuals should behave like an iid sample with zero mean
and some constant variance and therefore bootstrap methods in Efron and Tibshirani [3§]
could be used to test one sided hypothesis against the alternative that the conditional

expected shortfall is systematically underestimated. See McNeil and Frey [88], where the
procedure is used in the case of AR-GARCH approach.

5.5 Conclusion

This chapter dealt with the problem of capital adequacy requirement posed by VaR as a
risk measure. We have proposed two semiparametric estimator of the conditional expected
shortfall. The first estimator is based on fitting the GPD to the excesses over VaR and the
second one, which we consider more general, is based on Koenker-Bassett loss function.

The consistency for the two estimator have also been discussed.
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