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Introduction

The advent of tropical enumerative geometry [Mik05, BM07, FM10], led to

emergence of combinatorial strategies for tackling enumerative problems on complex

algebraic varieties. In this thesis, we use long-edge graphs, which are combinato-

rial abstractions of tropical plane curves to prove that the generating function for

the refined node polynomials on a subclass of toric surfaces exhibits a multiplica-

tive structure. Long edge graphs were originally introduced by Block, Colley and

Kennedy [BCK14] and Liu [Liu16] to study similar questions for the standard

Severi degrees.

In Chapter 1, we set out by briefly establishing the notations and basic def-

initions that would be used in the thesis. Thereafter, we discuss the theory of

refined curve counting on complex surfaces. The main goals of this chapter is

threefold. First, we introduce the refined invariants (Definition 1.25), the refined

Severi degrees (Definition 1.29) and the Welschinger invariants (Definition 1.37).

The refined invariants are Laurent polynomials in a variable y and polynomials in

the intersection numbers of the pair (S, L). The refined Severi degrees, defined for

toric surfaces and in particular P2,Σm and P(1, 1,m), are also given by polynomials

(called refined node polynomials), for sufficiently ample line bundles. These are

also Laurent polynomials in a variable y and polynomials in the intersection num-

bers of the pair (S, L). The refined Severi degrees are defined in such a way that

they specialize at y = 1 to the usual Severi degrees and at y = −1 to the tropical

Welschinger invariants. Second, we state the conjecture (Conjecture 1.28) which

asserts that the generating function for the refined invariants has a multiplicative

structure. Finally, we state the conjectural relationship between the refined Severi

degrees and the refined invariants. This in particular leads to a conjecture that

the generating function for the refined node polynomials as well as the generating

function for the tropical Welschinger invariants has a multiplicative structure.

iii



iv INTRODUCTION

In Chapter 2, we begin by a quick introduction to tropical curves. This intro-

duction is not exhaustive, we cherry pick only the fundamental aspects necessary for

the purposes of the thesis. Next is an exposition revolving around a correspondence

theorem by Mikhalkin (Theorem 2.23). Roughly speaking, Mikhalkin’s correspon-

dence theorem [Mik05], asserts that weighted counts of tropical curves passing

trough sufficiently many tropical point configurations on R2 is equi-numerous to

the counts of complex algebraic curves in (C∗)2. One of the goals here is to in-

troduce a non-recursive definition of the refined Severi degrees. The underlying

theme however, is a description of a pathway on which one can start from counting

tropical curves in R2 to refined tropical curve curve counting. By abstracting the

combinatorial properties of tropical curves, we are led to a combinatorial strategy

of counting algebraic curves on complex surfaces. The methods used here does

not work for all surfaces in general, they apply only to toric surfaces defined by

h-transverse lattice polygons (Definition 2.28).

We prove the main results of this thesis in Chapter 3. We start by discussing

the fundamental aspects of long-edge graphs (Definition 3.4), that would be neces-

sary for achieving our results. Associated to each long edge graph G is its refined

multiplicity and its cogenus (Definition 3.5). The first step in achieving the results

is proving Theorem 3.18, asserting that the refined Severi degree N (S,L)δ(y) is equal

to the weighted count (with refined multiplicity as weight) of long edge graphs of

cogenus δ. The refined Severi degrees are given by refined node polynomials which

are polynomials in the intersection numbers LKS, L
2, K2

S, χ(OS) of the pair (S, L)

[BG16, Thm. 4.2]. To say that the generating function of the refined node polyno-

mials is multiplicative in the intersection numbers LKS, L
2, K2

S, χ(OS) of the pair

(S, L) is equivalent to saying that the coefficient of tδ in the formal logarithm

log N (S, L; y) =
∞∑
δ=1

Qδ(S, L)(y)tδ

of the generating function of the refined node polynomials, is a Q[y±1]-linear com-

bination of LKS, L
2, K2

S, χ(OS). This equivalent statement is what we prove in

Theorem 3.22. In this theorem, we have only considered the case where (S, L) is

(Σm, cF + dH), (P2, dH) or (P(1, 1,m), dH). This also covers the case of (P1 ×
P1, cF + dH). We remark that with more care, one may achieve similar results
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(Theorem 3.18 and Theorem 3.22) for general toric surfaces associated to general

h-transverse lattice polygons.

In §3.2 we couple Theorem 3.22 with computer calculations to provide more

evidence for a conjecture by Göttsche and Shende [GS14, Conj 62]. The conjecture

says that the generating function for the refined invariants is also multiplicative in

the intersection numbers LKS, L
2, K2

S, χ(OS) of the pair (S, L). In Corollary 3.29,

we extend the bounds for their conjecture in the particular cases of P2 and Σm.

The refined Severi degree N (S,L),δ specialize at y = −1 to the tropical Welschinger

numbers. This leads to a statement of a conjecture analogous to the conjecture

by Göttsche and Shende [GS14, Conj 62] for the Welschinger numbers. In Corol-

lary 3.31, we give evidence with much higher bounds for this analogous conjecture.

In §3.3 and §3.4 we study an emergent conjectural principle which is described

as follows. for the pair (S, L) of a projective surface and a line bundle, write

A(S,L)(y, q) :=
B1(y, q)K

2
SB2(y, q)LKSDD̃G2(y, q)(

∆̃(y, q)DD̃G2(y, q)
)χ(OS)/2

.

To each condition c that is imposed at points of S to curves in |L| on S e.g. passing

through points with a given multiplicity, S having singularity at some points there

corresponds a power series Fc ∈ Q[y±1]JqK satisfying the following. For L sufficiently

ample, the refined count of curves in |L| satisfying conditions c1, . . . , cn is

Coeff
q(L2−LKS)/2

[
n∏
i=1

Fci(y, q)A
(S,L)(y, q)

]
.

In §3.3 we study this principle for the case of toric surface with singularities. Here,

we require that the curves counted do not pass through the singular points of the

surface. In Proposition 3.38 we provide evidence for this conjectural principle (for-

mulated formally in Conjecture 3.36 and Conjecture 3.37) for the particular case of

P(1, 1,m) with a singularity of type 1
m

(1, 1), i.e. the cyclic quotient of C2 by the

m-th roots of unity µm acting by ε(x, y) = (εx, εy). What’s remarkable is that for

an An singularity, the correction power series Fc ∈ Q[y±1]JqK is independent of the

variable y. Thus we get the same correction terms for the standard Severi degrees

and the Welschinger numbers. In particular, the correction terms coincide with the

correction terms for the Severi degrees studied by Liu and Osserman [LO14, Thm.

1.8]. Thus the conjectural principle includes the theorem of Liu and Osserman as
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a special case. We state the specialized conjectures in Conjecture 3.39, Conjec-

ture 3.42 and Conjecture 3.45 and give evidence in Proposition 3.46 for the case of

P(1, 1, 2).

Finally, in §3.4 we study the conjectural principle in the case of counting curves

with multiple points on smooth surfaces. To each point pi on S on which we impose

a condition that curves pass with multiplicity ni corresponds a correction term

Hi ∈ Q[y±1]JqK satisfying the conjectural principle described above. We give the

formal statement of the conjecture in Conjecture 3.48. The particular case of P2

and Σ1 is stated in Conjecture 3.50 and give evidence in Proposition 3.51.

Acknowledgments

I wish to express my sincere gratitudes to my supervisor Lothar Göttsche for his

patience, his understanding and all the support accorded to me during the entire

period of my PhD studies. Am also grateful to the extended SISSA and ICTP

fraternity for the cordial welcome, support and the opportunities granted to me

during my studies and stay in Trieste. Special thanks goes to my family and friends

- thanks for your encouragement, love and support.



CHAPTER 1

Refined Curve Counting on Surfaces

1.1. Notations and Basic Definitions

1.1.1. Ampleness. We begin by recalling a few fundamental notions which

will be used in one way or another in the sequel. Let X be a noetherian scheme

over C and L a line bundle on X. We recall that L is said to be globally generated

if there exist sections s0, . . . , sn ∈ H0(X,L) such that for any x ∈ X the germs

(si)x of the sections si at x generate the stalk Lx as a module. This amounts to L

having finitely many sections such that for any x ∈ X there is at least one section

not vanishing there. Such a choice of generators defines a morphism

ϕ : X → Pn

x 7→ [s0(x) : . . . : sn(x)]
(1.1)

such that L = ϕ∗(O(1)). One can therefore say that L is globally generated if there

exists a morphism ϕ : X → Pn such that L = ϕ∗(O(1)). L is said to be very

ample (relative to Spec(C)) if there is a closed immersion i : X → Pn such that

L ∼= i∗(O(1)). Thus in particular a globally generated line bundle L is very ample

if the corresponding morphism is an immersion. If X is projective over C, O(1)

is a very ample line bundle on X and F a coherent sheaf, then by a theorem of

Serre [Har77, II.5.11] we have that F(n) := F⊗O(1)⊗n, for some n large enough,

is generated by a finite number of global sections. This property is used in the

definition of a more general notion of an ample line bundle.

Definition 1.1. A line bundle L on a noetherian scheme X is said to be ample if

for every coherent sheaf F on X, there exists an integer n0 depending on F such

that for every n ≥ n0, F⊗L⊗n is generated by global sections.

The notion of an ample line bundle is more general than the notion of a very

ample line bundle and in many ways is more convenient to to work with. Another

related notion is that of a k-very ample line bundle for k an integer. We recall

1



2 1. REFINED CURVE COUNTING ON SURFACES

that a 0-dimensional cycle Z of length k on a projective scheme over C is a purely

0-dimensional subscheme Z ⊂ X such that dimH0(OZ) = k.

Definition 1.2. A line bundle L on a projective scheme X over C is said to be

k-very ample if for an integer k the restriction map

(1.2) H0(X,L)→ H0(L⊗OZ)

is surjective for every 0-dimensional cycle Z ⊂ X of length less or equal to k + 1.

As a remark, the notion of a 0-very ample line bundle corresponds to that of

an globally generated line bundle whereas being 1-very ample corresponds to being

very ample. It is worth pointing out the following (though we will not use it in the

sequel). If L is k-very ample then the map (1.2) associates to every zero dimension

cycle Z ⊂ X of length k + 1 to a subspace of H0(X,L) of codimension k + 1 and

this map yields a morphism

ϕk : X [k+1] → Gr(k + 1, H0(X,L))

where Gr(k+1, H0(X,L)) denotes the Grassmanian of all 1-dimensional quotients of

k+1-dimensional quotients ofH0(X,L) sending (Z,OZ) to the quotientH0(X,L)→
H0(L⊗OZ). Catanese and Gottsche [CG90], proved that if S is a smooth connected

surface then a line bundle L on S is k-very ample if and only if the morphism

ϕj : S[j+1] → Gr(j + 1, H0(S, L)) is an embedding for every j ≤ k

1.1.2. Linear Systems of Divisors. Throughout this thesis, we shall be in-

terested mainly in line bundles on surfaces. Let S be a smooth projective surface

over C and let L be a line bundle on S. Assume that h0(S, L) > 0 i.e. there exists a

non-zero section s ∈ H0(S, L). Then D = (s)0 is an effective Cartier divisor (divisor

of zeros) such that L ∼= OS(D) [Har77, II Prop. 7.7]. Furthermore, two sections

s1, s1 have the same divisor if and only if s1 = λs2 for λ ∈ C∗.

Definition 1.3. Let S and L be as above and assume that L ∼= OS(D) for D a

Cartier divisor on S. We denote by |L| the complete linear system of all effective

(Cartier) divisors linearly equivalent to D (also denoted by |D|).

As S is smooth over C (therefore normal) the notion of Cartier divisors on S is

equivalent to the notion of Weil divisors on S [Har77, II §6]. Thus the elements of
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|L| are finite formal linear combinations (with non-negative integer coefficients) of

closed codimension one subvarieties of S. By a curve on S in the linear system |L|
we mean a reduced but possibly reducible effective divisor C ∈ |L|. A curve C is said

to be irreducible if it is not a sum of two non-trivial effective divisors. There exists a

bijective correspondence between |L| and the set PH0(S, L) = (H0(S, L)−{0})/C∗

and this gives the linear system |L| a structure of the set of closed points of a

projective space over C [Har77, II Prop. 7.7].

1.1.3. Intersection Product on Pic(S). Let S be a smooth projective surface

over C. We denote by Div(S) the group of all divisors on S and Pic(S) the group

of invertible sheaves (line bundles) up to isomorphism. Pic(S) is isomorphic to the

group of divisors modulo linear equivalence (called divisor class group and denoted

Cl S) [Har77, Cor. II.6.16]. We also have that Pic(S) ∼= H1(S,O∗S). To see this

consider the exact sequence of sheaves

(1.3) 1→ O∗S → K ∗ → K ∗/O∗S → 1

where K is the sheaf of total quotient rings of OS (since S is integral, K is

just the constant sheaf corresponding to the function field K of S). Taking the

sheaf cohomology and using the fact that H0(S,O∗S) = C∗, H0(S,K ∗) = K ∗ and

H0(S,K ∗/O∗S) = Div(S) we get the long exact sequence

(1.4) 0→ C∗ → K ∗ pr−→ Div(S)→ H1(S,O∗S)→ H1(S,K ∗)→ · · ·

where the map pr : K ∗ → Div(S) associates to a non-zero rational function f ∈ K ∗

the corresponding principal divisor div(f). K is constant and therefore flasque

which implies that H1(S,K ∗) = 0. Consequently Pic(S) := Div(S)/pr(K ∗) ∼=
H1(S,O∗S).

An important feature of the Picard group in the case of surfaces is due to

the existence of an intersection form which we now describe. Let D1 and D2 be

two distinct curves (effective divisors) on S having no irreducible component and

x ∈ D1 ∩D2 be a point. The intersection multiplicity of D1 and D2 at x is defined

to be mx(D1 ∩ D2) := dimCOS,x/(f, g) where f, g are local equations of D1 and

D2 respectively [Bea96, Def. I.2]. The intersection number of D1 and D2 is then
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defined to be

D1 ·D2 :=
∑

x∈D1∩D2

mx(D1 ∩D2)

This definition of intersection number is symmetric, bilinear and depends only on

the linear equivalence classes of D1 and D2 [Har77, V, Prop 1.4]. Therefore it

extends to a symmetric bilinear pairing Pic(S)× Pic(S)→ Z. In fact, let L1, L2 ∈
Pic(S) then the pairing

L1 · L2 := χ(OS)− χ(L∗1)− χ(L∗2) + χ(L∗1⊗L∗2),

where L∗ denotes the dual sheaf to L and χ(L) =
∑

i(−1)ihi(S, L) is the Euler

characteristic, defines a symmetric bilinear pairing on Pic(S) such that if D1 and

D2 are distinct irreducible divisors on S then [Bea96, Thm. 1.4]

OS(D1) · OS(D2) = D1 ·D2.

The intersection pairing defined (algebraically) above can also be defined using

topologically. Here we use the fact that the category of schemes over C is isomorphic

to the category of complex analytic spaces (GAGA [Ser56]). Consider the exact

sequence of analytic sheaves (exponential sequence) on S.

0→ Z→ hOS → hO∗S → 1

where hOS denote the sheaf of holomorphic functions on S (Considered as an ana-

lytic manifold). In the associated long exact sequence in cohomology, we have the

following

· · · → H1(S,Z)→ H1(S,hOS)→ H1(S,hO∗S)
c1−→ H2(S,Z)→ · · ·

Thus by the GAGA correspondence Pic(S) ∼= H1(S,O∗S) ∼= H1(S,hO∗S). We there-

fore have a map c1 : Pic(S)→ H2(S,Z) mapping a line bundle L to its image c1(L)

called the Chern class of L.

The map c1 : Pic(S)→ H2(S,Z) can be described topologically as follows. If C

is an irreducible curve then the restriction H2(S,Z)→ H2(C,Z) ∼= Z gives a linear

form on H2(S,Z) and hence by Poincaré duality an element c1(C) ∈ H2(S,Z). For

D a reducible divisor, we define c1(D) by linearity. Then c1(D1) · c1(D2) = D1 ·D2

for divisors D1,D2 on S. This enables us to define (topologically) an intersection

pairing on Pic(S) by pulling back to Pic(S) the non-degenerate bilinear intersection
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form on H2(S,Z) using the map c1 : Pic(S) → H2(S,Z). The two definitions of

intersection pairing i.e. algebraic and topological, are equivalent [GH78, Chap. 4

§1].

Example 1.4. If C is an irreducible divisor on a surface S, then we can define

the self-intersection number C ·C, usually denoted C2, by C2 = degC(OS(C)⊗OC)

[Har77, Lem. V.1.3]. This can be extended by linearity to any divisor on S.

In particular for S = P2, then Pic(P2) = Z[H] ∼= Z where H is the class of a

hyperplane. Any two lines are linearly equivalent and any two distinct lines meet

at one point, thus we have H2 = 1. This determines the intersection pairing on P2

by linearity.

Example 1.5 (Canonical line bundle). Let ΩS = ΩS/C be the sheaf of differential

of S/C and let ωS =
∧2 ΩS be the canonical sheaf [Har77, II §8]. Any divisor K in

the linear equivalence class corresponding to ωS is called the canonical divisor. The

self intersection of the canonical divisor defines a numerical invariant depending

only on the surface S. For example, if S = P2, K = −3H and so K2 = 9. We shall

write KS to denote the canonical divisor class on S and the same notation for the

canonical sheaf.

1.2. Nodal Curves on Surfaces

Let d be a non-negative integer and consider the linear system |dH| of curves of

degree d on P2. For each δ ≥ 0, consider the subscheme Ṽ d,δ of |dH| parameterizing

the locus of δ-nodal irreducible curves of degree d on P2. The closure of this scheme

V d,δ in |dH| is called the Severi variety of δ-nodal curves in |dH|. Severi varieties

were introduced by F. Severi [Sev68] in his study of irreducibility of moduli space

of curves of a given genus. The variety V d,δ is irreducible - a fact that was first

asserted by Severi and proven by J. Harris [Har86]. The notion of Severi varieties

can be extended to any smooth projective surface S. Let L be an effective line

bundle i.e. such that |L| is not empty. The locus of δ-nodal irreducible curves in

|L| is locally closed and its closure V (S,L),δ is called the Severi variety of δ-nodal

curves in |L|.
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There are several questions that one can ask about the Severi varieties e.g.

questions about their irreducibility and further the nature of their irreducible com-

ponents, questions about the dimensions of the components as well as questions

about their degrees in the projective space |L|. The problem of finding the degree

of the Severi variety is enumerative in nature and reduces to the question: how many

elements of V (S,L),δ pass through dim |L| − δ general points on S? The answer to

such a question is called the Severi degree. We shall denote the Severi degree by

n(S,L),δ.

On P2 we shall write by nd,δ := n(P2,dH),δ. The following results had already been

obtained in the 19th century by using classical methods of enumerative geometry.

nd,1 = 3(d− 1)2, d ≥ 3, J. Steiner - 1848,

nd,2 = 3
2
(d− 1)(d− 2)(3d2 − 3d− 11), d ≥ 4, A. Cayley - 1863,

nd,3 = 9
2
d6 − 27d5 + 9

2
d4 + 423

2
d3 − 229d2 − 829

2
d+ 525, d ≥ 4, S. Roberts - 1875.

A list with more values of nd,δ for δ ≤ 6 and is provided in [DFI95, Prop. 2].

Already evident from the table above is that nd,δ ∈ Q[d] for small values of d and

δ. Di Francesco and Itzykson [DFI95] conjectured that whenever d is sufficiently

large compared to δ, then nd,δ is a rational polynomial in d and has degree 2δ.

In this thesis, we shall focus on a slightly more general version of the Severi

degree. Fix a pair (S, L) of a smooth projective surface and a line bundle and

for every δ ≥ 0, let p1, . . . , pdim |L|−δ be a configuration of general points on S.

The guiding question shall be the following. How many reduced but not necessarily

irreducible δ-nodal curves in |L| pass through all the points pi. Assuming that this

number is finite, it is also called the Severi degree and also denoted by n(S,L),δ. In

the sequel we shall assume that there are finitely many δ-nodal possibly reducible

curves in |L| through a sufficiently many general point configuration. In fact by

[KST11, Prop. 2.1], this is the case whenever L is δ-very ample. It is shown

there that if L is δ-very ample, then a general δ-dimensional linear system Pδ ⊂ |L|
contains a finite number of δ-nodal curves appearing with multiplicity 1 and all

other curves in Pδ are reduced with geometric genus ĝ > L(L+KS)
2

+ 1− δ.

Vainsencher [Vai95], proved that for δ ≥ 6 then n(S,L),δ if given by polynomials

in the intersection numbers L1, LKS, K
2
S and c2(S). Göttsche [Göt98], gave more

general conjectures about the polynomiality of the Severi degrees.
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Conjecture 1.6. [Göt98, Conj. 2.1] For every δ ≥ 0 there exist a universal

polynomial Tδ ∈ Q[x, y, z, w] of degree δ such that for every pair (S, L) of a smooth

projective surface S and a line bundle L on S then

(1.5) n(S,L),δ = Tδ(L
2, LKS, K

2
S, c2(S))

whenever L is sufficiently ample with respect to δ.

Tzeng [Tze12] gave a proof of Conjecture 1.6 above using algebraic cobordism

theory of pairs of line bundles on surfaces and degenerations. Independently, Kool,

Shende and Thomas [KST11] gave a proof of the conjecture by using techniques

in the study of Hilbert schemes of points of curves on surfaces, BPS calculus and

using the computations of certain tautological integrals on Hilbert schemes. We

shall discuss briefly the proof by Kool, Shende and Thomas in §1.4.2 below. Using

combinatorial tools from tropical geometry, S. Fomin and G. Mikhalkin [FM10]

established the polynomiality of n(S,L),δ for a large class of toric surfaces.

1.3. Universal Node Polynomials

The term universal polynomial in Conjecture 1.6 above means that the poly-

nomial Tδ is independent of the pair (S, L). For a fixed pair (S, L) and δ ≥ 0, we

write nδ(S, L) = Tδ(L
2, LKS, K

2
S, c2(S)) to denote the polynomial and in particular

write nδ(d) := nδ(P2, dH). In accordance with the terminology used by Kleiman

and Piene [KP04, KP99], the polynomials nδ(S, L) are referred to as node polyno-

mials. Note in particular that for the pair (P2, dH) one has nδ(d) = Tδ(d
2,−3d, 9, 3)

and consequently the conjecture says that nd,δ is given by a polynomial of degree

2δ for d large enough.

The problem of counting nodal curves on P2 was solved by Caporaso and Harris

[CH98]. They defined the generalized Severi degrees nd,δ(α, β) which counts δ-

nodal curves in P2 that satisfy some tangential conditions with respect to a fixed

line E and also pass through a sufficient number of general points on P2 and used

deformation theory to introduce recursive formulas for the computation of nd,δ(α, β).

Knowing all values of nd,δ means that all coefficients of nδ(d) can be computed by

solving linear equations.
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The generating function for the node polynomials is expressed in terms of quasi

modular forms. We take a small detour to recall some basic facts about modular

forms. For more details, one may consult [BvdGHZ08]. Let H := {τ ∈ C :

=(τ) > 0} be the upper half complex plane and let G be the full modular group

SL(2,Z)/{±I2}. H admits an action G×H → H given by

γ(z) := (γ, z) 7→ az + b

cz + d
where γ =

a b

c d

 ∈ G.
For τ ∈ H write q := e2πiτ . We denote by D the differential operator D := 1

2πi
d
dτ

=

q d
dq

.

