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Preface

From the Preface to the Third Edition, by Russell K. Hobbie:

Between 1971 and 1973 I audited all the courses medical stu-
dents take in their first 2 years at the University of Minnesota.
I was amazed at the amount of physics I found in these courses
and how little of it is discussed in the general physics course.

I found a great discrepancy between the physics in some pa-
pers in the biological research literature and what I knew to be
the level of understanding of most biology majors or premed
students who have taken a year of physics. It was clear that an
intermediate level physics course would help these students. It
would provide the physics they need and would relate it directly
to the biological problems where it is useful.

This book is the result of my having taught such a course
since 1973. It is intended to serve as a text for an intermediate
course taught in a physics department and taken by a variety
of majors. Since its primary content is physics, I hope that
physics faculty who might shy away from teaching a conven-
tional biophysics course will consider teaching it. I also hope
that research workers in biology and medicine will find it a use-
ful reference to brush up on the physics they need or to find
a few pointers to the current literature in a number of areas of
biophysics. (The bibliography in each chapter is by no means
exhaustive; however, the references should lead you quickly into
a field.) The course offered at the University of Minnesota is
taken by undergraduates in a number of majors who want to see
more physics with biological applications and by graduate stu-
dents in physics, biophysical sciences, biomedical engineering,
physiology, and cell biology.

Because the book is intended primarily for students who have
taken only one year of physics, I have tried to adhere to the
following principles in writing it:
1. Calculus is used without apology. When an important idea

in calculus is used for the first time, it is reviewed in detail.
These reviews are found in the appendices.

2. The reader is assumed to have taken physics and know the
basic vocabulary. However, I have tried to present a logi-
cal development from first principles, but shorter than what
would be found in an introductory course. An exception is
found in Chaps. 14–18, where some results from quantum
mechanics are used without deriving them from first prin-
ciples. (My students have often expressed surprise at this
change of pace.)

3. I have not intentionally left out steps in most derivations.
Some readers may feel that the pace could be faster, par-
ticularly after a few chapters. My students have objected
strongly when I have suggested stepping up the pace in
class.

4. Each subject is approached in as simple a fashion as pos-
sible. I feel that sophisticated mathematics, such as vector

analysis or complex exponential notation, often hides phys-
ical reality from the student. I have seen electrical engineer-
ing students who could not tell me what is happening in
an RC circuit but could solve the equations with Laplace
transforms.

The Fourth Edition followed the tradition of earlier editions.
The book added a second author: Bradley J. Roth of Oak-
land University. Both of us have enjoyed this collaboration
immensely. We added a chapter on sound and ultrasound,
deleting or shortening topics elsewhere, in order to keep the
book only slightly longer than the Third Edition.

The Fifth Edition does not add any new chapters,
but almost every page has been improved and up-
dated. Again, we fought the temptation to expand the
book and deleted material when possible. Some of
the deleted material is available at the book’s website:
http://www.oakland.edu/~roth/hobbie.htm. The Fifth Edition
has 12 % more end-of-chapter problems than the Fourth
Edition; most highlight biological applications of the phys-
ical principles. Many of the problems extend the material
in the text. A solutions manual is available to those teach-
ing the course. Instructors can use it as a reference or
provide selected solutions to their students. The solutions
manual makes it much easier for an instructor to guide an
independent-study student. Information about the solutions
manual is available at the book’s website.

Chapter 1 reviews mechanics. Translational and rota-
tional equilibrium are introduced, with the forces in the heel
and hip joint as clinical examples. Stress and strain, hy-
drostatics, incompressible viscous flow, and the Poiseuille–
Bernoulli equation are discussed, with examples from the
circulatory system. The chapter concludes with a discussion
of Reynolds number.

Chapter 2 is essential to nearly every other chapter in
the book. It discusses exponential growth and decay and
gives examples from pharmacology and physiology (includ-
ing clearance). The logistic equation is discussed. Students
are also shown how to use semilog and log–log plots and to
determine power-law coefficients using a spreadsheet. The
chapter concludes with a brief discussion of scaling.

v
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Chapter 3 is a condensed treatment of statistical physics:
average quantities, probability, thermal equilibrium, entropy,
and the first and second laws of thermodynamics. Topics
treated include the following: the Boltzmann factor and its
corollary, the Nernst equation; the principle of equipartition
of energy; the chemical potential; the general thermody-
namic relationship; the Gibbs free energy; and the chemical
potential of a solution. You can plow through this chapter if
you are a slave to thoroughness, touch on the highlights, or
use it as a reference as the topics are needed in later chapters.

Chapter 4 treats diffusion and transport of solute in an in-
finite medium. Fick’s first and second laws of diffusion are
developed. Steady-state solutions in one, two, and three di-
mensions are described. An important model is a spherical
cell with pores providing transport through the cell mem-
brane. It is shown that only a small number of pores are
required to keep up with the rate of diffusion toward or away
from the cell, so there is plenty of room on the cell surface
for many different kinds of pores and receptor sites. The
combination of diffusion and drift (or solvent drag) is also
discussed. Finally, a simple random-walk model of diffusion
is introduced.

Chapter 5 discusses transport of fluid and neutral so-
lutes through a membrane. This might be a cell membrane,
the basement membrane in the glomerulus of the kidney,
or a capillary wall. The phenomenological transport equa-
tions including osmotic pressure are introduced as the first
(linear) approximation to describe these flows. Countercur-
rent transport is described. Finally, a hydrodynamic model
is developed for right-cylindrical pores. This model provides
expressions for the phenomenological coefficients in terms
of the pore radius and length. It is also used to calculate the
net force on the membrane when there is flow.

After reviewing the electric field, electric potential, and
circuits, Chap. 6 describes the electrochemical changes that
cause an impulse to travel along a nerve axon or along a
muscle fiber before contraction. Two models are considered:
electrotonus (when the membrane obeys Ohm’s law) and
the Hodgkin–Huxley model (when the membrane is nonlin-
ear). Saltatory conduction in myelinated fibers is described.
The dielectric properties of the membrane are modeled in
terms of its molecular structure. Some simple changes to the
membrane conductivity give rise to a periodically repeating
action potential. Finally, a general relationship is developed
between diffusive transport, resistance, and capacitance for a
given geometry.

Chapter 7 shows how an electric potential is generated in
the medium surrounding a nerve or muscle cell. This leads
to the current dipole model for the electrocardiogram. The
model is refined to account for the anisotropy of the elec-
trical conductivity of the heart. We then discuss electrical
stimulation, which is important for pacemakers, stimulating

nerve and muscle cells, and defibrillation. Finally, the model
is extended to the electroencephalogram.

Chapter 8 shows how the currents in a conducting nerve
or muscle cell generate a magnetic field, leading to the mag-
netocardiogram and the magnetoencephalogram. Some bac-
teria and higher organisms contain magnetic particles used
for determining spatial orientation in the earth’s magnetic
field. The mechanism by which these bacteria are oriented
is described. The detection of weak magnetic fields and the
use of changing magnetic fields to stimulate nerve or muscle
cells are also discussed.

Chapter 9 covers a number of topics at the cellular and
membrane level. It begins with Donnan equilibrium, where
the presence of an impermeant ion on only one side of
a membrane leads to the buildup of a potential difference
across the membrane, and the Gouy–Chapman model for
how ions redistribute near the membrane to generate this
potential difference. The Debye–Hückel model is a sim-
ple description of the neutralization of ions by surrounding
counterions. The Nernst–Planck equation provides the basic
model for describing combined diffusion and drift in an ap-
plied electric field. It also forms the basis for the Goldman–
Hodgkin–Katz model for zero total current in a membrane
with a constant electric field. Gated membrane channels are
then discussed. Noise is inescapable in all signalling situa-
tions. After developing the basic properties of shot noise and
Johnson noise, we show how a properly adapted shark can
detect very weak electric fields with a reasonable signal-to-
noise ratio. The chapter concludes with a discussion of the
basic physical principles that must be kept in mind when as-
sessing the possibility of biological effects of weak electric
and magnetic fields.

Chapter 10 describes feedback systems in the body. It
starts with the regulation of breathing rate to stabilize the
carbon dioxide level in the blood, moves to linear feedback
systems with one and two time constants, and then to non-
linear models. We show how nonlinear systems described
by simple difference equations can exhibit chaotic behavior,
and how chaotic behavior can arise in continuous systems as
well. Examples of feedback systems include Cheyne–Stokes
respiration, heat stroke, pupil size, oscillating white-blood-
cell counts, waves in excitable media, and period doubling
and chaos in the heart.

Chapter 11 shows how the method of least squares under-
lies several important techniques for analyzing data. These
range from simple curve fitting to discrete and continuous
Fourier series, power spectra, correlation functions, and the
Fourier transform. We then describe the frequency response
of a linear system and the frequency spectrum of noise. We
conclude with a brief discussion of testing data for chaotic
behavior and the important concept of stochastic resonance.
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Armed with the tools of the previous chapter, we turn to
images in Chap. 12. Images are analyzed from the stand-
point of linear systems and convolution. This leads to the
use of Fourier analysis to describe the spatial frequencies in
an image and the reconstruction of an image from its projec-
tions. Both Fourier techniques and filtered back projection
are discussed.

Chapter 13 analyzes sound, hearing, and medical ultra-
sound. The wave equation is derived, and the wave speed and
acoustic impedance are related to the tissue properties. The
structure and function of the ear is described. Finally, meth-
ods for ultrasonic imaging are discussed, including pulse
echo techniques and Doppler imaging.

Chapter 14 discusses the visible, infrared, and ultraviolet
regions of the electromagnetic spectrum. The scattering and
absorption cross sections are introduced and are used here
and in the next three chapters. We then describe the diffusion
model for photon transport in turbid media. Thermal radi-
ation emitted by the body can be detected; the emission of
thermal radiation by the sun includes ultraviolet light, which
injures skin. Protection from ultraviolet light is both possible
and prudent. The definitions of various radiometric quantities
have varied from one field of research to another. We present
a coherent description of radiometric, photometric, and acti-
nometric definitions. We then turn to the eye, showing how
spectacle lenses are used to correct errors of refraction. The
chapter closes with a description of the quantum limitations
to dark-adapted vision.

Chapter 15, like Chap. 3, has few biological examples but
sets the stage for later work. It describes how photons and
ionizing charged particles such as electrons lose energy in
traversing matter. These interaction mechanisms, both in the
body and in the detector, are fundamental to the formation
of a radiographic image and to the use of radiation to treat
cancer.

Chapter 16 describes the use of x rays for medical diag-
nosis and treatment. It moves from production to detection,
to the diagnostic radiograph. We discuss image quality and
noise, followed by angiography, mammography, fluoroscopy,
and computed tomography. After briefly reviewing radio-
biology, we discuss therapy and dose measurement. The
chapter closes with a section on the risks from radiation.

Chapter 17 introduces nuclear physics and nuclear
medicine. The different kinds of radioactive decay are de-
scribed. Dose calculations are made using the fractional
absorbed dose method recommended by the Medical Inter-
nal Radiation Dose Committee of the Society of Nuclear
Medicine and Molecular Imaging. Auger electrons can mag-
nify the dose delivered to a cell or to DNA. This can poten-
tially provide new methods of treatment. Diagnostic imaging
includes single photon emission tomography and positron
emission tomography. Therapies include brachytherapy and
internal radiotherapy. A section on the nuclear physics of
radon closes the chapter.

Chapter 18 develops the physics of magnetic resonance
imaging (MRI). We show how the basic pulse sequences are
formed and used for slice selection, readout, image recon-
struction, and to manipulate image contrast. We close with
chemical shift imaging, flow effects, functional MRI, and
diffusion and diffusion tensor MRI.

Biophysics is a very broad subject. Nearly every branch
of physics has something to contribute, and the boundaries
between physics and engineering are blurred. Each chapter
could be much longer; we have attempted to provide the es-
sential physical tools. Molecular biophysics has been almost
completely ignored: excellent texts already exist, and this is
not our area of expertise. This book has become long enough.

We would appreciate receiving any corrections or sugges-
tions for improving the book.

Finally, thanks to our long-suffering families. We never
understood what these common words really mean, nor the
depth of our indebtedness, until we wrote the book.

Russell K. Hobbie
Professor of Physics Emeritus, University of Minnesota

(hobbie@umn.edu)
Bradley J. Roth

Professor of Physics, Oakland University
(roth@oakland.edu)
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1Mechanics

This chapter introduces some concepts from mechanics that
are of biological or medical interest. We begin with a discus-
sion of sizes important in biology. Then we turn to the forces
on an object that is in equilibrium and calculate the forces
experienced by various bones and muscles. In Sect. 1.9, we
introduce the concept of mechanical work, which will recur
throughout the book. The next two sections describe how
materials deform when forces act on them. Sections 1.12
through 1.16 discuss the forces in stationary and moving flu-
ids. These concepts are then applied to laminar viscous flow
in a pipe, which is a model for the flow of blood and the flow
of fluid through pores in cell membranes. The chapter ends
with a discussion of the circulatory system.

1.1 Distances and Sizes

In biology and medicine, we study objects that span a
wide range of sizes: from giant redwood trees to individual
molecules. Therefore, we begin with a brief discussion of
length scales. The basic unit of length in the metric system1

is the meter (m): about the height of a 3-year-old child. For
objects much larger or smaller than a meter, we add a prefix
as shown in Table 1.1. For example, a kilometer is formed
by adding the prefix “kilo,” which means times one thou-
sand (103 m = 1 km). Living organisms rarely, if ever, reach
a size of 1 km; the tallest trees are about 0.1 km (100 m) high.
A few animals (whales, dinosaurs) reach the size of tens of
meters, but most organisms are a few meters or less in size.

The diversity of life becomes more obvious as we move
down to smaller length scales. One one-hundredth of a me-
ter is called a centimeter (1 cm = 10−2 m). The centimeter

1 The metric system is officially called the SI system (systeme in-
ternationale). It used to be called the MKS (meter kilogram second)
system.

Table 1.1 Common prefixes used in the metric system

Prefix Abbreviation Multiply by

tera T 1012

giga G 109

mega M 106

kilo k 103

milli m 10−3

micro μ 10−6

nano n 10−9

pico p 10−12

femto f 10−15

atto a 10−18

is still common in the medical literature, although it is go-
ing out of style among metric purists who prefer to use only
prefixes that are factors of 1000.2 One one-thousandth of a
meter is a millimeter (1 mm = 10−3 m), about the thickness
of a dime. We can still see objects of this size, but we cannot
study their detailed structure with the unaided eye.

The microscope enables us to study objects many times
smaller than 1 mm. The natural unit for measuring such
objects is 10−6 m or 10−3 mm, called a micrometer
(1 μm = 10−6 m). The nickname for the micrometer is the
“micron.” Figure 1.1 shows the relative sizes of objects in
the range of 1 mm–1 μm and encompasses the length scale
of cell biology. Many small structures of our body are this
size. For instance, our lungs consist of a branching net-
work of tubes through which air flows. These tubes end in
small, nearly spherical air sacs called alveoli (Fig. 1.1b).
Each alveolus has a diameter of about 250 μm, and this
size is set by the diffusion properties of air (Chap. 4). Proto-
zoans are a type of small one-celled animal. A paramecium
is a protozoan about 250 μm long (Fig. 1.1a). The cells in
multicellular animals tend to be somewhat smaller than pro-
tozoans. For instance, the mammalian cardiac cell (a muscle
cell found in the heart, Chap. 7) shown in Fig. 1.1c is about

2 We find that restricting ourselves to prefixes that are a multiple of
1000 makes it easier to remember relative sizes.

R. K. Hobbie, B. J. Roth, Intermediate Physics for Medicine and Biology, 1
DOI 10.1007/978-3-319-12682-1_1, c© Springer International Publishing Switzerland 2015



2 1 Mechanics

100 μm

a)

b)

c)

d)

e)

Fig. 1.1 Objects ranging in size from 1 mm down to 1 μm. a A parame-
cium. b An alveolus (air sac in the lung). c A cardiac cell. d Red blood
cells. e Escherichia coli bacteria

100-μm long and 20 μm in diameter. Nerve cells have a long
fiber-like extension called an axon. Axons come in a vari-
ety of sizes, from 1-μm diameter up to tens of microns. The
squid contains a giant axon nearly 1 mm in diameter. This
axon plays an important role in our understanding of how
nerves work (Chap. 6). Our red blood cells (erythrocytes)
carry oxygen to all parts of our body. (Actually, red blood
cells are not true cells at all, but rather “corpuscles”). Red
blood cells are disk-shaped, with a diameter of about 8 μm
and a thickness of 2 μm (Fig. 1.1d). Blood flows through
a branching network of vessels (Sect. 1.19), the smallest
of which are capillaries. Each capillary has a diameter of
about 8 μm, meaning that the red blood cells can barely pass
through it single-file.

One valuable skill in physics is the ability to make order-
of-magnitude estimates, meaning to calculate something ap-
proximately right. For instance, suppose we want to calculate
the number of cells in the body. This is a difficult calculation,
because cells come in all sizes and shapes. But for some pur-
poses we only need an approximate answer (say, within a fac-
tor of ten). For example: cells are roughly 10 μm in size, so
their volume is about (10 μm)3, or (10×10−6)3 = 10−15 m3.
An adult is roughly 2 m tall and about 0.3 m wide, so our
volume is about 2 m × 0.3 m × 0.3 m, or 0.18 m3. We are
made up almost entirely of cells, so the number of cells in our
body is about

(
0.18 m3

)
/
(
10−15 m3

)
, or roughly 2 × 1014.

Some problems at the end of the chapter ask you to make
similar order-of-magnitude calculations.

Most cells are larger than a few microns. But many cells
(called eukaryotes) are complex structures that contain or-
ganelles about this size. Mitochondria, organelles where
many of the chemical processes providing cells with en-
ergy take place, are typically about 2 μm long. Protoplasts,

100 nm

a) b)

c)

d)

e)

Fig. 1.2 Objects ranging in size from 1 μm down to 1 nm. a The hu-
man immunodeficiency virus (HIV). b Hemoglobin molecules. c A cell
membrane. d A DNA molecule. e Glucose molecules

organelles found in plant cells where photosynthesis changes
light energy to chemical energy, are also about 2 μm long.

The simplest cells are called prokaryotes and contain
no subcellular structures. Bacteria are the most common
prokaryotic cells. The bacterium E. coli is about 2 μm long
(Fig. 1.1e), and has been studied extensively.

To examine structures smaller than bacteria, we must
measure lengths that are smaller than a micron. One-
thousandth of a micron is called a nanometer (1 nm =
10−9 m). Figure 1.2 shows objects having lengths from 1 nm
to 1 μm. E. coli, which seemed so tiny compared to cells in
Fig. 1.1, are giants on the nanometer length scale, being 20
times longer than the 100-nm scale bar in Fig. 1.2. Viruses
are tiny packets of genetic material encased in protein. On
their own they are incapable of metabolism or reproduction,
so some scientists do not even consider them as living or-
ganisms. Yet, they can infect a cell and take control of its
metabolic and reproductive functions. The length scale of
viruses is one-tenth of a micron, or 100 nm. For instance, The
human immunodeficiency virus (HIV), the virus that causes
AIDS, is roughly spherical with a diameter of about 120 nm
(Fig. 1.2a). Some viruses, called bacteriophages, infect and
destroy bacteria. Most viruses are too small to see in a light
microscope. The resolution of a microscope is limited by
the wavelength of light, which is about 500 nm (Chap. 14).
Thus, with a microscope we can study cells in detail, we can
see bacteria without much resolution, and we can barely see
viruses, if we can see them at all.

Below 100 nm, we enter the world of individual
molecules. Proteins are large, complex macromolecules that
are vitally important for life. For example, hemoglobin is the
protein in red blood cells that binds to and carries oxygen.
Hemoglobin is roughly spherical, about 6 nm in diameter
(Fig. 1.2b). Many biological functions occur in the cell mem-
brane (see Chap. 5). Membranes are made up of layers of
lipid (fat), often with proteins and other molecules embedded
in them (Fig. 1.2c). A typical cell membrane is about 10 nm
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Table 1.2 Approximate sizes of biological objects

Object Size
Protozoa 100 μm
Cells 10 μm
Bacteria 1 μm
Viruses 100 nm
Macromolecules 10 nm
Molecules 1 nm
Atoms 100 pm

thick. The molecule adenosine triphosphate (ATP), crucial
for energy production and distribution in cells, is about
2 nm long (Chap. 3). Chemical energy is stored in molecules
called carbohydrates. A common (and relatively small) car-
bohydrate is glucose (C6H12O6), which is about 1 nm long
(Fig. 1.2e). Genetic information is stored in long, helical
strands of deoxyribonucleic acid (DNA). DNA is about 2.5
nm wide, and the helix completes a turn every 3.4 nm along
its length (Fig. 1.2d).

At the 1-nm scale and below, we reach the world of small
molecules and individual atoms. Water is the most common
molecule in our body. It consists of two atoms of hydrogen
and one of oxygen. The distance between adjacent atoms
in water is about 0.1 nm. The distance 0.1 nm (100 pm) is
used so much at atomic length scales that it has earned a
nickname: the angstrom (A). Like the centimeter, this unit is
going out of fashion as the use of nanometer becomes more
common. Individual atoms have diameters of 100 or 200 pm.

Below the level of 100 pm, we leave the realm of biol-
ogy and enter the world of subatomic physics. The nuclei of
atoms (Chap. 17) are very small, and their sizes are measured
in femtometers (1 fm = 10−15 m).

One cannot possibly memorize the size of all biological
objects: there are simply too many. The best one can do is
remember a few mileposts along the way. Table 1.2 contains
a rough guide to how large a few important biological objects
are. Think of these as rules of thumb. Given the diversity of
life, one can certainly find exceptions to these rules, but if
you memorize Table 1.2 you will have a rough framework
to organize your thinking about size. To examine the relative
sizes of objects in more detail, see Morrison et al. (1994) or
Goodsell (2009).

1.2 Models

Throughout this book we construct mathematical models of
physical and biological systems. We start with general prin-
ciples such as Newton’s laws and apply them to a simplified
model such as the leg in Fig. 1.3. The forces acting on the
leg are much more complicated, but we model them with just
three forces.

Fig. 1.3 Forces on the leg in equilibrium. Each force is exerted by
some other object. a The points of application are widely separated. b
The sum of the forces is zero

Biologists and physicists tend to make models differently
(Blagoev et al. 2013). Biologists are used to dealing with
complexity and diversity in biological systems. Physicists
seek to explain as many phenomena with as few overar-
ching principles as possible. Modeling a process is second
nature to physicists. They willingly ignore some features of
the biological system while seeking these principles. It takes
experience and practice to decide what can be simplified and
what can not.

A model incorporates some biological information, such
as the ion currents in the Hodgkin–Huxley model (Chap. 6).
The HH model can be extended by incorporating more ions
and ion permeabilities measured in different nerves and
muscles and other species. In other cases, the model has
no specific details about the physiologic process, but cap-
tures an important feature in simplified form, that may have
widespread applicability. We call this a toy model. The radial
isochron clock (page 281) is a good example.

In many cases, simple models are developed in the home-
work problems at the end of each chapter. Working these
problems will provide practice in the art of modeling.

1.3 Forces and Translational Equilibrium

There are several ways that we could introduce the idea of
force, depending on the problem at hand and our philosoph-
ical bent. For our present purposes, it will suffice to say that
a force is a push or a pull, that forces have both a magni-
tude and a direction, and that they give rise to accelerations
through Newton’s second law, F = ma. Experiments show
that forces add like displacements, so they can be represented



4 1 Mechanics

by vectors. (Some of the properties of vectors are reviewed in
Appendix B; others are introduced as needed.) Vectors will
be denoted by boldfaced characters. The force is measured
in newtons (N). A newton is a kg m s−2.

One finds experimentally that an object is in translational
equilibrium if the vector sum of all the forces acting on
the body is zero. Equilibrium means that the object either
remains at rest or continues to move with a constant veloc-
ity. That is, it is not accelerated. Translational means that
only changes of position are being considered; changes of
orientation of the object with respect to the axes are ignored.

We must consider all the forces that act on the object. If
the object is a person standing on both feet, the forces are
the upward force of the floor on each foot and the downward
force of gravity on the person (more accurately, the vector
sum of the gravitational force on every cell in the person).
We do not consider the downward force that the person’s feet
exert on the floor. It is also possible to replace the sum of
the gravitational force on each cell of the body with a single
downward gravitational force acting at one point, the center
of gravity of the body.

The forces that add to zero to give translational equilib-
rium need not all act at one point on the object. If the object
is a person’s leg and the leg is at rest, there are three forces
exerted on the leg by other objects (Fig. 1.3). Force F1 is the
push of the floor up on the bottom of the foot. The various
pushes and pulls of the rest of the body on the leg through the
hip joint and surrounding muscles have been added together
to give F2. The gravitational pull of the earth downward on
the leg is F3. Force F1 acts on the bottom of the leg, F2 acts
on the top, and F3 acts somewhere in between. If the leg is
in equilibrium the sum of these forces is zero, as shown in
Fig. 1.3b. Although the points of application of the forces
can be ignored in considering translational equilibrium, they
are important in determining whether or not the object is in
rotational equilibrium. This is discussed shortly.