Definition 1.7. Let k be an integer. A holomorphic function f : H → C is

modular form of weight k for G if it satisfies the following transformation property

(1.6) f(γ(z)) = (cz + d)kf(z) for all z ∈ H and all γ =

a b

c d

 ∈ G,
and is also holomorphic at i∞. Since G is generated by

(1.7) T =

1 1

0 1

 and S =

0 −1

1 0


then the transformation property (1.6) above is equivalent to saying that f(z) =

f(z + 1) i.e. f is periodic and f(−1/z) = zkf(z). In particular f(z) = f(z + 1)

implies that f has a convergent Fourier series expansion f(τ) =
∑

n≥0 anq
n at i∞.

Example 1.8 (The Eisenstein series). For k ≥ 0 write σk(n) :=
∑

d|n d
k =

∑
d|n(n/d)k

and let Bk denote the k-th Bernoulli number. The Eisenstein series is defined by

the following series

(1.8) Gk(q) = −Bk

2k
+
∞∑
n=1

σk−1(n)qn, k ≥ 2.

Gk is a modular form of weight k for k = 4, 6, 8, . . ..

Example 1.9. The discriminant ∆ is a modular form of weight 12. ∆ is given by

the series

(1.9) ∆(q) = q

∞∏
n=1

(1− qn)24 = q − 24q2 + 252q3 − 1472q4 + · · · .
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Definition 1.10. An almost holomorphic modular form F of weight k is a func-

tion F : H → C satisfying the transformation property (1.6) above but which as

a function of τ is a polynomial in (=τ)−1 with coefficients that are holomorphic

functions of q i.e. F has the form

(1.10) F (τ) =
M∑
m=0

fm(τ)(=τ)−m

where fm(τ) is holomorphic for all m = 0, 1, . . . ,M .

The holomorphic function f0(τ) obtained formally as the constant term with

respect to (=τ)−1 of F is called a quasi-modular form of weight k. An example of

a quasi-modular form is the Eisenstein series G2 which from (1.8) above is given by

the series

(1.11) G2(q) = − 1

24
+
∞∑
n=1

σ1(n)qn.

We now switch back to the discussion about the generating functions for the

node polynomials. First note that

(1.12) DG2(q) = q +
∞∑
n=2

nσ1(n)qn and D2G2(q) = q +
∞∑
n=2

n2σ1(n)qn.

Consequently DG2/q and D2G2/q are power series whose constant term is 1 and

are therefore invertible in QJqK.

Theorem 1.11. [Göt98, Conj. 2.4], [Tze12, Thm. 1.2] There exists universal

power series B1, B2 ∈ QJqK such that

(1.13)
∑
δ≥0

nδ(S, L)(DG2(q))δ =
(DG2(q)/q)χ(L)B1(q)K

2
SB2(q)LKS

(∆(q)D2G2(q)/q2)χ(OS)/2
.

Bi(q) in (1.13) above are power series in q whose first term is 1. Let g(t) be the

compositional inverse of DG2(q) i.e. the unique power series in QJtK such that

DG2(g(t)) = t and g(DG2(q)) = q. Denote g′(t) := ∂g
∂t

. In particular we have

(1.14) D(DG(g(t))) =
g(t)

g′(t)

∂DG2(g(t))

∂t
=
g(t)

g′(t)
.

Using this in (1.13) above yields

(1.15)
∑
δ≥0

nδ(S, L)tδ = (t/g(t))χ(L)B1(g(t))K
2
SB2(g(t))LKS

(
g(t)g′(t)

∆(g(t))

)χ(OS)/2

.
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Using the standard formula χ(L) = (L2 − LKS)/2 + χ(OS) and Noether’s formula

χ(OS) = (K2
S + c2(S))/12 (see [Bea96, I.14]) we get in particular the following.

Proposition 1.12. [Göt98, Prop 2.3] There exists power series A1, . . . , A4 ∈ QJtK

such that

(1.16) N (S, L) :=
∞∑
δ=0

nδ(S, L)tδ = A1(t)L
2

A2(t)K
2
SA3(t)LKSA4(t)c2(S).

Equation (1.16) above is called the multiplicativity of the generating functionN (S, L)

in the intersection numbers of the pair (S, L).

1.4. Refined Curve Counting

1.4.1. The Hirzebruch characteristic classes. The main references for this

subsection are the Hirzebruch’s books [Hir95, HBJ92]. Let X be a smooth com-

plex projective variety and F a coherent sheaf over X. We will see that the Hirze-

bruch χy-genus establishes a connection between the Euler characteristic, the arith-

metic genus and the signature of X as a smooth manifold. Recall that the Euler-

Poincaré characteristic (In short Euler characteristic) of F over X is the alternating

sum

(1.17) χ(X,F) =
∞∑
i=0

(−1)i dimCH
i(X,F).

By Serre’s finiteness theorem ([Har77, Thm. III.5.2]) H i(X,F) is a finite dimen-

sional vector space over C. Additionally, H i(X,F) = 0 for all i > dimX and as a

consequence χ(X,F) is a finite integer. When there’s no confusion we shall write

χ(F) to denote the Euler characteristic of F . χ(F) can be expressed in terms of

Chern classes of F and TX the tangent sheaf of X. The Todd class and the Chern

character of F are defined respectively by

(1.18) td(F) =
r∏
i=1

αi
1− e−αi , and ch(F) =

r∑
i=1

eαi

where αi are the Chern roots of F and r is the rank of F ([Har77, Appendix A,

§4]).

Remark 1.13. The arithmetic genus of projective variety X is defined to be

(1.19) pa(X) = (−1)n (χ(OX)− 1) .
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Note that since X is a variety then H0(X,OX) = C, therefore by (1.17) and (1.19)

above we have

(1.20) pa(X) =
n∑
i=1

(−1)n+i dimCH
i(X,OX) =

n−1∑
i=0

(−1)i dimCH
n−i(X,OX)

where n = dimX. In particular if X is a curve then pa(X) = dimCH
1(X,OX).

Theorem 1.14. [Har77, Appendix A, Thm 4.1 ] Let F be a locally free sheaf of

rank r on a smooth projective variety X of dimension n then

(1.21) χ(F) =

∫
X

td(TX) · ch(F) ∩ [X].

This is the Hirzebruch-Riemann-Roch established by Hirzebruch [Hir95] for

complex varieties and generalized to arbitrary nonsingular varieties over algebraically

closed fields by Grothendieck [Ser56].

Definition 1.15. The Grothendieck group of an abelian category A is the free

abelian group generated by isomorphism classes of objects in A modulo the relation

[B] = [A] + [C] for every short exact sequence

0→ A→ B → C → 0

in A. Denote by K0(X) the Grothendieck group of the abelian category whose

objects are the locally free sheaves on a scheme X. In this context, K0(·) is a

functor that associates to a scheme X to the abelian group K0(X).

Definition 1.16. [GS14, §3.1] A normalized multiplicative genus (see also [Hir95,

HBJ92]) is a natural transformation of functors Φ : K0(·)→ H∗(·,Λ) (where Λ is

a commutative ring) such that

(a) Φ(C) = 1 for the trivial bundle,

(b) for a sum E ⊕ F of two vector bundles then Φ(E ⊕ F) = Φ(E)Φ(F) and

(c) to every such genus Φ corresponds a power series fΦ ∈ 1 + zΛJzK called the

characteristic power series, such that for a line bundle L then Φ(L) = fΦ(c1(L)).

Example 1.17. We are interested in particular on the Hirzebruch χy-genus. It is

given for a smooth complex projective variety X and a holomorphic vector bundle
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E over X by the alternating sum

(1.22) χy(X, E) =
∑
p,q≥0

(
(−1)q dimCH

q(X, E⊗Ωp
X)
)
yp =

∑
p≥0

χ(X, E⊗Ωp
X)yp

where Ωp
X :=

∧p ΩX is the p-th exterior power of the holomorphic cotangent bun-

dle on X. According to the generalized Hirzebruch-Riemann-Roch [Hir95, §21.3]

theorem

(1.23) χy(X, E) =

∫
X

T ∗y (TX) · ch(1+y)(E) ∩ [X]

here

(1.24) ch(1+y)(E) =
r∑
i=1

eβi(1+y) and T ∗y (TX) =
n∏
i=1

αi(1 + ye−αi(1+y))

1− e−αi(1+y)

where r is the rank of E , n is the dimension of X, βi are the Chern roots of E and

αi are the Chern roots of the tangent bundle TX . The power series T ∗y (TX) is called

the modified Todd class.

Lemma 1.18. [SY07, §6] The Hirzebruch χy-genus unifies the Euler Poincaré char-

acteristic, the signature and the Euler number.

Proof. It is already evident from (1.22) above that χ(X, E) = χ0(X, E). Writing

χy(X, E) = χ(X, E) +
∑
p≥1

χ(X, E⊗Ωp
X)yp

and substituting y = 0 proves the assertion. Alternatively substituting y = 0 in

(1.24) above and using it in (1.23) then the assertion follows by the Hirzebruch-

Riemann-Roch theorem. Substituting y = 1 in the modified Todd class (1.24) above

one obtains the total Thom-Hirzebruch L-class

(1.25) L∗1(TX) =
n∏
i=1

(
αi

tanhαi

)
therefore χ(1)(X,OX) =

∫
X

L∗1(TX) ∩ [X]

which is the signature of X(Hirzebruch-signature theorem). Writing

(1.26) Q(y, x) =
x(y + 1)

1− e−x(y+1)
− yx =

x(1 + ye−x(1+y))

1− e−x(1+y)
.

Then by [Hir95, Lem. 1.8.1] we have Q(−1, x) = 1 + x. In this case, the modified

Todd class specializes to the total Chern class therefore, the χy-genus determines

the euler number at y = −1. �
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Remark 1.19. In the later parts of this thesis we shall use a slightly modified

version of the χy-genus. Let X = PN then

(1.27) hp,q(PN) =

1 if 0 ≤ p = q ≤ N

0 if p 6= q.

Replacing y by −y then one obtains

(1.28) χ−y(PN) =
N∑
p=0

yp =
yN+1 − 1

y − 1
.

This example motivates the definition following quantum number [d]k which will

play an important role in the later parts of this thesis. Define χ̃−y(·) = y− dim(·)/2χ−y(·),
then it is easy to see that

(1.29) [d]k := χ̃−y(Pd−1) =
yd/2 − y−d/2
y1/2 − y−1/2

.

In [GS14] the χy-genus defined above is used to introduce the refined invari-

ants for a pair (S, L) of a smooth projective surface and a line bundle L on S. The

refined invariants are conjecturally expressed by universal polynomials called the

refined node polynomials. Furthermore a conjecture is stated asserting that the gen-

erating function for the refined node polynomials satisfy a multiplicative structure

analogous to the one in (1.16) above. We need the following elementary facts about

the relative Hilbert schemes before introducing the refined invariants.

Definition 1.20. Let B be a scheme. A family of projective varieties over B is a

flat projective morphism of schemes f : F → B. We shall denote this by F/B.

The condition of flatness of a morphism is useful in the following sense: if

f : X → Y is a flat morphism of schemes and Y is connected then many properties

of the fibers Xy := f−1(y) are independent of the choice of y ∈ Y . In particular a

family of closed subschemes of a projective space over a reduced connected base B is

flat if and only if all fibers have the same Hilbert polynomial [EH00, Prop. III-56].

The Hilbert polynomial of a subscheme Z ⊂ Pr is a polynomial whose degree is

equal to the dimension of the subscheme Z [EH00, Prop. III-59].

Let X be a smooth quasi-projective variety over C and X/B a flat family over

B. Consider the contravariant functor HilbnX/B : (Sch)→ (Sets) that associates to
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every scheme T to the set

(1.30) HilbnX/B(T ) = {Z ⊂ X ×B T flat over T with Hilbert polynomial n} .

We can restate (1.30) above with the help of the following commutative diagram

Z �
� i //

π
##

X ×B T
p2

��
T

where π : Z → T is flat with every fiber Zt having a constant Hilbert polynomial n.

Thus the T -valued points of HilbnX/B are therefore closed subschemes Z ⊂ X ×B T
that are finite over T and such that π∗OZ is a locally free module of OT of rank n.

By a theorem of Grothendieck (explained in [FGI+05]), HilbnX/B is representable

by a projective scheme HilbnX/B.

Remark 1.21. If B = Spec(k) = pt for k a field then HilbnX/k is the collection of

zero dimensional subschemes Z ⊂ X. We denote X [n] := HilbnX/k and call it the

Hilbert scheme of points on X.

Let (S, L) be a pair of smooth projective surface over C and L a line bundle on

S. Let Pδ be a general δ-dimensional subspace of the complete linear system |L|
and consider the universal curve

(1.31) C = {(p, [C]) : p ∈ C} ⊂ S × Pδ.

The natural projection to Pδ defines a family C → Pδ. For i ≥ 1, let HilbiC/Pδ

be the corresponding relative Hilbert scheme. If L is δ-very ample then [KST11,

Thm. 3.4] says that N (S,L),δ is a linear combination of χ(HilbiC/Pδ) for i = 1, . . . , δ.

Precisely, it is the coefficient ng−δ in the generating series

(1.32) q1−g
∞∑
i=0

χ(HilbiC/Pδ)q
i =

g∑
r=g−δ

nrq
1−r(1− q)2r−2.

By a theorem of Ellingsrud, Lehn and Göttsche [EGL01] then one can show that

the Euler characteristic χ
(
HilbnC/Pδ

)
can be expressed in a universal way in terms of

L2, K2
S, LKS and c2(S). This is used in [KST11, Thm. 4.1] to prove that whenever

L is δ-very ample then

(1.33) N (S,L),δ = Tδ(L
2, LKS, K

2
S, c2(S))
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for some universal polynomial Tδ ∈ Q[x, y, z, w]. This shows that indeed, the num-

ber of δ-nodal curves on a surface is a topological invariant of the pair (S, L).

1.4.2. Refined Invariants. Let (S, L) be a pair of smooth projective surface

over C and L a line bundle on S. By a theorem of Forgarty [Fog68], the Hilbert

scheme of n points S[n] on S is smooth projective irreducible variety of dimension

2n. Denote by TS[n] the tangent bundle of S[n] and let t1, . . . , t2n be the Chern roots

of TS[n] . Let Zn(S) ⊂ S×S[n] be the universal family. Then there exists projections

Zn(S)
σ //

q

��

S[n]

S.

Note that the fiber of σ over a point [Z] ∈ S[n] is isomorphic to the subscheme Z

i.e.

σ−1([Z]) = {(p, [Z]) ∈ S × S[n] : p ∈ Z} ∼= Z.

Thus σ is a flat morphism and hence the sheaf L[n] := σ∗q
∗L on S[n] is locally free

of rank n. Denote by l1, . . . , ln the Chern roots of L[n].

Proposition 1.22. [GS14, Prop. 47] Suppose that Hilbn(C/Pδ) is nonsingular for

all n. Then

(1.34)

χ−y(Hilb
n(C/Pδ)) = res

x=0

[(
Q(−y, x)

x

)δ+1 ∫
S[n]

2n∏
i=1

Q(−y, ti)
n∏
j=1

(
lj

Q(−y, lj + x)

)]

where Q(·, ·) is the power series in (1.26) above.

Remark 1.23. By definition,

2n∏
i=1

Q(−y, ti)
n∏
j=1

(
lj

Q(−y, lj + x)

)
∈ H∗(S[n],Q)[y]JxK.

Therefore, the term in square brackets on the right hand side of (1.34) is a Laurent

series in x with coefficients in Q[y]. The generating function for the χ−y(Hilb
n(C/Pδ))

satisfies the following.
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Proposition 1.24. [BG16, Prop. 2.2] Assume that HilbnC/Pδ is nonsingular for all

n. Then there exists polynomials n0(y), . . . , ng(y) such that

(1.35)
∞∑
n=0

χ−y(Hilb
n
C/Pδ)t

n =

g∑
r=0

nr(y)tr((1− t)(1− ty))g−r−1

where g := g(L) is the arithmetic genus of a curve in |L|.

A necessary condition for HilbnC/Pδ to be smooth for all n is that L is δ-very

ample [GS14, Theorem 41]. The χ−y(Hilb
n
C/Pδ) is a topological invariant of the

pair (S, L), therefore, the coefficients nr(y) on the right hand side of (1.35) are also

topological invariants of (S, L) and should have a topological interpretation.

Definition 1.25. [BG16, Defn. 2.4] Suppose that L is δ-very ample line bundle

on S. Then the refined invariants of S and L are defined to be

(1.36) Ñ (S,L),δ(y) := nδ(y)/yδ

where nδ(y) is the polynomial in (1.35) above.

Conjecturally, the refined invariants defined above are given by universal poly-

nomials in the intersection numbers of (S, L). The following is an analogous refor-

mulation of Theorem 1.6 above.

Theorem 1.26. For every δ ≥ 0 there exists a universal polynomial Tδ ∈ Q[y±1][q, r, s, t]

such that for every pair (S, L) then

(1.37) Ñ (S,L),δ(y) = Tδ(L
2, LKS, K

2
S, c2(S)) ∈ Q[y±1]

whenever L is sufficiently ample with respect to δ.

For a fixed pair (S, L) of a smooth projective surface and a line bundle and

every δ ≥ 0 denote by Ñδ(S, L; y) the corresponding universal polynomial and call

it the refined polynomial. We consider again the generating function for the refined

polynomials. Let

(1.38) Ñ (S, L; y) =
∑
δ≥0

Ñδ(S, L; y)tδ

be the generating function. An analogous statement to Theorem 1.11 is stated

in [GS14] i.e. N (y;S, L) has a multiplicative structure. To state the analogous
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conjecture we require refined versions of the quasi-modular forms (1.9) and (1.12)

above. Let D := q ∂
∂q

be a differential operator and let

∆̃(y, q) := q
∞∏
n=1

(1− qn)20(1− yqn)2(1− y−1qn)2,

D̃G2(y, q) :=
∞∑
n=1

qn
∑
d|n

[d]2y
n

d
.

(1.39)

Conjecture 1.27. [GS14, Conj. 62] There exists universal power series B1, B2 ∈
Q[y, y−1]JqK such that

(1.40)
∑
δ≥0

Ñδ(S, L; y)D̃G2(y, q)δ =
(D̃G2(y, q)/q)χ(L)B1(y, q)K

2
SB2(y, q)LKS

(∆̃(y, q)DD̃G2(y, q)/q2)χ(OS)/2
.

Again every power series appearing in (1.40) above equation is invertible. Using

similar arguments as in §1.3 above we obtain the following refined analogue of

Theorem 1.16 above.

Conjecture 1.28. [GS14] There exists universal power series Ai(y, t) ∈ Q[y±1]JtK, i =

1, 2, 3, 4 such that for all pairs (S, L) of a smooth projective surface and a line bundle

we have

(1.41) Ñ (S, L; y) = A1(y, t)L
2

A2(y, t)LKSA3(y, t)K
2
SA4(y, t)c2(S).

Again as in §1.3, (1.41) above is called the multiplicativity of the generating

function for the refined node polynomials. One of the main results in this thesis is

a result on the multiplicativity structure of the generating function for the refined

node polynomials on a particular subclass of toric surfaces. In the next section,

we introduce the refined Severi degrees via a modification of the Caporaso - Harris

recursion [CH98]. For the considered cases of toric surfaces, their refined Severi

degrees are conjecturally equal to the refined invariants and thus they are also given

by the universal polynomials.

1.4.3. Refined Caporaso-Harris Recursion. Refined Severi degrees were

introduced in [GS14, §5.1] via a formal refinement of the Caporaso-Harris recursion

formula [CH98]. Their relation to the refined invariants discussed in the previous

subsection is conjectural(Conjecture 1.31).
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Let α = (α1, α2, . . .) and β = (β1, β2, . . .) be a pair sequences of non-negative

integers with a finite support. For a sequence α, define ‖α‖ = α1 + 2α2 + 3α3 + · · ·
and |α| = α1+α2+· · · . In [CH98], the relative Severi degree nd,δ(α, β) is defined to

be the number of δ-nodal curves of degree d on P2 passing through a configuration

of d(d + 3)/2 − δ − |α| generic points and in addition, have tangency of order i at

αi fixed points of a fixed line L for each i and tangency of order i at some βi points

on L for each i. Vakil [Vak00], generalized the methods of Caporaso and Harris to

extend the definition of the relative Severi degrees to rational ruled surfaces.

Definition 1.29 below is a modified version of Vakil’s formulation [Vak00, Thm.

1.3]. Let S be P2 or a rational ruled surface Σm and L a line bundle on S. On P2

let E be a line and H the hyperplane bundle. On Σm let E be the class of section

with E2 = −m and define H := E + mF where F is the class of the fiber of the

ruling. Let α, β be sequences such that ‖α‖+ ‖β‖ = EL. For every δ ≥ 0 define

γ(L, β, δ) := dim |L| − EL+ |β| − δ.

Definition 1.29. [GS14, Recursion 71, Prop. 73] The refined relative Severi de-

grees denoted by N (S,L),δ(α, β; y) are defined by the following recursive formula. If

γ(L, β, δ) > 0 then

N (S,L),δ(α, β; y) =
∑
k:βk>0

[k]yN
(S,L),δ(α + ek, β − ek; y)+

∑
α′,β′,δ′

∏
i

[i]
β′i−βi
y

(
α

α′

)(
β′

β

)
N (S,L−H),δ′(α′, β′; y),

(1.42)

where ek = (0, . . . , 0, 1, 0, . . .) i.e. the sequence whose entries are all zero except at

position k where the entry is 1. The second sum runs through all α′, β′, δ′ satisfying

α′ ≤ α, β′ ≥ β,

‖α′‖+ ‖β′‖ = E(L− E),

δ′ = δ − E(L− E) + |β′ − β|,

(1.43)

and subject to the following initial conditions:

(1) if γ(L, β, δ) < 0 then N (S,L),δ(α, β; y) = 0,

(2) if γ(L, β, δ) = 0 then N (S,L),δ(α, β; y) = 0 unless

(a) S = P2 then put N (P2,H),0(1, 0; y) = 1,

(b) S = Σm then put N (Σm,kF ),0(k, 0; y) = 1 for k ≥ 0.



1.4. REFINED CURVE COUNTING 19

Denote by N (S,L),δ(y) := N (S,L),δ(0, LE; y). We call N (S,L),δ(y) the refined Severi

degree (non-relative).

The recursive formula (1.42) above has been generalized in [BG16, §7] to include

the case S = P(1, 1,m). In fact the recursion of L = dH on P(1, 1,m) is identical

to that of L = dH on Σm. The formula (1.42) has been chosen so that it specializes

at y = 1 to the usual recursive formula of Caporaso and Harris [CH98] for S = P2

and to the more general recursive formula of Vakil [Vak00] for S = Σm. Thus in

particular we have

N (S,L),δ(α, β; 1) = n(S,L),δ(α, β) and N (S,L),δ(1) = n(S,L),δ.

Remark 1.30. We have written a Maple program that incorporates this recursion.

In Chapter 3 of this thesis, extensive computations with this program are used. We

shall use tropical methods (in Chapter 2) to give an alternative definition (non-

recursive) of the refined Severi degrees.

The following conjecture relates the refined Severi degrees defined by to the

refined invariants Ñ (S,L),δ(y) as given in Definition 1.25 above.