The Greek letter � (capital sigma) is usually used to
mean a sum of things. With this notation, the condition for
translational equilibrium can be written as

∑

i

Fi = 0. (1.1)

The subscript i is used to label the different forces acting on
the body. A notation this compact has a lot hidden in it. This
is a vector equation, standing for three equations:

∑

i

Fix = 0,

∑

i

Fiy = 0, (1.2)

∑

i

Fiz = 0.

Fig. 1.4 A person standing. a The forces on the person. b A free-body
or force diagram

Often the subscript i is omitted and the equations are written
as
∑

Fx = 0,
∑

Fy = 0, and
∑

Fz = 0. In this notation, a
component is positive if it points along the positive axis and
negative if it points the other way.

Sometimes, as in the next example, we draw forces in
particular directions and assume that these directions are pos-
itive. If the subsequent algebra happens to give a solution that
is negative, the force points opposite the direction assumed.

As an example, consider a person standing on both feet
as in Fig. 1.4. The earth pulls down with force W. The floor
pushes up on the right foot with force F1 and on the left foot
with force F2. To determine what the condition for transla-
tional equilibrium tells us about the forces, draw the force
diagram or free-body diagram of Fig. 1.4b. This diagram is
an abstraction that ignores the points at which the forces are
applied to the body. We can get away with this abstraction be-
cause we are considering only translation. When we consider
rotational equilibrium, we will have to redraw the diagram
showing the points at which the various forces act on the
person. If all the forces are vertical, then there is only one
component of each force to worry about, and the equilibrium
condition gives F1 +F2 −W = 0 or F1 +F2 = W . The total
force of the floor pushing up on both feet is equal to the pull
of the earth down.

If there is a sideways force on each foot, translational
equilibrium provides two conditions: F1x + F2x = 0 and
F1y + F2y − W = 0.

This is all that can be learned from the condition for trans-
lational equilibrium. If the person stands on one foot, then
F1 = 0 and F2 = W . If the person stands with equal force
on each foot, then F1 = F2 = W/2.

1.4 Rotational Equilibrium

If the object is in rotational equilibrium, then another condi-
tion must be placed upon the forces. Rotational equilibrium
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Fig. 1.5 A rigid rod free to rotate about a pivot at point X

means that the object either does not rotate or continues to
rotate at a constant rate (with a constant number of rotations
per second). Consider the object of Fig. 1.5, which is a rigid
rod pivoted at point X so that it can rotate in the plane of
the paper. Forces F1 and F2 are applied to the rod in the
plane of the paper at distances r1 and r2 from the pivot and
perpendicular to the rod. The pivot exerts the force F3 on
the rod needed to maintain translational equilibrium. If both
F1 and F2 are perpendicular to the rod, they are parallel to
each other. They must also be parallel to F3, and translational
equilibrium requires that F3 = F1 + F2.

Experiment shows that there is no rotation of the rod
if F1r1 = F2r2. The condition for rotational equilibrium
can be stated in a form analogous to that for translational
equilibrium if we define the torque, τ , to be

τi = riFi . (1.3)

With this definition goes an algebraic sign convention: the
torque is positive if it tends to produce a counterclockwise
rotation. The rod is in rotational equilibrium if the algebraic
sum of all the torques is zero:

∑

i

τi =
∑

i

riFi = 0. (1.4)

Note that F3 contributes nothing to the torque because r3 is
zero.

The torque is defined about a certain point, X. It depends
on the distance from the point of application of each force
to X.3 As long as the object is in translational equilibrium,
the torque can be evaluated around any point. This theorem,
which we will not prove, often allows calculations to be sim-
plified, because taking torques about certain points can cause
some forces not to contribute to the torque equation.

The torque can also be calculated if the force is not at
right angles to the rod. Imagine an object free to rotate about
point O in Fig. 1.6. Force F lies in the plane of the paper but

3 The discussion associated with Fig. 1.5 suggests that torque is taken
about an axis, rather than a point. In a three-dimensional problem the
torque is taken about a point.

Fig. 1.6 A force F is applied to an object at point P . The object can
rotate about point O. Vectors r and F determine the plane of the paper

Fig. 1.7 a When θ is between 0 and 180 ◦, both sin θ and the torque are
positive. b When θ is between 180 and 360 ◦, both sin θ and the torque
are negative

is applied in some arbitrary direction at point P . The vec-
tors r and F determine the plane of the paper if they are not
parallel. Force F can be resolved into two components: one
parallel to r, F‖ = F cos θ , and the other perpendicular to
r, F⊥ = F sin θ . The component parallel to r will not cause
any rotation about point O. (Pull on an open door parallel
to the plane of the door; there is no rotation.) The torque is
therefore

τ = rF⊥ = rF sin θ. (1.5)

The perpendicular distance from the line along which the
force acts to point O is r sin θ . It is often called the moment
arm, and the torque is the magnitude of the force multiplied
by the moment arm.

The angle θ is the angle of rotation from the direction of
r to the direction of F. It is called positive if the rotation is
counterclockwise. For the angle shown in Fig. 1.6, sin θ has
a positive value, and the torque is positive. Figure 1.7a shows
an angle between 90 and 180 ◦ for which the torque and sin θ

are still positive. Figure 1.7b shows an angle between 180
and 360 ◦, for which both the torque and sin θ are negative.
In all cases, Eq. 1.5 gives the correct sign for the torque.

To summarize: the torque due to force F applied to a body
at point P must be calculated about some point O. If r is
the vector from O to P , the magnitude of the torque is equal
to the magnitude of r times the magnitude of F times the
sine of the angle between r and F. The angle is measured
counterclockwise from r to F.
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Fig. 1.8 The cross product r×F is calculated by resolving r and F into
components

1.5 Vector Product

Torque can be thought of as a vector, τ . Its magnitude is
Fr sin θ . The only direction uniquely defined by vectors r
and F is perpendicular to the plane in which they lie. This
is also the direction of an axis about which the torque would
cause a rotation. However, there is ambiguity about which di-
rection along this line to assign to the torque. The convention
is to say that a positive torque points in the direction of the
thumb of the right hand when the fingers curl in the direction
of positive rotation from r to F.4 When r and F point in the
same direction, so that no plane is defined, the magnitude of
the torque is zero.

The product of two vectors according to the foregoing
rules is called the cross product or vector product of the two
vectors. One can use a shorthand notation,

τ = r × F. (1.6)

There is another way to write the cross product. If both r
and F are resolved into components, as shown in Fig. 1.8,
then the cross product can be calculated by applying the
rules above to the components. Since Fy is perpendicular
to rx and parallel to ry , its only contribution is a coun-
terclockwise torque rxFy . The only contribution from Fx

is a clockwise torque, −ryFx . The magnitude of the cross
product is therefore

τ = rxFy − ryFx. (1.7)

Note that this is the (signed) sum of each component of the
force multiplied by its moment arm.

4 This arbitrariness in assigning the sense of τ means that it does not
have quite all the properties that vectors usually have. It is called an
axial vector or a pseudovector. It will not be necessary in this book to
worry about the difference between a real vector and an axial vector.

The equivalence of this result to Eq. 1.5 can be verified by
writing Eq. 1.7 as

τ = (r cos β)(F sin α) − (r sin β)(F cos α),

τ = rF (sin α cos β − cos α sin β) .

There is a trigonometric identity that

sin (α − β) = sin α cos β − cos α sin β.

Since θ = α − β (from Fig. 1.8), this is equivalent to τ =
rF sin θ .

When vectors r and F lie in the xy plane, τ points
along the z axis. If r and F point in arbitrary directions,
Eq. 1.7 gives the z component of τ . One can apply the same
reasoning for other components and show that

τx = ryFz − rzFy,

τy = rzFx − rxFz, (1.8)

τz = rxFy − ryFx.

If you are familiar with the rules for evaluating determinants,
you will see that this is equivalent to the notation,

τ =
∣∣∣
∣∣∣

x̂ ŷ ẑ
rx ry rz
Fx Fy Fz

∣∣∣
∣∣∣
. (1.9)

1.6 Force in the Achilles Tendon

The equilibrium conditions can be used to understand many
problems in clinical orthopedics. Two are discussed in this
book: forces that sometimes cause the Achilles tendon at the
back of the heel to break, and forces in the hip joint.

The Achilles tendon connects the calf muscles (the gas-
trocnemius and the soleus) to the calcaneus at the back of the
heel (Fig. 1.9). To calculate the force exerted by this tendon
on the calcaneus when a person is standing on the ball of one
foot, assume that the entire foot can be regarded as a rigid
body. This is our first example of creating a model of the ac-
tual situation. We try to simplify the real situation to make
the calculation possible while keeping the features that are
important to what is happening. In this model, the internal
forces within the foot are being ignored.

Figure 1.10 shows the force exerted by the tendon on the
foot (FT ), the force of the leg bones (tibia and fibula) on the
foot (FB ), and the force of the floor upward, which is equal to
the weight of the body (W). The weight of the foot is small
compared to these forces and will be neglected. Measure-
ments on a few people suggest that the angle the Achilles
tendon makes with the vertical is about 7 ◦.
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Fig. 1.9 Simplified anatomy of the foot

7°

F

W

T

FB θ

r
W

10 cm
rT

5.6 cm

Fig. 1.10 Forces on the foot, neglecting its own weight

Translational equilibrium requires that

FT cos(7 ◦) + W − FB cos θ = 0, (1.10)

FT sin(7 ◦) − FB sin θ = 0.

To write the condition for rotational equilibrium, we need
to know the lengths of the appropriate vectors rT and rW ,
assuming that the torques are taken about the point where
FB is applied to the foot. In our simple model, we ignore
the contributions of the horizontal components of any forces
to the torque equation. This is not essential (if we are will-
ing to make more detailed measurements), but it simplifies
the equations and thereby makes the process clearer. The
horizontal distances measured by one of the authors are
rT = 5.6 cm and rW = 10 cm, as shown in Fig. 1.10. The
torque equation is

10W − 5.6FT cos 7 ◦ = 0. (1.11)

This equation can be solved for the tension in the tendon:

FT = 10W

5.6 cos 7 ◦ = 1.8W. (1.12)

This result can now be used in Eq. 1.10 to find FBy =
FB cos θ :

(1.8)(W)(0.993) + W = FB cos θ,

2.8W = FB cos θ. (1.13)

From Eqs. 1.10 and 1.12, we get

(1.8)(W)(0.122) = FB sin θ,

0.22W = FB sin θ. (1.14)

Equations 1.13 and 1.14 are squared and summed and the
square root taken to give FB = 2.8W , while they can be
divided to give

tan θ = 0.22

2.8
= 0.079,

θ = 4.5 ◦ .

The tension in the Achilles tendon is nearly twice the per-
son’s weight, while the force exerted on the leg by the talus
is nearly three times the body weight. One can understand
why the tendon might rupture.

1.7 Forces on the Hip

The forces in the hip joint can be several times a per-
son’s weight, and the use of a cane can be very effective in
reducing them.

As a person walks, there are moments when only one foot
is on the ground. There are then two forces acting on the
body as a whole: the downward pull of the earth W and
the upward push of the ground on the foot N . The pull of
the earth may be regarded as acting at the center of gravity
of the body (Serway and Jewett 2013, p. 219). The center
of gravity is located on the midline (if the limbs are placed
symmetrically), usually in the lower abdomen (Williams and
Lissner 1962, Chap. 5.) If torques are taken about the foot,
then the center of gravity must be directly over the foot so
that there will be no torque from either force. This situa-
tion is shown in Fig. 1.11. The condition for translational
equilibrium requires that N = W .

The anatomy of the pelvis, hip, and leg is shown schemat-
ically in Fig. 1.12. Fourteen muscles and several ligaments
connect the pelvis to the femur. Extensive measurements of
the forces exerted by the abductor5 muscles in the hip have

5 To abduct means to move away from the midline of the body.
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Fig. 1.11 A person standing on one foot must place the foot under the
center of gravity, which is on or near the midline

been made by Inman (1947). If the leg is considered an
isolated system as in Fig. 1.12, the following forces act:

F: The net force of the abductor muscles, acting on
the greater trochanter. These muscles are primarily
the gluteus medius and gluteus minimus, shown as a
single band of muscle in Fig. 1.12.

R: The force of the acetabulum (the socket of the pelvis)
on the head of the femur.

N: The upward force of the floor on the bottom of the
foot (in this case, equal to W ).

WL: The weight of the leg, acting vertically downward at
the center of gravity of the leg. WL ≈ W/7 (Williams
and Lissner 1962, Chap. 5).

Inman found that F acts at about a 70 ◦ angle to the
horizontal. In a typical adult, the distance from the greater
trochanter to the midline is about 18 cm, the horizontal dis-
tance from the greater trochanter to the center of gravity of
the leg is about 10 cm, and the distance from the greater
trochanter to the middle of the head of the femur is about
7 cm.

A free body diagram is shown in Fig. 1.13. The middle
of the head of the femur will turn out to be very close to the
intersection of the line along which R acts and a horizon-
tal line drawn from the point where F acts. This means that
if torques are taken about this intersection point (point O),
there will be no contributions from R or from the horizontal
component of F. The intersection is about 7 cm toward the
midline from the point of application of F. Since N = W

and WL ≈ W/7, the equilibrium equations are

∑
Fy = F sin(70 ◦) − Ry − W/7 + W = 0, (1.15)

∑
Fx = F cos(70 ◦) − Rx = 0, (1.16)

∑
τ = −F sin(70 ◦)(7)−(W/7)(10−7)+W(18−7) = 0.

Fig. 1.12 Pertinent features of the anatomy of the leg

The last of these equations can be written as 11W − 3
7W −

6.6F = 0, from which F = 1.6W . The magnitude of the
force in the abductor muscles is about 1.6 times the body
weight.

Equations 1.15 and 1.16 can now be used to find Rx and
Ry :

Rx = F cos(70 ◦) = (1.6W)(0.342) = 0.55W,

Ry = F sin(70 ◦)+6

7
W = (1.6W)(0.94)+0.86W = 2.36W.
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Fig. 1.13 A free-body diagram of the forces acting on the leg. Torques
are taken about point O, which is the intersection of a line along which
R acts and a horizontal line through the point at which F is applied. This
point is 7 cm toward the midline (medially) from the greater trochanter

The angle that R makes with the vertical is given by

tan φ = Rx

Ry

= 0.23,

φ = 13 ◦ .

The magnitude of R is R = (R2
x + R2

y)
1/2 = 2.4W .

If the patient did not have to put the foot under the center
of gravity of the body, the moment arm of the only positive
torque, 11W , could have been much less, and this would have
been balanced by a smaller value of F . This can be done by
having the patient use a cane on the opposite side, so that the
foot need not be right under the center of gravity. This will be
explored in the next section. Conversely, if the patient were

Fig. 1.14 The femoral epiphysis and the direction of R

Fig. 1.15 X-ray of a slipped femoral epiphysis in an adolescent male.
(Courtesy of the Department of Diagnostic Radiology, University of
Minnesota)

carrying a suitcase in the opposite hand, the center of mass
would be moved away from the midline, the foot would still
have to be placed under the center of mass, and the moment
arm, and hence F , would be even larger (Problem 11).

One very interesting conclusion of Inman’s study was that
the force R always acts along the neck of the femur in such a
direction that the femoral epiphysis has very little sideways
force on it. The epiphysis is the growing portion of the bone
(Fig. 1.14) and is not very well attached to the rest of the
bone. If there were an appreciable sideways force, the epi-
physis would slip sideways, and indeed it sometimes does
(Fig. 1.15). This is a serious problem, since if the blood sup-
ply to the epiphysis is compromised, there will be no more
bone growth.
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Fig. 1.16 A person using a cane on the left side (front view) to favor
the right hip

Suppose that, for some reason, the gluteal muscles are
severed. The patient can no longer apply force F to the
greater trochanter; Eq. 1.16 shows that then Rx must be zero.
This change in the direction of R causes a rotation of the
epiphyseal plate and a gradual reshaping of the femur.

1.8 The Use of a Cane

A cane is beneficial if used on the side opposite to the af-
fected hip (Fig. 1.16). We ignore the fact that the arm holding
the cane has moved, thereby shifting slightly the center of
mass, and we assume that the force of the ground on the cane
is vertical. If we assume that the tip of the cane is about 30 cm
(12 in.) from the midline and supports one-sixth of the body
weight, then we can apply the equilibrium conditions to learn
that N + 1

6W − W = 0, so N = 5
6W . Torques taken about

the center of mass give (30)(W
6 ) − x( 5

6 )W = 0, x = 6 cm.
(Figure 1.16 is not to scale.)

Having the foot 6 cm from the midline reduces the force
in the muscle and the joint. To find out how much, consider
the force diagram in Fig. 1.17. The most difficult part of
the problem is working out the various moment arms. As-
sume that the slight movement of the leg has not changed
the point about which we take torques (point O). Again, R
contributes no torque about this point. The horizontal dis-
tance of F from this point is still 7 cm. The force of the
ground on the leg is now 5W/6, and its moment arm is
18−6−7 = 5 cm. The weight of the leg, W/7, acts at the
center of mass of the leg, which is still 10

18 of the distance
from the greater trochanter to the foot. Its horizontal position
is therefore 10

18 of the horizontal distance from the greater
trochanter to the foot: (10)(12)/18 = 6.67 cm. The moment
arm is 7−6.67 cm = 0.33 cm. The torque equation is

−F sin(70 ◦)(7) +
(

W

7

)
(0.33) +

(
5W

6

)
(5) = 0.

F

70°
O

R

x = 6.67   = 0.33

W/7

5W/6

 12  6 
 18 

 7 

Fig. 1.17 A force diagram for the leg when a cane is being used and
the leg is 6 cm from the midline

It is solved by writing it as

−6.58F + 0.047W + 4.17W = 0,

F = 0.64W.

Even though the cane supports only one-sixth of the body
weight, F has been reduced from 1.6W to 0.64W by the
change in the moment arm.

The force of the acetabulum on the head of the fe-
mur can be determined from the conditions for translational
equilibrium:

F cos(70 ◦) − Rx = 0,

Rx = 0.22W,

F sin(70 ◦) − Ry − W

7
+ 5

6
W = 0,

Ry = 1.29W.
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The resultant force R has magnitude (R2
x + R2

y)
1/2 =

1.3W . This compares to the value 2.4W without the cane.
The force in the joint has been reduced by slightly more than
the body weight. It is interesting to read what an orthopedic
surgeon had to say about the use of a cane. The following is
from the presidential address of W. P. Blount, M.D., to the
Annual Meeting of the American Academy of Orthopedic
Surgeons, January 30, 1956:

The patient with a wise orthopedic surgeon walks with crutches
for six months after a fracture of the neck of the femur. He uses
a stick for a longer time—the wiser the doctor, the longer the
time. If his medical adviser, his physical therapist, his friends,
and his pride finally drive him to abandon the cane while he still
needs one, he limps. He limps in a subconscious effort to reduce
the strain on the weakened hip. If there is restricted motion, he
cannot shift his body weight, but he hurries to remove the weight
from the painful hip joint when his pride makes him reduce the
limp to a minimum. The excessive force pressing on the aging
hip takes its toll in producing degenerative changes. He should
not have thrown away the stick.6

1.9 Work

So far this chapter has considered only those situations in
which a mass m is in equilibrium. If the total force on the
object is not zero, the object experiences an acceleration a
given by Newton’s second law:

F = ma.

The study of how forces produce accelerations is called dy-
namics. It is an extensive field that will be discussed only
briefly here.

Suppose the object moves along the x axis with velocity
vx . If it is subject to a force in the x direction Fx , it will be
accelerated, and the velocity will change according to Fx =
max = m (dvx/dt). If Fx is known as a function of time,
then this equation can be written as dvx = (1/m)Fx(t)dt ,
and it can be integrated, at least numerically.

In this context it is useful to define the kinetic energy

Ek = 1

2
mv2

x. (1.17)

As long as Fx acts, the object is accelerated and the kinetic
energy changes. We can gain some understanding of how it
changes by noting that

d

dt

(
1

2
mv2

x

)
= mvx

dvx

dt
= Fxvx. (1.18)

6 Quoted with permission from Blount (1956). Copyright c© 1956 J
Bone Joint Surg. This article was first quoted to the physics community
by Benedek and Villars (1973)

Therefore Fxvx is the rate at which the kinetic energy is
changing with time. It is called the power due to force Fx .
The units of kinetic energy are kg m2 s−2 or joules (J); the
units of power are J s−1 or watts (W).

If vx and Fx are both positive, the acceleration in-
creases the object’s velocity, the kinetic energy increases,
and the power is positive. If vx and Fx are both negative,
vx decreases—becomes more negative—but the magnitude
of the velocity increases. The kinetic energy increases with
time, and the power is positive. If vx and Fx point in opposite
directions, then the effect of the acceleration is to reduce the
magnitude of vx , the kinetic energy decreases, and the power
is negative.

Equation 1.18 can be written as

d

dt

(
1

2
mv2

x

)
= Fx

dx

dt
.

Both sides of this equation can be integrated with respect to t :
∫ t2

t1

d

dt

(
1

2
mv2

x

)
dt =

∫ t2

t1

Fx (t)
dx

dt
dt.

The indefinite integral corresponding to the left-hand side is
the integral with respect to time of the derivative of 1

2mv2
x and

is therefore 1
2mv2

x . If Fx is known not as a function of t but as
a function of x, it is convenient to write the right-hand side as

∫ x2

x1

Fx(x) dx = W.

This quantity is called the work done by force Fx on the
object as it moves from x1 to x2. The complete equation is
therefore
[

1

2
mv2

x

]

2
−
[

1

2
mv2

x

]

1
=
∫ x2

x1

Fx(x) dx = W. (1.19)

The increase in kinetic energy of the body as it moves from
position 1 (at time 1) to position 2 (at time 2) is equal to the
work done on the body by the force Fx . The work done on
the body by force Fx is the area under the curve of Fx versus
x, between points x1 and x2. This is shown in Fig. 1.18.

If several forces act on the body, then the acceleration is
given by Newton’s second law, where F is the total force on
the body. The change in kinetic energy is therefore the work
done by the total force or the sum of the work done by each
individual force.

When the force and displacement vectors point in any
direction, the kinetic energy is defined to be

Ek = 1

2
mv2 = 1

2
m(v2

x + v2
y + v2

z ). (1.20)

Differentiating this expression with respect to time shows
that the power is given by an extension of Eq. 1.18:

dEk

dt
= Fxvx + Fyvy + Fzvz.
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Fig. 1.18 The work done by Fx is the shaded area under the curve
between x1 and x2

y

x

vθ

F

Fig. 1.19 Aligning the axes so that v is along the x axis and F in the
xy plane shows that an alternative expression for F · v is Fv cos θ

This particular combination of vectors F and v is called the
scalar product or dot product. It is written as F · v.

There is another way to write the scalar product. If F and
v are not parallel, they define a plane. Align the x axis with
v so that vy and vz are zero, and choose the direction of y

so that F is in the xy plane (Fig. 1.19). Then it is easy to see
that F · v = Fxvx = Fv cos θ , where θ is the angle between
F and v.

To summarize, the power is

P = dEk

dt
= F · v = Fv cos θ = Fxvx + Fyvy + Fzvz.

(1.21)
Equation 1.21 can be integrated in the same manner as above
to obtain

�Ek =
∫

Fx dx +
∫

Fy dy +
∫

Fz dz =
∫

F · ds. (1.22)

This is the general expression for the work done by force F
on a point mass that undergoes displacement s.

Fig. 1.20 A rod subject to a force F along it

1.10 Stress and Strain

Whenever a force acts on an object, it undergoes a change
of shape or deformation. Often these deformations can be ig-
nored, as they were in the previous sections. In other cases,
such as the contraction of a muscle, the expansion of the
lungs, or the propagation of a sound wave, the deforma-
tion is central to the problem and must be considered. This
book will not develop the properties of deformable bod-
ies extensively; nevertheless, deformable body mechanics is
important in many areas of biology (Fung 1993). We will de-
velop the subject only enough to be able to consider viscous
forces in fluids.

Consider a rod of cross-sectional area S. One end is an-
chored, and a force F is exerted on the other end parallel
to the rod (Fig. 1.20). Effects of weight will be ignored. A
surface force is transmitted across any surface defined by an
imaginary cut perpendicular to the axis of the rod. A surface
force is exerted by the substance to the right of the cut on
the substance to the left (and vice versa, in accordance with
Newton’s third law: when object A exerts a force on object
B, object B exerts an equal and opposite force on object A).
The surface force per unit area is called the stress. In this
case, when the surface is perpendicular to the axis of the rod
and the force is along the axis of the rod, it is called a normal
stress:

sn = F

S
. (1.23)

In the general case there can also be a component of stress
parallel to the surface.

The strain εn is the fractional change in the length of the
rod:

εn = �l

l
. (1.24)

If increasing stress is applied to a typical substance, the
strain increases linearly with the stress for small stresses.
Then it increases even more rapidly. At higher strains it
may be necessary to reduce the stress to maintain the same
strain. If the stress is not reduced, the rod elongates fur-
ther and breaks. Finally, at a high enough strain, the sample
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Fig. 1.21 A typical stress–strain relationship. On the left, stress is the
independent variable. On the right, strain is the independent variable.
Strain is usually used as the independent variable because it is often a
double-valued function of the stress

Table 1.3 Young’s modulus, tensile strength, and compressive
strength of various materials in pascal

Material E Tensile strength Compressive strength

Steel (approx.)a 20 × 1010 50 × 107 –
Femur (wet)b 1.4 × 1010 8.3 × 107 1.8 × 107

Walnutc 0.8 × 1010 4.1 × 107 5.2 × 107

aAmerican Institute of Physics Handbook (1957). New York, McGraw-
Hill, p. 2–70
bcf. Kummer (1972)
ccf. U.S. Department of Agriculture (1955)

breaks. This is plotted in Fig. 1.21. Because of the double-
valuedness of the strain as a function of stress, the strain is
usually plotted as the independent variable, as on the right in
Fig. 1.21.

In the linear region, the relationship between stress and
strain is written as

sn = Eεn. (1.25)

The proportionality constant E is called Young’s modulus.
Since the strain is dimensionless, E has the dimensions of
stress. Various units are N m−2 or pascal (Pa), dyn cm−2, psi
(pound per square inch), and bar (1 bar = 14.5 psi = 105

Pa = 106 dyn cm−2).
If the stress is increased enough, the bar breaks. The value

of the stress when the bar breaks under tension is called the
tensile strength. The material will also rupture under com-
pressive stress; the rupture value is called the compressive
strength. Table 1.3 gives values of Young’s modulus, the ten-
sile strength, and the compressive strength for steel, long
bone (femur), and wood (walnut).

In some materials, the stress depends not only on the
strain, but on the rate at which the strain is produced. It may
take more stress to stretch the material rapidly than to stretch
it slowly, and more stress to stretch it than to maintain a fixed
strain. Such materials are called viscoelastic. They are often
important biologically but will not be discussed here (Fung
1993).

Still other materials exhibit hysteresis. The stress–strain
relationship is different when the material is being stretched
than when it is allowed to return to its unstretched state. This
difference is observed even if the strain is changed so slowly
that viscoelastic effects are unimportant.

Fig. 1.22 Shear stress and strain

1.11 Shear

In a shear stress, the force is parallel to the surface across
which it is transmitted.7 In a shear strain, the deformation
increases as one moves in a direction perpendicular to the
deformation. An example of shear stress and strain is shown
in Fig. 1.22. The shear stress is

ss = F

S
, (1.26)

and the shear strain is

εs = δ

h
. (1.27)

It is possible to define a shear modulus G analogous to
Young’s modulus when the shear strain is small:

ss = Gεs. (1.28)

1.12 Hydrostatics

We now turn to some topics in the mechanics of fluids that
will be useful for understanding several phenomena, includ-
ing the circulation and fluid movement through membranes
in Chap. 5. Hydrostatics is the description of fluids at rest. A
fluid is a substance that will not support a shear when it is at
rest. When the fluid is in motion, there can be a shear force
arising from viscosity.

7 This discussion of stress and strain has been made simpler than is of-
ten the case. In general, the force F across any surface is a vector. It
can be resolved into a component perpendicular to the surface and two
components parallel to the surface. One can speak of nine components
of stress: sxx, sxy, sxz, syx, syy, syz, szx, szy, szz. The first subscript de-
notes the direction of the force and the second denotes the normal to
the surface across which the force acts. Components sxx, syy , and szz
are normal stresses; the others are shear stresses. It can be shown that
sxy = syx , and so forth.
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Fig. 1.23 A volume element of fluid used to show that the pressure in
a fluid at rest is the same in all directions

Fig. 1.24 The fluid in volume dxdydz is in equilibrium

An immediate consequence of the definition of a fluid is
that when the fluid is at rest, all the stress is normal. The
normal stress is called the pressure. The pressure at any
point in the fluid is the same in all directions. This can be
demonstrated experimentally, and it can be derived from the
conditions for equilibrium. Consider the small volume of
fluid shown in Fig. 1.23. It has a length a perpendicular to
the page. This volume is in equilibrium. Since the fluid at
rest cannot support a shear, the pressure is perpendicular to
each face, and there is no other force across each face. To
prove this, assume that the pressures perpendicular to the
three faces can be different, and call them p1, p2, and p3. The
force exerted across face 1 is p1ab sin θ , acting downward.
The force across face 2 is p2ab cos θ , acting to the right.
Across face 3 it is p3ab, with vertical component p3ab sin θ

and horizontal component p3ab cos θ . The vertical compo-
nents sum to zero only if p1 = p3, while the horizontal
components sum to zero only if p2 = p3. Since this result is
independent of the value of θ , the pressure must be the same
in every direction.

Next, consider how the pressure changes with position.
Suppose that p depends on the coordinates p = p(x, y, z)

and that the density of the fluid is ρ kg m−3. The only exter-
nal force acting is gravity in the direction of the −z axis. The
fluid in the volume dxdydz of Fig. 1.24 is in equilibrium. In

the y direction, there is a force to the right across the left-
hand face equal to p(x, y, z)dxdz and to the left across the
right-hand face equal to −p(x, y + dy, z)dxdz. These are
the only forces in the y direction, and their magnitudes must
be the same. Therefore, p does not change in the y direction.
A similar argument shows that p does not change in the x

direction. In the z direction there are three terms: the upward
force across the bottom face, the downward force across the
top face, and the pull of gravity. The weight of the fluid is
its mass (ρ dxdydz) times the gravitational acceleration g

(g = 9.8 m s−2). The three forces must add to zero:

p(x, y, z) dxdy − p(x, y, z + dz) dxdy − ρg dxdydz = 0.

For small changes in height, dz, it is possible to approxi-
mate8 p(x, y, z + dz) by p(x, y, z) + (dp/dz) dz. With this
approximation, the equilibrium equation is

dxdydz

(
−dp

dz
− ρg

)
= 0.

This equation can be satisfied only if

dp

dz
= −ρg. (1.29)

This is a differential equation for p(z). It is a particularly
simple one, since the right-hand side is constant if ρ and g

are constant: dp = −ρgdz. Integrating this gives
∫

dp = −ρg

∫
dz,

p = −ρgz + c.

The constant of integration is determined by knowing the
value of p for some value of z. If p = p0 when z = 0,
then p0 = c and

p = p0 − ρgz. (1.30)

With a constant gravitational force per unit volume acting
on the fluid, the pressure decreases linearly with increasing
height. The SI unit of pressure is N m−2 or pascal (Pa). The
density is expressed in kg m−3, so that ρg has units of N m−3

and ρgz is in N m−2. Pressures are often given as equivalent
values of z in some substance, for example, in millimeters
of mercury (torr) or centimeters of water. In such cases, the
value of z must be converted to an equivalent value of ρgz

before calculations involving anything besides pressure are
done. The density of water is 1 g cm−3 or 103 kg m−3. The
density of mercury is 13.6 × 103 kg m−3, so 1 torr = 133 Pa.
Another common unit for pressure is the atmosphere (atm),
equal to 1.01×105 Pa. One atmosphere is approximately the
atmospheric pressure at sea level.

8 See Appendix D on Taylor series for a more complete discussion of
this approximation.
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1.13 Buoyancy

Buoyancy is important when an object is immersed in a fluid.
We are all familiar with buoyant effects when swimming;
they are also important in instruments such as the centrifuge.
Consider an object of density ρ immersed in a fluid of den-
sity ρfluid. The net force on such an object is the sum of the
gravitational force and a force arising from the pressure gra-
dient in the fluid. To visualize this, consider a small object
with sides dx, dy, and dz. We have just seen that the pres-
sure on the bottom face is greater than the pressure on the
top face. Therefore, there is an upward force on the cube.
The total force on the object is then

F =
(

−dp

dz
− ρg

)
dx dy dz.

Since the pressure gradient in the fluid is −ρfluidg, the total
force is

F = (ρfluid − ρ) gV, (1.31)

where V is the volume of the object. The second term is the
object’s weight, directed downward. The first term is called
the buoyant force and is directed upward. The buoyant force
reduces the “effective weight” of the object and depends on
the difference of densities of the object and the surrounding
fluid.

Animals are made up primarily of water, so their den-
sity is approximately 103 kg m−3. The buoyant force depends
on the animal’s environment. Terrestrial animals live in air,
which has a density of 1.2 kg m−3. The buoyant force on
terrestrial animals is very small compared to their weight.
Aquatic animals live in water, and their density is almost
the same as the surrounding fluid. The buoyant force almost
cancels the weight, so the animal is essentially “weightless.”
Gravity plays a major role in the life of terrestrial animals,
but only a minor role for aquatic animals. Denny (1993) ex-
plores the differences between terrestrial and aquatic animals
in more detail.

1.14 Compressibility

Increasing the pressure on a fluid causes a deformation and a
decrease in volume. The compressibility κ is defined as

�V

V
= −κ�p. (1.32)

Since �V/V is dimensionless, κ has the units of inverse
pressure, N−1 m2 or Pa−1. In many liquids, the compress-
ibility is quite small (e.g., 5 × 10−10 Pa−1 for water), and
for many purposes, such as flow through pipes, compressibil-
ity can be ignored. Other effects, such as the transmission of

sound through a fluid, depend on deformation, and compress-
ibility cannot be ignored. The bulk modulus is the reciprocal
of the compressibility.

1.15 Diving

Air is easily compressible, so swimming at large depths can
be dangerous as the volume of the air in the lungs decreases.
One can swim safely for depths of tens of meters (several
atmospheres of pressure) using a self-contained underwa-
ter breathing apparatus (SCUBA). Compressed air tanks are
used to supply air to the lungs, and the pressure of the air is
adjusted to match the pressure of the surrounding water.

One physiological effect of breathing high-pressure air is
that nitrogen dissolves into the blood, which can lead to a
mental impairment known as nitrogen narcosis. Moreover, if
the swimmer returns rapidly to the surface after a long deep
dive, the lowered pressure allows the dissolved nitrogen to
form bubbles in the blood that block blood flow and cause
decompression sickness, often called “the bends” (Benedek
and Villars 2000). To avoid the bends, swimmers must return
to the surface slowly, or replace nitrogen by other gasses,
such as helium, that are less soluble in blood.

1.16 Viscosity

A fluid at rest does not support a shear. If the fluid is mov-
ing, a shear force can exist. At large velocities the flow of
the fluid is turbulent and may be difficult or impossible to
calculate. We will consider only those cases in which the ve-
locity is low enough so that the flow is smooth. This means
that particles of dye that are introduced into the fluid to mon-
itor its motion flow along smooth lines called streamlines. A
streamline is tangent to the velocity vector of the fluid at ev-
ery point along its path. There is no mixing of fluid across
streamlines; the flow is laminar (in layers). Laminar flow is
often used in rooms where dirt or bacterial contamination
is to be avoided, such as operating rooms or manufacturing
clean rooms. Clean air enters and passes through the room
without mixing. Any contaminants picked up are carried out
in the air.

A fluid can support a viscous shear stress if the shear
strain is changing. One way to create such a situation is to
immerse two parallel plates, each of area S, in the fluid,
and to move one parallel to the other as in Fig. 1.25. If
the fluid in contact with each plate sticks to the plate9,

9 This is called the “no-slip” boundary condition. There are exceptions.
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v x = v
F

F

Fig. 1.25 Forces F and −F are needed to make the top plate move in
a viscous fluid while the bottom plate remains stationary. The velocity
profile is also shown

the fluid in contact with the lower plate is at rest and
that in contact with the upper plate moves with the same
velocity as the plate. Between the plates the fluid flows
parallel to the plates, with a speed that depends on po-
sition as shown in Fig. 1.25. The variation of veloc-
ity between the plates gives rise to a velocity gradient
dvx/dy. Note that this is the rate of change of the shear
strain.

In order to keep the top plate moving and the bottom one
stationary, it is necessary to exert a force of magnitude F on
each plate: to the right on the upper plate and to the left on
the lower plate. The resulting shear stress or force per unit
area is in many cases proportional to the velocity gradient:

F

S
= η

dvx

dy
. (1.33)

Often this equation is written with a minus sign, in which
case F is the force of the fluid on the plate rather than the
plate on the fluid. The constant η is called the coefficient
of viscosity. The units of η are N s m−2 or kg m−1 s−1 or
Pa s. Older units are the dyn cm−2 or poise, the centipoise,
and the micropoise. 1 poise = 0.1 Pa s. Water has a viscos-
ity of about 10−3 Pa s at room temperature. Equation 1.33
gives the force exerted by fluid above the plane at height y

on the fluid below the plane. In the case of the parallel plates,
the force from above on fluid in the slab between y and
y +dy is the same in magnitude as (and opposite in direction
to) the force exerted by the fluid below the slab. Therefore,
there is no net force on the fluid in the slab, and the fluid
moves with constant velocity. Fluids that are described by
Eq. 1.33 are called Newtonian fluids. Many fluids are not
Newtonian.

Since dvx/dy is the rate of change of the shear strain,
Eqs. 1.27 and 1.33 can be written as

ss = F

S
= η

dεs

dt
.

The rate of change of the shear strain is also called the shear
rate.

2πr Δxη dv /dr

v

Velocity Profile

p(x )πr 2

Side ViewEnd View

Rp

r

p(x +Δx )πr 2

Fig. 1.26 Longitudinal and transverse cross sections of the tube.
Newton’s first law is applied to the shaded volume

1.17 Viscous Flow in a Tube

Biological fluid dynamics is a well-developed area of study
(Lighthill 1975; Mazumdar 1992; Vogel 1994). External bio-
logical fluid dynamics is concerned with locomotion—from
single-celled organisms to swimming fish and flying birds.
Internal biological fluid dynamics deals with mass transport
within the organism. Two obvious examples are flow in the
airways and the flow of blood.

Consider laminar viscous flow of fluid through a pipe of
constant radius Rp and length �x. Ignore for now the grav-
itational force. The pressure at the left end of a segment
of pipe is p(x); at the right end it is p(x + �x). For now
consider the special case in which none of the fluid is accel-
erated, so the total force on any volume element of the fluid
is zero. The velocity profile must be as shown in Fig. 1.26:
zero at the walls and a maximum at the center. Our problem
is to determine v(r).

Let us determine the forces acting on the shaded cylinder
of fluid of radius r shown in Fig. 1.26. Since gravity is ig-
nored, there are only three forces acting on the volume. The
fluid on the left exerts a force πr2p(x) acting to the right in
the direction of the positive x axis. The fluid on the right ex-
erts a force −πr2p(x+�x) (the minus sign because it points
to the left). The slower moving fluid outside the shaded re-
gion exerts a viscous drag force across the cylindrical surface
at radius r . The area of the surface is 2πr�x. The force
points to the left. Its magnitude is 2πr�x η |dv/dr|. Since
dv/dr is negative, we obtain the correct sign by writing it
as 2πr �x η (dv/dr). Since the fluid is not accelerating, the
forces sum to zero:

πr2[p(x) − p(x + �x)] + 2πr �x η (dv/dr) = 0, (1.34)

which can be rearranged to give

dv

dr
= r

2η

(
p(x + �x) − p(x)

�x

)
= dp

dx

r

2η
. (1.35)
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Fig. 1.27 Flow of fluid across the plane at B

This can be integrated:

∫
dv = 1

2η

(
dp

dx

)∫
r dr,

v(r) = 1

4η

(
dp

dx

)
r2 + A. (1.36)

For flow to the right, dp/dx is negative. Therefore it is con-
venient to write �p as the pressure drop from x to x + dx:
�p = p(x) − p(x + �x). Then the first term in Eq. 1.36
is −(1/4η)(�p/�x)r2. The constant of integration can be
determined assuming the “no-slip” boundary condition: the
velocity of the fluid immediately adjacent to a solid is the
same as the velocity of the solid itself. Because the wall is
at rest, the velocity of the fluid is zero at the wall (r = Rp).
The final result is

v(r) = 1

4η

�p

�x
(R2

p − r2). (1.37)

The total flow rate or volume flux or volume current i is the
volume of fluid per second moving through a cross section
of the tube. Its units are m3 s−1. The volume fluence rate or
volume flux density10 or current density jv is the volume per
unit area per unit time across some small area in the tube.
The units of jv are m3 s−1 m−2 or m s−1.

In fact, jv is just the velocity of the fluid at that point. To
see this, consider the flow of an incompressible fluid during
time �t . In Fig. 1.27, the fluid moves to the right with veloc-
ity v. At t = 0, the fluid just to the left of plane B crosses
the plane; at t = �t , the fluid that was at A at t = 0 crosses
plane B. All the fluid between plane A and plane B crosses
plane B during the time interval �t . The volume fluence rate
is

jv = (volume transported)

(area)(time)
= Sv�t

S�t
= v. (1.38)

It may seem unnecessarily confusing to call the fluence
rate or flux density jv instead of v; however, this notation
corresponds to a more general notation in which j means the
fluence rate or flux density of anything per unit area per unit

10 Some authors call jv the flux. The nomenclature used here is
consistent throughout the book.

time, and the subscript v, s, or q tells us whether it is the
fluence rate of volume, solute particles, or electric charge.

To find the volume current i, jv must be integrated
over the cross-sectional area of the pipe. The volume of
fluid crossing the washer-shaped area 2πrdr is jv2πrdr =
v2πrdr . The total flux through the tube is

i =
∫ Rp

0
jv(r)2πr dr,

i = 2π

4η

�p

�x

∫ Rp

0

(
R2

p − r2
)

r dr. (1.39)

To integrate this, let u = R2
p − r2. Then du = −2rdr and

the integral is R4
p/4. Therefore

i = πR4
p

8η

�p

�x
(1.40)

is the flux of a viscous fluid through a pipe of radius Rp due
to a pressure gradient (�p/�x) along the pipe. The depen-
dence of i on R4

p means that small changes in diameter cause
large changes in flow.

This relationship was determined experimentally in pain-
staking detail by a French physician, Jean Leonard Marie
Poiseuille, in 1835. He wanted to understand the flow of
blood through capillaries. His work and knowledge of blood
circulation at that time have been described by Herrick
(1942).

As an example of the use of Eq. 1.40, consider a pore of
the following size, which might be found in the basement
membrane of the glomerulus of the kidney:

Rp = 5 nm,
�p = 15.4 torr,

η = 1.4 × 10−3 kg m−1 s−1,
�x = 50 nm.

(1.41)

It is first necessary to convert 15.4 torr to Pa using Eq. 1.30
and the value of ρ for mercury, 13.55×103 kg m−3:

�p = ρg�z = (13.55 × 103)(9.8)(15.4 × 10−3)

= 2.04 × 103 Pa.

Then Eq. 1.40 can be used:

i = (3.14)(5 × 10−9)4(2.04 × 103)

(8)(1.4 × 10−3)(50 × 10−9)
= 7.2 × 10−21 m3 s−1.

Now consider the general case in which we have not only
viscosity, but the fluid may be accelerated and gravity is im-
portant. We continue to write �p as the pressure drop and
consider four contributions, each of which will be discussed:

�p = p1 − p2 = −
∫ x2

x1

(dp/dx) dx

= �pvisc + �pgrav + �paccel1 + �paccel2. (1.42)
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Fig. 1.28 A pipe of circular cross section with radius and height
varying along the pipe

For simplicity, we restrict the derivation to an incom-
pressible fluid and a pipe of circular cross section where
the radius can change. Distance along the pipe is x, the ra-
dius of the pipe is Rp(x), and the cross-sectional area is
S(x) = πR2

p(x). Gravitational force acts on the fluid, and
the height of the axis of the pipe above some reference plane
is z(x), as shown in Fig. 1.28.

Because the fluid is incompressible, the total current i is
independent of x. We define the average velocity by

i = v(x)S(x), (1.43)

so

v(x) = i

S(x)
= i

πR2
p(x)

. (1.44)

If the area decreases, the average velocity increases, and vice
versa. This is a special case of the continuity equation, which
is discussed further in Chap. 4.

Assume that changes in pipe radius occur slowly enough
so that the velocity profile remains parabolic at every point
in the pipe and that we can treat x as though it were distance
along the axis of the cylinder. We can use Eq. 1.37 to rewrite
the velocity profile as

v(r, x) = 2v

[

1 − r2

R2
p(x)

]

= 2i

πR2
p(x)

[

1 − r2

R2
p(x)

]

.

(1.45)
The first term in Eq. 1.42 is the drop in pressure because of
viscous drag. We can rewrite Eq. 1.35 as

dpvisc

dx
= 2η

r

dv

dr
.

Using Eq. 1.45, we can write

dpvisc

dx
= − 8η i

πR4
p(x)

. (1.46)

We saw this earlier, solved for i in a pipe of constant radius,
as Eq. 1.40. The pressure drop is obtained by integration:

�pvisc = −
∫ x2

x1

dpvisc = −
∫ x2

x1

(
dpvisc

dx

)
dx (1.47)

= +8ηi

π

∫ x2

x1

dx

R4
p(x)

.

To go further requires knowing Rp(x).
The next term pgrav is the hydrostatic pressure change that

we saw in Eq. 1.30:

�pgrav = −
∫ x2

x1

dpgrav = −
∫

dpgrav

dz
dz = ρg(z2 − z1).

(1.48)
The last two terms of Eq. 1.42 are pressure differences re-

quired to accelerate the fluid. When the flow is steady—that
is, the velocity depends only on position, and the velocity at
a fixed position does not change with time—there can still be
an acceleration if the cross section of the pipe changes. The
third term, �paccel1, is the pressure drop required to cause
this acceleration. It can be derived as follows: Imagine a
streamline in the fluid. No fluid crosses the streamline. Con-
sider a small length of streamline ds and a small area dA per-
pendicular to it. Note that ds is a small displacement along a
streamline, while dx is along the axis of the pipe. The edge of
dA defines another set of streamlines that form a tube of flow,
and dAds defines a small volume of fluid. Make ds and dA

small enough so that v is nearly the same at all points within
the volume. The mass of fluid in the volume is dm = ρdAds.
We ignore viscosity and gravity, so the only pressure differ-
ence is due to acceleration. The net force on the volume is

dF = −dp

ds
ds dA. (1.49)

This is equal to the mass times the acceleration dv/dt . The
acceleration of the fluid in the element is then

dv

dt
= dF

dm
=

−
(

dp
ds

)
dsdA

ρdsdA
= − 1

ρ

(
dp

ds

)
. (1.50)

We are considering only velocity changes that occur because
the fluid moves along a streamline to a different position.
We use the chain rule to write

dv

dt
=
(

dv

ds

)(
ds

dt

)
= v

(
dv

ds

)
.

Combining these gives

dpaccel1

ds
= −ρv

(
dv

ds

)
. (1.51)
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This can be integrated along the streamline to give

�paccel1 = −
∫ s2

s1

(
dpaccel1

ds

)
ds = +ρ

∫ x2

x1

v

(
dv

ds

)
ds

= ρv2
2

2
− ρv2

1

2
. (1.52)

This is sometimes called the dynamic pressure.
The final term �paccel2 is the pressure drop required to

accelerate the fluid between points 1 and 2 if the velocity of
the fluid at a fixed position is changing with time (unsteady
flow). This happens, for example, to blood that is accelerated
as it is ejected from the heart during systole. To derive this
term, again imagine a small length of streamline ds and a
small area dA perpendicular to it. In addition to ignoring
gravity and viscosity, we ignore changes in velocity because
of changes in cross section. There is acceleration only if the
velocity at a fixed location is changing. The acceleration is
∂v/∂t . The derivative is written with ∂s to signify the fact
that we are considering only changes in the velocity with
time that occur at a fixed position. The net force required to
accelerate this mass is provided by the pressure difference
Eq. 1.49:

dF = −dAdpaccel2 = dm

(
∂v

∂t

)
= ρ

(
∂v

∂t

)
dAds,

dpaccel2 = −ρ

(
∂v

∂t

)
ds,

�paccel2 = −
∫ s2

s1

dpaccel2 = ρ

∫ s2

s1

(
∂v

∂t

)
ds. (1.53)

All of these effects can be summarized in the generalized
Bernoulli equation:

p1 − p2 = �p = ρ

∫ s2

s1

∂v

∂t
ds

︸ ︷︷ ︸
�paccel2

+
∫ s2

s1

(
−dpvisc

ds

)
ds

︸ ︷︷ ︸
�pvisc

+ρv2
2

2
− ρv2

1

2︸ ︷︷ ︸
�paccel1

+ ρg (z2 − z1)︸ ︷︷ ︸
�pgrav

. (1.54)

Equation 1.54 is valid for nonuniform viscous flow that
may be laminar or turbulent if the integral is taken along a
streamline (see, for example, Synolakis and Badeer 1989).

1.18 Pressure–VolumeWork

An important example of work is that done in a biological
system when the volume of a container (such as the lungs or
the heart or a blood vessel) changes while the fluid within the
container is exerting a force on the walls.