Conjecture 1.31. [GS14, Conj. 75] Let S = P2 or a rationally ruled surface and

let L be a line bundle on S. Let Pδ ⊂ |L| be a general δ-dimensional subspace and

assume that Pδ contains no non-reduced curves and no curves with negative self

intersection. Then N (S,L),δ(y) = Ñ (S,L),δ(y). Explicitly:

(1) on P2 we have Nd,δ(y) = Ñd,δ(y) for d ≥ δ/2 + 1,

(2) assume c + d > 0. Then N (P1×P1,cF+dH),δ(y) = Ñ (P1×P1,cF+dH),δ(y) for

c, d ≥ δ/2,

(3) on S = Σm with m > 0, assume c + d > 0. Then N (Σm,cF+dH),δ(y) =

Ñ (Σm,cF+dH),δ(y) for δ ≤ min(2d, c).

If Conjecture 1.31 above is true then it follows therefore that whenever S is

smooth and L is sufficiently ample then the refined Severi degrees N (S,L),δ(y) are

given the refined node polynomials Nδ(S, L; y), which are polynomials in the inter-

section numbers L2, LKS, K
2
S, c2(S).
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Remark 1.32. The weighted projective space P(1, 1,m) is singular for m ≥ 2

and thus Conjecture 1.26 and Conjecture 1.31 do not apply. The refined in-

variant Ñ (S,L),δ(y) has not been defined in this case. The refined Severi degrees

N (P(1,1,m),dH),δ(y) are compared with the corresponding refined invariants Ñ (Σm,dH),δ(y)

on the minimal resolution of Σm of P(1, 1,m).

Conjecture 1.33. [BG16, Conj. 2.15] There exists a polynomial Nδ(d,m; y) of

degree 2δ in d and of degree δ in m such that N (P(1,1,m),dH),δ(y) = Nδ(d,m; y) for

δ ≤ (2d− 2, 2m− 1).

Again we consider the generating function for the conjectural refined node poly-

nomials of P(1, 1,m) given in Conjecture 1.33 above.

Conjecture 1.34. [BG16, Conj. 2.16] There exists power series C1, C2, C3 ∈
Q[y±1]JqK such that

(1.44)
∞∑
δ=0

Nδ(d,m; y)
(
D̃G2

)δ
=

(
∞∑
δ=0

Ñ (Σm,dH),δ(y)
(
D̃G2

)δ)
C

(m+2)d
1 Cm+2

2 C3.

1.4.4. Proving the multiplicativity. We have introduced (conjecturally) the

refined node polynomials for the pair (S, L) where S is either P2 or the rational

ruled surfaces. Furthermore, we have stated the conjecture that their generating

functions are multiplicative in the intersections numbers of (S, L). Consider the

formal logarithm of the generating function for the refined node polynomials given

by (1.38) above

(1.45) Q(S, L; y) = logN (S, L; y) =
∑
δ≥1

Qδ(S, L; y)tδ.

Assuming Conjecture 1.28 then (1.45) is equivalent to saying that there exists uni-

versal power series a1(y, t), . . . , a4(y, t) ∈ Q[y±1]JtK such that

(1.46) Qδ(S, L; y) = a1(y, t)L2 + a2(y, t)LKS + a3(y, t)K2
S + a4(y, t)χ(c2(S)).

In other words proving the multiplicativity of the generating function is equivalent

to proving the Q[y±1]-linearity of Qδ(S, L; y) in the intersection numbers. Note also

that for P(1, 1,m), (1.44) exhibit a pseudo-multiplicativity of the generating func-

tion of the conjectural node polynomials. In Chapter 3 we shall use combinatorial
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methods to exhibit a Q[y±1]-linearity structure of Qδ(S, L; y) for S = P2,Σm and

P(1, 1,m).

1.5. Welschinger Numbers

For a detailed treatment of real algebraic varieties one may consult [DK00,

Sil89]. We include only the bare minimum material necessary for our purposes.

The aim here is to state a conjecture asserting that the generating functions for

what is called the Welschinger numbers satisfy the multiplicative structure similar

to (1.41).

Definition 1.35. Let X be a complex analytic variety. A real structure cX on X is

an anti-holomorphic involution cX : X → X that is differentiable at smooth points

of X. A real variety is a pair (X, cX) where X is a complex variety and cX is a

real structure on X. If cX is understood in the context we drop it in the notation.

The fixed point set of cX is called the real part of X and denoted by RX. A closed

subvariety Z ⊂ X is said to be real if Z is invariant under cX .

Definition 1.36. Let L be a line bundle on a complex surface S endowed with

a complex structure cX . Assume that L = OX(D) for a divisor D ∈ Pic(X) and

denote by |L| the corresponding general linear system. The real part of |L| denoted

by R|L| consist of real divisors on X linearly equivalent to D.

Consider the problem of counting real curves satisfying a given real point config-

uration on RP2. A real point p ∈ RP2, as per the definition above, is either a single

point invariant under conjugation or is a pair of complex conjugated points. Thus

the answer to the counting problem will in general depend on the given configura-

tion. Jean-Yves Welschinger [Wel03, Wel05] showed that on a real symplectic four

manifold X, then counting real rational J-holomorphic curves (with an appropriate

sign) in a given homology class on X, yields an invariant independent of the real

point configuration.

Related to the Welschinger invariants are the so called the Welschinger numbers.

The Welschinger numbers W d,δ(ω) count with suitable signs the δ-nodal curves

of degree d in P2 through a configuration ω of d(d + 3)/2 − δ real points and

W (S,L),δ(ω) counts (with suitable sign) the δ-nodal curves in the linear system |L|
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on a real algebraic surface S through a configuration ω of dim |L| − δ real points.

The Welschinger numbers depend in general on the point configuration, however in

[Mik05], it is shown that for the so called subtropical configuration of points, they

coincide with the tropical Welschinger invariants W d,δ
trop,W

(S,L),δ
trop , defined via tropical

geometry. The tropical Welschinger invariants are independent of the tropically

generic configuration of points.

We shall assume that a subtropical point configuration has been chosen and

write W d,δ (respectively W (S,L),δ) for W d,δ(ω) (respectively W (S,L),δ(ω)). If S is P2

or a rational ruled surface, there is a Caporaso-Harris type recursion formula for

the Welschinger numbers [IKS15, IKS09]. A modified version of the recursion is

given in [GS14].

Definition 1.37. [GS14, Recursion 87] With the same notation, assumptions and

initial conditions as in Definition 1.29, the relative tropical Welschinger invariants

W
(S,L),δ
trop (α, β) are given by the following recursion formula: if γ(L, β, δ) > 0,

W
(S,L),δ
trop (α, β) =

∑
k odd:βk>0

(−1)(k−1)/2W
(S,L),δ
trop (α + ek, β − ek)

+
∑
α′,β′,δ′

∏
i odd

((−1)(i−1)/2)β
′
i−βi
(
α

α′

)(
β′

β

)
W

(S,L),δ′

trop (α′, β′)

(1.47)

where the second sum runs through all odd sequences α′, β′ and all δ′ satisfying

(1.43). We put W
(S,L),δ
trop = W

(S,L),δ
trop (0, LE) and in particular for P2 we write W d,δ

trop =

W
(P2,dH),δ
trop .

From §1.4 above, the refined Severi degrees N (S,L),δ(y) for a pair (S, L) of a toric

surface and a toric line bundle is a Laurent polynomial in y such that

N (S,L),δ(1) = n(S,L),δ.

By Mikhalkin correspondence theorem (this shall be discussed in Chapter 2), the

refined Severi degree specializes at y = −1 to the Welschinger number W (S,L),δ (see

also [GS14, Prop. 88]). This means that the refined Severi degrees unify the Severi
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degrees and the Welschinger numbers. The formulas (1.39) specialize at y = −1 to

∆̃(−1, q) := q
∞∏
n=1

(1− qn)20(1 + qn)4,

D̃G2(−1, q) :=
∞∑
n=1

qn
∑
d|n

[d]2−1

n

d
.

(1.48)

A trivial computation shows that

∆̃(−1, q) = η(q)16η(q2)4,

D̃G2(−1, q) = G2(q)−G2(q2) =
∑
n>0

 ∑
d|n, d odd

n

d

 qn
(1.49)

where G2(q) is the Eisenstein series (1.11) and η(q) is the Dirichlet eta function

given by the power series

η(q) := q1/24

∞∏
n=1

(1− qn).

Write G2(q) := D̃G2(−1, q), DG2(q) = DD̃G2(−1, q), and Bi(q) := Bi(−1, q) where

Bi(y, q) are the power series in (1.40) above. Conjecture 1.27 above specializes as

follows.

Conjecture 1.38. There exists universal power series B1(q), B2(q) ∈ QJqK such

that

(1.50)
∞∑
δ=0

W (S,L),δ
(
G2(q)

)δ
=

(G2(q)/q)χ(L)B1(q)K
2
SB2(q)LKS

(η(q)16η(q2)4DG2(q)/q2)χ(OS)/2
.

whenever L is a δ-very ample line bundle on S.

We shall show in Chapter 3 that in particular cases of (S, L) and for δ small

enough then (1.50) above implies that

(1.51) W (S,L),δ = Coeff
qχ(L)−1

[
G2(q)χ(L)−1−δB1(q)K

2
S

B2(q)−LKS

(
DG2(q)

η(q)16η(q2)4

)χ(OS)/2
]

which in other words means that the tropical Welschinger number W (S,L),δ associ-

ated to the particular cases of a toric surface S and toric line bundle, is topological

invariant depending only on the Chern numbers (L2, K2
S, LKS, c2(S)) of the pair

(S, L).





CHAPTER 2

Refined Tropical Enumerative Geometry

We begin by recalling a few definitions from graph theory that will be useful in

the subsequent sections. The standard terminologies used in graph theory and can

be found in standard references such as [BM76, Die10]. Recall that an abstract

graph G = (V,E) is a pair of sets where V is a set of points called the vertices of G

and E ⊂ V × V is the set of edges of G. E is a multiset meaning that elements can

occur with multiplicity greater than one. G is said to be weighted if there exists

a map ρ : E → Z>0 called the weight function labeling its edges usually with the

set of positive integers. G is said to be a directed graph if the elements of E are

ordered pairs. Thus an edge e = (u, v) ∈ E of a directed graph G has initial vertex

u and terminal vertex v. If G is graph endowed with lengths on edges then one can

define a metric dG on G by setting dG(u, v) to be the length of the shortest path

from u to v if such a path exists. If G is connected then the pair (V, dG) is indeed

a finite metric space.

2.1. Parameterized Tropical Curves

The references used in this section includes the foundational work of Mikhalkin

[Mik05] as well as [AB13, BG16, BIMS15]. Other sources that may have been

in one way or another used in this Chapter includes [Gro11, IMS07].

Let Γ̄ be a weighted finite graph. This means that the set Γ0 of vertices of Γ̄

is finite, the set Γ1 of edges of Γ̄ is also finite and there is a map w : Γ1 → Z>0

associating to each edge e ∈ Γ1 a positive integer w(e) called its weight. Denote by

Γ0
∞ the subset of Γ0 consisting of univalent vertices and let Γ1

∞ denote the subset

of edges of Γ̄ adjacent to univalent vertices.

Definition 2.1. [Mik05, §2] An abstract tropical curve is a compact graph Γ̄

without divalent vertices and isolated vertices such that Γ = Γ̄\Γ0
∞ is a metric

25
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graph whose compact edges are isometric to closed segments of R and the non-

compact edges are isometric to R or to a rays in R.

Definition 2.2. [Mik05, §2] Let ∆ be a convex lattice polytope in Zn. A param-

eterized tropical curve C of degree ∆ is a pair (Γ̄, h) where Γ̄ is an abstract tropical

curve and h : Γ→ Rn is a continuous map such that

(a) every edge e of h(Γ) lies in a unique affine line with rational slope, and is

weighted with positive integer weight w(e),

(b) and every vertex v of h(Γ) is balanced meaning that∑
e∈Sv

w(e)u(v, e) = 0,

where Sv is the subset of all edges of h(Γ) incident to v and u(v, e) is the

primitive integral vector starting from v and oriented ‘away’ in the direction of

e,

(c) for each primitive vector u ∈ Zn, the total weight of the unbounded edges in

the direction u equals the lattice length of an edge of ∂∆ with outer normal

vector u (if there is no such edge we require the total weight to be zero).

Definition 2.3. [Cap13, BM07, Mik05] Two parameterized tropical curves C =

(Γ̄, h) and C ′ = (Γ̄′, h′) are said to have the same combinatorial type if there exists

a homeomorphism φ : Γ→ Γ′ such that for every edge e of Γ we have

w(h(e)) = w(h′ ◦ φ(e)) and λ(h(e)) = λ(h′ ◦ φ(e))

where λ(E) denote slope of the affine line containing the line segment E. The curves

C and C ′ are said to be isomorphic if there exists an isomorphism of the underlying

metric graphs ψ : Γ → Γ′ such that h = h′ ◦ ψ. We shall consider parameterized

tropical curves up to isomorphism.

Example 2.4. Figure 2.1 depicts an example of a parameterized tropical curve C

and its degree ∆. C has two edges of weight 2. Every edge of C that is not labeled

has weight 1.

Definition 2.5. [Mik05, §2] A tropical curve C is said to be irreducible if the

underlying topological space of C has exactly one component. The genus of an
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Figure 2.1. A tropical curve(left) and its degree(right).

irreducible curve C = (Γ, h) is defined to be g(C) := dimH1(h(Γ),R) i.e. the first

Betti number of h(Γ).

The dual subdivision ∆(C) corresponding to the tropical curve C is the unique

subdivision of ∆ whose 2-faces ∆(v) corresponds to vertices v of C in such a manner

that each edge e of C incident to v is orthogonal to a unique edge in the boundary

of ∆(v). A tropical curve C corresponds to a unique subdivision of ∆, however,

the converse is not true. A subdivision of ∆ determines the combinatorial type of

the curve and not the curve itself. The problem of finding an algorithm to generate

the subdivisions of a lattice polygon ∆ has been studied extensively in geometric

combinatorics [IMTI02, Ram02].

Definition 2.6. [Mik05, §2] The tropical curve C of degree ∆ is said to be nodal

if its corresponding dual subdivision ∆(C) consists only of triangles and parallelo-

grams.

Example 2.7. The dual subdivision ∆C of ∆ corresponding to the tropical curve

C in Example 2.4 is shown in Figure 2.2 and evidently, C is thus a nodal curve.
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Figure 2.2. Dual subdivision ∆C of ∆.
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Definition 2.8. [Mik05, §4] A tropical curve C = (Γ, h) is called simple if all the

vertices of C are 3-valent, the self intersections of h are disjoint from the vertices,

and the inverse image under h of self intersection points consists of exactly two

points.

Definition 2.9. [Mik05, §4] The number of nodes of a nodal irreducible tropical

curve C of degree ∆ is δ(C) := #int(∆) ∩ Z2 − g(C) where int(∆) denote the set

of interior points of ∆. It is also equal to the number of parallelograms of the dual

subdivision ∆(C) if C is a simple tropical curve. The number δ(C) is called the

cogenus of the curve C.

Definition 2.10. [BG16, Def. 3.4] Let C = (Γ, h) be a nodal curve with irre-

ducible components C1, . . . , Cr with Ci = (Γi, hi) having degree ∆i and having δi

nodes. Then the number of nodes of C is given by

(2.1) δ(C) =
r∑
i=1

δi +
∑
i<j

M(∆i,∆j)

whereM(∆i,∆j) := 1
2
(Area(∆i + ∆j)− (Area(∆i) + Area(∆j))) and where Area(·)

is defined to be twice the Euclidean area in R2.

2.2. Complex, Real and Refined Multiplicities

Definition 2.11. [Mik05, Def. 2.16] Let C be a simple tropical curve and v be

a 3-valent vertex of C. Let w1, w2 and w3 be the weights of the edges adjacent to

v and let u1, u2, u3 be the primitive integer vectors in the directions of the edges.

The multiplicity of v is defined to be

µ(v) := Area(∆v) = w1w2|u1 × u2|.

Note that by the balancing condition, this is also equal to w1w3|u1 × u3| and also

equal to w2w3|u2 × u3|. The complex multiplicity (also Mikhalkin’s multiplicity

[Mik05] or simply multiplicity) of a simple tropical curve C is defined to be

(2.2) µC(C) :=
∏
v

µ(v)

where the product is over all 3-valent vertices of C.
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Example 2.12. In the tropical curve C depicted in Example 2.4 above, it is easy

to show that with the exception of the vertices incident to edges of weight 2, all the

other 3-valent vertices have multiplicity µ(v) = 1. Furthermore, each of the four

vertices incident to the edges of weight 2 have multiplicity µ(v) = 2. The tropical

curve C therefore has multiplicity µC(C) = 16.

We also associate a tropical curve C with its real multiplicity. This multiplicity

takes values in the set {0,−1, 1} and is often called the sign of the curve C.

Definition 2.13. [BIMS15, §4.2] Let C be a simple tropical curve and v be a

trivalent vertex of C. The sign (also called the mass) of the vertex v is defined to

be

(2.3) m(v) =

(−1)(µ(v)−1)/2 if µ(v) is odd and,

0 otherwise.

The real multiplicity (also called the Welschinger sign) of C denoted by µR(C) is

defined to be the product of m(v) over all 3-valent vertices of C.

Example 2.14. Its clear from Definition 2.13 that once a tropical curve C has a

vertex v such that µ(v) is even then µR(C) = 0. In particular the curve in Example

2.4 has real multiplicity zero since the curve has at least one vertex of multiplicity

2. Figure 2.3 depicts a tropical curve C with complex multiplicity µC(C) = 3 and

real multiplicity µR(C) = −1.
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Figure 2.3. Tropical curve and corresponding subdivision.

So far we have introduce tropical curves and associated a tropical curve to its

degree ∆, its cogenus δ(C), its complex multiplicity µC(C) and its real multiplicity

µR(C). Our main aim is to use these values to show that the generating functions

for the refined node polynomials introduced in Chapter 1, satisfy some interesting
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properties. For this purpose, we associate to a tropical curve a Laurent polynomial

multiplicity called its refined multiplicity.

In Remark 1.19 we introduced for an integer n the Laurent polynomial [n]y (see

also [BG16, §1]). This is given by

[n]y :=
yn/2 − y−n/2
y1/2 − y−1/2

= y(n−1)/2 + · · ·+ y−(n−1)/2.

For y = 1, then it can be shown that [n]y specializes to n.

Definition 2.15. [BG16, Def. 3.5] Let C be a simple tropical curve. The refined

multiplicity of a 3-valent vertex v is defined by µ(v, y) := [µ(v)]y. The refined

multiplicity of C is therefore defined to be

(2.4) µ(C, y) :=
∏
v

µ(v, y)

with the product again running over all the 3-valent vertices of C. Note that in

particular we have µ(C, 1) = µ(C).

Example 2.16. The refined multiplicity of the tropical curve C in Example 2.4

equals µ(C, y) = ([2]y)
4 = (y1/2 +y−1/2)4 = y2 +4y+6+4y−1 +y−2, while the curve

depicted in Figure 2.3 has refined multiplicity µ(C, y) = [3]y = y + 1 + y−1.

Remark 2.17. From the definition of [n]y it is easy to see that µ(C, y) will always be

a Laurent polynomial symmetric with respect to y 7→ y−1. The refined multiplicity

unifies the complex and the real multiplicity of a tropical curve i.e. µ(C, 1) = µC(C)

and µ(C,−1) = µR(C) (see [BG16, IM13, GS14] for details).

2.3. Refined Severi Degrees on Toric Surfaces

We take a short detour to look at the refined Severi degrees on toric surfaces.

A toric surface is a projective algebraic surface that contains (C∗)2 as a dense open

subset. Classically, a complex algebraic curve C ⊂ (C∗)2 is defined to be the zero

locus of a complex polynomial. Let

f(x, y) =
∑

(i,j)∈Z2

aijx
iyj

be a polynomial with aij ∈ C and finitely non-zero. The Newton polygon of f

denoted by ∆(f) is the convex hull of the exponents vectors {(i, j) : aij 6= 0}. The
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Newton polygon of polynomial generalizes the notion of degree of the polynomial.

In particular, if f, g ∈ C[x, y] are polynomials then ∆(fg) = ∆(f) + ∆(g) i.e. the

Minkowski sum of the respective polygons.

Fix a convex lattice polygon ∆ ⊂ R2 and δ ≥ 0. Let C = {(a, b) ∈ (C∗)2 :

f(a, b) = 0}. We say that a curve C ∈ (C∗)2 is of degree ∆ if ∆(f) = ∆. Let

k = |(∆ ∩ Z2)| − δ − 1.

Definition 2.18. The classical Severi degree denoted by N∆,δ is defined to be the

number of reduced but possibly reducible δ-nodal curves C ⊂ (C∗)2 of degree ∆

passing through a configuration ω = {p1, . . . , pk} ⊂ (C∗)2 of complex points in

general position.

It is well understood [CH98] that N∆,δ is a finite number and does not depend

on the configuration of generic points. It is convenient to study N∆,δ with the

help of the toric surface associated to the polygon ∆. A convex lattice polygon ∆

determines a toric surface S∆ and an ample line bundle L∆ on S∆. Any curve in

|L∆| is the closure in S∆ of the zero locus of a polynomial f ∈ C[x, y] whose Newton

polygon is contained in ∆ and therefore, dim |L∆| = #(∆ ∩ Z2).

A lot of the important data of the pair (S∆, L∆) is encoded in a lattice polygon ∆.

For example let |L∆| be the complete linear system of curves on S∆ that are linearly

equivalent to L∆. Then we have that dim |L∆| = #(∆∩Z2)−1 and furthermore, the

arithmetic genus of a generic curve in |L∆| is equal to #int(∆ ∩ Z2). More details

about this can be found in standard literature about toric varieties e.g. [Ful93].

Definition 2.19. The Severi degree for the pair (S∆, L∆) denoted by N (S∆,L∆),δ is

defined to be the number of δ-nodal curves in |L∆| passing through a configuration

of #(∆ ∩ Z2)− δ − 1 general points in S∆.

We consider the tropical analogue of N (S∆,L∆),δ i.e. the problem of counting the

number of δ-nodal (simple) tropical curves of degree ∆, passing through a fixed

configuration of tropically generic points on R2. Let

(2.5) s = #(∂∆ ∩ Z2) and l = #(int(∆) ∩ Z2).

Here, s is the number of unbounded edges of a tropical curve C of degree ∆ with

each edge counted with its weight and l is the genus of a smooth tropical curve of
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degree ∆. Denote by x ≤ s the number of unbounded edges of C with each curve

counted “simply”.

Definition 2.20. [Mik05, Def. 4.7] Let ω = {p1, . . . , pr} be a configuration of

distinct points R2. Then ω is a tropically generic point configuration if for any

tropical curve C = (Γ, h) of degree ∆, genus g and with x ends such that r ≥ g+x−1

and such that ω ⊂ h(Γ) satisfy the following

(1) C = (Γ, h) is a simple tropical curve,

(2) h−1(p1), . . . , h−1(pr) are disjoint from the vertices of the graph Γ and

(3) r = g + x− 1.

By [Mik05, Prop. 4.11, Cor. 4.12], tropical generic point configurations form

a dense set in Symr(R2). Further, for any pair (∆, g) with g ≤ l, there exist

only finitely many simple tropical curves of degree ∆ and genus g passing trough

a fixed configuration of tropically generic points on R2 [Mik05, Prop. 4.13]. A

vertically stretched point configuration (will be useful later in §2.4) is defined to be

the following.