Fg

Fg

(a)

(b)

S

Fe

Fig. 1.29 a A cylinder containing gas has a piston of area S at one end.
b The force exerted on the piston by the gas is balanced by an external
force if the piston is at rest

To deduce an expression for pressure–volume work, con-
sider a cylinder of gas fitted with a piston, Fig. 1.29a. If the
piston has area S, the gas exerts a force Fg = pS on the pis-
ton. If no other force is exerted on the piston to restrain it, it
will be accelerated to the right and gain kinetic energy as the
gas does work on it:

(work done by gas) = Fgdx = pSdx = pdV. (1.55)

If the piston is prevented from accelerating by an exter-
nal force Fe, equal and opposite to that exerted by the gas
(Fig. 1.29b), then the external force does work on the piston:

(work done by external force) = −Fedx (1.56)

= −pSdx = −pdV,

which is the negative of the work done on the piston by the
expanding gas. The result is that the kinetic energy of the pis-
ton does not change. The gas does work on the surroundings
as it expands, increasing the energy of the surroundings; the
surroundings, through the external force, do negative work
on the gas; that is, they decrease the energy of the gas. (The
meaning of “energy of the gas” and “energy of the surround-
ings” is discussed in Chap. 3.) If the gas is compressed, the
situation is reversed: the surroundings do positive work on
the gas and the gas does negative work on the surroundings.

For a large change in volume from V1 to V2, the pressure
may change as the volume changes. In that case the work
done by the gas on the surroundings is

Wby gas =
∫ V2

V1

p dV. (1.57)

This work is the shaded area in Fig. 1.30. If the gas is com-
pressed, the change in volume is negative and the work done
by the gas is negative.

Let us apply this model to the heart. Suppose that the left
ventricle of the heart contracts at constant pressure, so that
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Fig. 1.30 A plot of p versus V , showing the work done by the gas as
it expands

Fig. 1.31 A model of the thorax, lungs, and airways that can be used
to understand some features of breathing

it changes volume by �V = V2 − V1. (Since V2 < V1, the
quantity �V is negative. A volume of blood −�V is ejected
into the aorta.) The work done by the heart wall on the blood
is −p�V and is positive, since �V is negative.

As another example of pressure–volume work, we can de-
velop a model to estimate the work necessary to breathe.
Consider the model of the lungs and airways shown in
Fig. 1.31. The pressure at the nose is the atmospheric pres-
sure p. In the alveoli (air sacs), the pressure is pa . If there
is no flow taking place, pa = p. For air to flow in, pa must
be less than p; for it to flow out, pa must be greater than at-
mospheric. The work done by the walls of the alveoli on the
gas in them is − ∫ pa dV . The net value of this integral for
a respiratory cycle is positive. Perhaps the easiest way to see
this is to imagine an inspiration, in which the alveolar pres-
sure is pa = p − �p and the volume change is �V . The
work done on the gas is −(p − �p)�V . This is followed
by an expiration at pressure pa = p + δp, for which the
work is −(p + δp)(�V ). The net work done on the gas is
(�p + δp)�V . The energy imparted to the gas shows up as
a mixture of heating because of frictional losses and kinetic
energy of the exhaled air.

Fig. 1.32 A hypothetical plot of the pressure–volume relationship for
inhalation and exhalation

There is another mechanism by which work is done in
breathing. Refer again to Fig. 1.31. The pressure in the
chest cavity (thorax) is pt . (The pressure measured in mid-
esophagus is a good estimate of pt .) Because of contractile
forces in the lung tissue, pa > pt . The gas in the alveoli and
the fluid in the thorax both do work on the lung tissue. The
latter has opposite sign, since a positive displacement dx of
a portion of the alveolar wall is in the direction of the force
exerted by the alveolar gas but is opposite to the direction
of the force exerted by the thoracic fluid. The elastic recoil
pressure, multiplied by dV , gives the net work done by both
forces on the wall of the lung.

Figure 1.32 shows the elastic recoil pressure versus lung
volume. The elastic recoil pressure is the difference between
the pressure in the alveoli (air sacs) of the lung and the pres-
sure in the thorax just outside the lung. During inspiration
(curve AB), the elastic recoil pressure pa −pt is greater than
that during expiration (curve BC). The net work done on
the lung wall during the respiratory cycle goes into frictional
heating of the lung tissue.

1.19 The Human Circulatory System

The human circulatory system is responsible for pumping
blood and its life-sustaining nutrients to all parts of the body
(Vogel 1992). The circulatory system has two parts: the sys-
temic circulation and the pulmonary circulation, as shown in
Fig. 1.33. The left heart pumps blood into the systemic cir-
culation: organs, muscles, etc. The right heart pumps blood
through the lungs. As the heart beats, the pressure in the
blood leaving the heart rises and falls. The maximum pres-
sure during the cardiac cycle is the systolic pressure. The
minimum is the diastolic pressure. (A blood pressure reading
is in the form systolic/diastolic, measured in torr. A typical
blood pressure might be 110/70.)

A sphygmomanometer is used to measure blood pressure.
Air is pumped into a cuff placed around the forearm. The
applied pressure is measured using either a column of mer-
cury or a mechanical pressure transducer. The cuff is inflated
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Fig. 1.33 The human circulatory system. The subject is facing you, so
the left chambers of the heart are on the right in the picture. The left
heart pumps oxygenated blood (red), and the right heart pumps deoxy-
genated blood (black). (Reprinted from Guyton 1991 c© Elsevier Inc.
Used with permission of Elsevier)

until flow in the brachial artery ceases. The cuff pressure is
then slowly reduced until flow returns during systole. The
flow can be detected by listening with a stethoscope for the
sounds associated with the starting and stopping of flow (Ko-
rotkoff sounds), or with a pulse oximeter (see page 392).
The cuff pressure is then further reduced until flow occurs
continuously throughout the cardiac cycle including diastole.

The blood flows from the aorta to several large arteries,
to medium-sized arteries, to small arteries, to arterioles, and
finally to the capillaries, where exchange with the tissues of
oxygen, carbon dioxide, and nutrients takes place. The blood
emerging from the capillaries is collected by venules, flows
into increasingly larger veins, and finally returns to the heart
through the vena cava.

At any given time, blood is flowing in only a fraction of
the capillaries. The state of flow in the capillaries is contin-
ually changing to provide the amount of oxygen required
by each organ. In skeletal muscle, terminal arterioles con-
strict and dilate to control distribution of blood to groups of
capillaries. In smooth muscle and skin, a precapillary sphinc-
ter muscle controls the flow to each capillary (Patton et al.

1989, p. 860). Since the blood is incompressible and is con-
served,11 the total volume flow i remains the same at all
generations of branching in the vascular tree. Table 1.4 shows
average values for the pressure and vessel sizes at different
generations of branching. Most of the pressure drop occurs
in the arterioles.

We define the vascular resistance R in a pipe or a segment
of the circulatory system as the ratio of pressure difference
across the pipe or segment to the flow through it:

R = �p

i
. (1.58)

The units are Pa m−3 s. Physiologists use the peripheral re-
sistance unit (PRU), which is torr ml−1 min. For Poiseuille
flow, the resistance can be calculated from Eq. 1.40:

R = 8η�x

πR4
p

. (1.59)

The resistance decreases rapidly as the radius of the vessel
increases.

If vessels of different diameters are connected in series
so that the flow i is the same through each one and the to-
tal pressure drop is the sum of the drops across each vessel,
then the total resistance is the sum of the resistances of each
vessel:

Rtot = R1 + R2 + R3 + · · · . (1.60)

If there is branching so that several vessels are in parallel
with the same pressure drop across each one, the total flow
through all the branches equals the flow in the vessel feeding
them. The total resistance is then given by

1

Rtot
= 1

R1
+ 1

R2
+ 1

R3
+ · · · . (1.61)

For the most part, the capillaries are arranged in parallel.
Even though the resistance of an individual capillary is large
because of its small radius (Eq. 1.59), the resistance of the
capillaries as a whole is relatively small because there are so
many of them (see Problem 42).

The pressure in the left ventricle changes during the car-
diac cycle. It can be plotted versus time. It can also be plotted
versus ventricular volume, as in Fig. 1.34. The p–V relation-
ship moves counterclockwise around the curve during the
cycle. Filling occurs at nearly zero pressure until the ventricle
begins to distend when the volume exceeds 60 ml12. There
is then a period of contraction at nearly constant volume

11 This is not strictly true. Some fluid leaves the capillaries and returns
to the heart through the lymphatic system instead of the venous system.
See Chap. 5.
12 1 ml = 10−3 liter(l) = 10−6 m3.
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Table 1.4 Typical values for the average pressure at the entrance to each generation of the major branches of the cardiovascular tree, the average
blood volume in certain branches, and typical dimensions of the vessels

Location Average
pressure (torr)

Blood
volumea

(ml)

Diameterb

(mm)
Lengthb

(mm)
Wall
thicknessb

(mm)

Avg.
velocityb

(m s−1)

Reynolds
number
at maximum
flowc

Systemic circulation
Left atrium 5
Left ventricle 100
Aorta 100 156 20 500 2 0.48 9 400
Arteries 95 608 4 500 1 0.45 1 300
Arterioles 86 94 0.05 10 0.2 0.05
Capillaries 30 260 0.008 1 0.001 0.001
Venules 10 470 0.02 2 0.002 0.002
Veins 4 2682 5 25 0.5 0.01
Vena cava 3 125 30 500 1.5 0.38 3 000
Right atrium 3
Pulmonary circulation
Right atrium 3
Right ventricle 25
Pulmonary artery 25 52
Arteries 20 91 7 800
Arterioles 15 6
Capillaries 10 104
Veins 5 215 2 200
Left atrium 5
aFrom Plonsey (1995)
bFrom Mazumdar (1992)
cFrom Milnor (1989)
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Fig. 1.34 Pressure–volume relationship in the left ventricle. The curve
is traversed counterclockwise with increasing time. The stroke volume
is 100−35 = 65 ml. Systolic pressure is 118 torr, and diastolic pressure
is 70 torr. The ventricular pressure drops below diastolic while the pres-
sure in the arteries remains about 70 torr because the aortic valve is
closed and prevents back flow

that causes the ventricular pressure to rise until it exceeds
the (diastolic) pressure in the aorta, and the aortic valve
opens. The contraction continues, and the pressure rises fur-
ther, but the ventricular volume decreases as blood flows into
the aorta. The ventricle then relaxes. The aortic valve closes
when the ventricular pressure drops below that in the aorta.

The work done in one cycle is the area enclosed by the curve.
For the curve shown, it is 6600 torr ml = 0.88 J. At 80 beats
per minute, the power is 1.2 W. In this drawing the stroke
volume is 100 − 35 = 65 ml, and the cardiac output is

i = (65 ml beat−1)(80 beats/60 s) = 87 × 10−6m3 s−1.

1.20 Turbulent Flow and the Reynolds
Number

Many features of the circulation can be modeled by
Poiseuille flow. However, at least four effects—in addition
to those in Eq. 1.42—cause departures from Poiseuille flow:
(1) there may be turbulence; (2) there are departures from
a parabolic velocity profile; (3) the vessel walls are elastic;
and (4) the apparent viscosity depends on both the fraction
of the blood volume occupied by red cells and the size of the
vessel.

The importance of turbulence (nonlaminar flow) is de-
termined by a dimensionless number characteristic of the
system called the Reynolds number NR . It is defined by

NR = LVρ

η
, (1.62)
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where L is a length characteristic of the problem, V a ve-
locity characteristic of the problem, ρ the density, and η

the viscosity of the fluid. When NR is greater than a few
thousand, turbulence usually occurs.

The Reynolds number arises in the following way: If we
were to write Newton’s second law for a fluid (which we have
not done) in terms of dimensionless primed variables such as
r′ = r/L, v′ = v/V , and t ′ = t/(L/V ), we would find that
the equations depended on the properties of the fluid only
through the combination NR (Mazumdar 1992, p. 14). With
appropriate scaling of dimensions and times, flows with the
same Reynolds number are identical.

There is ambiguity in defining the characteristic length
and the characteristic velocity. Should one use the radius or
the diameter of a tube? The maximum velocity or the av-
erage velocity? If one is solving the equations of motion,
one knows what values of L and V were used to transform
the equations. They are used to transform the solution back
to “real world” coordinates. However, if one is making a
statement such as “turbulence usually occurs for values of
NR greater than a few thousand,” there is ambiguity. On
the other hand, the statement is not very precise. Some-
times an additional subscript is used to specify how NR was
determined.

When NR is large, inertial effects are important. External
forces accelerate the fluid. This happens when the density is
large and the viscosity is small. As the viscosity increases
(for fixed L, V , and ρ), the Reynolds number decreases.
When the Reynolds number is small, viscous effects are im-
portant. The fluid is not accelerated, and external forces that
cause the flow are balanced by viscous forces. Since vis-
cosity is a form of internal friction in the fluid, work done
on the system by the external forces is transformed into
thermal energy. The low-Reynolds-number regime is so dif-
ferent from our everyday experience that the effects often
seem counterintuitive. They are nicely described by Purcell
(1977).

Here is an example of an estimate expressed in terms of
the Reynolds number. A pressure difference �p acts on a
segment of fluid of length �x undergoing Poiseuille flow.
The difference between the force exerted on the segment of
fluid by the fluid “upstream” and that exerted by the fluid
“downstream” is πR2

p�p. If the average speed of the fluid
is v, then the net work done on the segment by the fluid up-
stream and downstream in time �t is Wvisc = πR2

p�pv�t .
Since the fluid is not accelerated, this work is converted
into thermal energy. We can solve Eq. 1.40 for �p and use
Eq. 1.44 to write

Wvisc = πR2
p �p v�t = 8ηπv2 �x �t.

The kinetic energy of the moving fluid in a cylinder of length
v�t is

Ek = mv2

2
= ρ πR2

p (v�t)v2

2
= ρ πR2

p v3 �t

2
,

and the ratio of the kinetic energy to the work done is

Ek

Wvisc
= ρ vR2

p

16η �x
= 1

16ξ

ρ vRp

η
= 1

16ξ
NR

where we write �x as ξRp. This result shows that the ra-
tio of kinetic energy to viscous work is proportional to the
Reynolds number. Another example is given in the problems.

The behavior of a sphere moving through a fluid illus-
trates how flow behavior depends on Reynolds number. At
low Reynolds number, the viscous forces tend to make the
fluid stick to the sphere, creating a large amount of viscous
drag. This flow can be analyzed analytically (Schlichting and
Gersten 2000). The drag force is 6ηRv, where R is the sphere
radius, v is the speed of the sphere, and η is the viscosity,
a result known as Stokes’ law. At high Reynolds number,
Bernoulli’s equation (see Problem 36) tells us that high pres-
sure is associated with low fluid speeds, and low pressure is
associated with fast speeds. There is a region of high pres-
sure in front of and in back of the sphere (where speeds are
slow), and low pressure to either the left or right side (where
speeds are fast). At very high Reynolds number, viscosity is
small but still plays a role because of the no-slip boundary
condition at the sphere surface. A thin layer of fluid, called
the boundary layer, sticks to the solid surface, causing a
large velocity gradient and therefore significant viscous drag
(Schlichting and Gersten 2000). At extremely high Reynolds
number, the flow undergoes separation, where eddies and
turbulent flow occur downstream from the sphere, lowering
the pressure in the sphere’s wake, but they do not influence
the high pressure in front of the sphere. Thus, pressure drag
contributes to the total drag force, in addition to viscous drag.
Similarly, if we consider a nonsymmetrical object instead of
a sphere, we can make the flow speed and pressure differ
on the left and right sides of the object, resulting in lift: a
force perpendicular to the direction of the main fluid flow.
Vogel (1994) discusses the biological implications of high
Reynolds number flow, which is particularly important for
flying animals and large swimmers. However, many of the
biological fluid dynamics applications we will consider oc-
cur at low Reynolds number, where turbulence, separation,
pressure drag, and boundary layers are not important, and
Stokes’ law dominates.

A large range of values of NR occurs in the circulatory
system. Typical values corresponding to the peak flow are
given in Table 1.4. Blood flow is laminar except in the as-
cending aorta and main pulmonary artery, where turbulence
may occur during peak flow. The Reynolds number in the
capillaries is about 10−2.

There are two main causes of departures from the
parabolic velocity profile. First, a red cell is about the same
diameter as a capillary. Red cells in capillaries line up single
file, each nearly blocking the capillary. The plasma flows in
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Fig. 1.35 Velocity profiles in steady laminar flow at the entrance to
a tube, showing the development of the parabolic velocity profile. The
velocity is given as v/v. At the entrance, v/v = 1. When the Poiseuille
flow is fully developed, v/v is 2 at the center of the tube. These curves
are calculated from a graph by Cebeci and Bradshaw (1977) for laminar
flow in a tube of radius 2 mm and a pressure gradient of 20 torr m−1,
carrying a fluid with a viscosity of 3 × 10−3 N s m−2 and a density of
103 kg m−3. The scales are different along the axis and radius of the
tube; the tube radius is 2 mm and the entrance region is 240-mm long

small volumes between each red cell, with a velocity profile
that is nearly independent of radius. Second, the entry re-
gion causes deviations from Poiseuille flow in larger vessels.
Suppose that blood flowing with a nearly flat velocity pro-
file enters a vessel, as might happen when blood flowing in a
large vessel enters the vessel of interest, which has a smaller
radius. At the wall of the smaller vessel, the flow is zero.
Since the blood is incompressible, the average velocity is
the same at all values of x, the distance along the vessel. (We
assume the vessel has constant cross-sectional area.) How-
ever, the velocity profile v(r) changes with distance x along
the vessel. At the entrance to the vessel (x = 0), there is a
very abrupt velocity change near the walls. As x increases, a
parabolic velocity profile is attained. The transition or entry
region is shown in Fig. 1.35. In the entry region, the pressure
gradient is different from the value for Poiseuille flow. The
velocity profile cannot be calculated analytically in the en-
try region. Various numerical calculations have been made,
and the results can be expressed in terms of scaled vari-
ables (see, for example, Cebeci and Bradshaw 1977). The
Reynolds number used in these calculations was based on
the diameter of the pipe, D = 2Rp, and the average velocity.
The length of the entry region is

L = 0.05DNR,D = 0.1RpNR,D = 0.2RpNR,Rp . (1.63)

Blood pressure is, of course, pulsatile. This means that the
average velocity and v(r) are changing with time and also de-
parting from the parabolic profile. Also, at the peak pressure
during systole, the aorta and arteries expand, storing some
of the blood and releasing it gradually during the rest of the
cardiac cycle. Pulsatile flow and the elasticity of vessel walls
are discussed extensively by Caro et al. (1978) and Milnor
(1989).

Blood is not a Newtonian fluid. The viscosity depends
strongly on the fraction of volume occupied by red cells (the

hematocrit). In blood vessels of less than 100-μm radius, the
apparent viscosity decreases with tube radius. Since a red cell
barely fits in a capillary, the velocity profile in capillaries is
not parabolic. Flow in arterioles and arteries is often modeled
as individual particles surrounded by plasma and transported
by laminar flow, each red cell staying at its own distance from
the central axis. However, high-speed motion pictures show
that the red cells often collide with other red cells and with
the wall. (See the articles by Trowbridge (1982, 1983) and
Trowbridge and Meadowcroft (1983), and also the Caro et al.
and Milnor articles.)

Symbols Used in Chapter 1
Symbol Use Units First

used
page

a, a Acceleration m s−2 3
a, b Small distances m 14
c Constant of integration 14
g Acceleration due to gravity m s−2 14
h Small distance m 13
i Total volume flux or flow rate or current m3 s−1 17
jv Volume fluence rate or flux density

(flow of volume per unit area per
second)

m s−1 17

l Length of rod m 12
m Mass kg 3
p Pressure Pa 14
pt Pressure in thorax Pa 20
pa Pressure in alveoli Pa 20
r Position m 5
r Distance from origin (radius) in polar

coordinates
m 5

s Displacement m 12
sn Normal stress Pa 12
ss Shear stress Pa 13
s Distance along a streamline m 18
t Time s 11
v, v Velocity m s−1 11
x, y, z Coordinates m 4
x̂, ŷ, ẑ Unit vectors along the x, y, and z axes 6
A Constant of integration 17

dA Small area perpendicular to a streamline m2 19
D Pipe diameter m 24
E Young’s modulus Pa 13
Ek Kinetic energy J 11
F, F Force N 3
G Shear modulus Pa 13
L Characteristic length m 24
N, N Force N 8
NR Reynolds number 22
NR,D Reynolds number based on diameter 24
NR,Rp Reynolds number based on pipe radius 24
P Power W 12
R, R Force N 8
Rp Radius of pipe m 17
R Vascular resistance Pa m−3 s 21
S Cross-sectional area m2 12
V Volume m3 15
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V Velocity m s−1 23
W, W Weight N 4
W Work J 19
δ A small distance m 13
εn Normal strain 12
εs Shear strain 13
η Viscosity Pa s 16
α, β, θ, φ Angle 5
κ Compressibility Pa−1 15
ρ Mass density kg m−3 14
τ ,τ Torque N m 5
ξ Dimensionless ratio 23

Problems

Section 1.1

Problem 1. Estimate the number of hemoglobin molecules
in a red blood cell. Red blood cells are little more than
bags of hemoglobin, so it is reasonable to assume that the
hemoglobin takes up all the volume of the cell.
Problem 2. Our genetic information or genome is stored in
the parts of the DNA molecule called base pairs. Our genome
contains about 3 billion

(
3 × 109

)
base pairs, and there are

two copies in each cell. Along the DNA molecule, there
is one base pair every one-third of a nanometer. How long
would the DNA helix from one cell be if it were stretched
out in a line? If the entire DNA molecule were wrapped up
into a sphere, what would be the diameter of that sphere?
Problem 3. Estimate the size of a box containing one air
molecule. (Hint: What is the volume of one mole of gas at
standard temperature and pressure?) Compare the size of the
box to the size of an air molecule (about 0.1 nm).
Problem 4. Estimate the density of water (H2O) in kg m−3.
Useful information: an oxygen atom contains eight protons
and eight neutrons. A hydrogen atom contains one proton
and no neutrons. The mass of the electron is negligible.

Section 1.4

Problem 5. A person with mass m = 70 kg has a weight
(mg) of about 700 N. If the person is doing push-ups
as shown, what are the vertical components of the forces
exerted by the floor on the hands and feet?

Problem 6. A person with upper arm vertical and forearm
horizontal holds a mass of 4 kg. The mass of the forearm is

1.5 kg. Consider four forces acting on the forearm: F by the
bones and ligaments of the upper arm at the elbow, T by the
biceps, 40 N by the mass, and 15 N as the weight of the arm.
The points of application are shown in the drawing. Calculate
the vertical components of F and T.

Problem 7. When the arm is stretched out horizontally,
it is held by the deltoid muscle. The situation is shown
schematically. Determine T and F.

Section 1.6

Problem 8. When a person crouches, the geometry of the
heel is as shown. Determine T and F. Assume all the forces
act in the plane of the drawing.

Problem 9. A person of weight W is suspended by both
hands from a high bar as shown. The center of mass is
directly below the bar.
(a) Find the horizontal and vertical components Fx and Fy ,

where F is the force exerted by the bar on each of the
two hands.

(b) Given the additional information about the arm shown in
the second drawing, calculate the components of R, the
force exerted by the humerus on the forearm through the
elbow, and the tension T in the biceps tendon. Neglect
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the weight of the arm, and assume that T and R are the
only forces exerted on the forearm by the upper arm.

Problem 10. Consider the forces on the spine when lifting.
Approximate the spinal column as a stiff bar of length L that
has three forces acting on it. W is the downward force acting
at the top of the spinal column (via the arms and shoulders),
and equals the weight of the object being lifted. F is the force
applied by the erector spinae muscle, which attaches to the
spine about 1/3 of the way from the top of the column. As-
sume this muscle acts at an angle of 12 ◦ to the spinal column.
R is the force the pelvis exerts on the spinal column. The
weight of the trunk is neglected. Assume the spinal column
makes an angle θ with the horizontal.

L/3

F

R W

Pelvis

Spine

θ
12°

φ

(a) Determine R and F in terms of W and θ .
(b) The spinal column may be injured if R is too large. Com-

pare R when θ is 0 and 90 ◦. This problem explains why
people say, “lift with your legs, not with your back.”

(c) Compare the angle φ when θ is 0 and 90 ◦ . If φ is
not close to zero, there will be considerable transverse
force at the discs in the lower back, which is not a good
situation.

Section 1.8

Problem 11. Suppose that instead of using a cane, a person
holds a suitcase of weight W/4 in one hand, 0.4 m from the
midline. The person is standing on the opposite leg. Calcu-
late the force exerted by the hip abductor muscles and by the
acetabulum on that leg.

Section 1.10

Problem 12. Young’s modulus for a spider’s thread is about
0.2 × 1010 Pa, and the thread breaks when it undergoes a
strain of about 50 % (Köhler and Vollrath 1995).
(a) Calculate the tensile strength of the thread and compare

it to the tensile strength of steel.
(b) Calculate the strain that steel undergoes when it breaks.

(Assume that a linear relationship between stress and
strain holds until it breaks.) Compare the breaking strain
to the spider’s thread.

Problem 13. Assume an object undergoes a normal strain
in all three directions: εx = �x/lx , εy = �y/ly , and εz =
�z/lz. Relate the three strains to the change in volume of the
object. Assume the strains are small.

Section 1.11

Problem 14. Relate the shear strain to angle θ in Fig. 1.22.
How does this relationship simplify if θ is small?