Definition 2.21. [BG16, Def. 3.6] A point configuration ω = {(x1, y1), . . . , (xr, pr)} ⊂
R2 is said to be vertically stretched with respect to ∆ if for every curve of degree

∆, we have

min
i 6=j
|yi − yj| > max

i 6=j
|xi − xj| ·M(C)

where M(C) is the maximal slope of an edge of C multiplied by the number of

edges of C.

Definition 2.22. The tropical Severi degree denoted by N∆,δ
trop is defined to be the

number of δ-nodal simple tropical curves of degree ∆ passing through a configura-

tion of #(∆ ∩ Z2)− δ − 1 tropically generic points in R2, with each curve counted

with its complex multiplicity.

Theorem 2.23 (Mikhalkin’s correspondence theorem). [Mik05, Thm. 1] For any

integer δ ≥ 0 and ∆ ⊂ R2 a convex lattice polygon then

(2.6) N (S∆,L∆),δ = N∆,δ
trop,

and the number N∆,δ
trop does not depend on the generic point configuration.
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Theorem 2.23 above provides us with a recipe of obtaining the number of com-

plex algebraic curves on toric surfaces satisfying prescribed conditions by studying

the corresponding problem on the tropical side. We also consider the tropical ver-

sion for the computation of the Welschinger invariants introduced in §1.5 above.

Definition 2.24. [Mik05, Def. 7.11] The tropical Welschinger number denoted

by W∆,δ
trop(ω) is defined to be the number of δ-nodal simple tropical curves of degree

∆ passing through a configuration ω of #(∆∩Z2)− δ− 1 tropically generic points

in R2 counted with the real multiplicity.

Welschinger [Wel03, Wel05], (also [Mik05, Thm. 5]) showed that if S∆ is

smooth and rational then the signed count of real rational curves passing trough

sufficiently many tropical general points is an invariant independent of the point

configurations. In general, Welschinger numbers depend on the real point config-

urations on S∆. The tropical Welschinger numbers W∆,δ
trop(ω) are independent of

the tropical point configurations. In [Mik05, Thm 3] it is shown that for every

tropically generic point configuration ω there exists a configuration R of points

on S∆ (called subtropical point configurations) such that the Welschinger number

W (S∆,L∆),δ(R) = W∆,δ
trop(ω).

We shall assume that a subtropical point configuration has been chosen and

write W∆,δ (respectively W (S,L),δ) for W∆,δ
trop(ω) (respectively W (S,L),δ(R)). We now

consider the refined analogues of N∆,δ and W∆,δ. Itenberg and Mikhalkin [IM13,

Theorem 1] showed that the refined multiplicity of tropical curves in independent of

the choice of generic point configuration. Consequently, the refined tropical Severi

degree defined below is also an invariant independent of the point configuration.

Definition 2.25. The refined tropical Severi degree denoted by N∆,δ
trop(y) is defined

to be the number of δ-nodal simple tropical curves of degree ∆ passing through a

configuration of #(∆∩Z2)− δ− 1 tropically generic points in R2 counted with the

refined multiplicity.

Göttsche and Shende [GS14] introduced the refined Severi degrees N (S,L),δ(y)

for P2 and the rational ruled surface. N (S,L),δ(y) is defined by the modified ver-

sion of Caporaso-Harris recursion discussed in §1.4.3. Block and Göttsche [BG16,
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Thm 7.5] determined a Caporaso-Harris type recursion formula for the weighted

projective space P(1, 1,m) and proved the following theorem.

Theorem 2.26. [BG16, Thm. 1.1] Let S∆ be P2, a rational ruled surface Σm or

the weighted projective space P(1, 1,m). Then

N (S∆,L∆),δ(y) = N∆,δ
trop(y).

By Remark 2.17 it follows that in the case S∆ is P2, a rational ruled surface Σm

or the weighted projective space P(1, 1,m) then Theorem 2.26 specializes at y = 1

to the Mikhalkin’s correspondence (Theorem 2.23). The immediate implication of

Theorem 2.26 is that we can use tropical methods to study the refined Severi degrees

and their generating functions. On the other hand, refined tropical Severi degrees

can be studied by looking at the combinatorics of floor diagrams. These are purely

combinatorial graphs introduced by Brugallé and Mikhalkin [BM07, BM09] that

are used to encode some of the most important aspects of the tropical curve.

2.4. Refined Tropical Severi Degrees via Floor Diagrams

We review the floor diagrams associated to curves on toric surfaces which are

defined by h-transverse lattice polygons. Recall that a lattice polygon ∆ is a poly-

gon in R2 whose vertices are points of the integral lattice. The interior and the

boundary of a lattice polygon are denoted respectively by int(∆) and ∂∆. The

lattice length of a lattice segment e in R2 is defined to be l(e) := #(Z2 ∩ e) − 1.

Let ∆ be a convex lattice polygon. Its left and its right boundaries denoted by ∂l∆

and respectively by ∂r∆ are defined to be

∂l∆ := {p ∈ ∂∆|∀t > 0, p+ (−t, 0) /∈ ∆},(2.7)

∂r∆ := {p ∈ ∂∆|∀t > 0, p+ (t, 0) /∈ ∆}.(2.8)

Definition 2.27. If v is a vertex of a lattice polygon ∆ ∈ R2 then the determinant

det(v) of v is defined to be det |w1, w2| where w1 and w2 are primitive integer normal

vectors to the edges adjacent to v.

Definition 2.28. [AB13, §1],[BM09, §2]. A lattice polygon is said to be h-

transverse if every edge of ∆ has slope 0,∞ or 1/k for some integer k. Alternatively,

∆ is h-transverse if any primitive vector parallel to an edge in ∂l∆ or ∂r∆ is of the
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form (α,−1) with α ∈ Z. The lattice polygon ∆ is said to be strongly h-transverse

if either there is a non-zero horizontal edge at the top of ∆ or the vertex v at top

of ∆ has det(v) ∈ {1, 2}, and the same holds for the bottom of ∆.

Let dt(respectively db) be the length of the horizontal edge at the top (resp. at

the bottom) of ∆ is it exists, otherwise set dt = 0(resp. db = 0) if no such edge

exists. The left directions denoted by l(resp. right directions denoted by r) of ∆ is

defined to be the unordered list that consists of elements α repeated l(e) times for

an edge e = ±l(e)(α,−1) of ∂l∆(resp. ∂r∆).

There is a 1-1 correspondence [BM09, §2] between quadruples (l, r, dt, db) and

h-transverse polygons ∆ considered up to translations. Furthermore,

(2.9) #dl = #dr = #(∂l∆ ∩ Z2)− 1 = #(∂r∆ ∩ Z2)− 1

and also

(2.10) 2#(∂l∆ ∩ Z2) + dt + db = #(∂∆ ∩ Z2).

Example 2.29. Some h-transverse polygons are depicted in Figure 2.4 below

b b

bb

b b

b

b

b

b

b bbb

b b b b b

b b b

b b

(a) l = {0, 0}
r = {2, 2}
dt = 1

db = 5

(b)l = {−2, 0, 0}
r = {1, 0, −1}
dt = 0

db = 2

Figure 2.4. Some h-transverse polygons and their respective left

and right directions.

We are primarily interested in floor diagram associated to curves on P2, rational

ruled surfaces and the weighted projective surfaces P(1, 1,m). The corresponding

lattice polygons are of type ∆c,m,d where ∆c,m,d = {(x, y) ∈ (R≥0)2 : y ≤ d;x+my ≤
md+ c} for d,m, c ≥ 0. In particular if:
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(1) d ≥ 0, m = 1, c = 0 then S(∆0,1,d) = P2, L(∆0,1,d) = dH, with H the

hyperplane bundle on P2;

(2) d ≥ 0, m ≥ 1, c = 0 then S(∆0,m,d) = P(1, 1,m), L(∆0,m,d) = dH, with H

the hyperplane bundle on P(1, 1,m) with self intersection m;

(3) d ≥ 0, m ≥ 0, c ≥ 0 then S(∆c,m,d) is the m-th rational ruled surface

Σm := P(O⊕O(m)). Let F be the class of the fibre of the ruling and let E

be the class of a section with E2 = −m. We denote H := E + mF . Then

L(∆c,m,d) = cF + dH.

We shall focus mainly on the lattice polygons listed above even though the

methods that shall be discussed can be adapted to work for any h-transverse lattice

polygons. The particular polygons described in (1) – (3) above are listed in Figure

2.5 below.

b b b b b b b b b b b b b b b b b b b b

b b b b b b b b b b b b b b b

b b b b b b b b b b

b b b b b

d dm c + dm

d d d

c

∆c,m,d∆0,m,d∆0,1,d

Figure 2.5. Lattice polygons for P2,P(1, 1,m) and Σm.

Definition 2.30. [BG16, §5] Fix c,m, d and write ∆ := ∆c,m,d. A ∆-floor dia-

gram is the data of a weighted, directed acyclic graph D = (V,E) and a sequence

(s1, . . . , sd) of nonnegative integers satisfying the following conditions.

(1) D is a graph on a vertex set V = {1, . . . , d} and may have multiple edges

between a pair of vertices. Edges e ∈ E of D have positive integer weights

and are oriented i→ j if i < j. The graph D has no loops.

(2) The sequence (s1, . . . , sd) satisfies s1 + · · ·+ sd = c.

(3) (Divergence Condition) For each vertex j of D, we have

div(j)
def
=

∑
e ∈ E
j

e→ k

w(e)−
∑
e ∈ E
i

e→ j

w(e) ≤ m+ sj.
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Condition (3) above says that at every vertex of D the total weight of the

outgoing edges is larger by at most m + sj than the total weight of the incoming

edges. When ∆ = ∆c,m,d is clear from the context we simply say that D is a floor

diagram.

The arithmetic genus ga(D) of a ∆-floor diagram is defined to be the number of

interior lattice points of ∆. The diagram D is said to be connected if the underlying

graph is connected as a topological space. If D is connected then its genus g(D) is

defined to be the first Betti number of the underlying graph and thus its cogenus

is defined to be

(2.11) δ(D) := ga(D)− g(D) = #int(∆ ∩ Z2)−#E + d− 1.

Suppose that D is not connected and that D1, . . . ,Dr are the connected components

of D. Then each Di is a connected ∆i-floor diagram for some lattice polygon ∆i.

Then the Minkowskii sum of the lattice polygons ∆i satisfies ∆1 + · · · + ∆r = ∆.

Let δ1, . . . , δr be the cogenera of the connected components then

δ(D) =
r∑
i=1

δi +
∑
i<j

M(∆i,∆j)

where as in the case of tropical curves,M(∆i,∆j) := 1
2
(Area(∆i+∆j)−(Area(∆i)+

Area(∆j))).

Example 2.31. Let (c,m, d) = (2, 1, 3) i.e. ∆ = ∆2,1,3 and let (s1, s2, s3) = (1, 1, 0).

The graph in Figure 2.6 satisfies conditions (1)–(3) in Definition 2.30 above and is

therefore a ∆-floor diagram.

2

2

1 2 3

Figure 2.6. An example of a floor diagram.

There is an almost canonical correspondence between tropical curves of degree

∆ and the ∆-floor diagrams. Let C be a tropical curve of degree ∆. Define an

elevator of C to any vertical edge of C i.e. any edge parallel to the vector (0, 1).
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The multiplicity of an elevator is inherited from the multiplicity of that edge in the

tropical curve C. A floor of C is defined to be any connected component of C that

does not contain an elevator. We create a graph D by the following steps

Step 1: Contract each floor of C into a point creating a vertex of a graph

denoted D̃. The directed edges of D̃ are the elevators of C oriented to point

“downwards” i.e. in the direction of the vector (0,−1).

Step 2: Let D be the graph obtained by removing the univalent edges of D̃.

The univalent edges of D̃ corresponds to the non-compact elevators of the

tropical curve C.

This procedure is illustrated in Figure 2.7 below. The diagram to the left is a

tropical curve C of degree ∆ = ∆(2,1,3). The elevators of C are the vertical edges

shown in dark/bold edges while the floors are illustrated in light/gray connected

components of C. In the middle is the intermediate directed graph D̃ obtained by

contracting each floor to a point. To the right is the directed graph D obtained by

deleting the univalent edges of D̃.

2 2

2 2

2

2

Figure 2.7. Obtaining a floor diagram from a tropical curve.

The h-transversality condition of the lattice polygon ∆ guarantees that for ver-

tically stretched generic point configuration ω then the tropical curves interpolating

through the points must have exactly one point of ω on each elevator and exactly

one point on each floor. For such a tropical curve, the diagram D obtained in the

two step procedure above is a floor diagram in the sense of Definition 2.30. For space
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preserving reasons, floor diagram are usually drawn horizontally i.e. the diagram

D obtained as above is rotated 90◦ counterclockwise.

Remark 2.32. Let ∆ = ∆(c,m,d) be a lattice polygon and C be a tropical curve

through a vertically stretched point configuration. Then the intermediate diagram

D̃ obtained in the first step of the above procedure will have: d vertices; c univalent

edges oriented “inwards” to the graph D̃ and c+dm univalent edges oriented “away”

from the graph D̃. Furthermore, there is a canonical ordering of the vertices of D̃
which is the “top to bottom” ordering. In this ordering every vertex j of D̃ will

have divergence

div(j) :=
∑
e ∈ E
j

e→ k

w(e)−
∑
e ∈ E
i

e→ j

w(e) = m+ sj.

Consequently, upon removal of the univalent vertices of D̃ we obtain a graph D
satisfying condition (3) of Definition 2.30.

The floor diagram D associated to a tropical curve C passing through a vertically

stretched point configuration encodes all the necessary geometric informations of

C. Consequently, we can use this correspondence to create a recipe for studying

tropical enumerative problems by reducing them to combinatorial problems on floor

diagrams. Like in the case of tropical curves, we associate floor diagrams with

refined multiplicities.

Definition 2.33. [BG16, Def. 5.2] Let D be a floor diagram. The refined multi-

plicity of D is defined to be

µ(D, y) :=
∏
e

([w(e)]y)
2 .

Example 2.34. We will use the floor diagram D in Figure 2.30 above(it should be

clear that this is also the same as the diagram obtained in Figure 2.7 above). Note

also that edges of weight 1 contribute a factor of 1 to the refined multiplicity. The

refined multiplicity of D is thus

µ(D, y) = ([2]y)
2 · ([2]y)

2 = y2 + 4y + 6 + 4y−1 + y−2.
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This is precisely the refined multiplicity of the associated tropical curve C (Example

2.16).

2.5. Marked Floor Diagrams and Combinatorial Correspondence

To enumerate tropical curves via floor diagrams we need to count certain mark-

ings on these diagrams. Note that distinct tropical curves interpolating through

vertically stretched point configurations may correspond to a unique floor diagram.

Thus, counting the markings of floor diagrams can be interpreted as counting the

number of the corresponding tropical curves. We will use the floor diagram in

Figure 2.6 to illustrate the steps in the definition of the markings.

Definition 2.35. [BG16, Def. 5.4]. Let D be a ∆-floor diagram and (s1, . . . , sd)

be a sequence of nonnegative integers satisfying condition (2) of Definition 2.30. A

marking of D is defined by the following four step procedure.

Step 1: For each vertex j of D create sj new indistinguishable vertices and

connect them to j by new unweighted edges directed towards j.

2

2

b b

Figure 2.8. The floor diagram after Step 1.

Step 2: For each vertex j of D create m+ sj − div(j) new indistinguishable

vertices and connect them to j with new edges directed away from j.

2

2

b b b b b b b

Figure 2.9. The result after applying Step 2.

Step 3: Subdivide each edge of the original floor diagram D into two directed

edges by introducing a new vertex in the middle of each edge. The new

edges inherit their weights and orientations form the original edges. The

resulting graph is denoted by D̃.
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b b
b

2 2

2 2

b b b b b b b

Figure 2.10. The result after applying Step 3.

Step 4: Linearly order the vertices of D̃ extending the order of the vertices of

the original floor diagram D such that each edge is directed from a smaller

to a larger vertex.

The extended graph D̃ together with the linear order on its vertices is called a

marked floor diagram or a marking of the floor diagram D. Two markings D̃1 and

D̃2 of a floor diagram D are said to be equivalent if there exists an automorphism of

weighted graphs which preserves the vertices of D and maps D̃1 to D̃2. The number

of markings ν(D) of the floor diagram is defined to be the number of inequivalent

markings of D.

b b b b b b b b b b
2 2 2

2

Figure 2.11. A linear order of the vertices of the diagram in Figure 2.10.

Definition 2.36. [BG16, Def. 5.6] Fix δ ≥ 0 and let ∆ be a h-transverse lattice

polygon. The combinatorial refined Severi degree is defined to be the Laurent

polynomial

(2.12) N∆,δ
comb(y) :=

∑
D

µ(D, y)ν(D)

where the sum is over all ∆-floor diagrams D of cogenus δ.

The combinatorial refined Severi degrees agree with the tropical refined Severi

degrees (Definition 2.22) as stated in the Theorem 2.37 below. If S∆ is smooth and

L∆ is sufficiently ample then N∆,δ
comb(y) also coincide conjecturally with the refined

invariants of Göttsche and Shende [GS14].
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Theorem 2.37 (Combinatorial correspondence). [BG16, Thm. 5.7] Fix δ ≥ 0 and

let ∆ be a h-transverse lattice polygon. Then

N∆,δ
comb(y) = N∆,δ(y).

Theorem 2.37 is significant in the sense that it avails a recipe for using purely

combinatorial graphs to study the refined counts of complex algebraic curves on

toric surfaces. For the remainder of this section we show that N∆,δ
comb(y) is given by

a polynomial in the parameters (c,m, d) defining ∆. To do this we use templates

introduced by Fomin and Mikhalkin [FM10]. The templates are just floor diagrams

satisfying additional “irreducibility” conditions.

Definition 2.38. A template Γ is a weighted, directed graph on a vertex set

{0, . . . , `} ⊂ Z satisfying the following conditions:

(1) multiple edges between a pair vertices i, j are allowed but no loops are

allowed. For an edge i
e−→ j in Γ we must have i < j and the weight w(e)

of an edge of Γ is a positive integer,

(2) Γ does not have short edges. These are edges of weight 1 and connecting

two consecutive vertices i.e. edges of the form i
e−→ i+ 1,

(3) for each vertex j such that 1 ≤ j < ` there is an edges i
e−→ k with i < j ≤ k.

In other words, a template can be said to be the connected component of what

remains from a marked floor diagram upon removal of the short edges. We illustrate

the process of obtaining templates by a slight modification the four step procedure

in Definition 2.35. Let ∆ = ∆(c,m,d) and D be a ∆-floor diagram. Recall that D is

a graph on the vertex set {1, . . . , d} (Definition 2.30).

Procedure 2.39. The steps of Definition 2.35 is modified as follows:

Step 1: create a new vertex 0 and connect it to each vertex j ≥ 1 by sj new

indistinguishable edges directed towards j;

Step 2: create a new vertex d+1 and connect it to each vertex j : 1 ≤ j ≤ d

with m+ sj − div(j) new indistinguishable edges directed away from j;

Step 3: remove short edges from the resulting graph, one obtains a graph

which in general is a union of shifted templates.
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2 2

0 1 2 3 4

Figure 2.12. Graph obtained after applying of Step 1 and Step 2

of Procedure 2.39.

Definition 2.40. Let Γ be a template. A shifted template denoted Γ(k) is the

graph obtained from Γ by shifting all the edges of Γ by k ∈ Z.

2 2

2 2

Γ Γ′

Figure 2.13. The resulting graph upon the removal of short edges

from Figure 2.12 is a union of two shifted templates.

Each template Γ is associated with a number of important data. The length of

a template ` = `(Γ) is defined to be the number of its vertices minus 1. Its cogenus

is defined to be the number

δ(Γ) :=
∑
i
e−→j

(j − i)w(e)− 1

and its refined multiplicity [BG16, Def. 5.9] is defined to be the Laurent polynomial

µ(Γ, y) :=
∏
e

(
[w(e)]y

)2

where the product is over all the edges of the template. Each of the templates Γ,Γ′

in Figure 2.13 has cogenus 2 and refined multiplicity ([2]y)
2 = y + 2 + y−1. We set

ε0(Γ) =

1 if all edges of Γ starting at 0 have weight 1,

0 otherwise,
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and

ε1(Γ) =

1 if all edges of Γ arriving at ` have weight 1,

0 otherwise.

For 1 ≤ j ≤ `(Γ), let λj = λj(Γ) denote the sum of weights of edges i
e−→ k with

i < j ≤ k. By definition of a template, it follows that λj > 0 for all 1 ≤ j ≤ `(Γ).

Denote λ(G) = (λ1, . . . , λ`). For a rational number a denote by dae the smallest

integer bigger or equal to a and define

kmin(Γ) := max

(
1, max

1≤j≤`

⌈
λj − c−m(j − 1)

m

⌉)
.

This makes kmin(Γ) the smallest positive integer k such that Γ can appear in a

∆c,m,d-floor diagram on {1, 2, . . .} with the left most vertex k.

Remark 2.41. Denote by D̃ the graph obtained after applying Procedure 2.39

above(see Figure 2.12). Deleting short edges from D̃ one obtains a uniquely defined

collection of non-overlapping templates. Let Γ1, . . . ,Γr be these templates listed in

the order of appearance from left to right. Denote by ki the leftmost vertex of Γi (ki

is called the shift or the offset of Γi). Then the ki satisfy the following inequalities

ki + `(Γi) ≤ ki+1 for 1 ≤ i ≤ r − 1 and(2.13)

kr + `(Γr) ≤ d+ ε1(Γr).(2.14)

It is not hard to see that in D̃, for any vertex v : 1 ≤ v ≤ d+1, the total weight of all

edges u
e−→ w with u < v ≤ w is precisely equal to m(v− 1) + c. Let sv be the short

edges connecting v− 1 to v then m(v− 1) + c− sv is the total weight of long edges

appearing in one of the templates Γ1, . . . ,Γr. If v = ki + j so that v belongs to a

template Γi(as vertex j) then we have λj(Γi) = m(v−1)+c−sv = m(ki+j−1)+c−sv.
In other words mki ≥ λj(Γi)− c−m(j − 1) which implies that

(2.15) ki ≥ kmin(Γi) for 1 ≤ i ≤ r.

Conversely, given a sequence of isomorphism types of templates Γ1, . . . ,Γr and an

increasing sequence of nonnegative integers k1, . . . , kr satisfying (2.13) – (2.15),

there is a unique floor diagram D whose modification D̃ is obtained by placing each

Γi with an offset ki and adding sufficiently enough short edges.

By Remark 2.41 above, it follows that:
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Lemma 2.42. There exists a 1-1 correspondence between marked floor diagrams

and sequences of pairs (Γ1, k1), . . . , (Γr, kr) of templates and nonnegative integers ki

satisfying (2.13) – (2.15) above.

The above lemma has been discussed in detail in [BG16, 5.3, 5.4],[AB13, §3.2]

and in the [FM10, 5.6]. Furthermore, it is easy to show that this correspondence

preserves the cogenus i.e

δ(D) =
r∑
i=1

δ(Γi).

It follows therefore that the number of markings of D can be obtained by counting

the number of markings of the corresponding templates Γi.

Let Γ be a template and k ≥ 1 be an integer. Denote by ext(c,m,k)(Γ) the graph

obtained by first adding

c+ (k + j − 1)m− λj(Γ)

short edges connecting j− 1 to j for 1 ≤ j ≤ `(Γ), then inserting an extra vertex in

the middle of every edge of the resulting graph. Let PΓ(c,m, k) be the number of

inequivalent linear extensions of the vertex poset of the graph ext(c,m,k)(Γ) extending

the order of the vertices of Γ. For any floor diagram D and and sequences of pairs

(Γ1, k1), . . . , (Γr, kr) of templates and nonnegative integers ki satisfying (2.13) –

(2.15) then the above discussion shows that

ν(D) =
r∏
i=1

PΓi(c,m, ki).

Consequently, the above discussion leads to the following proposition.

Proposition 2.43. [BG16, Prop. 5.11] Let

(1) S = P2, δ ≥ 1 and d ≥ 1; or

(2) S = P(1, 1,m) and m, d ≥ 1 and m ≥ 2δ; or

(3) S = Σm, δ ≥ 1 and m, c, d ≥ 1 and m+ c ≥ 2δ

then

(2.16) N∆,δ
comp(y) =

∑
Γ1,...,Γr

(
r∏
i=1

µ(Γi, y)
∑

k1,...,kr

(
r∏
i=1

PΓi(c,m, ki)

))
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where the first sum is over all tuples (Γ1, . . . ,Γr) satisfying δ(Γ1) + · · ·+ δ(Γr) = δ

and the second sum is over all sequences k1, . . . , kr of nonnegative integers satisfying

(2.13) – (2.15) above.

Proposition 2.43 coupled with Theorem 2.37 further reduces the problem of

computing the refined Severi degree on P2,P(1, 1,m) and Σm to an analysis of the

combinatorics on the templates. Using the templates, Mikhalkin [Mik05, Thm. 5.1]

showed that there exists a polynomial Nδ(d) such that whenever d is sufficiently

large compared to δ then Nd,δ = Nδ(d). The templates are also used by Ardila and

Block [AB13, Thm. 1.2] to generalize the result of Mikhalkin to a larger class of

toric surfaces, specifically, toric surfaces defined by h-transverse lattice polygons. In

the refined scenario, Block and Göttsche [BG16, Thm 4.2] used the combinatorics

of the templates to prove the following theorem about the polynomiality of the

refined Severi degrees.

Theorem 2.44. [BG16, Thm. 4.2]. For fixed δ ≥ 1 we have the following.

(1) P2: There is a polynomial Nδ(d; y) ∈ Q[y±1][d] of degree at most 2δ in d

such that for d ≥ δ,

Nδ(d; y) = Nd,δ
trop(y).

(2) Σm: There is a polynomial Nδ(c, d,m; y) ∈ Q[y±1][c,m, d] of degree at most

δ in c,m and degree 2δ in d such that for c+m ≥ 2δ and d ≥ δ

Nδ(c, d,m; y) = N
(Σm,cF+dH),δ
trop (y).

(3) P(1, 1,m): There is a polynomial Nδ(d,m; y) ∈ Q[y±1][m, d] of degree δ in

m and degree at most 2δ in d such that for m ≥ 2δ and d ≥ δ

Nδ(d,m; y) = N
(P(1,1,m),dH),δ
trop (y).



CHAPTER 3

Multiplicativity of the Generating Functions

The purpose of this chapter is to specialize the Conjecture 1.27 and Conjec-

ture 1.28 to a large family of possibly singular toric surfaces. Let ∆ = ∆(c,m, d)

be a lattice polygon such that the toric surface and the line bundle defined by ∆ is

(P2, dH) or (P(1, 1,m), dH) or (Σm, cF + dH). For δ ≥ 0, denote by Nδ(c,m, d; y)

the polynomial in Theorem 2.44 above and call them the refined node polynomials.

By Theorem 2.37 and Definition 2.36 we have

(3.1) Nδ(c,m, d; y) =
∑
D

µ(D, y)ν(D)

where the sum is over all ∆-floor diagrams such that δ(D) = δ. Analogous to (1.38)

we consider the generating function for these polynomials. That is

(3.2) N (S∆, L∆; y) :=
∑
δ≥0

Nδ(c,m, d; y)tδ.

The main goal of this chapter is to show that (3.2) is multiplicative in the parameters

c,m, d defining the lattice polygon ∆. To be precise, we prove the following theorem.

Theorem 3.1. Let (S∆, L∆) be (P2, dH) or (P(1, 1,m), dH) or (Σm, cF+dH) then:

(1) there are power series S0, . . . , S6 ∈ Q[y±1]JtK, such that

N ((Σm, cF + dH); y) = S0S
c
1S

d
2S

cd
3 S

m
4 S

md
5 Smd

2

6 ;

(2) there are power series Pm,0, Pm,1, Pm,2 ∈ Q[y±1]JtK such that for all m ≥ 1

N ((P(1, 1,m), dH); y) = Pm,0P
d
m,1P

d2

m,2.

In particular N (d, y) := N ((P2, dH); y) = P1,0P
d
1,1P

d2

1,2.

Idea of Proof: We consider the formal logarithm of the generating function in (3.2)

i.e. let

Q(S∆, L∆; y) := logN (S∆, L∆; y) =
∑
δ≥1

Qδ(S∆, L∆; y)tδ.

47
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Theorem 3.1 is equivalent to saying that Qδ((Σm, cF + dH); y) and respectively

Qδ((P(1, 1,m), dH); y) is a linear combination of 1, c, d, cd,m,md,md2 and 1, d, d2.

In §3.1 we begin by reviewing the long edge graphs, purely combinatorial graphs that

will be central to proving this theorem. We also remark that Theorem 3.1, with a

little bit care, can be generalized to toric surfaces that are defined by h-transverse

lattice polygons that are not necessarily of the type ∆(c,m,d).

In §3.2, we couple Theorem 3.1 with computer calculations to provide more

evidence for the the conjectural generating function of the refined invariants [GS14,

Conj. 62]. As already mentioned in the first and second chapter, the refined node

polynomials specialize at y = −1 to the Welschinger invariants. We specialize

the conjectural generating functions of the refined invariants to the Welschinger

numbers. To be more precise:

Conjecture 3.2. There exists universal power series B1(q), B2(q) ∈ QJqK such

that

(3.3)
∑
δ≥0

W (S,L),δ
(
G2(q)

)δ
=

(G2(q)/q)χ(L)B1(q)K
2
SB2(q)LKS

(η(q)16η(q2)4DG2(q)/q2)χ(OS)/2
.

whenever L is a δ-very ample line bundle on S.

Conjecture 3.2 above has already stated in Chapter 1. Coupling Theorem 3.1

with computer calculations we provide evidence for the conjecture above for the

case (S, L) is (P2, dH), (P1 × P1, dH) and (Σm, cF + dH).

In §3.3 we extend the conjectures of of Göttsche and Shende [GS14] to singular

toric surfaces. The conjectural generating function [GS14, Conj. 62] applies to

smooth complex projective surfaces. On the other hand, the general version of

Theorem 3.1 above applies to all projective toric surfaces defined by h-transverse

lattice polygon. These toric surfaces are not necessarily smooth. Motivated by the

paper [LO14], we extend the conjecture to singular toric surfaces.
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Conjecture 3.3. For every analytic type of singularities c there are formal power

series Fc ∈ Q[y±1][[q]] such that the following hold. Let (S, L) be a pair of a projec-

tive toric surface and a toric line bundle on S. If L is δ-very ample on S, then

(3.4)∑
δ≥0

Nδ(S, L; y)D̃G2(y, q)δ =
(D̃G2(y, q)/q)χ(L)B1(y, q)K

2
SB2(y, q)LKS

(∆̃(y, q)DD̃G2(y, q)/q2)χ(OS)/2

∏
c

Fc(y, q)
nc .

Here c runs through the analytic types of singularities of S, and nc is the number

of singularities of S of type c.

We give a slightly more precise version of the above conjecture for P(1, 1,m) and

its minimal resolution Σm and prove a special cases of it. Liu and Osserman [LO14]

studied the non-refined Severi degrees for toric surfaces with only rational double

points defined by h-transverse lattice polygons. We give conjectural generalization

to their results to refined Severi degrees. Finally in §3.4 we consider a different kind

of generalization to the conjectures of Göttsche and Shende. We consider refined

versions of the problem of counting curves with prescribed multiple points.

3.1. Long Edge Graphs and the Multiplicativity Theorems

Brugallé and Mikhalkin [BM07, BM09] introduced the marked labeled floor

diagrams and gave an enumerative formula for the unrefined Severi degrees in terms

of the floor diagrams. Deleting edges of length 1 and weight 1 from a marking

of a floor diagram then the resulting diagram is a long edge graph. The term

long edge graph was first used in [BCK14], where the unrefined Severi degrees

of a large class of toric surfaces is studied. We review long edge graphs from

[BCK14, Liu16, LO14], working in the context of refined invariants and following

the presentation in [Liu16, LO14].

Definition 3.4. A long edge graph G = (V,E) is a graph on a linearly ordered

vertex set V and whose set of edges is endowed with a weight function w : E → Z>0

and satisfying the following.

(1) The vertex set V ⊂ Z≥0 and the edge set E is finite.

(2) G is a multi-graph i.e. it can have have multiple edges connecting a pair

of vertices. However, G may not have loops.
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(3) G has no short edges. These are edges of weight 1 connecting i and i+ 1.

An edge connecting i and j with i < j will be denoted (i → j) and the length

of an edge e = (i → j) is `(e) := j − i. The vertices 0, 1, 2, . . . of long edge graphs

are drawn from left to right and each edge is labeled with its weight, unless it is of

weight 1 in which case the labeling is suppressed. Since the edge set E is finite, we

often omit the vertices that are not incident to any edge.

Definition 3.5. Let G = (V,E) be a long edge graph and let w : E → Z>0 be a

weight function on the set of edges of the graph. The refined multiplicity of G is

defined to be

µ(G, y) :=
∏
e∈E

(
[w(e)]y

)2
,

where for an integer n, [n]y is the Laurent polynomial introduced in Remark 1.19.

The Severi multiplicity and the Welschinger multiplicity of G are given respectively

by µ(G, 1) and µ(G,−1). The cogenus of G is defined to be

δ(G) :=
∑
e∈E

(
`(e)w(e)− 1

)
.

We denote by minv(G) and maxv(G) the smallest and respectively the largest vertex

i of G that is incident to at least one edge. The length of G is defined to be

`(G) := maxv(G) − minv(G). For an integer k ≥ 0, we denote by G(k) the graph

obtained by shifting edges of G to the right by k.

Example 3.6. Figure 3.1 shows some examples of long-edge graphs. H is obtained

from G by shifting it to the right by 3 i.e. H = G(3). Thus G and H have the

same length, same refined multiplicity and cogenus. These are given respectively

by `(G) = `(H) = 2, δ(G) = δ(H) = 2 and

µ(G, y) = µ(H, y) = y + 2 + y−1.

Further, we have minv(K) = 3,maxv(K) = 6, δ(K) = 3 and µ(K, y) = y−2 +4y−1 +

6 + 4y + y2.

Definition 3.7. Let G = (V,E) be a long-edge graph and e : E → Z>0 be a weight

function on its edges. For any vertex j of G let

λj = λj(G) :=
∑
e

w(e),
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b b b b b b b b b b
2 2 2 2

G H K

0 1 2 3 4 5 3 4 5 6

Figure 3.1. Examples of long-edge graphs.

where the sum is over all edges i
e−→ k such that i < j ≤ k.

Definition 3.8. Let β = (β1, . . . , βM+1) ∈ (Z≥0)M+1 be a sequence of integers. G

is called β-allowable if maxv(G) ≤M + 1 and βj ≥ λj(G) for all j = 1, . . . ,M + 1.

G is called strictly β-allowable if it is β-allowable and furthermore all edges incident

to 0 or M + 1 have weight 1. Also write λj(G) := λj(G) −#{edges (j − 1 → j)}.
G is called β-semiallowable if maxv(G) ≤M + 1 and βj ≥ λj(G) for all j.

Definition 3.9. Let G be a long edge graph. Let ε0(G) := 1, if all edges adjacent

to minv(G) have weight 1, and ε0(G) := 0 otherwise. Similarly let ε1(G) := 1, if all

edges adjacent to maxv(G) have weight 1, and ε1(G) := 0 otherwise.

Definition 3.10. A long edge graph Γ is said to be a template if for any vertex

1 ≤ i ≤ `(Γ)− 1 there exists at least one edge (j → k) with j < i < k. A long edge

graph G is said to be a shifted template if G = Γ(k) for some template k ∈ Z≥0.

The following lemma will be useful in the proof of the main theorem. It has

already been used (without proof) in [Liu16, LO14].

Lemma 3.11. Let Γ be a template and let δ(Γ) and l(Γ) be its cogenus and length

respectively then δ(Γ) ≥ l(Γ)− ε1(Γ).

Proof. The proof is by induction on l(Γ). Assume that l(Γ) = 0, then the result

holds trivially. Let Γ0 be a template consisting of a single edge e. By definition,

δ(Γ0) = ρ(e)l(e)− 1. We have the following cases

(3.5)

δ(Γ0) = l(e)− 1 if ρ(e) = 1

δ(Γ0) = ρ(e)l(e)− 1 ≥ l(e) otherwise.
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In both cases, it follows therefore that δ(Γ0) ≥ l(Γ0)−ε1(Γ0). Let Γ be any template

and let e = j
e−→ maxv(Γ) be the longest edge adjacent to maxv(Γ). If there is more

than one such edge then choose one arbitrarily. Let Γ′ be the graph obtained from

Γ by deleting all edges i → k with j ≤ i except e. By construction we have

l(Γ) = l(Γ′), ε1(Γ′) ≥ ε1(Γ) and moreover

(3.6)

δ(Γ) > δ(Γ′) if ε1(Γ′) > ε1(Γ)

δ(Γ) ≥ δ(Γ′) otherwise.

Let Γ′′ be the graph obtained from Γ′ by deleting e. If Γ′′ is empty then by (3.6)

and (3.5) above the result follows. So we can assume that Γ′′ in not empty. Then

Γ′′ is a template such that l(Γ′′) < l(Γ) and using properties of templates and (3.5)

above one finds that

(3.7) l(e) + l(Γ′′) > l(Γ) and δ(Γ′) = δ(Γ′′) + ρ(e)l(e)− 1 ≥ δ(Γ′′) + l(e)− ε1(Γ′).

This implies that δ(Γ′) ≥ l(Γ) + 1− ε1(Γ′). Since l(Γ′′) < l(Γ) by induction we have

that δ(Γ′′) ≥ l(Γ′′)− ε1(Γ′′). Finally using (3.6) and (3.7) above we have

(3.8)

δ(Γ) > l(Γ) + 1− ε1(Γ′) if ε1(Γ′) > ε1(Γ)

δ(Γ) ≥ l(Γ) + 1− ε1(Γ′) if ε1(Γ′) = ε1(Γ).

In the first case, ε1(Γ′) > ε1(Γ) implies that ε1(Γ) = 0 and ε1(Γ′) = 1 and therefore

δ(Γ) > l(Γ). The second case is straight forward hence the result. �

Definition 3.12. Let β = (β1, . . . , βM+1) ∈ (Z≥0)M+1 and G be a β-allowable

long-edge graph. Create a new graph extβ(G) by adding βj−λj(G) edges of weight

1 connecting j − 1 and j for all j = 1, . . . ,M + 1. A β-extended ordering of G is a

total ordering on the union of the vertices and edges of extβ(G), such that

(1) it extends the natural ordering of the vertices 0, 1, 2, . . .,

(2) if an edge e connects vertices i and j, then e is between i and j.

Two extended orderings o, o′ of G are considered equivalent if there is an automor-

phism σ of the edges, permuting only edges connecting the same vertices and of the

same weight such that σ(o) = o′.
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Definition 3.13. Let β = (β1, . . . , βM+1) ∈ (Z≥0)M+1 and G be a β-allowable

long-edge graph. Denote by Pβ(G) the number of β-extended orderings of G up to

equivalence. Here Pβ(G) is defined to be 0, if G is not β-allowable. Furthermore let

P s
β(G) :=

Pβ(G) G strictly β-allowable,

0 otherwise.

Example 3.14. Let β = (β1, β2, β3) = (3, 4, 5). For this β, the graph G in Figure 3.1

is strictly β-allowable (note that λ1(G) = 1, λ2(G) = 3 and λj(G) = 0 for all other

j 6= 1, 2). From Figure 3.2 it is easy to see that P s
β(G) = 12.

2

b b b b

0 1 2 3

Figure 3.2. The extended graph extβ(G).

Definition 3.15. Given any δ ≥ 0 and any β ∈ (Z≥0)M+1 define

N δ
β(y) :=

∑
G

µ(G, y)P s
β(G), nδβ :=

∑
G

µ(G, 1)P s
β(G), W δ

β :=
∑
G

µ(G,−1)P s
β(G)

where the sum is over all long edge graphs such that δ(G) = δ.

Let β = (β1, . . . , βd+1). We introduce the terminology of β-graphs for the sole

purpose of proving Theorem 3.18 below. A β-graph G is defined precisely like a

long-edge graph, except that we allow short edges and require that βj = λj(G) for

all j = 1, . . . , d + 1 where λj(G) is defined similarly as in the case of long-edge

graphs. Furthermore, we define the multiplicity and the cogenus of a β-graph just

as we would for a long-edge graph.

Lemma 3.16. Let β ∈ Zd+1
≥0 . There exists a cogenus preserving bijection between

strictly β-allowable long-edge graphs and β-graphs whose edges incident to 0 or d+1

have weight 1.

Proof. Let G be a strictly β-allowable long-edge graph. The map G 7→ extβ(G)

associate to G a β-graph. It is clear from definition that extβ(G) is a β-graph whose

edges adjacent to 0 or d+1 have weight 1. On the other hand, removing short edges
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from a β-graph H yields a long-edge graph which is strictly β-allowable if and only

if all edges of H incident to 0 or d + 1 have weight 1. Furthermore, the fact that

short edges contribute 0 to the cogenus means that δ(G) = δ(extβ(G)). Conversely

let H ′ be the graph obtained after removing short edges from a β-graph H then its

also clear that H ′ is a long-edge graph satisfying δ(H ′) = δ(H). �

Let c,m, d ∈ Z≥0. For our purposes, we are interested in sequences in (Z≥0)d+1

of the following type: put s(c,m, d) := (e0, . . . , ed) where ei = c+mi. Let s1, . . . , sd

be a sequence of non-negative integers such that s1 + · · ·+ sd = c. In the following

we will consider β-graphs H such that:

(?)

for each j : 1 ≤ j ≤ d then H has precisely sj edges of weight 1 of type

0
e−→ j and additionally all edges of type j

e−→ d+ 1 are of weight 1 and the

number of such edges is less or equal to m+ sj.

Lemma 3.17. Let ∆ = ∆(c,m,d) for c,m, d ∈ Z≥0 and let β = β(∆) := s(c,m, d).

There exists a cogenus preserving bijection between β-graphs satisfying (?) above

and the markings of ∆-floor diagrams.

Proof. Let D be a ∆-floor diagram and consider the graph obtained after applying

Step 1 and Step 2 of Definition 2.35. Then identifying all vertices created in Step 1

to a vertex 0 and all the vertices created in Step 2 to a vertex d+1 then it is easy to

see that the resulting graph G(D) is a β-graph satisfying (?) above. On the other

hand let H be a β-graph and denote by H̃ the graph obtained from H by deleting

vertices 0 and d + 1 and all the edges that are incident to these vertices. Then H̃

is a graph on the vertex set {1, . . . , d} satisfying the following. For j : 1 ≤ j ≤ d

let sj be the number of edges of type 0
e−→ j then

div(j) = βj+1 − βj = c+m(j + 1)− c+mj = m ≤ m+ sj.

In other words, H̃ is a ∆-floor diagram. Next, we show that this correspondence

preserves cogenus. Let: E be the edge set of D; Ẽ be the edge set of a marking D̃
of D and G(E) be the edge set of G(D). First note that for ∆ = ∆(c,m,d) we have

that

(3.9) #(int(∆) ∩ Z2) = cd− c− dm+m(d(d+ 1))/2− d+ 1.
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Using the fact that for a floor diagram D we have
∑d

j=1 div(j) = 0 we see that

the cardinality of Ẽ is 2#E + 2c + dm whereas the number of vertices of D̃ is

d+ #E + 2c+ dm. Thus by definition δ(D̃) = #(int(∆) ∩ Z2)−#E + d− 1. Note

in particular that δ(D) = δ(D̃) i.e. the map D 7→ D̃ preserves the cogenus. On the

other hand the number of edges in G(E) is #E + 2c+ dm and thus

δ(G(D)) =
∑

e∈G(E)

w(e)l(e)−#G(E) =
d∑
j=0

(c+mj)−#E − 2c− dm

Simplifying the right hand side of the above equation we get

cd− c− dm+m(d(d+ 1))/2−#E = #(int(∆) ∩ Z2) + d− 1−#E.

This shows that δ(G(D)) = δ(D̃). �

The relation of N δ
β(y) to the refined Severi degrees and the tropical Welschinger

invariants is given in the following theorem.

Theorem 3.18. Let S be P2,P(1, 1,m) or Σm and L be a line bundle on S. On

P2,P(1, 1, H) let H be the hyperplane bundle and on Σm let H := E +mF where F

is the class of the ruling and E is the class of a section with E2 = −m. Then

(1) for the refined Severi degrees

Nd,δ(y) = N δ
s(0,1,d)(y), N (P(1,1,m),dH),δ(y) = N δ

s(0,m,d)(y) and

N (Σm,cF+dH),δ(y) = N δ
s(c,m,d)(y),

(2) for the Severi degrees

nd,δ = nδs(0,1,d), n(P(1,1,m),dH),δ = nδs(0,m,d) and n(Σm,cF+dH),δ = nδs(c,m,d),

(3) and for the Welschinger invariants

W d,δ = W δ
s(0,1,d), W (P(1,1,m),dH),δ = W δ

s(0,m,d) and W (Σm,cF+dH),δ = W δ
s(c,m,d).

Proof. For any toric surface S and toric line bundle L on S we know that n(S,L),δ =

N (S,L),δ(1) and W (S,L),δ = N (S,L),δ(−1). On the other hand by Definition 3.5 and

Definition 3.15 we have nδβ = N δ
β(1) and W δ

β = N δ
β(−1). Therefore to prove the

theorem it is enough to consider case (1) only. Further, it is enough to consider the
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case S = Σm since by Definition 2.36 and Theorem 2.37 we have N (P(1,1,m),dH),δ(y) =

N (Σm,dH),δ(y). The idea is to show that

(3.10) N δ
β(y) =

∑
D

µ(D, y)ν(D)

where the sum is over all ∆-floor diagrams such that δ(D) = δ. By Lemma 3.16 and

Lemma 3.17, there exists a bijection between (markings of) ∆-floor diagrams and

strictly allowable long-edge graphs which respects cogenus. Furthermore, let G(D)

be as in Lemma 3.17 above then the number of β-extended orderings of G(D) is

clearly equal to the number of inequivalent markings of D. This is precisely (3.10)

above. �

Consider the generating function for N∆,δ(y) which for ∆ = ∆c,m,d and by

Theorem 3.18 above can be expressed as

(3.11) N ((S∆, L∆), y) := 1 +
∑
δ≥1

N (S∆,L∆),δ(y)tδ = 1 +
∑
δ≥1

N δ
β(y)tδ.