Section 1.12

Problem 15. The inspirational pressure difference pin that
the lung can generate is about 86 torr. What would be the
absolute maximum depth at which a person could breathe
through a snorkel device? (A safe depth is only about half
this maximum, since the lung ventilation becomes very small
at the maximum depth. Assume the lungs are 30 cm below
the mouth.)
Problem 16. A person standing erect can in some cases be
modeled by a column of water.
(a) Estimate the hydrostatic pressure difference between a

person’s head and foot in torr.
(b) Explain why blood pressure is measured in the arm at

the same vertical height as the heart.
(c) Our body has adapted to having a larger hydrostatic

pressure in our feet than in our head. Speculate on why
you feel uncomfortable when you “stand on your head.”

Problem 17. A medication dissolved in a saline solution is
infused into a vein in the patient’s arm (IV infusion). The
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density of saline is the same as water. The pressure of the
blood inside the vein is 5 torr above atmospheric pressure.
How high above the insertion point must the container be
hung so that there is sufficient hydrostatic pressure to force
fluid into the vein?
Problem 18. The walls of a cylindrical pipe that has an ex-
cess pressure p inside are subject to a tension force per unit
length T . (Consider only the force per unit length in the walls
of the cylinder, not the force in any end caps of the pipe.) The
force per unit length in the walls can be calculated by consid-
ering a different pipe made up of two parts as shown in the
figure: a semicircular half-cylinder of radius R and length L

attached to a flat plate of width 2R and length L. What is the
force that the excess pressure exerts on the flat plate? Show
that the tension force per unit length in the wall of the tube is
T = pR. This is called the Law of Laplace. (Do not worry
about any deformation.)

See if you can obtain the same answer by direct integra-
tion of the horizontal and vertical components of the force
due to the excess pressure.

Problem 19. Find a relationship among the tension per unit
length T across any element of the wall of a spherical soap
bubble, the excess pressure inside the bubble, p, and the ra-
dius of the bubble, R. (Hint: Use the same technique as for
the previous problem.)
Problem 20. The Law of Laplace, T = pR, relates the
tension in an arterial wall, T , to the pressure p inside the
artery and its radius R. Assume the wall obeys Hooke’s law,
T = k(R − R0), where R0 is the radius of the artery when
p = 0 and k is a measure of the wall stiffness.
(a) Derive an expression for R as a function of p. Sketch

plots of r versus p and T versus p.
(b) Determine the critical pressure at which R goes to infin-

ity. Physically, this is the pressure that guarantees a burst
artery (an aneurysm).

(c) Arteries would be unstable if they were to balloon out
and burst as the pressure approaches a critical value.
They avoid this problem by becoming more stiff as the
radius increases. Repeat part (a) using k = cR for the
stiffness. In this case is there a critical pressure at which
the artery will burst?

The law of Laplace has many applications in biology and
medicine (Basford 2002). For a discussion of how arteries
become stiffer as R grows, see Vogel (1992).

Section 1.13

Problem 21. Suppose a fish has an average density of
1030 kg m−3, compared to the density of the surrounding
water, 1000 kg m−3. One way the fish can keep from slowly
sinking is by using an air bladder (the density of air is
1.2 kg m−3). What fraction of the fish’s total volume must
be air in order for the fish to be neutrally buoyant (the buoy-
ant force is equal and opposite to the weight). Assume that
the volume V of the fish’s tissue is fixed, so in order to in-
crease the volume U of the air bladder, the total volume of
the fish V + U must increase.
Problem 22. This problem explores the physics of a cen-
trifuge. A cylinder of fluid of density ρfluid and length L

is rotated at an angular velocity ω (rad s−1) in a horizon-
tal plane about a vertical axis through one end of the tube.
Neglect gravity. An object moving in a circle with constant
angular velocity has a centripetal acceleration a = −rω2

toward the center of the circle. Find the pressure in the fluid
as a function of distance from the axis of rotation, assuming
the pressure is p0 at r = 0.
Problem 23. Buoyancy plays an important role in the
centrifuge. Consider a small cubic particle of density ρ

immersed in a fluid of density ρfluid.

(a) Write Newton’s second law for the particle, considering
only the centripetal acceleration and the pressure exerted
by the fluid (Problem 22). Find an expression for the
“effective weight” of the particle (analogous to Eq. 1.31)
in terms of ρ, ρfluid, ω, r , and the particle volume V .
Your result is more general than you might expect: it is
true for a particle of any shape (Wick and Tooby 1977).

(b) Find the ratio of the “effective weight” derived in (a) to
the “effective weight” due to gravity (Eq. 1.31).

(c) If the particle is 10 cm from the axis of a centrifuge spin-
ning at 40,000 revolutions per minute, evaluate the ratio
obtained in (b).

(d) The density gradient technique uses a sucrose solution
of varying concentration to produce a fluid density that
varies with r , ρfluid(r). Explain how in this case the
centrifuge can be used to separate particles of different
densities.

Problem 24. For the centrifuge of Problem 23, assume there
is one additional force: a viscous force proportional to the
speed u of the particle relative to the fluid.
(a) Derive an expression for u, the sedimentation velocity,

assuming the particle is not accelerating relative to the
fluid.
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(b) The sedimentation velocity per unit acceleration, S, is
a parameter commonly used in centrifuge work. Divide
the expression obtained in (a) by the centripetal accel-
eration to obtain an expression for S. The common unit
for S is the svedberg (1 Sv = 10−13 s).

(c) Consider two particles with S = 50 and 70 Sv. For the
centrifuge of Problem 23(c), how long will it take for the
particles to separate by 3 mm if they were initially at the
same position? How long would this separation take if
gravity were used instead of a centrifuge?

Section 1.14

Problem 25. What is the compressibility of a gas for which
pV = const.? Compare the compressibility of water to that
of air at atmospheric pressure. What are the implications of
this for the volume of the lungs of a swimmer diving deep
below the water surface?
Problem 26. Figure 1.20, showing a rod subject to a force
along its length, is a simplification. Actually, the cross-
sectional area of the rod shrinks as the rod lengthens. Let the
axial strain and stress be along the z axis. They are related by
Eq. 1.25, sz = Eεz. The lateral strains εx and εy are related
to sz by sz = −(E/ν)εx = −(E/ν)εy, where ν is called the
Poisson’s ratio of the material.
(a) Use the result of Problem 13 to relate E and ν to the

fractional change in volume �V/V .
(b) The change in volume caused by hydrostatic pressure is

the sum of the volume changes caused by axial stresses
in all three directions. Relate Poisson’s ratio to the
compressibility.

(c) What value of ν corresponds to an incompressible mate-
rial?

(d) For an isotropic material, −1 < ν < 0.5. How would a
material with negative ν behave?

Elliott et al. (2002) measured Poisson’s ratio for articular
(joint) cartilage under tension and found 1 < ν < 2. This
large value is possible because cartilage is anisotropic: its
properties depend on direction.

Section 1.16

Problem 27. Consider the fluid flowing between two slabs
as shown in Fig. 1.25. Since the work done by the external
force on the system in time dt is dW = Fvdt , the rate of
doing work is P = dW/dt = Fv, where v is the speed of
the moving plate. Find the power dissipated per unit volume
of the fluid in terms of the velocity gradient.
Problem 28. Consider a fluid that is flowing in the x direc-
tion, but with the velocity vx changing in the y direction.

(a) Start with Newton’s second law. Analyze the forces on a
small cube of fluid and derive the equation

ρ
∂vx

∂t
+ ρvx

∂vx

∂x
= −∂p

∂x
+ η

∂2vx

∂y2
.

This is a simplified version of the Navier–Stokes equa-
tion that governs fluid flow.

(b) Which term in the equation is nonlinear (that is, if p and
vx are doubled, which term does not double)? A non-
linear equation is needed to describe complicated flows
such as turbulence.

Problem 29. Consider the simplified version of the Navier–
Stokes equation in Problem 28. Assume the fluid speed is
approximately V and all spatial changes occur over distances
of order L. Take the ratio of the “inertial term” ρvx(∂vx/∂x)

to the “viscous term” η(∂2vx/∂y
2) and show that you get the

Reynolds number, Eq. 1.62.

Section 1.17

Problem 30. Consider laminar flow in a pipe of length �x

and radius Rp. Find the total viscous drag exerted by the pipe
on the fluid.
Problem 31. The maximum flow rate from the heart is
500 ml s−1. If the aorta has a diameter of 2.5 cm and the flow
is Poiseuille, what are the average velocity, the maximum
velocity at the center of the vessel, and the pressure gradient
along the vessel? Plot the velocity versus distance from the
center of the vessel. As an approximation to the viscosity of
blood, use η = 10−3 kg m−1 s−1.
Problem 32. The glomerular pore described in Eq. 1.41 has
a flow i = 7.2×10−21 m3 s−1. How many molecules of water
per second flow through it? What is their average speed?
Problem 33. Organisms may use shear stress to determine
the appropriate size of vessels for fluid transport (LaBarbera
1990). Consider a parent vessel of radius Rp that branches
into two daughter vessels of radii Rd1 and Rd2.
(a) Find a relationship between the radii Rp, Rd1, and Rd2

such that the shear stress on the vessel wall is the same
in each vessel. (Hint: Use conservation of the volume
flow.) This relationship is called Murray’s Law.

(b) If a 100-μm parent vessel branches into two identical
daughter vessels, what is the radius of each daughter
vessel? What is the cross-sectional area of the parent
vessel, and what is the sum of the cross-sectional areas
of the daughter vessels?

(c) If the two daughter vessels branch into subsequent gen-
erations of even smaller vessels, all obeying Murray’s
law, and the daughter vessels of any generation are all
the same size, then find a relationship between the num-
ber of vessels in the nth generation, the radius of the
single parent vessel, and the radii of the nth generation’s
daughter vessels.
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(d) We have one aorta of radius 10 mm. Use Murray’s law
to estimate how many capillaries we have, each of ra-
dius 5 μm. Calculate the cross-sectional area of the aorta
and the sum of the cross-sectional area of all our capil-
laries. Warning: Murray’s law is a good approximation,
but may not be exact for our smallest vessels.

Problem 34. Sap flows up a tree at a speed of about
1 mm s−1 through its vascular system (xylem), which con-
sists of cylindrical pores of 20-μm radius. Assume the vis-
cosity of sap is the same as the viscosity of water. What
pressure difference between the bottom and top of a 100-m
tall tree is needed to generate this flow? How does it compare
to the hydrostatic pressure difference caused by gravity?
Problem 35.
(a) Consider a small cube of incompressible fluid. Analyze

the volume fluence rate for each face of the cube and
show that the divergence of v is zero. (The divergence is
defined in Chap. 4.)

(b) Use the velocity distribution given in Problem 46 and
the material in Appendix L to show that for this flow the
fluid is incompressible.

Problem 36. Consider Eq. 1.54 when viscosity is negligible
and the flow is steady (∂v/∂t = 0). Show that it reduces to
the Bernoulli equation

p1 + ρ
v2

1

2
+ ρgz1 = p2 + ρ

v2
2

2
+ ρgz2.

Section 1.18

Problem 37. The accompanying figure shows the negative
pressure (below atmospheric) that must be maintained in the
thorax during the respiratory cycle by a patient with airway
obstruction in order to breathe. Viscous effects are included.
Estimate the work in joules done by the body during a breath.
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Section 1.19

Problem 38. The volume of blood in a typical person is 5 l,
and the volume current through the aorta is about 5 l min−1.
(a) What is the total volume current through all the systemic

capillaries?
(b) What is the total volume current through all the pul-

monary capillaries?
(c) How long does the blood take to make one complete

circuit through the circulatory system?
Problem 39. Find the conversion factor between PRU and
Pa m−3 s. The total resistance of the systemic circulation was
calculated in the text to be 1.66 × 108 Pa m−3 s. Express this
in PRU.
Problem 40. Equation 1.59 relates the resistance of a ves-
sel to its radius. In the circulatory system, the resistance of
an arteriole increases when the smooth muscle surrounding
the arteriole contracts, thereby decreasing its radius. By what
factor does the resistance increase if the radius decreases by
10 %?
Problem 41. Derive the equations for resistance in a collec-
tion of vessels in series and in parallel. Remember that when
several vessels are in series, the current is constant and the to-
tal pressure change is the sum of the pressure changes along
the length of each vessel. When vessels are in parallel, each
has the same pressure drop, but the current before the vessels
branch is the sum of the currents in each branch.
Problem 42. The velocity of the blood in the aorta is about
0.5 m s−1, and the velocity of the blood in a capillary is about
0.001 m s−1. We have only one aorta, with a diameter of
20 mm, but many capillaries in parallel, each with a diam-
eter of 8 μm. Estimate how many capillaries are typically
open at any one time.
Problem 43. Suppose a student asked you, “How can blood
be moving more slowly in a capillary than in the aorta? For
an incompressible fluid, when the cross-sectional area along
a pipe decreases, the velocity increases, so that the volume
current i is the same. The capillary has a much smaller cross-
sectional area than the aorta. Therefore, the blood should
move faster in the capillary than in the aorta!” How would
you respond to this student?
Problem 44. For Poiseuille flow, find an expression for the
maximum shear rate in each vessel from Eq. 1.45. Where
in the vessel does it occur? Typical maximum shear rates are
50 s−1 in the aorta, 150 s−1 in the femoral artery, and 400 s−1

in an arteriole.
Problem 45. A sphere of radius a moving through a fluid
with speed v is subject to a viscous drag Fdrag = 6πηav.
Make an argument similar to that in the text to show that
the ratio of kinetic energy of a sphere of fluid of the same
size moving at the same speed to the viscous work done to
displace the sphere by its own diameter is NR/18.



30 1 Mechanics

Problem 46. Consider a stationary sphere of radius a placed
in a fluid of viscosity η moving uniformly with speed V . For
low Reynolds number flow, the radial and tangential compo-
nents of the fluid velocity and the pressure surrounding the
sphere are

vr = V cos θ

(
1 − 3a

2r
+ a3

2r3

)

vθ = −V sin θ

(
1 − 3a

4r
− a3

4r3

)

p = −ηV cos θ
3a

2r2
.

(a) Show that the no-slip boundary condition is satisfied.
(b) Integrate the shear force and the pressure force over the

sphere surface and find an expression for the net drag
force on the sphere (Stoke’s law). What fraction of this
force arises from pressure drag, and what fraction from
viscous drag?

Problem 47. Find an expression for the entry length in terms
of the tube size, the pressure gradient, and the properties of
the fluid. Estimate the length of the entry region in the aorta,
in an artery, and in an arteriole of radius 20 μm. Use η =
10−3 kg m−1 s−1.
Problem 48. Estimate the tension per unit length and the
stress in the walls of various blood vessels using the data in
Table 1.4.
Problem 49. Compare the magnitude of the four terms in
Eq. 1.42 in the following two cases. Ignore branching. As-
sume the vessels are vertical. Use ρ = 103 kg m−3 and
η = 10−3 Pa s.
(a) The descending aorta. Assume the length is 35 cm, the

radius is 1 cm (independent of distance along the aorta),
the peak acceleration of the blood is 1800 cm s−2, and
the peak velocity (during the cardiac cycle) is 70 cm s−1

at the entrance and 60 cm s−1 at the exit. (These veloc-
ities are different because some of the blood leaves the
aorta in major arteries.)

(b) An arteriole of radius 50 μm, length 10 mm, and
constant velocity of 5 mm s−1 at both entrance and exit.

Problem 50. The viscosity of water (and therefore of blood)
is a rapidly decreasing function of temperature. Water at 5 ◦C
is twice as viscous as water at 35 ◦C. Speculate on the im-
plications of this extreme temperature dependence for the
circulatory system of cold-blooded animals. (For a further
discussion, see Vogel 1994, pp. 27–31.)

Section 1.20

Problem 51. Estimate the Reynolds number for the follow-
ing flows. In each case, determine whether the Reynolds
number is high (� 1) or low (	 1).

(a) E. coli (length 2 μ) swim in water at speeds of about
0.01 mm s−1.

(b) An Olympic swimmer (length 2 m) swims in water at
speeds of up to 2 m s−1.

(c) A bald eagle (wingspan 2 m) flies in air (density =
1.2 kg m−3, viscosity = 1.8 × 10−5 Pa s) at speeds of
20 km hr−1.

Problem 52. Estimate the Reynolds number of blood flow
in a capillary, using the data in Table 1.4. How does this
compare to that in the aorta?
Problem 53. Consider a sphere of radius R moving at speed
v through a fluid of density ρ and viscosity η.
(a) If the Reynolds number is low, then viscous effects dom-

inate and the drag force Fvisc depends on η and not ρ.
Assume that Fvisc depends only on R, η, and v and use
dimensional analysis13 to determine the form of Stokes’
law (i.e., the power to which each variable is raised).

(b) At high Reynolds number, the force needed to accelerate
the fluid out of the way is important, and the drag force
Fpres depends on ρ and not η. Find the dependence of
Fpres on the relevant variables.

(c) Find, to within a dimensionless factor, the critical speed
at which Fvisc = Fpres.
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2Exponential Growth and Decay

The exponential function is one of the most important and
widely occurring functions in physics and biology. In biology
it may describe the growth of bacteria or animal populations,
the decrease of the number of bacteria in response to a ster-
ilization process, the growth of a tumor, or the absorption or
excretion of a drug. (Exponential growth cannot continue for-
ever because of limitations of nutrients, etc.) Knowledge of
the exponential function makes it easier to understand birth
and death rates, even when they are not constant. In physics,
the exponential function describes the decay of radioactive
nuclei, the emission of light by atoms, the absorption of light
as it passes through matter, the change of voltage or current
in some electrical circuits, the variation of temperature with
time as a warm object cools, and the rate of some chemical
reactions.

In this book, the exponential function will be needed to
describe certain probability distributions, the concentration
ratio of ions across a cell membrane, the flow of solute
particles through membranes, the decay of a signal travel-
ing along a nerve axon, and the return of some physiologic
variables to their equilibrium values after they have been
disturbed.

Because the exponential function is so important, and be-
cause we have seen many students who did not understand
it even after having been exposed to it, the chapter starts
with a gentle introduction to exponential growth (Sect. 2.1)
and decay (Sect. 2.2). Section 2.3 shows how to analyze ex-
ponential data using semilogarithmic graph paper. The next
section shows how to use semilogarithmic graph paper to
find instantaneous growth or decay rates when the rate varies.
Some would argue that the availability of computer programs
that automatically produce logarithmic scales for plots makes
these sections unnecessary. We feel that intelligent use of
semilogarithmic and logarithmic (log–log) plots requires an
understanding of the basic principles.

Variable rates are described in Sect. 2.4. Clearance, dis-
cussed in Sect. 2.5, is an exponential decay process that is
important in physiology. Microbiologists often grow cells
in a chemostat, described in Sect. 2.6. Sometimes there are

competing paths for exponential removal of a substance:
multiple decay paths are introduced in Sect. 2.7. A very ba-
sic and simple model for many processes is the combination
of input at a fixed rate accompanied by exponential decay,
described in Sect. 2.8. Sometimes a substance exists in two
forms, each with its own decay rate. One then must fit two or
more exponentials to the set of data, as shown in Sect. 2.9.

Section 2.10 discusses the logistic equation, one possible
model for a situation in which the growth rate decreases as
the amount of substance increases. The chapter closes with
a section on power–law relationships. While not exponen-
tial, they are included because data analysis can be done with
log–log graph paper, a technique similar to that for semilog
paper. If you feel mathematically secure, you may wish to
skim the first four sections, but you will probably find the
rest of the chapter worth reading.

2.1 Exponential Growth

An exponential growth process is one in which the rate of
increase of a quantity is proportional to the present value
of that quantity. The simplest example is a savings account.
If the interest rate is 5 % and if the interest is credited to
the account once a year, the account increases in value by
5 % of its present value each year. If the account starts out
with $ 100, then at the end of the first year, $ 5 is credited
to the account and the value becomes $ 105. At the end of
the second year, 5 % of $ 105 is credited to the account and
the value grows by $ 5.25 to 110.25. The growth of such an
account is shown in Table 2.1 and Fig. 2.1. These amounts
can be calculated as follows: At the end of the first year, the
original amount, y0, has been augmented by (0.05)y0:

y1 = y0(1 + 0.05).

During the second year, the amount y1 increases by 5 %, so

y2 = y1(1.05) = y0(1.05)(1.05) = y0(1.05)2.
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Table 2.1 Growth of a savings account earning 5 % interest com-
pounded annually, when the initial investment is $ 100

Year Amount ($) Year Amount ($) Year Amount ($)

1 105.00 10 162.88 100 1.31 × 104

2 110.25 20 265.33 200 1.73 × 106

3 115.76 30 432.19 300 2.27 × 108

4 121.55 40 704.00 400 2.99 × 1010

5 127.63 50 1146.74 500 3.93 × 1012

6 134.01 60 1867.92 600 5.17 × 1014

7 140.71 70 3042.64 700 6.80 × 1016

8 147.75 80 4956.14 800 8.94 × 1018

9 155.13 90 8073.04 900 1.18 × 1021
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Fig. 2.1 The amount in a savings account after t years, when the
amount is compounded annually at 5 % interest

After t years, the amount in the account is

yt = y0(1.05)t .

In general, if the growth rate is b per compounding period,
the amount after t periods is

yt = y0(1 + b)t . (2.1)

It is possible to keep the same annual growth (interest)
rate, but to compound more often than once a year. Ta-
ble 2.2 shows the effect of different compounding intervals
on the amount, when the interest rate is 5 %. The last two
columns, for monthly compounding and for “instant inter-
est,” are listed to the nearest tenth of a cent to show the slight
difference between them.

The table entries were calculated in the following way:
Suppose that compounding is done N times a year. In t years,
the number of compoundings is Nt . If the annual fractional

Table 2.2 Amount of an initial investment of $ 100 at 5 % annual
interest, with different methods of compounding

Month Annual Semiannual Quarterly Monthly Instant
($) ($) ($) ($) ($)

0 100.00 100.00 100.00 100.000 100.000
1 100.00 100.00 100.00 100.417 100.418
2 100.00 100.00 100.00 100.835 100.837
3 100.00 100.00 101.25 101.255 101.258
4 100.00 100.00 101.25 101.677 101.681
5 100.00 100.00 101.25 102.101 102.105
6 100.00 102.50 102.52 102.526 102.532
7 100.00 102.50 102.52 102.953 102.960
8 100.00 102.50 102.52 103.382 103.390
9 100.00 102.50 103.80 103.813 103.821
10 100.00 102.50 103.80 104.246 104.255
11 100.00 102.50 103.80 104.680 104.690
12 105.00 105.06 105.09 105.116 105.127

Table 2.3 Numerical examples of the convergence of (1 + b/N)N to
eb as N becomes large

N b = 1 b = 0.05
10 2.594 1.0511

100 2.705 1.0513
1000 2.717 1.0513

eb 2.718 1.0513

rate of increase is b, the increase per compounding is b/N .
For 6 months at 5 % (b = 0.05), the increase is 2.5, for 3
months it is 1.25, etc. The amount after t units of time (years)
is, in analogy with Eq. 2.1,

y = y0 (1 + b/N)Nt . (2.2)

Recall (refer to Appendix C) that (a)bc = (ab)c. The
expression for y can be written as

y = y0

[
(1 + b/N)N

]t
. (2.3)

Most calculus textbooks show that the quantity

(1 + b/N)N → eb

as N becomes very large. (Rather than proving this fact here,
we give numerical examples in Table 2.3 for two different
values of b.) Therefore, Eq. 2.3 can be rewritten as

y = y0e
bt = y0 exp(bt). (2.4)

(The exp notation is used when the argument is compli-
cated.) To calculate the amount for instant interest, it is
necessary only to multiply the fractional growth rate per
unit time b by the length of the time interval and then look
up the exponential function of this amount in a table or
evaluate it with a computer or calculator. The number e is
approximately equal to 2.71828 . . . and is called the base of
the natural logarithms. Like π (3.14159 . . . ), e has a long
history (Maor 1994).
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The exponential function is plotted in Fig. 2.2. (The mean-
ing of negative values of t will be considered in the next
section.) This function increases more and more rapidly as t

increases. This is expected, since the rate of growth is always
proportional to the present amount. This is also reflected in
the following property of the exponential function:

d

dt

(
ebt
)

= bebt . (2.5)

This means that the function y = y0e
bt has the property that

dy

dt
= by. (2.6)

Any constant multiple of the exponential function ebt has the
property that its rate of growth is b times the function itself.
Whenever we see the exponential function, we know that it
satisfies Eq. 2.6. Equation 2.6 is an example of a differen-
tial equation. If you learn how to solve only one differential
equation, let it be Eq. 2.6. Whenever we have a problem in
which the growth rate of something is proportional to the
present amount, we can expect to have an exponential solu-
tion. Notice that for time intervals t that are not too large,
Eq. 2.6 implies that �y = (b�t)y. This again says that the
increase in y is proportional to y itself.