Consider the formal logarithm of the above generating function, that is

log(1 +
∑
δ≥1

N δ
β(y)tδ) =

∑
δ≥1

Qδ
β(y)tδ.

To prove Theorem 3.1 is equivalent to proving that Qδ
β(y) is linear in the param-

eters defining ∆ as already explained in the introductory section. This leads to a

consideration of the logarithmic version of Pβ(G) and P s
β(G). Again we follow the

notations and definitions in [Liu16, LO14].

Definition 3.19. A partition of a long edge graph G = (V,E,w) is a tuple

(G1, . . . , Gn) of nonempty long edge graphs such that the disjoint union of the

(weighted) edge sets of G1, . . . , Gn is the (weighted) edge set of G.

For any long edge graph define

Φβ(G) :=
∑
n≥1

(−1)n+1

n

∑
G1,...,Gn

n∏
j=1

Pβ(Gj),

Φs
β(G) :=

∑
n≥1

(−1)n+1

n

∑
G1,...,Gn

n∏
j=1

P s
β(Gj),



3.1. LONG EDGE GRAPHS AND THE MULTIPLICATIVITY THEOREMS 57

where both summations are over the partitions of G. Using the same arguments

used in the unrefined setting [LO14, §3] we have that

(3.12) Qδ
β(y) =

∑
G

µ(G, y)Φs
β(G),

where the sum is taken again over all long-edge graphs of cogenus δ. By [Liu16,

Lem. 2.15] we have Φs
β(G) = 0, if G is not a shifted template. On the other hand

[Liu16, Cor. 3.5] says that for a template Γ and for β = (β1, . . . , βM+1) ∈ (Z≥0)M+1

we have

(3.13) Φs
β(Γ(k)) =

Φβ(Γ(k)) 1− ε0(Γ) ≤ k ≤M + ε1(Γ)− `(Γ)

0 otherwise.

Using (3.13) together with (3.12), we obtain the following refined version of [LO14,

Cor. 3.6].

Corollary 3.20. Let β = (β1, . . . , βM+1) ∈ ZM+1
≥0 . Then

Qδ
β(y) =

∑
Γ

µ(Γ, y)

M−`(Γ)+ε1(Γ)∑
k=1−ε0(Γ)

Φβ(Γ(k)),

where the first sum runs over all templates Γ of cogenus δ.

The following theorem will be an ingredient to the proof of Theorem 3.22 below.

It is included here for completeness.

Theorem 3.21. ([LO14, Thm. 3.8]) Let G be a long edge graph. There exists a

linear multivariate function Φ(G, β) in β, such that for any β such that G is β-

semiallowable, we have Φβ(G) = Φ(G, β). Furthermore writing β = (β0, . . . , βM) ∈
ZM+1
≥0 , the linear function Φ(G, β) is a linear combination of the βi with minv(G) ≤

i ≤ maxv(G).

Now we prove the equivalent statement to Theorem 3.1. This will show that the

generating functions for the refined Severi degrees on weighted projective spaces

and rational ruled surfaces are multiplicative. Similar strategy has been used in

[BCK14, Liu16]. In particular, in [Liu16, Thm. 1.4] the multiplicativity of the

generating function for the Severi degrees on P2 is proven by showing that Qδ
β is

quadratic in d(to be precise linear in 1, d, d2).



58 3. MULTIPLICATIVITY OF THE GENERATING FUNCTIONS

Theorem 3.22. Let ∆ = ∆(c,m,d) such that (S∆, L∆) be (P2, dH) or (P(1, 1,m), dH)

or (Σm, cF + dH). Then Q(S∆,L∆),δ(y) can be expressed as a linear combination of

1, c, d, cd,m,md,md2. To be precise

(1) if c ≥ δ and d ≥ δ, then Q(Σm,cF+dH),δ(y) is a Q[y±1]-linear combination of

1, c, d, cd, m, md, md2;

(2) in particular if c ≥ δ, d ≥ δ, then Q(P1×P1,cF+dH),δ(y) is a Q[y±1]-linear

combination of 1, c+ d, cd.

(3) Fix m ≥ 1, c ≥ 0. If d ≥ δ then Q(Σm,dH+cF ),δ(y) is a polynomial of degree

2 in d.

(4) Fix m ≥ 1. If d ≥ δ, then Q(P(1,1,m),dH),δ(y) is a polynomial of degree 2 in

d. In particular for d ≥ δ, Qd,δ(y) is a polynomial of degree 2 in d.

(5) If d,m ≥ δ, then Q(P(1,1,m),dH),δ(y) is a Q[y±1]-linear combination of 1, m,

d, dm, d2m.

Proof. (1) By Theorem 3.18 above we that have Q(Σm,cF+dH),δ(y) = Qδ
s(c,m,d)(y).

Consequently, Corollary 3.20 implies that

(3.14) Q(Σm,cF+dH),δ(y) =
∑

Γ

µ(Γ, y)

d−`(Γ)+ε1(Γ)∑
k=1−ε0(Γ)

Φs(c,m,d)(Γ(k)),

where the first sum is over all templates Γ such that δ(Γ) = δ.

Let Γ now be a template of cogenus δ, and let k be an integer in the interval

[1− ε0(Γ), d− `(Γ) + ε1(Γ)]. Then by definition we get

Φs(c,m,d)(Γ(k)) = Φs(c+km,m,`(Γ)−1)(Γ).

On the other hand using [LO14, Lem. 4.2] we have λi(Γ) ≤ δ for all i. By our

assumption we have c ≥ δ ≥ λi(Γ), which imply that

c+m(k + i) ≥ λi(Γ)

for all i. In other words, Γ is s(c + km,m, `(Γ) − 1)-semiallowable. Therefore, by

Theorem 3.21, it follows that Φs(c+km,m,`(Γ)−1)(Γ) is a linear function in c+ lm, for

l in the interval k ≤ l ≤ k + `(Γ) − 1, thus it is linear function in c, m and km of

the form α + β(c+ km) + γm, with α, β, γ ∈ Q.

Define M1 := d − `(Γ) + ε1(Γ) + ε0(Γ), M2 := d − `(Γ) + ε1(Γ) − ε0(Γ) + 1.

By Lemma 3.11 we have `(Γ) − ε1(Γ) ≤ δ, so, by our assumption d ≥ δ, we have
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M1 ≥ 0. Recall that for integers a, b such that b ≥ 0 and b ≥ a − 1 we have the

trivial identity

(3.15)
b∑

k=a

k =
(a+ b)(b− a+ 1)

2
.

Thus we get

d−`(Γ)+ε1(Γ)∑
k=1−ε0(Γ)

Φs(c,m,d)(Γ(k)) =

d−`(Γ)+ε1(Γ)∑
k=1−ε0(Γ)

(
α + β(c+ km) + γm

)
= M1(α + βc+ γm) +

M1M2

2
βm,

which is a Q-linear combination of 1, c, d, cd,m,md,md2. Consequently (3.14) im-

plies that Q(Σm,cF+dH),δ(y) is a Q[y±1] linear combination of 1, c, d, cd,m,md,md2.

(2) We use the fact that P1×P1 is defined by the polygon ∆ = ∆(c,m,d) with m = 0.

By case (1) above it follows therefore that Q(P1×P1,cF+dH),δ(y) is a linear combination

of 1, c, d, cd. It is clearly symmetric under exchange of c and d, and thus a linear

combination of 1, c+ d, cd.

(3) We proceed with a similar strategy as in the proof of case (1). Here, c ≥ 0 is

fixed and not necessarily larger that δ and therefore, we need a different strategy to

prove semiallowability of the template. Again by Corollary 3.20 and Theorem 3.18

we have,

(3.16) Q(Σm,cF+dH),δ(y) = Qδ
s(c,m,d)(y) =

∑
Γ

M(Γ)

d−`(Γ)+ε1(Γ)∑
k=1−εo(Γ)

Φs(c,m,d)(Γ(k)),

with Γ again running through all templates of cogenus δ.

Let Γ be a template of cogenus δ, and let k be an integer lying in the interval

[1− ε0(Γ), d− `(Γ) + ε1(Γ)]. Then again using the definition of a shifted template

we get Φs(c,m,d)(Γ(k)) = Φs(c+km,m,`(Γ)−1)(Γ). For a rational number a we denote by

dae the smallest integer bigger or equal to a. We put

kmin := max

(
1,max

(⌈
λi(Γ)

m

⌉
− i+ 1

∣∣∣∣ i = 1, . . . , `(Γ)

))
.

This implies that for any k ≥ kmin then c+m(k+ i− 1) ≥ λi(Γ) for all i. Therefore

Γ is s(c + km,m, `(Γ) − 1)-semiallowable and thus for k ≥ kmin, we have that

Φs(c+km,m,`(Γ)−1)(Γ) is a linear function in the lm, k ≤ l ≤ k + `(Γ)− 1, thus it is a

linear function α + βkm+ γm, with α, β, γ ∈ Q.
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By [LO14, Lem. 4.2], we have λi(Γ) ≤ δ − `(Γ) + i + ε1(Γ). As λi(Γ) ≥ 0, this

implies ⌈
λi(Γ)

m

⌉
− i+ 1 ≤ δ + ε1(Γ)− `(Γ) + 1

for all i. By the inequality `(Γ) − ε1(Γ) ≤ δ, already used in part (1), this implies

kmin ≤ δ + ε1(Γ)− `(Γ) + 1. By our assumption d ≥ δ, we have d− `(Γ) + ε1(Γ)−
kmin + 1 ≥ 0. Therefore using (3.15) then the sum

σ(Γ, kmin) :=

d−`(Γ)+ε1(Γ)∑
k=kmin

Φs(c,m,d)(Γ(k))

is a Q-linear combination of 1, d, m, md, md2. If we fix m, it is a linear combination

of 1, d, d2. But

d−`(Γ)+ε1(Γ)∑
k=1−ε0(Γ)

Φs(c+km,m,l(Γ)−1)(Γ) = σ(Γ, kmin) +

kmin−1∑
k=1−ε0(Γ)

Φs(c+km,m,l(Γ)−1)(Γ).

The second sum is for fixed m just a finite number, thus the claim follows.

(4) As Q(P(1,1,m),dH),δ(y) = Q(Σm,dH),δ(y), (4) is a special case of (3).

(5) By Corollary 3.20 and Theorem 3.18,

(3.17) Q(P(1,1,m),dH),δ(y) = Qδ
s(0,m,d)(y) =

∑
Γ

M(Γ)

d−`(Γ)+ε1(Γ)∑
k=1

Φs(0,m,d)(Γ(k)),

with Γ running through all templates of cogenus δ. According to Corollary 3.20, the

inner sum starts at k = 1− ε0(Γ). But Γ is a template and therefore not s(0,m, d)-

semiallowable. Thus (in case ε0(Γ) = 1), the contribution for k = 0 vanishes.

We have Q(P(1,1,m),dH),δ(y) = Qδ
s(0,m,d)(y), which is computed by the case c = 0 of

(3.17). k = 1, because a template Γ can never be (0,m, d)-semiallowable and thus

(in case ε0(Γ) = 1), the contribution for k = 0 vanishes. If m ≥ δ, then kmin = 1

for all templates Γ of cogenus δ, thus

Q(P(1,1,m),dH),δ(y) = Qδ
s(0,m,d)(y) =

∑
Γ

M(Γ)σ(Γ, 1),

with Γ again running through the templates of cogenus δ. By (3) this is a Q[y±1]-

linear combination of 1, d, m, md, md2. �

Remark 3.23. Theorem 3.1 above does not in general proof the multiplicativity of

the generating function for the refined node polynomials on S∆ with ∆ = ∆(c,m,d).
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Recall that multiplicativity means that for the pair (S, L) of a smooth projective

surface and a line bundle then

N ((S, L); y) :=
∑
δ≥0

N (S,L),δ(y)tδ = AL
2

1 ALKS2 A
K2
S

3 A
χ(OS)
4

for some Ai ∈ Q[y±1]JtK. Defining A1 := P1,2, A
−3
2 := P1,1 and A9

3A4 = P1,0 then

Theorem 3.1 shows that N (d, y) has a multiplicative structure. More needs to be

done to show the same for N ((Σm, cF + dH); y).

Recall that a generic line bundle on a ruled surface Σm is of the form L = cF+dH

where F is the class of the ruling and H = E+mF and E is the class with E2 = −m.

In particular we have that KΣm = −2H + (m− 2)F . Thus on (Σm, L) we have

(L2, LKΣm , K
2
Σm , χ(OS)) = (md2 + 2cd,−md− 2c− 2d, 8, 1).

Theorem 3.1 above states that N ((Σm, cF + dH); y) = S0S
c
1S

d
2S

cd
3 S

m
4 S

md
5 Smd

2

6 . To

show multiplicativity one would therefore need to show that

• S6 = S2
3 which by universality would further imply A1 = P1,2 = S6 = S2

3 ,

• A2 = S−2
1 = S−2

2 S−1
5 = P

−1/3
1,1 ,

• A8
3A4 = S0S

m
4 .

Remark 3.24. Theorem 3.22 above can be generalized to a large class of toric

surfaces defined by h-transverse lattice polygons. For a sequence s = (s1, . . . , sM)

the reversal set of s is defined (see [LO14, Def. 2.9]) to be

Rev(s) = {1 ≤ i < j ≤M : si < sj}.

Let ∆ be a general h-transverse lattice polygon defined by the quadruple {l, r, dt, db}
where l = (l1, . . . , lh) and r = (r1, . . . , rh) are the left and respectively the right

directions associated to ∆. See §2.4 of Chapter 2 for a brief discussion. Define the

cogenus of the pair (l, r) to be

δ(l, r) :=
∑

(i,j)∈Rev(r)

(rj − ri) +
∑

(i,j)∈Rev(−l)

(li − lj).

Ardila and Block [AB13, Prop. 3.3] showed that for the Severi degrees on general

toric surfaces defined by h-transverse lattice polygon ∆ associated to the quadruple
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{l, r, dt, db} then

(3.18) N∆,δ =
∑
(l,r)

∑
G

µ(G)P s
β(dt,r−l)(G)

where the first sum is over all reorderings l = (l1, . . . , lh) and r = (r1, . . . , rh)

of the left and the right directions of ∆ satisfying δ(l, r) ≤ δ, where the second

sum is over all long-edge graphs G of cogenus δ − δ(l, r) and where for a sequence

t = (t0, t1, . . . , tM) then β(t) = (t0, t0 + t1, . . . , t0 + · · ·+ tM). Counting every curve

with its refined multiplicity then following the steps of Theorem 3.18 carefully above

yields the refined version of (3.18) above

(3.19) N∆,δ(y) =
∑
(l,r)

N
δ−δ(l,r)
β(dt,r−l)(y).

Specializing (3.19) above at y = 1 gives (3.18) while specializing it at y = −1 gives

W∆,δ =
∑
(l,r)

W
δ−δ(l,r)
β(dt,r−l)

where the summation indices are as described above. What this means is that with

special care, one can be able to show that the generating function for the refined

Severi degrees on general toric surface defined by a h-transverse lattice polygon

does satisfy similar properties as in Theorem 3.1.

3.2. Relation to the Generating Functions of the Refined Invariants

The refined invariants Ñ (S,L),δ(y) introduced in [GS14] are symmetric Laurent

polynomials in a variable y whose coefficients can be expressed universally as poly-

nomials in the four intersection numbers L2, LKS, KS and c2(S) on the surface. It is

conjectured [GS14, Conj. 62] that the generating function for the refined invariants

is multiplicative. In this section we state an explicit version of this conjecture and

prove some partial results towards the conjecture for P2 and rational ruled surfaces.

For toric surfaces S and sufficiently ample line bundles L, the refined invariants

Ñ (S,L),δ(y) and the refined Severi degrees are conjectured to agree.

Conjecture 3.25. [GS14, Conj. 80]. Let (S, L) be a pair of a smooth toric surface

and a line bundle on L.

(1) If L is δ-very ample on S, then Ñ (S,L),δ(y) = N (S,L),δ(y).

(2) Ñd,δ(y) = Nd,δ(y) for δ ≤ 2d− 2.
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(3) Ñ (P1×P1,dH+cF ),δ(y) = N (P1×P1,dH+cF ),δ(y) for δ ≤ min(2d, 2c).

(4) Ñ (Σm,dH+cF ),δ(y) = N (Σm,dH+cF ),δ(y) for δ ≤ min(2d, c).

Remark 3.26. If Conjecture 3.25 above is true then it implies that the refined

Severi degrees for (S, L) can also be expressed universally as polynomials in the

intersection numbers of the pair. Explicitly, it means that for every δ ≥ 0 then the

conjectural (Conjecture 1.26) universal polynomials Tδ ∈ Q[y±1][q, r, s, t] satisfy

N (S,L),δ(y) = Tδ(L
2, LKS, KS, c2(S)).

This implies that Nδ(S, L; y) = Ñ (S,L),δ(y) for any pair of a toric surface and a

line bundle (S, L). In particular Nδ(d; y) = Ñd,δ(y) for all d, δ, and Nδ((Σm, cF +

dH); y) = Ñ (Σm,dH+cF ),δ(y) for all m, d, c, δ.

We now state the explicit conjectural generating function for the Nδ(S, L; y). We

have already introduced (in §1.3 of Chapter 1) the Eisenstein series Gk(q), the dis-

criminant ∆(q) and their modifications ∆̃(y, q), D̃G2(y, q). For purely spacial con-

straints we shall often write ∆̃, D̃G2, Bi for the power series ∆̃(y, q), D̃G2(y, q), Bi(y, q)

respectively. We first restate the conjectural generating function for the refined in-

variants and give two equivalent reformulations of the conjecture.

Conjecture 3.27. ([GS14]) There exist universal power series B1, B2 in Q[y, y−1]JqK,

such that for all pairs (S, L) of a smooth projective surface S and a line bundle L

on S, we have

(3.20)
∑
δ≥0

Ñ (S,L),δ(y)(D̃G2)δ =
(D̃G2/q)

χ(L)B
K2
S

1 BLKS
2

(∆̃ ·DD̃G2/q2)χ(OS)/2

where as before, D := q ∂
∂q

.

We now give two equivalent reformulations. Note that D̃G2 as a power series in q

starts with q (see (1.39) above), let

g(t) := g(y, t) = t+((−y2−4y−1)/y)t2 +((y4 +14y3 +30y2 +14y+1)/y2)t3 +O(t4)

be its compositional inverse i.e. g(t) is a power series such that D̃G2(y, g(t)) = t

and conversely g(y, D̃G2(y, q)) = q. Write g′(t) := ∂g
∂t
.

Remark 3.28. Let R ∈ Q[y±1][[q]] be a formal power series. For polynomials

Mδ((S, L); y) ∈ Q[y±1] the following three formulas are equivalent:
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(1)
∑
δ≥0

Mδ((S, L); y)(D̃G2)δ =
(D̃G2/q)

χ(L)B
K2
S

1 BLKS
2

(∆̃ ·DD̃G2/q2)χ(OS)/2
R.

(2)
∑
δ≥0

Mδ((S, L); y)tδ =
(t/g(t))χ(L)B1(y, g(t))K

2
S

B2(y, g(t))−LKS

(
g(t)g′(t)

∆̃(y, g(t))

)χ(OS)/2

R(y, g(t)).

(3) For all δ ≥ 0

Mδ((S, L); y) = Coeff
q(L2−LKS)/2

[
D̃G

χ(L)−1−δ
2

B
K2
S

1 BLKS
2 DD̃G2

(∆̃ ·DD̃G2)χ(OS)/2
R

]
.

Proof. (2) is equivalent to (1) by noting that

DD̃G2(y, g(t)) =
g(t)

g′(t)

∂D̃G2(y, g(t))

∂t
=
g(t)

g′(t)
.

Let A be a commutative ring, and let f ∈ AJqK, h ∈ q + q2AJqK. Then we get by

the residue formula that

f(q) =
∞∑
l=0

h(q)l Coeff
q0

[
f(q)Dh(q)

h(q)l+1

]
.

Applying this with h(q) = D̃G2, and using the equality χ(L) = 1
2
(L2 − LKS) +

χ(OS), shows that (1) is equivalent to (3). �

Using the Riemann-Roch theorem i.e. χ(L) = (L2 − LKS)/2 + χ(OS) in Re-

mark 3.28 then part (2) shows that Conjecture 3.27 is a more explicit version of

Conjecture 1.28. In particular, with

A1(y, t) =

(
t

g(t)

)1/2

and A4(y, t) =

(
tg′(t)

g(t)∆̃(y, g(t))

)1/2

.

By Remark 3.26 for P2 and rational ruled surfaces the conjecture says in particular

Nδ(d; y) = Coeff
q(d2+3d)/2

D̃Gd(d+3)/2−δ
2

B9
1

B3d
2

(
DD̃G2

∆̃

)1/2
 ,(3.21)

Nδ((Σm, cF + dH); y) =(3.22)

Coeff
q(d+1)(c+1+md/2)−1

D̃G(d+1)(c+1+md/2)−1−δ
2 B8

1

B
2c+(m+2)d
2

(
DD̃G2

∆̃

)1/2
 .

Corollary 3.29. With the the power series B1(y, q), B2(y, q) given in [GS14,

Conj. 67] modulo q11 and in the Appendix A modulo q18, we have the following

(1) The formula (3.21) and Conjecture 3.25(2) are true for δ ≤ 17.
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(2) In case m = 0 the formula (3.22) and Conjecture 3.25(2) is true for δ ≤ 12.

(3) The formula (3.22) and Conjecture 3.25(3) are true for all m and δ ≤ 8.

Proof. (1). Using the Caporaso-Harris recursion (Definition 1.29 and Remark 1.30),

we computed the Nd,δ(y) for d ≤ 19, δ ≤ 19. This also computes the Qd,δ for d ≤ 19,

δ ≤ 19. Part (4) of Theorem 3.22 gives Qd,δ = Qδ(d) for d ≥ δ. As Qδ(d; y) is a

polynomial of degree 2 in d, the computation above determines Qδ(d; y) and thus

the Nδ(y; d) for δ ≤ 17, giving the claim.

(2) and (3). Using again the Caporaso-Harris recursion (Definition 1.29 and Re-

mark 1.30), we computed the refined Severi degree N (P1×P1,cF+dH),δ(y) for c, d ≤
13, δ ≤ 13. Again this gives the Q(P1×P1,cF+dH),δ for c, d ≤ 13, δ ≤ 13. By part

(2) of Theorem 3.22 we have that Q(P1×P1,cF+dH),δ = Qδ((P1 × P1, cF + dH); y)

for c, d ≥ δ. As Qδ((P1 × P1, cF + dH); y) is a polynomial of bidegree (1, 1) in

c, d, the computation above determines Qδ((P1 × P1, cF + dH); y) and thus the

Nδ((Σ0, cF + dH); y) for δ ≤ 12. As Qδ((Σm, cF + dH); y) is a linear combination

of 1, c, cd, m, md, md2, in order to prove (2) we only need to determine the coef-

ficients of m, md, md2. For this we can restrict to the case m = 1, We computed

N (Σ1,cF+dH),δ(y) for c,≤ 9, d ≤ 10. This determines the coefficients of m, md, md2

of Qδ((Σm, cF + dH); y) for δ ≤ 8, giving the claim. �

As noted above, the refined Severi degrees N (S,L),δ(y) specialize at y = −1 to

the tropical Welschinger numbers W (S,L),δ. We specialize the above conjectures of

[GS14] to the tropical Welschinger numbers. As the Caporaso-Harris recursion for

the tropical Welschinger numbers is computationally much more efficient than that

for the refined Severi degrees, the conjectures for the tropical Welschinger numbers

can be proven for much higher δ. Conjecture 3.25 specializes to the following (see

also [GS14]).