The independent variable in this discussion has been t . It
can represent time, in which case b is the fractional growth
rate per unit time; distance, in which case b is the fractional
growth per unit distance; or something else. We could, of
course, use another symbol such as x for the independent
variable, in which case we would have dy/dx = by, y =
y0e

bx .
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Fig. 2.3 A plot of the fraction of nuclei of 99mTc surviving at time t

2.2 Exponential Decay

Figure 2.2 shows the exponential function for negative values
of t as well as positive ones. (Remember that e−t = 1/et .)
To see what this means, consider a bank account in which no
interest is credited, but from which 5 % of what remains is
taken each year. If the initial balance is $ 100, $ 5 is removed
the first year to leave $ 95.00. In the second year, 5 % of
$ 95 or $ 4.75 is removed. In the third year, 5 % of $ 90.25
or $ 4.51 is removed. The annual decrease in y becomes less
and less as y becomes less and less. The equations developed
in the preceding section also describe this situation. It is only
necessary to call b the fractional decay and allow it to have
a negative value, − |b|. Equation 2.1 then has the form y =
y0(1 − |b|)t and Eq. 2.4 is

y = y0e
−|b|t . (2.7)

Often b is regarded as being intrinsically positive, and Eq. 2.7
is written as

y = y0e
−bt . (2.8)

One could equally well write y = y0e
bt and regard b as be-

ing negative, but this can cause confusion, for example with
Eq. 2.10 below.

The radioactive isotope 99mTc (read as technetium-99)
has a fractional decay rate b = 0.1155 h−1. If the number
of atoms at t = 0 is y0, the fraction f = y/y0 remaining at
later times decreases as shown in Fig. 2.3. The equation that
describes this curve is

f = y

y0
= e−bt , (2.9)

where t is the elapsed time in hours and b = 0.1155 h−1. The
product bt must be dimensionless, since it is in the exponent.

People often talk about the half-life T1/2, which is the
length of time required for f to decrease to one-half. From
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inspection of Fig. 2.3, the half-life is 6 h. This can also be
determined from Eq. 2.9:

0.5 = e−bT1/2 .

From a table of exponentials, one finds that e−x = 0.5 when
x = 0.69315. This leads to the very useful relationship
bT1/2 = 0.693 or

T1/2 = 0.693

b
. (2.10)

For the case of 99mTc, the half-life is T1/2 = 0.693/0.1155 =
6 h.

One can also speak of a doubling time if the exponent is
positive. In that case, 2 = ebT2 , from which

T2 = 0.693

b
. (2.11)

2.3 Semilog Paper

A special kind of graph paper, called semilog paper, makes
the analysis of exponential growth and decay problems much
simpler. If one takes logarithms (to any base) of Eq. 2.4, one
has

log y = log y0 + bt log e. (2.12)

If the dependent variable is considered to be u = log y, and
since log y0 and log e are constants, this equation is of the
form

u = c1 + c2t . (2.13)

The graph of u vs t is a straight line with positive slope if b

is positive and negative slope if b is negative.
On semilog paper the vertical axis is marked in a loga-

rithmic fashion. The graph can be plotted without having to
calculate any logarithms. Figure 2.4 shows a plot of the ex-
ponential function of Fig. 2.2, for both positive and negative
values of t . First, note how to read the vertical axis. A given
distance along the axis always corresponds to the same mul-
tiplicative factor. Each cycle represents a factor of ten. To use
the paper, it is necessary first to mark off the decades with the
desired values. In Fig. 2.4, the decades have been marked 0.1,
1, 10, and 100. The 6 that lies between 0.1 and 1 is 0.6; the 6
between 1 and 10 is 6.0; the 6 between 10 and 100 represents
60; and so forth. The paper can be imagined to go vertically
forever in either direction; one never reaches zero. Figure 2.4
has two examples marked on it with dashed lines. The first
shows that for t = −1.0, y = 0.36; the second shows that
for t = +1.5, y = 4.5.

Semilog paper is most useful for plotting data that you
suspect may have an exponential relationship. If the data plot
as a straight line, your suspicions are confirmed. From the

Fig. 2.4 A plot of the exponential function on semilog paper

straight line, you can determine the value of b. Figure 2.5
is a plot of the intensity of light that passed through an ab-
sorber in a hypothetical example. The independent variable
is absorber thickness x. The decay is exponential, except for
the last few points, which may be high because of experimen-
tal error. (As the intensity of the light decreases, it becomes
harder to measure accurately.) We wish to determine the de-
cay constant in y = y0e

−bx . One way to do it would be
to note (dashed line A in Fig. 2.5) that the half-distance is
0.145 cm, so that, from Eq. 2.10,

b = 0.693

0.145
= 4.8 cm−1.

This technique can be inaccurate because it is difficult to read
the graph accurately. It is more accurate to use a portion of
the curve for which y changes by a factor of 10 or 100. The
general relationship is y = y0e

bx , where the value of b can be
positive or negative. If two different values of x are selected,
one can write

y2

y1
= y0e

bx2

y0ebx1
= eb(x2−x1).

If y2/y1 = 10, then this equation has the form 10 = ebX10

where X10 = x2 − x1 when y2/y1 = 10. From a table of
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Fig. 2.5 A semilogarithmic plot of the intensity of light after it has
passed through an absorber of thickness x

exponentials, bX10 = 2.303, so that

b = 2.303

X10
. (2.14)

The same procedure can be used to find b using a factor of
100 change in y:

b = 4.605

X100
. (2.15)

If the curve represents a decaying exponential, then y2/y1 =
10 when x2 < x1, so that X10 = x2 − x1 is negative. Equa-
tion 2.14 then gives a negative value for b. It is customary to
state separately that we are dealing with decay and regard b

as positive.
As an example, consider the exponential decay in Fig. 2.5.

Using points B and C, we have x1 = 0.97, y1 = 10−2, x2 =
0.48, y2 = 10−1, X10 = 0.480 − 0.97 = −0.49. Therefore,
b = 2.303/(0.49) = 4.7 cm−1, which is a more accurate
determination than the one we made using the half-life.

When we are dealing with real data, we must consider
the fact that each measurement has an experimental error as-
sociated with it. If we make several measurements of y for
a particular value of the independent variable x, the values
of y will be scattered. We indicate this by the error bars in

Fig. 2.6 Plot of y = e−0.5t with error bars ±0.05 on linear (a) and
semilog paper (b)

Fig. 2.6. (Determining the size of these error bars is discussed
in Chap. 11.) The data points in Fig. 2.6 are given exactly by
y = e−0.5x , where y is the fraction remaining at time x.
There is no data point for x = 0, but we must make sure that
our fitting line passes through the point (0,1). The error bars
show an error of ±0.09. The error bars on the semilog plot
are not all the same length, being much larger for long times
(small values of y). If we do not plot the error bars before
drawing our line, we will give too much emphasis to the data
points for small y.

Equal error bars for all the points on a semilog plot corre-
spond to the same percentage error for each point, as shown
in Fig. 2.7.
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Fig. 2.7 Plot of y = e−0.5t with 5 % error bars in linear (a) and semilog
paper (b)

2.4 Variable Rates

The equation dy/dx = by (or dy/dt = by) says that y

grows or decays at a rate that is proportional to y. The con-
stant b is the fractional rate of growth or decay. It is possible
to define the fractional rate of growth or decay even if it is
not constant but is a function of x:

b(x) = 1

y

dy

dx
. (2.16)

Semilogarithmic graph paper can be used to analyze the
curve even if b is not constant. Since d(ln y)/dy = 1/y, the

Fig. 2.8 A semilogarithmic plot of y vs x when the decay rate is not
constant. Each tangent line represents the instantaneous decay rate for
that value of x

chain rule for evaluating derivatives gives

d

dx
(ln y) = 1

y

dy

dx
= b.

This means that b(x) is the slope of a plot of ln y vs x. A
semilogarithmic plot of y vs x is shown in Fig. 2.8. The
straight lines are tangent to the curve and decay with a con-
stant rate equal to b(x) at the point of tangency. The ordinate
in Fig. 2.8 can be the log of y to any base; the value of b

for the tangent line is determined using the methods in the
previous section.

If finite changes �x and �y have been measured, they
may be used to estimate b(x) directly from Eq. 2.16. For
example, suppose that y=100,000 people and that in �x =
1 year there is a change �y = −37. In this case, �y

is very small compared to y, so we can say that b =
(1/y)(�y/�x) = −37 × 10−5 y−1. If the only cause of
change in this population is deaths, the absolute value of b

is called the death rate.
A plot of the number of people surviving in a population,

all of whom have the same disease, can provide informa-
tion about the prognosis for that disease. The death rate is
equivalent to the decay constant. An example of such a plot
is shown in Fig. 2.9. Curve A shows a disease for which
the death rate is constant. Curve B shows a disease with an
initially high death rate that decreases with time; if the pa-
tient survives the initial period, the prognosis is much better.
Curve C shows a disease for which the death rate increases
with time.

Surprisingly, there are a few diseases that have death rates
independent of the duration of the disease (Zumoff et al.
1966). Any discussion of mortality should be made in terms
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Fig. 2.9 Semilogarithmic plots of the fraction of a population surviv-
ing in three different diseases. The death rates (decay constants) depend
on the duration of the disease
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Fig. 2.10 Survival of patients with congestive heart failure. (Data are
from McKee et al. 1971)

of the surviving population, since any further deaths must
come from that group. Nonetheless, one often finds results
in the literature reported in terms of the cumulative fraction
of patients who have died. Figure 2.10 shows the survival of
patients with congestive heart failure for a period of 9 years.
The data are taken from the Framingham study (McKee et al.
1971; Levy and Brink 2005); the death rate is constant dur-
ing this period. For a more detailed discussion of various
possible survival distributions, see Clark (1975).

As long as b has a constant value, it makes no differ-
ence what time is selected to be t = 0. To see this, suppose
that the value of y decays exponentially with constant rate:
y = y0e

−bt . Consider two different time scales, shifted with
respect to each other so that t ′ = t0+t . In terms of the shifted
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Fig. 2.11 The fraction of patients surviving after a myocardial infarc-
tion (heart attack) at t = 0. The mortality rate decreases with time.
(From data in Bland and White 1941)

time t ′, the value of y is

y = y0e
−bt = y0e

−b(t ′−t0) =
(
y0e

bt0
)

e−bt ′ .

This has the same form as the original expression for y(t).
The value of y′

0 is y0e
bt0 , which reflects the fact that t ′ = 0

occurs at an earlier time than t = 0, so y′
0 > y0.

If the decay rate is not constant, then the origin of time
becomes quite important. Usually there is something about
the problem that allows t = 0 to be determined. Figure 2.11
shows survival after a heart attack (myocardial infarct). The
time of the initial infarct defines t = 0; if the origin had been
started 2 or 3 years after the infarct, the large initial death
rate would not have been seen.

As long as the rate of increase can be written as a func-
tion of the independent variable, Eq. 2.16 can be rewritten as
dy/y = b(x)dx. This can be integrated:

∫ y2

y1

dy

y
=
∫ x2

x1

b(x) dx,

ln(y2/y1) =
∫ x2

x1

b(x) dx,

y2

y1
= exp

(∫ x2

x1

b(x) dx

)
. (2.17)

If we can integrate the right-hand side analytically, numeri-
cally, or graphically, we can determine the ratio y2/y1.
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Fig. 2.12 A case in which the rate of removal of a substance from
the a fluid compartment depends on the concentration, not on the total
amount of substance in the compartment. Increasing the compartment
volume with the same concentration of the substance would not change
the rate of removal

2.5 Clearance

In some cases in physiology, the amount of a substance may
decay exponentially because the rate of removal is propor-
tional to the concentration of the substance (amount per unit
volume) instead of to the total amount. For example, the rate
at which the kidneys excrete a substance may be propor-
tional to the concentration in the blood that passes through
the kidneys, while the total amount depends on the total fluid
volume in which the substance is distributed. This is shown
schematically in Fig. 2.12. The large box on the left repre-
sents the total fluid volume V . It contains a total amount of
some substance, y. If the fluid is well mixed, the concen-
tration is C = y/V . The removal process takes place only
at the dashed line, at a rate proportional to C. The equation
describing the change of y is

dy

dt
= −KC = −K

( y

V

)
. (2.18)

The proportionality constant K is called the clearance. Its
units are m3 s−1. The equation is the same as Eq. 2.6 if K/V

is substituted for b. The solution is

y = y0e
−(K/V )t . (2.19)

The basic concept of clearance is best remembered in
terms of Fig. 2.12. Other definitions are found in the litera-
ture. It sometimes takes considerable thought to show that the
definitions are equivalent. A common definition in physiol-
ogy books is “clearance is the volume of plasma from which
y is completely removed per unit time.” To see that this defi-
nition is equivalent, imagine that y is removed from the body
by removing a volume V of the plasma in which the concen-
tration of y is C. The rate of loss of y is the concentration
times the rate of volume removal:

dy

dt
= −

∣∣∣∣
dV

dt

∣∣∣∣C. (2.20)

(dV/dt is negative for removal.) Comparison with Eq. 2.18
shows that |dV/dt | = K .

As long as the compartment containing the substance
is well mixed, the concentration will decrease uniformly
throughout the compartment as y is removed. The concen-
tration also decreases exponentially:

C = C0e
−(K/V )t . (2.21)

An example may help to clarify the distinction between
b and K . Suppose that the substance is distributed in a fluid
volume V = 18 l. The substance has an initial concentration
C0 = 3 mg l−1and the clearance is K = 2 l h−1. The total
amount is y0 = C0V = 3 × 18 = 54 mg. The fractional
decay rate is b = K/V = 1/9 h−1. The equations for C and
y are C = (3 mg l−1)e−t/9, y = (54 mg)e−t/9. At t = 0, the
initial rate of removal is −dy/dt = 54/9 = 6 mg h−1.

Now double the fluid volume to V = 36 l without
adding any more of the substance. The concentration falls
to 1.5 mg l−1 although y0 is unchanged. The rate of removal
is also cut in half, since it is proportional to K/V and the
clearance is unchanged. The concentration and amount are
now C = 1.5e−t/18, y = 54e−t/18. The initial rate of re-
moval is dy/dt = 54/18 = 3 mg h−1. It is half as large as
above, because C is now half as large.

If more of the substance were added along with the
additional fluid, the initial concentration would be un-
changed, but y0 would be doubled. The fractional decay
rate would still be K/V = 1/18 h−1: C = 3.0e−t/18,
y = 108e−t/18. The initial rate of disappearance would be
dy/dt = 108/18 = 6 mg h−1. It is the same as in the first
case, because the initial concentration is the same.

2.6 The Chemostat

The chemostat is used by bacteriologists to study the growth
of bacteria (Hagen 2010). It allows the rapid growth of bac-
teria to be observed over a longer time scale. Consider a
container of bacterial nutrient of volume V . It is well stirred
and contains y bacteria with concentration C = y/V . Some
of the nutrient solution is removed at rate Q and replaced by
fresh nutrient. The bacteria in the solution are reproducing at
rate b. The rate of change of y is

dy

dt
= by − QC = by − Qy

V
. (2.22)

Therefore the growth rate is slowed to

b − Q

V

and can be adjusted by varying Q.
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2.7 Multiple Decay Paths

It is possible to have several independent paths by which y

can disappear. For example, there may be several competing
ways by which a radioactive nucleus can decay, a radioactive
isotope given to a patient may decay radioactively and be ex-
creted biologically at the same time, a substance in the body
can be excreted in the urine and metabolized by the liver, or
patients may die of several different diseases.

In such situations the total decay rate b is the sum of the
individual rates for each process, as long as the processes
act independently and the rate of each is proportional to the
present amount (or concentration) of y:

dy

dt
= −b1y−b2y−b3y−· · · = −(b1+b2+b3+· · · )y = −by.

(2.23)
The equation for the disappearance of y is the same as before,
with the total decay rate being the sum of the individual rates.
The rate of disappearance of y by the ith process is not dy/dt

but is −biy. Instead of decay rates, one can use half-lives.
Since b = b1 + b2 + b3 + · · · , the total half-life T is given
by

0.693

T
= 0.693

T1
+ 0.693

T2
+ 0.693

T3
+ · · ·

or
1

T
= 1

T1
+ 1

T2
+ 1

T3
+ · · · . (2.24)

2.8 Decay Plus Input at a Constant Rate

Suppose that in addition to the removal of y from the system
at a rate −by, y enters the system at a constant rate a, inde-
pendent of y and t . The net rate of change of y is given by

dy

dt
= a − by. (2.25)

It is often easier to write down a differential equation
describing a problem than it is to solve it. In this case the
solution to the equation and the techniques for solving it
are well known. However, a good deal can be learned about
the solution by examining the equation itself. Suppose that
y(0) = 0. Then the equation at t = 0 is dy/dt = a, and y

initially grows at a constant rate a. As y builds up, the rate of
growth decreases from this value because of the −by term.
Finally when a−by = 0, dy/dt is zero and y stops growing.
This is enough information to make the sketch in Fig. 2.13.

The equation is solved in Appendix F. The solution is

y = a

b

(
1 − e−bt

)
. (2.26)

The derivative of y is dy/dt = ( a
b

)
(−1)(−b)e−bt = ae−bt .

Fig. 2.13 Sketch of the initial slope a and final value a/b of y when
y(0) = 0

Fig. 2.14 a Plot of y(t). b Plot of dy/dt

You can verify by substitution that Eq. 2.26 satisfies
Eq. 2.25. The solution does have the properties sketched in
Fig. 2.13, as you can see from Fig. 2.14. The initial value of
dy/dt is a, and it decreases exponentially to zero. When t is
large, the exponential term in y vanishes, leaving y = a/b.

2.9 DecayWithMultiple Half-Lives and Fitting
Exponentials

Sometimes y is a mixture of two or more quantities, each
decaying at a constant rate. It might represent a mixture of
radioactive isotopes, each decaying at its own rate. A bio-
logical example is the survival of patients after a myocardial
infarct (Fig. 2.11). The death rate is not constant, and many
models can be proposed to explain why. One possible model
is that there are two distinct classes of patients immediately
after the infarct. Each class has an associated death rate that



42 2 Exponential Growth and Decay

101

2

3

4
5
6
7

102

2

3

4
5
6
7

103

2

3

4
5
6
7

104

14121086420

t

A:  y = A1e
-b1t + A2e

-b2t 

B: Estimate that
A2e

-b2t = 500e-0.131t 

C: Typical
subtraction
of B from A:
400-300 = 100

D: Estimate that
A1e

-b1t =
1000e-0.576t

Fig. 2.15 Fitting a curve with two exponentials

is constant. After 3 years, virtually none of the subgroup
with the higher death rate remains. Another model is that
the death rate is higher right after the infarct for all patients.
This higher death rate is due to causes associated with the
myocardial injury: irritability of the muscle, arrhythmias in
the heartbeat, the weakening of the heart wall at the site of
the infarct, and so forth. After many months, the heart has
healed, scar tissue has replaced the necrotic (dead) muscle,
and deaths from these causes no longer occur.

Whatever the cause, it is sometimes useful to fit a set
of experimental data with a sum of exponentials. It should
be clear from the discussion of survival after myocardial
infarction that simply fitting with an exponential or a sum
of exponentials does not prove anything about the decay
mechanism.

If y consists of two quantities, y1 and y2, each with its
own decay rate, then

y = y1 + y2 = A1e
−b1t + A2e

−b2t . (2.27)

Suppose that b1 > b2, so that y1 decays more rapidly than
y2. After enough time has elapsed, y1 will be much less than
y2, and its effect on a semilog plot will be negligible. A typ-
ical plot of y is curve A in Fig. 2.15. Line B can then be
drawn through the data and used to determine A2 and b2.
This line is extrapolated back to earlier times, so that y2 can

be subtracted from y to give an estimate for y1. For example,
at point C (t = 4), y = 400, y2 = 300, and y1 = 100. At
t = 0, y1 = 1500 − 500 = 1000. For times greater than
5 s, the curves for y and y2 are close together, and error in
reading the graph produces considerable scatter in y1. Once
several values of y1 have been determined, line D is drawn,
and parameters A1 and b1 are estimated.

This technique can be extended to several exponentials.
However it becomes increasingly difficult to extract mean-
ingful parameters as more exponentials are used, because the
estimated parameters for the short-lived terms are very sensi-
tive to the initial guess for the parameters of the longest-lived
term. Fig. 2.6 suggests that estimating the parameters for the
longest-lived term may be difficult because of the potentially
large error bars associated with the data for small values
of y. For a discussion of this problem, see Riggs (1970,
pp. 146–163). A more modern and better way to fit multi-
ple exponentials is the technique of nonlinear least squares.
This is discussed in Sect. 11.2.

2.10 The Logistic Equation

Exponential growth cannot go on forever. This fact is often
ignored by economists and politicians. Albert Bartlett has
written extensively on this subject. You can find several ref-
erences in The American Journal of Physics and The Physics
Teacher. See the summary in Bartlett (2004).

Sometimes a growing population will level off at some
constant value. Other times the population will grow and
then crash. One model that exhibits leveling off is the logistic
model, described by the differential equation

dy

dt
= b0y

(
1 − y

y∞

)
, (2.28)

where b0 and y∞ are constants. This equation has constant
solutions y = 0 and y = y∞. If y 	 y∞, then the equation
is approximately dy/dt = b0y and y grows exponentially.
As y becomes larger, the term in parentheses reduces the rate
of increase of y, until y reaches the saturation value y∞. This
might happen, for example, as the population begins to con-
sume a significant fraction of the food supply, causing the
birth rate to decrease or the mortality rate to increase.

If the initial value of y is y0, the solution of Eq. 2.28 is

y(t) = 1
1

y∞
+
(

1

y0
− 1

y∞

)
e−b0t

(2.29)

= y0y∞
y0 + (y∞ − y0)e

−b0t
.
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Fig. 2.16 Plot of the solution of the logistic equation when y0 = 0.1,
y∞ = 1.0, b0 = 0.0667. Exponential growth with the same values of
y0 and b0 is also shown

You can easily verify that y(0) = y0 and y(∞) = y∞. A plot
of the solution is given in Fig. 2.16, along with exponential
growth with the same value of b0.

Another way to think of Eq. 2.28 is that it has the form
dy/dt = b(y)y, where b(y) = b0(1 − y/y∞) is now a
function of the dependent variable y instead of the indepen-
dent variable t . As y grows toward the asymptotic value,
the growth rate b(y) decreases linearly to zero. The logistic
model was an early and very important model for popula-
tion growth. It provides good fits in a few cases, but there are
now many more sophisticated models in population biology
(Murray 2001) and bacterial growth (Hagen 2010).

2.11 Log–log Plots, Power Laws, and Scaling

This section considers the use of plots in which both scales
are logarithmic: log–log plots. They are useful when x and y

are related by the power law

y = Bxn. (2.30)

Notice the difference between this and the exponential func-
tion: here the independent variable x is raised to a constant
power, while in the exponential case, x (or t) is in the expo-
nent. It also leads to a discussion of scaling, whereby simple
physical arguments lead to important conclusions about the
variations between species in size, shape, metabolic rate, and
the like.
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Fig. 2.17 Log–log plots of y = xn for different values of n. When
x = 1, y = 1 in every case

2.11.1 Log–log Plots and Power Laws

By taking logarithms of both sides of Eq. 2.30, we get

log y = log B + n log x. (2.31)

This is a linear relationship between u = log y and v =
log x:

u = const + nv. (2.32)

Therefore a plot of u vs v is a straight line with slope n.
The slope can be positive or negative and need not be an
integer. Figure 2.17 shows plots of y = x, y = x2, y = x1/2,
and y = x−1. The slope can be determined from the graph
by taking �u/�v. The value of B is determined either by
substituting particular values of y and x in Eq. 2.30 after n

is known, or by determining the value of y when x = 1,
in which case xn = 1 for any value of n, so n need not be
known.

Figure 2.18 shows how the curves change when B is
changed while n = 1. The curves are all parallel to each
other. Multiplying by B is equivalent to adding a constant to
log y.

If the expression is not of the form y = Bxn but has an
added term, it will not plot as a straight line on log–log paper.
Figure 2.18 also shows a plot of y = x + 1, which is not
a straight line. (Of course, for very large values of x, log
(x +1) becomes nearly indistinguishable from log x, and the
line appears straight.)

When the slope is constant, n can be determined from the
slope �u/�v measured with a ruler on the log–log paper.
When determining the slope in this way one must be sure
that the length of a cycle is the same in each direction on the
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Fig. 2.18 Log–log plots of y = Bx, showing how the curves shift on
the paper as B changes. Since n = 1 for all the curves, they all have the
same slope. There is also a plot of y = x + 1 to show that a polynomial
does not plot as a straight line

graph paper. To repeat the warning: it is easy to get a rough
idea of the exponent from inspection of the slope of the log–
log plot in Fig. 2.17 because on commercial log–log graph
paper, the distance spanned by a decade or cycle is the same
on both axes. Some magazines routinely show log–log plots
in which the distance spanned by a decade is not the same
on both axes. Moreover, commercial graphing software does
not impose this constraint on log–log plots, so it is becoming
less and less likely that you can determine the exponent by
glancing at the plot. Be careful!

When using a spreadsheet or other graphing software, it
is often useful to make an extra column that contains the cal-
culated variable ycalc = Axm with the values for A and m

stored in two cells of the spreadsheet. If you plot this column
as a line, and your real data as points without a line, then you
can change the parameters while inspecting the graph to find
the values that give the best fit.

An example of the use of a log–log plot is Poiseuille flow
of fluid through a tube vs tube radius when the pressure gra-
dient along the tube is constant (Problem 39). It was shown
in Chap. 1 that an r4 dependence is expected.

2.11.2 Food Consumption, Basal Metabolic
Rate, and Scaling

Consider the relation of daily food consumption to body
mass. This will introduce us to simple scaling arguments.
As a first model, we might suppose that each kilogram of
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Fig. 2.19 Plot of daily food requirement F and height H vs mass M

for growing children. (Data are from Kempe et al. 1970, p. 90)

tissue has the same metabolic requirement, so that food
consumption should be proportional to body mass. However,
there is a problem with this argument. Most of the food that
we consume is converted to heat. The various mechanisms
to lose heat—radiation, convection, and perspiration—are
all roughly proportional to the surface area of the body
rather than its mass. (This statement neglects the fact that
considerable evaporation takes place through the lungs
and that the body can control the rate of heat loss through
sweating and shivering.) If all persons were the same shape,
then the total surface area would be proportional to H 2,
where H is the height. The total volume and mass would be
proportional to H 3, so H would be proportional to M1/3.
Therefore the surface area would be proportional to (M1/3)2

or M2/3. (See Problem 44 for a discussion of other possible
dependences of surface area on mass.) Figure 2.19 plots H

and the total daily food requirement F vs body mass M for
growing children (Kempe et al. 1970, p. 90).

Neither of the models proposed above fits the data very
well. At early ages, H is more nearly proportional to M0.62

than to M1/3. For older children, when the shape of the body
has stopped changing, an M0.33 dependence does fit better.
This better fit occurs for masses greater than 23 kg, which
correspond to ages over 6 years. The slope of the F(M)

curve is 0.75. This is less than the 1.0 of the model that food
consumption is proportional to the mass and greater than the
0.67 of the model that food consumption is proportional to
surface area.

This 3
4 -power dependence is remarkable because it is

seen across many species, from one-celled organisms to



Symbols Used 45

Fig. 2.20 Plot of resting metabolic rate vs. body mass for many differ-
ent organisms. (Graph is from R. H. Peters 1983. Modified from A. M.
Hemmingsen 1960). Used with permission

large mammals. It is called Kleiber’s law. Peters (1983)
quotes work by Hemmingsen (1960) that shows the stan-
dard metabolic rates for many species can be fitted by the
following. The standard metabolic rate is in watts and mass
in kilograms. (Standard means as close to resting or basal as
possible.) For unicellular organisms at 20 ◦C,

Runicellular = 0.018M0.751. (2.33a)

The range of masses extended from 10−15 to 10−6 kg. For
poikilotherms (organisms such as fish whose body tempera-
ture is the same as the surroundings) at 20 ◦C (masses from
10−8 to 102 kg),

Rpoikilotherm = 0.14M0.751, (2.33b)

and for homeotherms (animals that can maintain their
body temperature independent of the surroundings) at 39 ◦C
(masses from 10−2 to 103 kg),

Rhomeotherm = 4.1M0.751. (2.33c)

Peters’ graph is shown in Fig. 2.20.
A number of models have been proposed to explain a 3

4 -
power dependence (McMahon 1973; Peters 1983; West et al.
1999; Banavar et al. 1999). West and his coworkers argue
that the 3

4 -power law is universal (Brown et al. 2004; West
and Brown 2004). They derive it from a model that supplies
nutrients through a branching network that reaches all parts
of the organism, minimizes the energy required for distribu-
tion, and ends in capillaries (or terminal xylem in plants) that
are all the same size. Whether it is universal is still debated
(White and Seymour 2003; Glazier 2005).

Symbols Used in Chap. 2
Symbol Use Units First

used
page

a Rate of input of a substance s−1 41
b, b0 Rate of growth or decay s−1, h−1 33
c1, c2 Constants 36
f Fraction 35
m, n Exponent in power–law relationship 43
t Time s 34
u Logarithm of dependent variable 36
v Logarithm of independent variable 43
x General independent variable 35
y General dependent variable 33
y Amount of substance in plasma kg, mg 40
x0,y0 Initial value of x or y 33
y∞ Saturation value of y 42
A Constant 42
B Constant 43
C Concentration kg m−3,

etc.
40

F Food requirement kcal day−1 44
H Body height m 44
K Clearance m3 s−1 40
M Body mass kg 44
N Number of compoundings per year 34
Q Flow through chemostat m3 s−1 40
R Standard metabolic rate W 45
T1/2 Half-life s, etc. 35
T2 Doubling time s 36
V Volume m3 40
X10 Change in x for a factor-of-10 change

in y

36

X100 Change in x for a factor-of-100
change in y

37

Problems

Section 2.1

Problem 1. Suppose that you are 20 years old and have an
annual income of $20,000. You plan to work for 40 years. If
inflation takes place at a rate of 3 % per year, what income
would you need at age 60 to have the same buying power you
have now? Ignore taxes. Make the calculation assuming that
(a) inflation is 3 % and occurs once a year and (b) inflation is
continuous but at a 3 % annual rate.
Problem 2. The number e is defined by limn→∞(1+1/n)n.

(a) Calculate values of (1 + 1/n)n for n = 1, 2, 4, 8, and
16.

(b) Use the binomial formula (1 + a)n = 1 + na +
n(n−1)

2! a2 + n(n−1)(n−2)
3! a3 + · · · to obtain a series for ex =

limn→∞(1 + x/n)n. [See also Appendix D, Eq. D.3.]
Problem 3. A child with acute lymphocytic leukemia (ALL)
has approximately 1012 leukemic cells when the disease is
clinically apparent.
(a) If a cell is about 8 μm in diameter, estimate the total

mass of leukemic cells.
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(b) Cure requires killing every single cell. The doubling
time for the cells is about 5 days. If all cells were killed
except for one, how long would it take for the disease to
become apparent again?

(c) Suppose that chemotherapy reduces the number of cells
to 109 and there are no changes of ALL cell proper-
ties (no mutations). How long a remission would you
expect? What if the number were reduced to 106?

Problem 4. Suppose that tumor cells within the body repro-
duce at rate r , so that the number is given by y = y0e

rt . Each
time a chemotherapeutic agent is given, it destroys a fraction
f of the cells then existing. Make a semilog plot showing y

as a function of time for several administrations of the drug,
separated by time T . What different cases must you consider
for the relation among f , T , and r?
Problem 5. An exponentially growing culture of bacteria in-
creases from 106 to 5 × 108 cells in 6 h. What is the time
between successive cell divisions if there is no cell mortality?
Problem 6. The following data on railroad tracks were
obtained from R. H. Romer (1991).

Year Miles of track
1860 30,626
1870 52,922
1880 93,262
1890 166,703

(a) What is the doubling time?
(b) Estimate the surface area of the contiguous USA. As-

sume that a railroad roadbed is 7-m wide. In what year
would an extrapolation predict that the surface of the
USA would be completely covered with railroad track?

Section 2.2

Problem 7. A dose D of drug is given that causes the plasma
concentration to rise from 0 to C0. The concentration then
falls according to C = C0e

−bt . At time T , what dose must be
given to raise the concentration to C0 again? What will hap-
pen if the original dose is administered over and over again
at intervals of T ?
Problem 8. Consider the atmosphere to be at constant tem-
perature but to have a pressure p that varies with height
y. A slab between y and y + dy has a different pressure
on the top than on the bottom because of the weight of
the air in the slab. (The weight of the air is the number of
molecules N times mg, where m is the mass of a molecule
and g is the gravitational acceleration.) Use the ideal gas law,
pV = NkBT (where kB is the Boltzmann constant and T ,
the absolute temperature, is constant), and the fact that the
air is in equilibrium to write a differential equation for p as

a function of y. The equation should be familiar. Show that
p(y) = Ce−mgy/kBT .
Problem 9. The mean life of a radioactive substance is
defined by the equation

τ = − ∫∞
0 t (dy/dt) dt

− ∫∞
0 (dy/dt) dt

.

Show that if y = y0e
−bt , then τ = 1/b.

Section 2.3

Problem 10. R. Guttman (1966) measured the temperature
dependence of the current pulse necessary to excite the squid
axon. She found that for pulses shorter than a certain length
τ , a fixed amount of electric charge was necessary to make
the nerve fire; for longer pulses, the current was fixed. This
suggests that the axon integrates the current for a time τ

but no longer. The following data are for the integrating
time τ vs temperature T (◦C). Find an empirical exponential
relationship between T and τ .

T (◦C) τ (ms)
5 4.1
10 3.4
15 1.9
20 1.4
25 0.7
30 0.6
35 0.4

Problem 11. A normal rabbit was injected with 1 cm3 of
Staphylococcus aureus culture containing 108 organisms. At
various later times, 0.2 cm3 of blood was taken from the
rabbit’s ear. The number of organisms per cm3 was calcu-
lated by diluting the material, smearing it on culture plates,
and counting the number of colonies formed. The results are
shown below. Plot these data and see if they can be fit by a
single exponential. Can you also estimate the blood volume
of the rabbit?

t (min) Bacteria (cm−3)
0 5 × 105

3 2 × 105

6 5 × 104

10 7 × 103

20 3 × 102

30 1.7 × 102

Section 2.4

Problem 12. All members of a certain population are born
at t = 0. The death rate in this population (deaths per unit
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population per unit time) is found to increase linearly with
age t : (death rate) = a+bt . Find the population as a function
of time if the initial population is y0.
Problem 13. The accompanying table gives death rates (in
yr−1) as a function of age. Plot these data on linear graph
paper and on semilog paper. Find a region over which the
death rate rises approximately exponentially with age, and
determine parameters to describe that region.

Age Death rate Age Death rate
0 0.000 863 45 0.005 776
5 0.000 421 50 0.008 986

10 0.000 147 55 0.013 748
15 0.001 027 60 0.020 281
20 0.001 341 65 0.030 705
25 0.001 368 70 0.046 031
30 0.001 697 75 0.066 196
35 0.002 467 80 0.101 443
40 0.003 702 85 0.194 197

Problem 14. Suppose that the amount of a resource at time
t is y(t). At t = 0, the amount is y0. The rate at which it
is consumed is r = −dy/dt . Let r = r0e

bt , that is, the rate
of use increases exponentially with time. (For example, until
recently the world use of crude oil had been increasing about
7 % per year since 1890.)
(a) Show that the amount remaining at time t is y(t) = y0 −

(r0/b)(ebt − 1).
(b) If the present supply of the resource were used up at con-

stant rate r0, it would last for a time Tc. Show that when
the rate of consumption grows exponentially at rate b,
the resource lasts a time Tb = (1/b) ln(1 + bTc).

(c) An advertisement in Scientific American, September
1978, p. 181, said, “There’s still twice as much gas un-
derground as we’ve used in the past 50 years—at our
present rate of use, that’s enough to last about 60 years.”
Calculate how long the gas would last if it were used at
a rate that increases 7 % per year.

(d) If the supply of gas were doubled, how would the answer
to part (c) change?

(e) Repeat parts (c) and (d) if the growth rate is 3 % per year.
Problem 15. When we are dealing with death or compo-
nent failure, we often write Eq. 2.17 in the form y(t) =
y0 exp

[
− ∫ t

0 m(t ′)dt ′
]

and call m(t) the mortality function.

Various forms for the mortality function can represent fail-
ure of computer components, batteries in pacemakers, or
the death of organisms. (This is not the most general possi-
ble mortality model. For example, it ignores any interaction
between organisms, so it cannot account for effects such as
overcrowding or a limited supply of nutrients.)
(a) For human populations, the mortality function is often

written as m(t) = m1e
−b1t + m2 + m3e

+b3t . What sort
of processes does each of these terms represent?

(b) Assume that m1 and m2 are zero. Then m(t) is called the
Gompertz mortality function. Obtain an expression for
y(t) with the Gompertz mortality function. Time tmax

is sometimes defined to be the time when y(t) = 1. It
depends on y0. Obtain an expression for tmax.

Problem 16. The incidence of a disease is the number of
new cases per unit time per unit population (or per 100,000).
The prevalence of the disease is the number of cases per
unit population. For each situation below, the size of the gen-
eral population remains fixed at the constant value y, and the
disease has been present for many years.
(a) The incidence of the disease is a constant, i cases per

year. Each person has the disease for a fixed time of
T years, after which the person is either cured or dies.
What is the prevalence p? Hint: the number who are sick
at time t is the total number who became sick between
t − T and t .

(b) The patients in part (a) who are sick die with a constant
death rate b. What is the prevalence?

(c) A new epidemic begins at t = 0, and the incidence in-
creases exponentially with time: i = i0e

kt . What is the
prevalence if each person has the disease for T years?

Section 2.5

Problem 17. The creatinine clearance test measures a pa-
tient’s kidney function. Creatinine is produced by muscle at
a rate p g h−1. The concentration in the blood is C g l−1. The
volume of urine collected in time T (usually 24 h) is V l. The
creatinine concentration in the urine is U g l−1. The clear-
ance is K . The plasma volume is Vp. Assume that creatinine
is stored only in the plasma.
(a) Draw a block diagram for the process and write a

differential equation for C.
(b) Find an expression for the creatinine clearance K in

terms of p and C when C is not changing with time.
(c) If C is constant, all creatinine produced in time T ap-

pears in the urine. Find K in terms of C, V , U , and
T .

(d) If p were somehow doubled, what would be the new
steady-state value of C? What would be the time con-
stant for change to the new value?

Problem 18. A liquid is injected in muscle and spreads
throughout a spherical volume V = 4πr3/3. The volume
is well supplied with blood, so that the liquid is removed
at a rate proportional to the remaining mass per unit vol-
ume. Let the mass be m and assume that r remains fixed.
Find a differential equation for m(t) and show that m decays
exponentially.
Problem 19. A liquid is injected as in Problem 18, but this
time a cyst is formed. The rate of removal of mass is pro-
portional to both the pressure of liquid within the cyst, and
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to the surface area of the cyst, which is 4πr2. Assume that
the cyst shrinks so that the pressure of liquid within the cyst
remains constant. Find a differential equation for the rate of
mass removal and show that dm/dt is proportional to m2/3.
Problem 20. The following data showing ethanol concen-
tration in the blood vs time after ethanol ingestion are from
Bennison and Li (1976, pp. 9–13). Plot the data and discuss
the process by which alcohol is metabolized.

t (min) Ethanol concentration (mg dl−1)
90 134

120 120
150 106
180 93
210 79
240 65
270 50

Problem 21. Consider the following two-compartment
model. Compartment 1 is damaged myocardium (heart mus-
cle). Compartment 2 is the blood of volume V . At t = 0,
the patient has a heart attack and compartment 1 is created.
It contains q molecules of some chemical that was released
by the dead cells. Over the next several days, the chemi-
cal moves from compartment 1 to compartment 2 at a rate
i(t), such that q = ∫∞

0 i(t)dt . The amount of substance in
compartment 2 is y(t) and the concentration is C(t). The
only mode of removal from compartment 2 is clearance with
clearance constant K .
(a) Write a differential equation for C(t) that may also

involve i(t).
(b) Integrate the equation and show that q can be determined

by numerical integration if C(t) and K are known.
(c) Show that volume V need not be known if C(0) =

C(∞).

Section 2.7

Problem 22. The radioactive nucleus 64Cu decays indepen-
dently by three different paths. The relative decay rates of
these three modes are in the ratio 2:2:1. The half-life is
12.8 h. Calculate the total decay rate b, and the three partial
decay rates b1, b2, and b3.
Problem 23. The following data were taken from Berg et al.
(1982). At t = 0, a 70-kg subject was given an intravenous
injection of 200 mg of phenobarbital. The initial concentra-
tion in the blood was 6 mg l−1. The concentration decayed
exponentially with a half-life of 110 h. The experiment was
repeated, but this time the subject was fed 200 g of activated
charcoal every 6 h. The concentration of phenobarbital again
fell exponentially, but with a half-life of 45 h.
(a) What was the volume in which the phenobarbital was

distributed?

(b) What was the clearance in the first experiment?
(c) What was the clearance due to charcoal?

Section 2.8

Problem 24. You are treating a severely ill patient with an
intravenous antibiotic. You give a loading dose D mg, which
distributes immediately through blood volume V to give a
concentration C mg dl−1 (1 dl = 0.1 l). The half-life of this
antibiotic in the blood is T h. If you are giving an intravenous
glucose solution at a rate R ml h−1, what concentration of
antibiotic should be in the glucose solution to maintain the
concentration in the blood at the desired value?
Problem 25. The solution to the differential equation
dy/dt = a − by for the initial condition y(0) = 0 is
y = (a/b)(1 − e−bt ). Plot the solution for a = 5 g min−1

and for b = 0.1, 0.5, and 1.0 min−1. Discuss why the final
value and the time to reach the final value change as they do.
Also make a plot for b = 0.1 and a = 10 to see how that
changes the situation.
Problem 26. Derive an approximate expression for
(a/b)

(
1 − e−bt

)
which is accurate for small times (t 	

1/b). Use the Taylor expansion for an exponential given in
Appendix D.
Problem 27. We can model the repayment of a mortgage
with a differential equation. Suppose that y(t) is the amount
still owed on the mortgage at time t , the rate of repayment
per unit time is a, b is the interest rate, and the initial amount
of the mortgage is y0.
(a) Find the differential equation for y(t).
(b) Try a solution of the form y(t) = a/b + Cebt , where

C is a constant to be determined from the initial condi-
tions. Find C, plot the solution, and determine the time
required to pay off the mortgage.

Problem 28. When an animal of mass m falls in air, two
forces act on it: gravity, mg, and a force due to air friction.
Assume that the frictional force is proportional to the speed
v.
(a) Write a differential equation for v based on Newton’s

second law, F = m(dv/dt).
(b) Solve this differential equation (hint: compare your

equation to Eq. 2.25).
(c) Assume that the animal is spherical, with radius a and

density ρ. Also, assume that the frictional force is pro-
portional to the surface area of the animal. Determine
the terminal speed (speed of descent in steady state) as
a function of a.

(d) Use your result in part (c) to interpret the following
quote by J. B. S. Haldane (1985): “You can drop a
mouse down a thousand-yard mine shaft; and arriving
at the bottom, it gets a slight shock and walks away. A
rat is killed, a man is broken, a horse splashes.”
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Problem 29. In Problem 28, we assumed that the force of
air friction is proportional to the speed v. For flow at high
Reynolds numbers, a better approximation is that the force is
−kv2.
(a) Write the differential equation for v as a function of t .
(b) This differential equation is nonlinear because of the v2

term and thus difficult to solve analytically. However,
the terminal speed can easily be obtained directly from
the differential equation by setting dv/dt = 0. Find the
terminal speed as a function of a (defined in Problem
28).

(c) Verify that v(t) = √
mg/k tanh

(√
kg/mt

)
is a solution.

Problem 30. A drug is infused into the body through an in-
travenous drip at a rate of 100 mg h−1. The total amount of
drug in the body is y. The drug distributes uniformly and
instantaneously throughout the body in a compartment of
volume V = 18 l. It is cleared from the body by a single
exponential process. In the steady state, the total amount in
the body is 200 mg.
(a) At noon (t = 0), the intravenous line is removed. What

is y(t) for t > 0?
(b) What is the clearance of the drug?

Section 2.9

Problem 31. You are given the following data:

x y x y

0 1.000 5 0.444
1 0.800 6 0.400
2 0.667 7 0.364
3 0.571 8 0.333
4 0.500 9 0.308

10 0.286

Plot these data on semilog graph paper. Is this a single expo-
nential? Is it two exponentials? Plot 1/y vs x. Does this alter
your answer?
Problem 32. Cells can repair DNA damage caused by x-ray
exposure (see Sect. 16.9). Wang et al. (2001) found that the
amount of damage is characterized by two time constants.
Assume the DNA damage, D, as a function of time, t , is
given by the following data

t (h) D(%) t (h) D(%)
0 100 1.5 16
0.25 46 2 14
0.50 28 4 9.0
0.75 21 6 5.8
1.0 18 8 3.7

Plot the data on semilog paper. Fit the data to Eq. 2.27 by
eye or using a spreadsheet and determine A1, A2, b1, and b2.

Note that the data are normalized to 100 % at t = 0. What
does this mean in terms of A1 and A2?

Section 2.10

Problem 33. Suppose that the rate of consumption of a re-
source increases exponentially. (This might be petroleum, or
the nutrient in a bacterial culture.) During the first doubling
time, the amount used is 1 unit. During the second doubling
time, it is 2 units, the next 4, etc. How does the amount con-
sumed during a doubling time compare to the total amount
consumed during all previous doubling times?
Problem 34. Suppose that the rate of growth of y is de-
scribed by dy/dt = b(y)y. Expand b(y) in a Taylor’s
series and relate the coefficients to the terms in the logistic
equation.
Problem 35. Verify that the solution y(t) in Eq. 2.29 obeys
the differential Eq. 2.28.
Problem 36. In the logistic model (Eq. 2.28), what value of
y corresponds to the maximum rate of change of y?
Problem 37. The consumption of a finite resource is
often modeled using the logistic equation. Let y(t) be the
cumulative amount of a resource consumed and y∞ be
the total amount that was initially available at t = −∞.

Model the rate of consumption using Eq. 2.29 over the range
−∞ < t < ∞.
(a) Set y0 = y∞/2, so that the zero of the time axis

correponds to when half the resource has been used.
Show that this simplifies Eq. 2.29.

(b) Differentiate y(t) to find an expression for the rate
of consumption. Sketch plots of dy/dt vs t on linear
and semilog graph paper. When does the peak rate of
consumption occur?

When this model is applied to world oil consumption, the
maximum is called Hubbert’s peak (Deffeyes 2008).
Problem 38. Consider a classic predator–prey problem. Let
the number of foxes be F and the number of rabbits be R.
The rabbits eat grass, which is plentiful. The foxes eat only
rabbits. The number of foxes and rabbits can be modeled by
the Lotka–Volterra equations

dR

dt
= aR − bRF

dF

dt
= −cF + dRF.

(a) Describe the physical meaning of each term on the right-
hand side of each equation. What does each of the
constants a, b, c, and d denote?

(b) Solve for the steady-state values of F and R.
These differential equations are difficult to solve because

they are nonlinear (see Chap. 10). Typically, R and F oscil-
late about the steady-state solutions found in (b). For more
information, see Murray (2001).



50 2 Exponential Growth and Decay

Section 2.11

Problem 39. Plot the following data for Poiseuille flow on
log–log graph paper. Fit the equation i = CRn

p to the data by
eye (or by trial and error using a spread sheet), and determine
C and n.

Rp(μm) i(μm3s−1)

5 0.000 10
7 0.000 38
10 0.001 6
15 0.008 1
20 0.026
30 0.13
50 1.0

Problem 40. Below are the molecular weights and radii
of some molecules. Use log–log graph paper to develop an
empirical relationship between them.

Substance M R (nm)
Water 18 0.15
Oxygen 32 0.20
Glucose 180 0.39
Mannitol 180 0.36
Sucrose 390 0.48
Raffinose 580 0.56
Inulin 5 000 1.25
Ribonuclease 13,500 1.8
β-lactoglobin 35,000 2.7
Hemoglobin 68,000 3.1
Albumin 68,000 3.7
Catalase 250,000 5.2

Problem 41. How well does Eq. 2.33c explain the data of
Fig. 2.19? Discuss any differences.
Problem 42. Compare the mass and metabolic requirements
(and hence waste output, including water vapor) of 180 peo-
ple each weighing 70 kg with 12,600 chickens of average
mass 1 kg.
Problem 43. Figure 2.19 shows that in young children,
height is more nearly proportional to M0.62 than to M1/3.
Find pictures of children and adults and compare ratios of
height to width, to see what the differences are.
Problem 44. Consider three models of an organism. The first
is a sphere of radius R. The second is a cube of length L.
These are crude models for animals. The third is a broad leaf
of surface area A on each side and thickness t . Assume all
have density ρ. In each case, calculate the surface area S as
a function of mass, M . Ignore the surface area of the edge of
the leaf. (For a comparison of scaling in leaves and animals,
see Reich (2001). He shows that for broad leaves, S ∝ M1.1.)
Problem 45. If food consumption is proportional to M3/4

across species, how does the food consumption per unit

mass scale with mass? Qualitatively compare the eating
habits of hummingbirds to eagles and mice to elephants. (See
Schmidt-Nielsen 1984, pp. 62–64.)
Problem 46. In Problem 45, you found how the specific
metabolic rate (food consumption per unit mass) varies with
mass. If all animal heart volumes and blood volumes are pro-
portional to M , then the only way for the heart to increase the
oxygen delivery to the body is by increasing the frequency of
the heart rate (Schmidt-Nielsen 1984, pp. 126–150).
(a) Using the result from Problem 45, if a 70 kg man has a

heart rate of 80 beats min−1, determine the heart rate of
a guinea pig (M = 0.5 kg).

(b) To a first approximation, all hearts beat about
800,000,000 times in a lifetime. A 30-g mouse lives
about 3 years. Estimate the life span of a 3000-kg
elephant.

(c) Humans live longer than what their mass would indi-
cate. Calculate the life span of a 70-kg human based on
scaling, and compare it to a typical human life span.