Conjecture 3.30. For the stable Welschinger numbers we have

Wδ(d) = Coeff
q(d2+3d)/2

[
G2(q)d(d+3)/2−δB1(q)9(DG2(q))1/2

B2(q)3dη(q)8η(q2)2

]
,

(3.23)

Wδ((Σm, cF + dH)) = Coeff
q((d+1)(c+1+md/2)−1

[
G2(q)(d+1)(c+1+md/2)−1−δB1(q)8(DG2(q))1/2

B2(q)2c+(m+2)dη(q)8η(q2)2

](3.24)
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where G2(q), DG2(q), B1(q), B2(q) and η(q) are as in §1.5 of Chapter 1.

Corollary 3.31. With B1(q), B2(q) given below modulo q31 we have the following.

(1) The formula (3.23) is true for δ ≤ 30. Furthermore for δ ≤ 30 and d ≥
δ/3 + 1 we have W d,δ = Wδ(d).

(2) On P1 × P1 the formula (3.24) is true for δ ≤ 20. Furthermore for δ ≤ 20

and δ ≤ min(20, 3c, 3d), we have W (P1×P1,cF+dH),δ = Wδ(P1×P1, cF +dH).

(3) For m > 0, the formula (3.24) is true for δ ≤ 11. Furthermore for δ ≤
min(11, 3d, c) we have W (Σm,cF+dH),δ = Wδ(Σm, cF + dH).

Proof. (1) Using the Caporaso-Harris recursion (Definition 1.29, Definition 1.37

and Remark 1.30), we computed to the W d,δ for d ≤ 32, δ ≤ 33. This also com-

putes the Qd,δ(−1) for d ≤ 32, δ ≤ 33. The same argument as in the proof of

Corollary 3.29 shows (1). Using again the Caporaso-Harris recursion we com-

puted the W (P1×P1,cF+dH),δ for c, d ≤ 21, δ ≤ 22, and computed W (Σ1,cF+dH),δ(y)

for c, d, δ ≤ 13. The same argument as in the proof of Corollary 3.29 gives (2) and

(3). �

B1(q) = 1− q − q2 − q3 + 3q4 + q5 − 22q6 + 67q7 − 42q8 − 319q9 + 1207q10 − 1409q11

− 3916q12 + 20871q13 − 34984q14 − 37195q15 + 343984q16 − 760804q17 − 81881q18

+ 5390386q19 − 15355174q20 + 8697631q21 + 79048885q22 − 293748773q23

+ 329255395q24 + 1041894580q25 − 5367429980q26 + 8780479642q27 + 10991380947q28

− 93690763368q29 + 203324385877q30 + O(q31),

B2(q) = 1 + q + 2q2 − q3 + 4q4 + 2q5 − 11q6 + 24q7 + 4q8 − 122q9 + 313q10 − 162q11

− 1314q12 + 4532q13 − 4746q14 − 13943q15 + 68000q16 − 105786q17 − 124968q18

+ 1025182q19 − 2139668q20 − 443505q21 + 15157596q22 − 41007212q23 + 19514894q24

+ 214218876q25 − 755331892q26 + 780656576q27 + 2776494907q28

− 13420432234q29 + 20749875130q30 + O(q31).
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Conjecture 3.27 above exhibits the following conjectural principle: for the pair

(S, L) of a projective surface and a line bundle, write

A(S,L)(y, q) :=
B1(y, q)K

2
SB2(y, q)LKSDD̃G2(y, q)(

∆̃(y, q)DD̃G2(y, q)
)χ(OS)/2

.

Then for L sufficiently ample, the number of δ-nodal curves in |L| that satisfy k

general point conditions is

Coeff
q(L2−LKS)/2

[
D̃G2(y, q)kA(S,L)(y, q)

]
.

This principle has the following generalization. To each condition c that is imposed

at points of S to curves in |L| on S e.g.

• passing through points with a given multiplicity,

• S having singularity at some points

there corresponds a power series Fc ∈ Q[y±1]JqK satisfying the following. For L

sufficiently ample, the refined count of curves in |L| satisfying conditions c1, . . . , cn

is

Coeff
q(L2−LKS)/2

[
n∏
i=1

Fci(y, q)A
(S,L)(y, q)

]
.

Clearly under this principle, the power series corresponding to passing through

general point is D̃G2(y, q). In §3.3 we shall look at this principle in the particular

case when S has some given type of singularities and later in §3.4, we shall look

at this principle in the particular case where curves are required to pass through

non-singular points of S with a prescribed multiplicity.

3.3. Correction Terms for Singularities

In this section we want to extend the above results and conjectures to surfaces

with singularities. This is partially motivated by the paper [LO14], where this

question is studied for the non-refined invariants for toric surfaces with rational

double points. We have conjectured above and given evidence that there exist

universal power series Ai ∈ Q[y±1][[q]] such that the generating functions for the
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refined node polynomials on smooth toric surfaces S has the form

N (S, L; y) = AL
2

1 ALKS2 A
K2
S

3 A
χ(OS)
4 .

In light of the conjectural principle discussed in §3.2, it seems natural to conjecture

that this extends to singular surfaces in the following form: for every analytic type

of singularities c there is a universal power series Fc(y, q) such that the generating

function for a singular surface S has the form

N (S, L; y) = AL
2

1 ALKS2 A
K2
S

3 A
χ(OS)
4

∏
c

F nc
c ,

where nc is the number of singularities of S of type c. For the case of toric surfaces

given by h-transversal lattice polygons with only rational double points this problem

has been solved in [LO14] for the (non-refined) Severi degrees.

3.3.1. Basic Properties of Surface Singularities. The main objects in the

study of surface singularities consist of a (possibly) singular surface S and a reso-

lution f : X → S. Recall that a resolution of an isolated singularity (S, p) is, by

definition, a projective morphism π : X → S where X is smooth, which induces

an isomorphism X − π−1(p) → S − {p}. In particular, π is birational. In most

scenarios, the goal is to use a resolution X → S to quantify the difference between

S and X by associating invariants to the singularities. In this section, we study the

difference between S and X by comparing the generation functions of the refined

node polynomials. We first recall some basic facts about singularities on complex

algebraic surfaces and their resolutions.

Consider the affine variety V defined as the zero locus of the polynomial f =

x2+y2+zn+1 for n ≥ 1. An elementary calculation shows that the point p = (0, 0, 0)

is an isolated singularity of V . This singularity belongs to a prominent class of

singularities on complex surfaces - the rational double points, also referred to as

the Du Val singularities. They come in three major classes An, Dn(for n ≥ 4) and

En(for n = 6, 7, 8) as the isolated singularities of the hypersurfaces defined by the

polynomials in Table 1.

The rational double points also occur as quotient singularities i.e. they are

isomorphic to C2/G where G is a finite subgroup of SU(2,C). In general, quotient

singularities are defined as follows. Let V be a germ of a point p ∈ X and G
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Type Polynomial Group

An x2 + y2 + zn+1 cyclic

Dn x2 + y2z + zn−1 binary dihedral

E6 x2 + y3 + z4 binary tetrahedral

E7 x2 + y3 + yz3 binary octahedral

E8 x2 + y3 + z5 binary icosahedral

Table 1. The Du Val singularities.

be a finite group of analytic/algebraic automorphisms of V acting freely on V −
{p}. By a theorem of Cartan [Car57], the quotient space V/G has the structure

of a normal two dimensional complex analytic/algebraic space with an isolated

singularity. Furthermore, the projection map V → V/G is analytic/algebraic.

Example 3.32 (Cyclic quotient singularity of type 1
r
(1, a)). Let G = Z/r be the

cyclic group of order r generated by

g =

ε 0

0 εa

 ∈ GL(2,C)

where ε is a primitive rth root of unity, and where a is coprime to r. The affine

variety C2 admits a standard action by G i.e. the restriction of the standard action

on C2 by GL(2,C). A point on X := C2/G is an orbit of G on C2 and thus the

(orbit of the) origin is an isolated singularity of the quotient X. The coordinate

ring C[X] is the ring of invariants C[x, y]G of the induced action of G on C[x, y].

This is the action

G× C[x, y]→ C[x, y]

(g, F ) 7→ g(F )

where g(F ) it the polynomial function such that g(F )(p) = F (g(p)). This action

maps a monomial xmyn to εm+anxmyn and thus a monomial in invariant under this

action if and only if m + an ≡ 0 mod r. To see this, write M ∼= Z2 for the lattice

of Laurent monomials in x, y and N for the dual lattice with basis e1, e2. Consider

the lattice

N = N + Z · 1

r
(1, a) ⊃ N
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and let M ⊂ M denote the dual sublattice. A Laurent monomial lies in M if and

only if the pairing 〈1
r
(1, a), xmyn〉 = m+an

r
is integral. This means that xmyn ∈ M

if and only if m+ an ≡ 0 mod r.

Remark 3.33. Let G be a non-trival finite subgroup of SU(2) as listed in Table

1. Then by [Dur79, Prop. 5.2.], C2/G is isomorphic to f−1(0) where f is the

corresponding polynomial in column 3. In other words, any ordinary double point

on an algebraic surface can be realized locally as a quotient singularity. A cyclic

quotient singularity of type 1
r
(1, a) is a rational double point if in particular, a+1 ≡ 0

mod r. General information about rational double points can be found in [Dur79,

DPT80]. Furthermore, there exist various generalizations of the classification of

rational double points, for instance, to rational triple points [Art66], to elliptic

singularities [Wag70], and to minimally elliptic singularities [Lau77].

It is known, due to Zariski and Abhyankar [Lip69, §II], that any surface singu-

larity has a resolution. Furthermore, it is also known that any birational morphism

on projective surfaces can be factored into a finite sequence of monoidal transfor-

mations(blow up at points) and their inverses [Har77, Thm. V.5.5]. Thus the

monoidal transformation is fundamental to the study of resolution of singularities

on surfaces. In particular, we have the following important theorem relating the

intersection product on the Picard group Pic(S) on a surface S to the intersection

product on Pic(S̃) where S̃ is obtained from S by blowing up a point p ∈ S.

Theorem 3.34. [Bea96, Prop. II.3]. Let π : S̃ → S be a blow up of a point p of a

surface S and let E be the exceptional divisor i.e. E := π−1(p).

(1) There is an isomorphism Pic(S)⊕Z ∼−→ Pic(S̃) defined by (D,n) 7→ π∗D+nE.

(2) Let D,D′ be divisors on S then π∗D ·π∗D′ = D ·D′, π∗D ·E = 0 and E2 = −1.

(3) KS̃ = π∗KS + E.

Let π : X → S be a resolution and denote by E the reduced preimage π−1(p)red.

Then E is called the exceptional curve of the resolution is possibly singular and

reducible. We denote by Ei for i = 1, . . . , k its irreducible components. By Zariski’s

Main Theorem [Har77, Cor III.11.4] we know that E is connected. The resolution

is said to be transversal if E has only ordinary double point singularities(nodal).
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Definition 3.35. A resolution π : X → S is said to be minimal any other resolution

φ : Y → S factors through π i.e. there exists a morphism ψ : Y → X such that

φ = π ◦ ψ.

A curve C on a smooth surface X is called contractible if C ' P1 and C2 = −1.

Let π : X → S be a resolution and suppose that there exists a component Ei of the

exceptional divisor E that is contractible. The by Castelnuovo’s criterion [Har77,

Thm. V.5.7], there exists a commutative diagram

X
π //

η
��

S

Y
π′
// Z

η′

OO

where Y, Z are smooth surfaces, π′ a monoidal transformation at a point p ∈ Z and

where η′ a projective morphism and η an isomorphism such that η(C) = π′−1(p).

The composition π′ ◦ η maps Ei to a point and thus η′ : Z → S is a resolution

whose exceptional divisor has less irreducible components. Thus one can find a

resolution π : X → S whose exceptional divisor contains no contractible curves.

Minimal resolution are precisely those resolution containing no contractible curves.

A theorem of Hironaka [Hir64], says that any normal surface singularity (S, p)

admits a resolution π : X → S. Moreover, among the resolutions of (S, p), there

exists a good resolution: a resolution such that the exceptional locus E = ∪Ei
consist of smooth curves with a pair Ei, Ej meeting transversely in at most one

point.

3.3.2. Refined Node Polynomials on Singular Surfaces. We now want to

use the above fundamental facts to extend the conjectural principle discussed in §3.2

above. We start out by formulating a conjecture for general singular toric surfaces,

and then give more precise results for specific singularities. For rational double

points we conjecture that somewhat surprisingly the power series Fc(y, q) is inde-

pendent of y. In particular this says that the correction factor for An-singularities,

determined in [LO14] for the Severi degrees, is the same for the Severi degrees and

the tropical Welschinger invariants.
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Now let S be a normal toric surfaces. We want to formulate a conjecture about

the refined Severi degrees N (S,L),δ(y). Note that the tropical curves counted in

N (S,L),δ(y) are not required to pass through any of the singular points of S. One

can also reformulate the same conjecture in terms of the minimal resolution of S,

i.e. a resolution π : Ŝ → S, which contains no (−1) curves in the fibres of π.

Conjecture 3.36. For every analytic type of singularities c there are formal power

series Fc ∈ Q[y±1][[q]], F̂c ∈ Q[y±1][[q]] such that the following hold. Let (S, L)

be a pair of a projective toric surface and a toric line bundle on S. Let Ŝ be a

minimal toric resolution of S and denote by L also the pullback of L to Ŝ. Define

N (Ŝ,L),δ(y) := N (S,L),δ(y). If L is δ-very ample on S, then

N (S,L),δ(y) = Coeff
qL(L−KS)/2

D̃Gχ(L)−1−δ
2 B

K2
S

1

B−LKS2

(
DD̃G2

∆̃

)1/2∏
c

F nc
c

 ,(3.25)

N (Ŝ,L),δ(y) = Coeff
q
L(L−K

Ŝ
)/2

D̃Gχ(L)−1−δ
2 B

K2
Ŝ

1

B
−LK

Ŝ
2

(
DD̃G2

∆̃

)1/2∏
c

F̂ nc
c

 .(3.26)

Here c runs through the analytic types of singularities of S, and nc is the number

of singularities of S of type c.

We can see that the two formulas formulas (3.25), (3.26) are equivalent. Note

that LKS = LKŜ. On the other hand it is easy to see that K2
Ŝ

= K2
S −

∑
c ncec

where ec is a rational number depending only on the singularity type c. Thus the

two formulas are equivalent, via the identification

F̂c(y, q) = Fc(y, q)B1(y, q)ec .

It turns out that the power series F̂c(y, q) are usually simpler, so we will restrict

our attention to them. Note that for a rational double point c we have ec = 0 and

thus Fc = F̂c.

We give a slightly more precise version of the conjecture for a weighted projective

space P(1, 1,m) and its minimal resolution Σm, and prove some special cases of it.

In this case the exceptional divisor is the section E with self intersection −m. The

weighted projective space P(1, 1,m) has one singularity of type 1
m

(1, 1), i.e. the

cyclic quotient of C2 by the m-th roots of unity µm acting by ε(x, y) = (εx, εy). We
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write cm for this singularity. It is elementary to see that

KΣm = −2H + (m− 2)F = −m+ 2

m
H − m− 2

m
E, KP(1,1,m) = −m+ 2

m
H,

ecm =
(m− 2)2

m
,K2

Σm = 8, dHKΣm = d(m+ 2), χ(Σm, dH) =
(md+ 2)(d+ 1)

2
.

Conjecture 3.37. If δ ≤ 2d− 1, then

(3.27) N (Σm,dH),δ(y) = Coeff
q
m
2 d

2+(m2 +1)d

D̃Gm
2
d2+(m

2
+1)d−δ

2 B8
1

B
d(m+2)
2

(
DD̃G2

∆̃

)1/2

F̂cm

 .
Furthermore we have for m ≥ 2

F̂cm = 1−mq +

(
(m− 2)y +

m2 + 3m− 10

2
+
m− 2

y

)
q2

−
(

(m2 + 5m− 14)y +
m3 + 9m2 + 44m− 132

6
+
m2 + 5m− 14

y

)
q3

+O(q4),

and

F̂c2 =
∑
n∈Z

(−1)nqn
2

= 1− 2q + 2q4 − 2q9 + . . . ,

F̂c3 =1− 3q + (y + 4 + y−1)q2 − (10y + 18 + 10y−1)q3

+ ((6y2 + 70y + 115 + 70y−1 + 6y−2)q4

− ((y3 + 94y2 + 473y + 721y + 473y−1 + 94y−2 + y−3)q5 +O(q6)

F̂c4 =1− 4q + (2y + 9 + 2y−1)q2 − (22y + 42 + 22y−1)q3

+ ((14y2 + 164y + 273 + 164y−1 + 14y−2)q4 +O(q5).

Proposition 3.38. Let δ2 = 8, δ3 = 5, δ4 = 4, δm = 3 for m ≥ 5. Then (3.27) is

correct for m ≥ 2 and δ ≤ min(δm, d).

Proof. Using the Caporaso-Harris recursion (Definition 1.29 and Remark 1.30),

we computed N (Σm,dH),δ(y) for 2 ≤ m ≤ 4, δ ≤ δm and d ≤ dm with d2 = 10,

d3 = 7, d4 = 6. We find that in this range (3.27) holds for δ ≤ min(2d − 1, δm).

By part (3) of Theorem 3.22 we have that Q(Σm,dH),δ(y) is a polynomial of degree

2 in d for d ≥ δ. By the computation we know this polynomial in the following

cases: (m = 2, δ ≤ 8), (m = 3, δ ≤ 5), (m = 4, δ ≤ 4). This shows the result
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for m = 2, 3, 4. Finally by part (5) of Theorem 3.22 we have that Q(Σm,dH),δ(y)

is for d,m ≥ δ a polynomial in d and m of degree 2 in d and 1 in m. By the

above we know this polynomial as a polynomial in d for δ = 0, 1, 2, 3 and m = 3, 4.

This determines it and thus also Q(Σm,dH),δ(y) and therefore also N (Σm,dH),δ(y), for

δ = 0, 1, 2, 3 and d,m ≥ δ. The result follows. �

The non-refined Severi degrees for toric surfaces with only rational double points

given by h-transverse lattice polygons have been studied in [LO14]. The only

rational double points which can occur in this case are An singularities. Denote

by Fan(y, q) the power series Fc(y, q) where c is an An singularity. In [LO14] it is

shown that

Fan(1, q) =
η(q)n+1

η(qn+1)
=
∏
k>0

(1− qk)n+1

1− q(n+1)k
.

Conjecture 3.36 above is a generalization of the results obtained there in. For An

singularities we conjecture that the correction term Fan(y, q) is independent of y.

What this mean is that the generating functions for the refined node polynomials

on a surface with only An singularities admits the same correction terms as the

generating function for the (non-refined) node polynomial. This is stated precisely

in Conjecture 3.39 below.

Conjecture 3.39. Let S be projective normal toric surface with only rational dou-

ble points, more precisely with nk singularities of type Ak for all k (with nk only

nonzero for finitely many k). If L is δ-very ample on S, then

N (S,L),δ(y) = Coeff
qL(L−KS)/2

D̃Gχ(L)−1−δ
2

B
K2
Ŝ

1

B
−LK

Ŝ
2

(
DD̃G2

∆̃

)1/2∏
k

(
η(q)k+1

η(qk+1)

)nk .
(3.28)

Remark 3.40. (1) P(1, 1, 2) has an A1 singularity, and as we saw Σ2 is a res-

olution of P(1, 1, 2). It is standard that θ2(2τ) = η(τ)2

η(2τ)
. Thus, for P(1, 1, 2),

Conjecture 3.39 is a special case of Conjecture 3.37, and Proposition 3.38

gives evidence for it.

(2) We also used a version of the Caporaso-Harris recursion for P(1, 2, 3). With

the line bundle dH with d small for H the hyperplane bundle. P(1, 2, 3)

has one A1 and one A2 singularity, also in this case Conjecture 3.39 is

confirmed in the realm considered.
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(3) Note that the conjecture that the Fan(y, q) are independent of y says in

particular that the correction factor for the An singularities is the same for

Severi degrees and tropical Welschinger invariants.

Conjecture 3.39 can be generalized in another direction. Let S be a singular

toric surface with singular points p1, . . . , pr and a minimal toric resolution Ŝ with

exceptional divisors E1, . . . , Er. Let L be a toric line bundle on S. We have seen

that N (Ŝ,L),δ(y) = N (S,L),δ(y) is a refined count of δ-nodal curves on S, which are

not required to pass through the singular locus of S. In a similar way we can

interpret N (Ŝ,L−k1E1−...−krEr),δ(y) as a refined count of curves in |L| on S which pass

through the singular points pi with multiplicity −kiE2
i . This even makes sense

if L is only a class of Weil divisors on S, the ki are not necessarily integral but

L− k1E1− . . .− krEr is a Cartier divisor on Ŝ. In this case the curves we count on

S are Weil divisors.

Here we will consider this question only in the case that S has only A1 singu-

larities. Let

η(q) := q1/24

∞∏
n=1

(1− qn), and θ2(q) :=
∞∑

n=−∞

(−1)nqn
2/2

be the Dirichlet eta function and one of the standard theta functions respectively.

By Jacobi triple product, one can show that (see for example [Apo76, Thm. 14.7])

η(q2)3 = q1/4

∞∑
n=0

(−1)n(2n+ 1)qn(n+1).

As before, let D = q d
dq

be a differential operator. For l ∈ Z≥0, we define functions

fl(q) by

f2k(q) =
(−1)k

(2k)!

∑
n∈Z

(−1)n

(
k−1∏
i=0

(n2 − i2)

)
qn

2

=
(−1)k

(2k)!

(
k−1∏
i=0

(D − i2)

)
θ2(q2),

f2k+1(q) =
(−1)k

(2k + 1)!

∑
n∈Z

(−1)n(2n+ 1)

(
k−1∏
i=0

(
(n+ 1/2)2 − (i+ 1/2)2)) q(n+1/2)2

=
(−1)k

(2k + 1)!

(
k−1∏
i=0

(
D − (i+ 1/2)2)) η(q2)3.

(3.29)
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In particular we have

f0(q) =
∑
n∈Z

(−1)nqn
2

,

f1(q) =
∑
n≥0

(−1)n(2n+ 1)q(n+1/2)2

,

f2(q) =
∑
n>0

(−1)n−1n2qn
2

.

Notation 3.41. We write N
(S,L),δ
[k1,...,knr]

(y) := N (Ŝ,L−k1E1−...−krEr),δ(y), to stress that

we view it as a count of curves on S with prescribed multiplicities at the A1-

singularities.

Conjecture 3.42. Let S be a toric surface with only A1 singularities p1, . . . , pr.

Fix k1, . . . , kr ∈ 1
2
Z≥0. Let δ ≥ 0. Let L be a Weil divisor on S, such that L−∑i kiEi

is a Cartier divisor on Ŝ, which is δ-very ample on any irreducible curve in Ŝ not

contained in E1 ∪ . . . ∪ Er.. Then

(3.30) N
(S,L),δ
[k1,...,kr]

(y) = Coeff
qL(L−KS)/2

D̃Gχ(L)−
∑
i k

2
i−1−δ

2 B
K2
S

1

BLKS
2

(
DD̃G2

∆̃

)1/2 r∏
i=1

f2ki(q)

 .
Thus we claim that the correction factors for points of multiplicity k at A1

singularities of S are given by the quasimodular forms fk(q). Equivalently we can

look at the same question on the blowup Ŝ. Write L̂ := L− k1E1 − . . .− krEr and

fk(q) =
fk(q)

qk2/4
, k ∈ Z≥0,

then (with the same assumptions) (3.30) is clearly equivalent to

(3.31) N (Ŝ,L̂),δ(y) = Coeff
q
L̂(L̂−K

Ŝ
)/2

D̃Gχ(L̂)−1−δ
2 B

K2
Ŝ

1

B
L̂K

Ŝ
2

(
DD̃G2

∆̃

)1/2 r∏
i=1

f 2ki
(q)

 .
In other words, the correction factors for L̂ not being sufficiently ample on Ŝ are

the f l(q).

Remark 3.43. Under the assumptions of the conjecture, if the ki are sufficiently

large with respect to δ, then L̂ will be δ-very ample on Ŝ. This means by Conjec-

ture 3.27 that for large l the correction factor f l(q) should be 1 modulo some high
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power of q. In fact we find the following. For l ∈ Z>0 we can rewrite

f l(q) =
∑
m≥0

(−1)m
2m+ l

m+ l

(
m+ l

l

)
qm(m+l).

In particular f l(q) ≡ 1 mod ql+1.

Proof. First we deal with the case l even. Note that

k−1∏
i=0

(n2 − i2) = n

k−1∏
i=−k−1

(n− i).

Thus we get for k > 0

f 2k(q) =
(−1)k

(2k)!

∑
n∈Z

(−1)n
k−1∏
i=0

(n2 − i2)qn
2−k2

=
∑
n≥k

(−1)n−k
2n

2k

(
n+ k − 1

2k − 1

)
qn

2−k2

,

where we also have used that
(
n+k−1
2k−1

)
= 0 for n < k. Finally put m = n−k, so that

2n

2k

(
n+ k − 1

2k − 1

)
=

2m+ 2k

m+ 2k

(
m+ 2k

2k

)
and n2 − k2 = m(m+ 2k). The case l odd is similar. Note that

k−1∏
i=0

((n+ 1/2)2 − (i+ 1/2)2) =
k∏

i=−k+1

(n− i).

Thus we get

f 2k+1(q) =
(−1)k

(2k + 1)!

∑
n≥0

(−1)n(2n+ 1)

(
k−1∏
i=0

((n+
1

2
)2 − (i+

1

2
)2)

)
q(n+ 1

2)
2
−(k+ 1

2)
2

=
∑
n∈Z

(−1)n−k
2n+ 1

2k + 2

(
n+ k

2k

)
q(n+ 1

2)
2
−(k+ 1

2)
2

,

and put again m := n− k. �

Remark 3.44. It is again remarkable that the correction factors fk(q) are indepen-

dent of the variable y. In particular this means again that the correction factor is

the same for the Severi degrees and for the tropical Welschinger number.
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We specialise the conjecture to case that S is the weighted projective space

P(1, 1, 2) with the resolution Σ2 with more precise bounds for the validity. Note

that

χ(Σ2, dH−kE) = (d+1)2−k2, (dH−kE)KΣ2 = (dH−kE)(−2H) = −4d,K2
Σ2

= 8.

Conjecture 3.45. Let d, k ∈ 1
2
Z with d − k ∈ Z. Then for δ ≤ 2(d − k) + 1, we

have

(3.32) N (Σ2,dH−kE),δ(y) = Coeff
qd2+2d−k2

D̃Gd2+2d−k2−δ
2 B8

1

B4d
2

(
DD̃G2

∆̃

)1/2

f 2k(q)

 .
Proposition 3.46. (1) Conjecture 3.45 is true for all d, all k ≤ 5 and δ ≤ 4.

(2) The equation (3.32) holds for all d, k ≥ 0 with δ ≤ d− k and δ ≤ 4.

Proof. We compute N (Σ2,dH+cF ),δ(y) = N (Σ2,(d+c/2)H−c/2E),δ(y) for δ ≤ 8, d ≤ 6

and c ≤ 5, using the Caporaso-Harris recursion (Definition 1.29 and Remark 1.30).

We find in this realm that N (Σ2,(nH−kE),δ(y) is equal to the right hand side of

Conjecture 3.45 for δ ≤ 2(n− k) + 1. By Theorem 3.22 Q(Σ2,dH+cF ),δ(y) is for fixed

c ≥ 0 and for d ≥ δ a polynomial of degree 2 in d. Thus the above computations

determine this polynomial for δ ≤ 4, and c ≤ 5. On the other hand in dependence

of c and d we have that Q(Σ2,dH+cF ),δ(y) is for c, d ≥ δ a polynomial in c and d of

degree 2 in d and 1 in c. By the above we know this polynomial as a polynomial in

d for c = 4 and c = 5. Thus it is determined and the claim follows. �

3.4. Counting Curves With Prescribed Multiple Points

Let S be a smooth projective surface and p1, . . . , pr be general points on S, and

let Ŝ be the blowup of S in the pi with exceptional divisors Ei. Let L be a line

bundle on S and C be a curve in |L| passing through the points pi with multiplicity

ni for each i. The strict transform C̃ of C is related to its total transform π∗C by

(see [Har77, Prop. V.3.6 ])

π∗C = C̃ +
r∑
i=1

niEi.

Thus the difference between the total transform and the strict transform is a col-

lection of copies of the exceptional divisors, one copy of Ei for each time C pass

through pi. Now let L be a sufficiently ample line bundle on S, and denote by the



3.4. COUNTING CURVES WITH PRESCRIBED MULTIPLE POINTS 79

same letter its pullback to Ŝ. Then N (Ŝ,L−
∑
i niEi),δ(1) counts the complex curves on

S in |L| with points of multiplicity ni in pi which have in addition δ nodes and pass

through dim(|L−∑i niEi)|)− δ general points of S. If L is sufficiently ample, then

the multiple points at the pi impose
∑

i

(
ni+1

2

)
independent conditions on curves in

|L|. Furthermore we see that

χ(L−
∑
i

niEi) = χ(L)−
∑
i

(
ni + 1

2

)
.

Now assume that S is a smooth projective toric surface. Let the pi ∈ S be

fixed points of the torus action, so that Ŝ is again a toric surface and the ex-

ceptional divisors Ei are torus-invariant divisors. Then by the above we can view

N (Ŝ,L−
∑
i niEi),δ(y) as a refined count of curves in |L| on S with points of multiplicity

ni at pi for all i and in addition δ nodes which pass through

dim(|L|)− δ −
∑
i

(
ni + 1

2

)
general points on S.

Notation 3.47. We denote N
(S,L),δ
n1,...,nr(y) := N (Ŝ,L−

∑
i niEi),δ(y).

For an Eisenstein series G2k(q), we denote

Gk(q) := Gk(q)−Gk(q
2) =

∑
n>0

∑
d|n
n
d

odd

d2k−1qn.

We write again D := q ∂
∂q

. Note that DlG2k(q) and DlG2k(q) are quasimodular

forms of weight 2k + 2l.

Conjecture 3.48. For each i ≥ 1 there exists a universal power series Hi ∈
Q[y±1][[q]], such that, whenever L be sufficiently ample with respect to δ, r and

n1, . . . , nr, we have

(3.33)

N (S,L),δ
n1,...,nr

(y) = Coeff
q(L2−LKS)/2

[
D̃G

χ(L)−1−δ−
∑
i (
ni+1

2 )
2

B
K2
S

1 BLKS
2 DD̃G2

(∆̃ ·DD̃G2)χ(OS)/2

r∏
i=1

Hni

]
.

Furthermore we conjecture for all m > 0 the following:

(1) Hm(y, q) can be expressed in terms of Jacobi theta functions and quasimodular

forms.
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(2) Hm(1, q) is a (usually non-homogeneous) polynomial in the DlG2k(q) of weight

≤ 4k.

(3) Hm(−1, q) is a (usually non-homogeneous) polynomial in the DlG2k(q), D
lG2k(q)

of weight ≤ 2k.

For small m we explicitly conjecture the following formulas:

(1) For m ≤ 2 we conjecture

H1(y, q) = D̃G2(y, q), H2(y, q) =
F1(y, q)

(y1/2 − y−1/2)4
+

F2(y, q)

(y1/2 − y−1/2)2(y − y−1)
,

with

F1(y, q) =
∑
n>0

∑
d|n

1

2

(
−n

3

d3
+
n2

d
− n

d

)
(yd/2 − y−d/2)2qn

F2(y, q) =
∑
n>0

∑
d|n

(
n2

d2
− n

2

)
(yd − y−d)qn.

(2) For the specialisation at y = 1 we conjecture the following (dropping the q

from the notation).

H1(1) = DG2,

H2(1) = − 1

24
DG2 +

1

6
D2G2 −

1

8
DG4 −

1

24
D3G2 +

1

24
D2G4

H3(1) =
DG2

90
− D2G2

18
+
DG4

24
− 13D3G2

288
− 73D2G4

1440
+
DG6

120
− D4G2

144
+

13D3G4

1440

− D2G6

480
+
D5G2

2880
− D4G4

2016
+
D3G6

6912
+

∆

241920

H4(1) = −9DG2

1120
+

7D2G2

160
− 21DG4

640
− 1063D3G2

23040
+

1207D2G4

23040
− 3DG6

320
+

79D4G2

5760

− 43D3G4

2304
+

149D2G6

26880
− DG8

2688
− 91D5G2

69120
+

95D4G4

48384
− 461D3G6

645120
+

101D2G8

1451520

− 11∆

5806080
+
D6G2

17280
− 89D5G4

967680
+
D4G6

25920
− D3G8

207360
+

D∆

2903040
− D7G2

967680

+
D6G4

580608
− D5G6

1244160
+

D4G4

8211456
− D2∆

84913920
+

∆G4

864864
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(3) At y = −1 we conjecture

H1(−1) = G2(q),

H2(−1) =
1

8

(
G2 −DG2 +G4 −DG2

)
,

H3(−1) =
1

24
G2 −

1

24
DG2 +

7

96
G4 −

7

96
DG2 +

1

2
G

3

2 −
1

192
DG4 −

5

64
G4G2 +

1

96
D2G2

− 5

1024
DG4,

H4(−1) =
3G2

128
− 5DG2

192
− 67DG2

1536
+

67G4

1536
+

35D2G2

2304
− 247DG4

24576
+

55G
3

2

144
− 55G4G2

1536

− 11DG4

4608
+
D3G2

192
+

25D2G4

6144
− 7DG6

8192
+

11G
4

2

8
− 13G2D

2G2

192
+

35G2DG4

512

− 21G6G2

1024
+
D2G4

512
.

Remark 3.49. Part (1) of Conjecture 3.48 is not formulated in a very precise

way. We want to illustrate the statement for H1(y, q) and H2(y, q), which we have

conjecturally determined. In addition to D := q ∂
∂q

, we also consider ′ = y ∂
∂y

.

Writing D̃G2(y, q) = F0(y,q)
y−2+y−1 we have

F0(y, q) = −Dθ(y)

θ(y)
− 3G2,

F1(y, q) =
1

2

(Dθ(y))2

θ(y)2
+ 3

Dθ(y)

θ(y)
G2 +

1

2

Dθ(y)

θ(y)
+

15

8
G4 −

9

4
DG2 +

3

2
G2,

F2(y, q) = −1

2

Dθ(y)θ′(y)

θ(y)2
− 1

6

Dθ′(y)

θ(y)
− 2G2

θ′(y)

θ(y)
.

Proof. A similar computation has been done in [GS15, Rem 1.4]. By definition

we have

F0(y, q) =
∑
m>0

∑
d>0

m(yd − 2 + y−d)qmd =
∑
md>0

mydqmd − 2G2(q) +
1

12
.

In [Zag91, page 456, compare (iii) and (vii)] it is proved that

(3.34)
θ′(0)θ(wy)

θ(w)θ(y)
=

wy − 1

(w − 1)(y − 1)
−
∑
nd>0

sgn(d)wnydqnd.
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Write w = ex and take the coefficient of x on both sides of (3.34). By the identity

[Zag91, eq. (7)] we have

xθ′(0)

θ(w)
= exp

(
2
∑
k≥2

Gk(q)
zk1
k!

)
.

This gives

Coeff
x

[
θ′(0)θ(wy)

θ(w)θ(y)

]
= Coeff

x2

[
θ(wy)

θ(y)

]
+G2(τ) =

1

2

θ′′(y)

θ(y)
+G2(τ) =

Dθ(y)

θ(y)
+G2(τ),

where the last step is by the heat equation 1
2
θ′′(y) = Dθ(y). On the other hand we

compute

Coeff
z1

[
wy − 1

(w − 1)(y − 1)
−
∑
nd>0

sgn(d)wnydqnd

]
=

1

12
−
∑
nd>0

nydqnd.

This proves the formula for F0.

We have

F2(y, q) =
∑
md>0

sgn(d)(m2 −md/2)yd)qmd.

In [GS15, Rem. 1.4] it is shown (the statement there contains a misprint) that∑
md>0

sgn(d)m2ydqmd = − 1

θ(y)

(
2

3
Dθ′(y) + 2G2(q)θ′(y)

)
.

We see by (3.34) that∑
md>0

sgn(d)(−md/2)yd)qmd =
1

2
D

(
θ′(0)θ(wy)

θ(w)θ(y)

∣∣∣
w=1

)
=

1

2
D

(
θ′(y)

θ(y)

)
.

This shows the formula for F2.

A similar but slightly more tedious computation shows the formula for F1. �

The conjectural formulas of Conjecture 3.48 were found by doing computations

for P2 and its blowup Σ1 with exceptional divisor E. We use the Caporaso-Harris

recursion formula to compute N (Σ1,dH+mF ),δ(y) = N (Σ1,(d+m)H−mcE,δ for d ≤ 11,

m ≤ 4 and δ ≤ 22, in this realm the following conjecture is true.

Conjecture 3.50. There are power series Hm(y, q) ∈ Q[y±1][[q]], such that the

following holds. For d > 0, and 0 ≤ m ≤ 4 and δ ≤ 2d+ 1 +m(m+ 1)/2 we have

N (P2,dH),δ
m (y) = Coeff

q(d(d+3)/2

[
D̃G

d(d+3)/2−m(m+1)/2−δ
2

B9
1(DD̃G2)1/2

B−3d
2 ∆̃1/2

Hm

]
.
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Furthermore H1(y, q), H2(y, q) coincide with the functions with the same name from

Conjecture 3.48, and Hi(1, q), Hi(−1, q) coincide for i = 1, 2, 3, 4 with the Hi(1),

Hi(−1) from Conjecture 3.48.

Proposition 3.51. Conjecture 3.50 is true from m ≤ 4 and δ ≤ 9.

Proof. The argument is the same as in several proofs before. By Theorem 3.22

we get that Q(Σ1,dH+mF ),δ is for δ ≤ d a polynomial of degree 2 in d, which we know

for 9 ≤ d ≤ 11. The result follows. �

Let S be a toric surface and Ŝ be the blowup of S in torus fixed point. Given

δ, if m is sufficiently large and L is sufficiently ample on S, then L −mE will be

sufficiently ample on Ŝ, so that Conjecture 3.27 will apply to the pair (Ŝ, L−mE),

giving

N (S,L),δ
m (y) = N (Ŝ,L−mE),δ(y) =

Coeff
q
(L2−LKS)/2−(m+1

2 )

[
D̃G

χ(L)−1−δ−(m+1
2 )

2

B
K2
S−1

1 BLKS+m
2 DD̃G2

(∆̃ ·DD̃G2)χ(OS)/2

]
.

Combined with Conjecture 3.48 this leads to the following conjecture.

Conjecture 3.52. We have

Hm(y, q)

q(
m+1

2 )
≡ B2(y, q)m

B1(y, q)
mod qm+1.

Thus, if eventually one would find a way to explicitly determine the functions

Hm(y, q) for all m, this could give the unknown power series B1(y, q), B2(y, q) and

thus complete the conjectural formulas of [Göt98],[GS14].

It is natural to assume that the specialisation of Conjecture 3.48 and also of the

previous conjectures Conjecture 3.36, Conjecture 3.42 to y = 1 hold for the usual

Severi degrees n(S,L),δ for projective algebraic surfaces, not just for toric surfaces.

Thus we get in particular the following generalisation of the original conjecture of

[Göt98].

Let S be a projective algebraic surface with A1-singularties q1, . . . , qs. Let

p1, . . . pr be distinct smooth points on S. Let m1, . . . ,mr ∈ Z>0, n1, . . . , ns ∈ Z≥0.

Let Ŝ be the blowup of S in q1, . . . , qs, p1, . . . pr and denote Ei, Fj the exceptional

divisors over qi, pj respectively. Let L be a Q-Cartier Weil divisor on S, such that
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L̂ := L −∑s
i=1 miEi −

∑r
i=1 niFi is a Cartier divisor on Ŝ, which is δ-very ample

on all irreducible curves in Ŝ not contained in E1 ∪ . . .∪Es ∪F1 ∪ . . .∪Fr. Denote

n
(S,L),δ
(m1,...,mr),(n1,...,ns)

:= n(Ŝ,L̂),δ, which we could informally interpret as the number of

curves in |L| which have multiplicity mi in pi and nj in qj for all i, j and pass in

addition through

dim |L| −
r∑
i=1

(
mi + 1

2

)
−

s∑
j=1

n2
j

4

general points on S, and have δ nodes as other singularities.

Conjecture 3.53. Under the above assumptions we have

n
(S,L),δ
(m1,...,mr),(n1,...,ns)

= Coeff
q(L2−LKS)/2

[
DG2(q)χ(L)−

∑
i (
mi+1

2 )−
∑
j

n2
j
4
−1B1(q)K

2
SB2(q)LKSD2G2(q)

(∆(q) ·D2G2(q))χ(OS)/2(
r∏
i=1

Hni(1, q)

)(
s∏
i=1

fmi(q)

)]
.

(3.35)



APPENDIX A

The Power Series B1 and B2

The closed form of the power series B1(y, q) and B2(y, q) are not known ex-

plicitly. However, their first few coefficients can be computed. We list the leading

terms of B1(y, q) and B2(y, q), with omitted terms determined by symmetry.

B1(y, q) = 1− q − (y + 3 + 1/y)q2 + (y2 + 10y + 17 + . . .)q3 − (18y2 + 87y + 135 + . . .)q4

+ (12y3 + 210y2 + 728y + 1061 + . . .)q5 − (2y4 + 259y3 + 2102y2 + 5952y + 8236 + . . .)q6

+ (162y4 + 3606y3 + 19668y2 + 48317y + 64253 + . . .)q7 − (47y5 + 3789y4 + 41999y3 + 177800y2

+ 392361y + 505678 + . . .)q8 + (5y6 + 2416y5 + 60202y4 + 445989y3 + 1576410y2 + 3197831y

+ 4018919 + . . .)q9 − (896y6 + 58504y5 + 793194y4 + 4483755y3 + 13818256y2 + 26192369y

+ 32243357 + . . .)q10 + (176y7 + 38236y6 + 1017512y5 + 9382867y4 + 43520558y3 + 120325637y2

+ 215688799y + 260959201 + . . .)q11 − (14y8 + 16393y7 + 944954y6 + 14738959y5 + 103623419y4

+ 412518547y3 + 1043940859y2 + 1785764779y + 2129062780 + . . .)q12 + (4384y8 + 631224y7

+ 17534642y6 + 190488676y5 + 1092093647y4 + 3845977628y3 + 9041155627y2 + 14862430058y

+ 17497499443 + . . .)q13 − (658y9 + 298228y8 + 15816382y7 − 273455570y6 + 2279829046y5

+ 11131917064y4 + 35435770399y3 + 78257451025y2 + 124310761787y + 144758147754 + . . .)q14

+ (42y10 + 96604y9 + 10758628y8 + 308060184y7 + 3800583626y6 + 25834889754y5

+ 110712006552y4 + 323710356925y3 + 677516096371y2 + 1044598390812y + 1204824660925 + . . .)q15

− (20284y10 + 5452043y9 + 272316274y8 + 5094738491y7 + 48707795806y6 + 281165238614y5

+ 1080786159810y4 + 2938608835049y3 + 5869829083826y2 + 8816117002571y + 10082791437552 + . . .)q16

+ (2472y11 + 2015609y10 + 188032406y9 + 5506997958y8 + 75206548205y7 + 588088410636y6

+ 2967196356618y5 + 10400483736235y4 + 26552849592007y3 + 50907878544033y2 + 74707191955540y

+ 84801344804750 + . . .)q17 + O(q18),

85
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B2(y, q) =
1

(1− yq)(1− q/y)

(
1 + 3q − (3y + 1 + 3/y)q2 + (y2 + 8y + 18 + . . .)q3

− (13y2 + 53y + 76 + . . .)q4 + (7y3 + 100y2 + 316y + 455 + . . .)q5 − (y4 + 112y3 + 779y2

+ 2076y + 2819 + . . .)q6 + (67y4 + 1243y3 + 6129y2 + 14386y + 18870 + . . .)q7 − (19y5

+ 1281y4 + 12417y3 + 48879y2 + 104034y + 132579 + . . .)q8 + (2y6 + 822y5 + 17542y4

+ 117829y3 + 393703y2 + 775411y + 965540 + . . .)q9 − (310y6 + 17206y5 + 207074y4

+ 1085712y3 + 3197506y2 + 5913778y + 7223539 + . . .)q10 + (62y7 + 11505y6 + 267658y5

+ 2249872y4 + 9825927y3 + 26163595y2 + 45935572y + 55208836 + . . .)q11 − (5y8 + 5076y7

+ 253785y6 + 3555348y5 + 23210920y4 + 87929247y3 + 215557414y3 + 362229349y

+ 429395117 + . . .)q12 + (1397y8 + 174456y7 + 4304488y6 + 42877083y5 + 231296838y4

+ 781220881y3 + 1787129788y2 + 2892830316y + 3388742192 + . . .)q13 − (215y9 + 85117y8

+ 3983060y7 + 62465678y6 + 484877903y5 + 2249516882y4 + 6909207376y3 + 14901830113y2

+ 23353834274y + 27076007072 + . . .)q14 + (14y10 + 28472y9 + 2793096y8 + 71942817y7

+ 818536892y6 + 5240193024y5 + 21495922606y4 + 60931593665y3 + 124910088474y2

+ 190304808803y + 218642432495 + . . .)q15 − (6158y10 + 1462435y9 + 65354234y8

+ 1118442331y7 + 9987960061y6 + 54777796045y5 + 202738958803y4 + 536439701989y3

+ 1052049129591y2 + 1563445962327y + 1781883877192 + . . .)q16 + (770y11 + 558612y10

+ 46524657y9 + 1238412474y8 + 15681201140y7 + 115681622517y6 + 558367283967y5

+ 1893273288345y4 + 4718572145488y3 + 8899835406922y2 + 12937087920811y

+ 14639451592197 + . . .)q17 + O(q18)
)
.
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nique, Palaiseau, 1976–1977.

[Dur79] Alan H. Durfee. Fifteen characterizations of rational double points and simple critical

points. Enseign. Math. (2), 25(1-2):131–163, 1979.
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tropical curves. Int. Math. Res. Not. IMRN, (23):5289–5320, 2013.

[IMS07] Ilia Itenberg, Grigory Mikhalkin, and Eugenii Shustin. Tropical algebraic geometry,

volume 35 of Oberwolfach Seminars. Birkhäuser Verlag, Basel, 2007.
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