Problem 47. Let us examine how high animals can jump
(Schmidt-Nielsen 1984, pp. 176–179). Assume that the en-
ergy output of the jumping muscle is proportional to the body
mass, M . The gravitational potential energy gained upon
jumping to a height h is Mgh (g = 9.8 m s−2). If a 3-g lo-
cust can jump 60 cm, how high can a 70-kg human jump?
Use scaling arguments.
Problem 48. In Problem 47, you should have found that all
animals can jump to about the same height (approximately
0.6 m), independent of their mass M .
(a) Equate the kinetic energy at the bottom of the jump

(Mv2/2, where v is the“take-off speed”) to the poten-
tial energy Mgh at the top of the jump to find how the
take-off speed scales with mass.

(b) Calculate the take-off speed.
(c) In order to reach this speed, the animal must accelerate

upward over a distance L. If we assume a constant ac-
celeration a, then a = v2/(2L). Assume L scales as the
linear size of the animal (and assume all animals are ba-
sically the same shape but different size). How does the
acceleration scale with mass?

(d) For a 70-kg human, L is about 1/3 m. Calculate the
acceleration (express your answer in terms of g).

(e) Use your result from part (c) to estimate the acceleration
for a 0.5-mg flea (again, express your answer in terms of
g).

(f) Speculate on the biological significance of the result in
part (e) (See Schmidt-Nielsen 1984, pp. 180–181).
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3Systems of Many Particles

It is possible to identify all the external forces acting on a
simple system and use Newton’s second law (F = ma) to
calculate how the system moves. (Applying this technique
in a complicated case such as the femur may require the de-
velopment of a simplified model, because so many muscles,
other bones, and ligaments apply forces at so many different
points.) In an atomic-size system consisting of a single atom
or molecule, it is possible to use the quantum-mechanical
equivalent of F = ma, the Schrödinger equation, to do the
same thing. (The Schrödinger equation takes into account the
wave properties that are important in small systems.)

In systems of many particles, such calculations become
impossible. Consider, for example, how many particles there
are in a cubic millimeter of blood. Table 3.1 shows some of
the constituents of such a sample. To calculate the transla-
tional motion in three dimensions, it would be necessary to
write three equations for each particle1 using Newton’s sec-
ond law. Suppose that at time t the force on a molecule is F.
Between t and t + �t , the velocity of the particle changes
according to the three equations

vi (t + �t) = vi (t) + Fi�t/m, (i = x, y, z).

The three equations for the change of position of the par-
ticle are of the form x(t + �t) = x(t) + vx(t)�t +
Fx(t)(�t)2/(2m). If �t is small enough the last term can be
neglected. Solving these equations requires at least six multi-
plications and additions for each particle. For 1019 particles,
this means about 1020 arithmetic operations per time interval.
If a computer can do 1012 operations/s, then the complete
calculation for a single time interval will require 108 s or 3
years!

Another limitation arises in the physics of the processes.
Relatively simple systems can exhibit deterministic chaos:

1 In computational biology, a mole of differential equations is some-
times called a leibniz (Huang and Wikswo 2006). Solving for the
motion of each water molecule in a cubic millimeter of blood requires
solving 0.16 millileibniz of equations.

Table 3.1 Some constituents of 1 mm3 of blood

Constituent Concentration in
customary units

Number in 1 mm3

Water 1 g cm−3 3.3 × 1019

Sodium 3.2 mg cm−3 8.3 × 1016

Albumin 4.5 g dl−1 3.9 × 1014

Cholesterol 200 mg dl−1 3.1 × 1015

Glucose 100 mg dl−1 3.3 × 1015

Hemoglobin 15 g dl−1 1.4 × 1015

Erythrocytes 5×106 mm−3 5 × 106

a collection of identical systems differing in their initial
conditions by an infinitesimally small amount can become
completely different in their subsequent behavior in a sur-
prisingly short period of time. It is impossible to trace the
behavior of this many molecules on an individual basis.

Nor is it necessary. We do not care which water molecule
is where. The properties of a system that are of interest
are averages over many molecules: pressure, concentration,
average speed, and so forth. These average macroscopic
properties are studied in statistical or thermal physics or
statistical mechanics.

Unfortunately, this chapter relies heavily on your ability
to accept delayed gratification. It has only a few biological
examples, but the material developed here is necessary for
understanding some topics in most of the later chapters, es-
pecially Chaps. 4–9 and 14–18. In addition to developing a
statistical understanding of pressure, temperature, and con-
centration, this chapter derives four quantities or concepts
that are used later:
1. The Boltzmann factor, which tells how concentrations of

particles vary with potential energy (Sect. 3.7).
2. The principle of equipartition of energy, which under-

lies the diffusion process that is so important in the body
(Sect. 3.10).

3. The chemical potential, which describes the condition
for equilibrium of two systems for the exchange of
particles, and how the particles flow when the systems
are not in equilibrium (Sects. 3.12, 3.13, and 3.18).
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4. The Gibbs free energy, which tells the direction in which
a chemical reaction proceeds and allows us to understand
how the cells in the body use energy (Sect. 3.17).
The first six sections form the basis for the rest of the

chapter, developing the concepts of microstates, heat flow,
temperature, and entropy. Sections 3.7 and 3.8 develop the
Boltzmann factor and its corollary, the Nernst equation. Sec-
tion 3.9 applies the Boltzmann factor to the air molecules
in the atmosphere. Section 3.10 discusses the very important
equipartition of energy theorem. Section 3.11 discusses heat
capacity—the energy required to increase the temperature of
a system.

The transport of particles between two systems is de-
scribed most efficiently using the chemical potential. The
chemical potential is introduced in Sect. 3.12, and an exam-
ple of its use is shown in Sect. 3.13.

Section 3.14 considers systems that can exchange volume.
An idealized example is two systems separated by a flexible
membrane or a movable piston. The next two sections ex-
tend the idea of systems that exchange energy, particles, or
volume to the exchange of other variables such as electric
charge.

The Gibbs free energy, introduced in Sect. 3.17, is used
to describe chemical reactions that take place at constant
temperature and pressure. It is closely related to the chem-
ical potential. The chemical potential of an ideal solution is
derived in Sect. 3.18 and is used extensively in Chap. 5.2

3.1 Gas Molecules in a Box

Statistical physics or statistical mechanics deals with average
quantities such as pressure, temperature, and particle concen-
tration and with probability distributions of variables such as
velocity. Some of the properties of these averages can be il-
lustrated by considering a simple example: the number of
particles in each half of a box containing a fixed number of
gas molecules. (This is a simple analog for the concentra-
tion.) We will not be concerned with the position and velocity
of each molecule, since we have already decided not to use
Newtonian mechanics. Nor will we ask for the velocity dis-
tribution at this time. This simplified example will describe
only how many molecules are in the volume of interest. The
number will fluctuate with time. We will deal with probabil-
ities:3 if the number of particles in the volume is measured

2 Many excellent introductory textbooks on thermodynamics and sta-
tistical mechanics exist, such as those by Reif (1964) and Schroeder
(2000). To learn more about how thermodynamics is applied to biolog-
ical problems, see Haynie (2008).
3 A good book on probability is Weaver (1963).

Fig. 3.1 An ensemble of boxes, each divided in half by an imaginary
partition

repeatedly, what values are obtained, and with what relative
frequency?

If we were willing to use Newtonian mechanics, we could
count periodically how many molecules are in the volume of
interest. (This has actually been done for small numbers of
particles. See Reif (1964), pp. 8–9.) For larger numbers of
particles, it is easier to use statistical arguments to obtain the
probabilities. The particles travel back and forth, colliding
with the walls of the box and occasionally with one another.
After some time has elapsed, all memory of the particles’
original positions and velocities has been lost because of col-
lisions with the walls of the box, which have microscopic
inhomogeneities. Therefore, the result can be obtained by
imagining a whole succession of completely different boxes,
in which the particles have been placed at random. We can
count the number of molecules in the volume of interest in
each box. Such a collection of similar boxes is called an en-
semble. Ensembles of similar systems will be central to the
ideas of this chapter.

Imagine an ensemble of boxes, each divided in half as
in Fig. 3.1. We want to know how often a certain number
of particles is found in the left half. If one particle is in a
box (N = 1), two cases can be distinguished, depending on
which half the particle is in. Call them L and R. Each case is
equally likely to occur, since nothing distinguishes one half
of a box from the other. If n is the number of particles in
the left half, then case L corresponds to n = 1 and case R
corresponds to n = 0.

The probability of having a particular value of n is defined
to be

P(n) = (number of systems in the ensemble in which n is found)

(total number of systems)
(3.1)

in the limit as the number of systems becomes very large.
As there are only two possible values of n, 0 or 1, and

because each corresponds to one of the equally likely con-
figurations, P(0) = 0.5, P (1) = 0.5. The sum of the
probabilities is 1. A histogram of P(n) for N = 1 is given in
Fig. 3.2a. To recapitulate: n is the number of molecules in the
left half of the box, and N is the total number of molecules in
the entire box. Since N will change in the discussion below,
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Fig. 3.2 Histograms of P (n; N) for different values of N

we will call the probability P(n;N). (The fixed parameters
that determine the probability distribution are located after
the semicolon.)

Now let N = 2. Each molecule can be on the left or the
right with equal probability. The possible outcomes are listed
in the following table, along with the corresponding values of
n and P(n; 2).

Molecule 1 Molecule 2 n P (n; 2)

R
R
L
L

R
L
R
L

0
1
1
2

1
4

1
2

1
4

Each of the four outcomes is equally probable. To see this,
note that L or R is equally likely for each molecule. In half of
the boxes in the ensemble, the first molecule is found on the
left. In half of these, the second molecule is also on the left.
Therefore LL occurs in one-fourth of the systems in the en-
semble. (This is not strictly true, because there can be fluctu-
ations. If we throw a coin six times, we cannot say that heads
will always occur three times. If we repeat the experiment
many times, the average number of heads will be three.)

If three molecules are placed in each box, there are two
possible locations for the first particle, two for the second,
and two for the third. If the three particles are all indepen-
dent, then there are 23 = 8 different ways to locate the
particles in a box. If a box is divided in half, each of these
ways has a probability of 1/8.

Molecule 1 Molecule 2 Molecule 3 n P (n; 3)

R R R 0 1
8

R R L 1
R L R 1 3

8
L R R 1
L L R 2
L R L 2 3

8
R L L 2
L L L 3 1

8

The cases of two and three molecules in the box are also
plotted in Fig. 3.2.

In each case, P(n;N) has been determined by listing all
the ways that the N particles can go into a box. This can be-
come tedious if the number of particles is large. Furthermore,
it does not provide a way to calculate P if the two volumes of
the box are not equal. We will now introduce a more general
technique that can be used for any number of particles and
for any fractional volume of the box.

Each box is divided into two volumes, v and v′, with total
volume V = v + v′. Call p the probability that a single par-
ticle is in volume v. The probability that the particle is in the
remainder of the box, v′, is q:

p + q = 1. (3.2)

As long as there is nothing to distinguish one part of a box
from the other, p is the ratio of v to the total volume:

p = v

V
. (3.3)

By the same argument, q = v′/V . These values satisfy
Eq. 3.2. If N particles are distributed between the two vol-
umes of the box, the number in v is n and the number in
v′ is n′ = N − n. The probability that n of the N particles
are found in volume v is given by the binomial probability
distribution (Appendix H):

P(n;N) = P(n;N,p) = N !
n! (N − n)!p

n (1 − p)N−n .

(3.4)
Table 3.2 shows the calculation of P(n; 10) using this equa-
tion. Histograms for N = 4 and 10 are also plotted in
Fig. 3.2. In each case there is a value of n for which P is
a maximum. When N is even, this value is N/2; when N is
odd, the values on either side of N/2 share the maximum
value. The probability is significantly different from zero
only for a few values of n on either side of the maximum.

A probability distribution, in the form of an expression, a
table of values, or a histogram, usually gives all the informa-
tion that is needed about the number of molecules in v; it is
not necessary to ask which molecules are in v. The number
of molecules in v is not fixed but fluctuates about the number
for which P is a maximum. For example, if N = 10, and
we measure the number of molecules in the left half many
times, we find n = 5 only about 25 % of the time. On the
other hand, we find that n = 4, 5, or 6 about 65 % of the
time, while n = 3, 4, 5, 6, or 7 about 90 % of the time.
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Table 3.2 Calculation of P(n; 10) using the binomial probability
distribution. Note that 0! = 1

P (0; 10) = 10!
0!10!

(
1
2

)0 (
1
2

)10 =
(

1
2

)10 = 0.001

P (1; 10) = 10!
1!9!

(
1
2

)1 (
1
2

)9 = 10
(

1
2

)10 = 0.010

P (2; 10) = 10!
2!8!

(
1
2

)2 (
1
2

)8 = 45
(

1
2

)10 = 0.044

P (3; 10) = 10!
3!7!

(
1
2

)3 (
1
2

)7 = 120
(

1
2

)10 = 0.117

P (4; 10) = 10!
4!6!

(
1
2

)4 (
1
2

)6 = 210
(

1
2

)10 = 0.205

P (5; 10) = 10!
5!5!

(
1
2

)5 (
1
2

)5 = 252
(

1
2

)10 = 0.246

P (6; 10) = 10!
6!4!

(
1
2

)6 (
1
2

)4 = 210
(

1
2

)10 = 0.205

P (7; 10) = 10!
7!3!

(
1
2

)7 (
1
2

)3 = 120
(

1
2

)10 = 0.117

P (8; 10) = 10!
8!2!

(
1
2

)8 (
1
2

)2 = 45
(

1
2

)10 = 0.044

P (9; 10) = 10!
9!1!

(
1
2

)9 (
1
2

)1 = 10
(

1
2

)10 = 0.010

P (10; 10) = 10!
10!0!

(
1
2

)10 (
1
2

)0 =
(

1
2

)10 = 0.001

3.2 Microstates andMacrostates

If we know “enough” about the detailed properties (such
as position and momentum) of every particle in a system,4

then we say that the microstate of the system is specified.
(The criterion for “enough” will be discussed shortly.) We
may know less than this but know the macrostate of the sys-
tem. (In an ideal gas, for example, the macrostate would be
defined by knowing the number of molecules and volume,
and the pressure, temperature, or total energy.) Usually there
are many microstates corresponding to each macrostate. The
large-scale average properties (such as pressure and number
of particles per unit volume in the ideal gas) fluctuate slightly
about well-defined mean values.

In the problem of how many molecules are in half of
a box, the macrostate is specified if we know how many
molecules there are, while a microstate would specify the
position and momentum of every molecule. In other cases,
internal motions of the molecule may be important, and it
will be necessary to know more than just the position and
momentum of each particle.

The relation between microstates and macrostates may be
clarified by the following example, which contains the es-
sential features, although it is oversimplified and somewhat
artificial. A room is empty except for some toys on the floor.
Specifying the location of each of the toys on the floor would

4 A system is that part of the universe that we choose to examine. The
surroundings are the rest of the universe. The system may or may not
be isolated from the surroundings.

Fig. 3.3 A room with toys. If all the toys are in the shaded area, the
macrostate is “picked up.” Otherwise, the macrostate is “mess”

specify the microstate of the system. If the toys are in the
shaded corner in Fig. 3.3, the macrostate is “picked up.” If
the toys are in any place else in the room, the macrostate
is “mess.” There are many more microstates corresponding
to the macrostate “mess” than there are corresponding to
the macrostate “picked up.” We know from experience that
children tend to regard any microstate as equally satisfactory;
the chances of spontaneously finding the macrostate “picked
up” are relatively small.

A situation in which P is small is called ordered or
nonrandom. A situation in which P is large is called disor-
dered or random. Macrostate “mess” is more probable than
macrostate “picked up” and is disordered or random.

The same idea can be applied to a box of gas molecules.
Initially, the molecules are all kept in the left half of the
box by a partition. If the partition is suddenly removed, a
large number of additional microstates are suddenly avail-
able to the molecules. The macrostate in which they find
themselves—all in the left half of the box, even though the
partition has been removed—is very improbable or highly
ordered. The molecules soon fill the entire box; it is quite
unlikely that they will all be in the left half again if the num-
ber of molecules is very large. (Suppose that there are 80
molecules in the box. The probability that all are in the left

half is
(

1
2

)80 = 10−24. If samples were taken 106 times/s,

it would take 1018 s to sample 1024 boxes, one of which, on
the average, would have all of the molecules in the left half.
This is greater than the age of the universe.)

Just after the partition in the box was removed, the
situation was very ordered. The system spontaneously ap-
proached a much more random situation in which nearly half
the molecules were in each half of the box. The actual num-
ber n fluctuates about N/2, but in such a way that the average
〈n〉 (taken, say, over several seconds) no longer changes with
time. Typical fluctuations with a constant 〈n〉 are shown in
Fig. 3.4a. When the average5 of the macroscopic parame-
ters is not changing with time, we say that the system is in

5 There is a subtlety about the meaning of average that we are gloss-
ing over here. If we take a whole ensemble of identical systems, which
were all prepared the same way, and measure n in each one, we have
the ensemble average n̄. This is calculated in the way described in Ap-
pendix G. If we watch one system over some long time interval, as in
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Fig. 3.4 a Fluctuations of n about N/2. b The approach of the system
to the equilibrium state after the partition is removed

an equilibrium state. Figure 3.4b shows the system moving
toward the equilibrium state after the partition is removed.

An equilibrium state is characterized by macroscopic pa-
rameters whose average values remain constant with time, al-
though the parameters may fluctuate about the average value.
It is also the most random (i.e., most probable) macrostate
possible under the prescribed conditions. It is independent
of the past history of the system and is specified by a few
macroscopic parameters.6

The definition of a microstate of a system has so far been
rather vague; we have not said precisely what is required to
specify it. It is actually easier to specify the microstate of
a system when using quantum mechanics than when using
classical mechanics. When the energy of an individual parti-
cle in a system (such as one of the molecules in the box) is
measured with sufficient accuracy, it is found that only cer-
tain discrete values of the energy occur. This is because of the
wave nature of the particles. The allowed values of the energy
are called energy levels. You are probably familiar with the
idea of energy levels from a previous physics or chemistry
course; for example, the spectral lines of atoms are due to
the emission of light when an atom changes from one energy
level to another. Because the energy levels are well defined,
the energy difference, and hence the frequency or color of
the light, is also well defined (see Chap. 14).

A particle in a box has a whole set of energy levels at
energies determined by the size and shape of the box. Com-
pared to macroscopic measurements of energy, these levels

Fig. 3.4, we can take the time average 〈n〉. It is taken by recording val-
ues of n for a large number of discrete times in some interval. Strictly
speaking, an equilibrium state is one in which the ensemble average is
not changing with time.
6 A more detailed discussion of equilibrium states is found in Reif
(1964).

are very close together. The particle can be in any one of
these levels; which energy the particle has is specified by a
set of quantum numbers. If the particle moves in three di-
mensions, three quantum numbers are needed to specify the
energy level. If there are N particles, it will be necessary to
specify three quantum numbers for each particle or 3N num-
bers in all. (If there are M molecules, each made up of a

atoms, then N = aM . The number of quantum numbers is
less than 3N because the atoms cannot all move indepen-
dently. If the molecules were thought of as single particles,
there would be 3M quantum numbers. But the molecules can
rotate and vibrate, so that the number of quantum numbers is
greater than 3M and less than 3N .)

The total number of quantum numbers required to specify
the state of all the particles in the system is called the number
of degrees of freedom of the system, f .

A microstate of a system is specified if all the quantum
numbers for all the particles in the system are specified.

In most of this chapter, it will not be necessary to consider
the energy levels in detail. The important fact is that each par-
ticle in a system has discrete energy levels, and a microstate
is specified if the energy level occupied by each particle is
known.

3.3 The Energy of a System: The First Law of
Thermodynamics

Figure 3.5 shows some energy levels in a system occupied
by a few particles. The total energy of the system U is the
sum of the energy of each particle. In making this drawing,
we have assumed that all the particles are the same and that
they do not interact with one another very much. Then each
particle has the same set of energy levels, and the presence of
other particles does not change them. In that case, we can say
that there is a certain set of energy levels in the system and
that each level can be occupied by any number of particles.
The energy of the ith level, occupied or not, will be called

Fig. 3.5 A few of the energy levels in a system. If a particle has a
particular energy, a dot is drawn on the level. More than one particle in
this system can have the same quantum numbers
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ui . For the example of Fig. 3.5, the total energy is

U = 2u23 + u25 + u26 + 3u28.

Suppose that the system is isolated so that it does not
gain or lose energy. It is still possible for particles within the
system to exchange energy and move to different energy lev-
els, as long as the total energy does not change. (Classically,
two particles could collide, so that one gains and one loses
energy.) Therefore the number of particles occupying each
energy level can change, as long as the total energy remains
constant. For a system in equilibrium, the average number of
particles in each level does not change with time.

There are two ways in which the total energy of a system
can change. Work can be done on the system by the surround-
ings, or heat can flow from the surroundings to the system.
The meaning of work and heat in terms of the energy levels
of the system is quite specific and is discussed shortly. First,
we define the sign conventions associated with them.

It is customary to define Q to be the heat flow into a
system. If no work is done, the energy change in the system is

�U = Q.

It is also customary to call W the work done by the system
on the surroundings. When W is positive, energy flows from
the system to the surroundings. If there is no accompanying
heat flow, the energy change of the system is

�U = −W.

The most general way the energy of a system can change is
to have both work done by the system and heat flow into the
system. The statement of the conservation of energy in that
case is called the first law of thermodynamics:

�U = Q − W. (3.5)

The joule is the SI unit for energy, work and heat flow.
The calorie (1 cal = 4.184 J) is sometimes used. The dietary
Calorie is 1000 cal.

The positions of the energy levels in a system are deter-
mined by some macroscopic properties of the system. For a
gas of particles in a box, for example, the positions of the
levels are determined by the size and shape of the box. For
charged particles in an electric field, the positions of the lev-
els are determined by the electric field. If the macroscopic
parameters that determine the positions of the energy levels
are not changed, the only way to change the total energy of
a system is to change the average number of particles occu-
pying each energy level, as in Fig. 3.6. This energy change is
called heat flow.

Work is associated with the change in the macroscopic pa-
rameters (such as volume) that determine the positions of the
energy levels. If the energy levels are shifted by doing work

Fig. 3.6 No work is done on the system, but heat is added. The
positions of the levels do not change; their average population does
change

Fig. 3.7 Work is done on the system, but no heat flows. Each level has
been shifted to a higher energy

(a) (b) (c)

Fig. 3.8 Symbols used to indicate various types of isolation in a sys-
tem. a This system is completely isolated. b There is no heat flow
through the double wall, but work can be done (symbolized by a pis-
ton). c No work can be done, but there can be heat flow through the
single wall

without an accompanying heat flow, the change is called adi-
abatic. An adiabatic change is shown in Fig. 3.7. In general,
there is also a shift of the populations of the levels in an adi-
abatic change; the average occupancy of each level can be
calculated using the Boltzmann factor, described in Sect. 3.7.
There is no heat flow, but work is done on or by the system,
and its energy changes.

To summarize: Pure heat flow involves a change in the
average number of particles in each level without a change
in the positions of the levels. Work involves a change in the
macroscopic parameters, which changes the positions of at
least some of the energy levels. In general, this means that
there is also a shift in the average population of each level.
The most general energy change of a system involves both
work and heat flow. In that case the total energy change is
the sum of the changes due to work and to heat flow.

It is customary in drawing systems to use the symbols in
Fig. 3.8 to describe how the system can interact with the sur-
roundings. A double-walled box means that no heat flows,
and any processes that occur are adiabatic. This is shown
in Fig. 3.8a. If work can be done on the system, a piston is
shown as in Fig. 3.8b. If heat can flow to or from the system,
a single wall is used as in Fig. 3.8c.
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3.4 Ensembles and the Basic Postulates

In the next few sections we will develop some quite remark-
able results from statistical mechanics. Making the postulate
that when a system is in equilibrium each microstate is
equally probable, and arguing that as the energy, volume, or
number of particles in the system is increased the number
of microstates available to the system increases, we will ob-
tain several well-known results from thermodynamics: heat
flows from one system to another in thermal contact until
their temperatures are the same; if their volumes can change
they adjust themselves until the pressures are the same; and
the systems exchange particles until their chemical poten-
tials are the same. We will also obtain the concept of entropy;
the Boltzmann factor; the theorem of equipartition of energy;
and the Gibbs free energy, which is useful in chemical reac-
tions in living systems where the temperature and pressure
are constant.

The initial postulates are deceptively simple. Unfortu-
nately, a fair amount of mathematics is required to get from
them to the final results. We start with the basic postulates.

The microstate of a system is determined by specifying
the quantum numbers of each particle in the system. The to-
tal number of quantum numbers is the number of degrees
of freedom. The macrostate of a system is determined by
specifying two things:
1. All of the external parameters, such as the volume of a

box of gas or any external electric or magnetic field, on
which the positions of the energy levels depend. (Classi-
cally, all the external parameters that affect the motion of
the particles in the system.)

2. The total energy of the system, U .
The external parameters determine a set of energy levels for
the particles in the system; the total energy determines which
energy levels are accessible to the system.

Statistical physics deals with average quantities and prob-
abilities. We imagine a whole set or ensemble of “identical”
systems, as we did in Fig. 3.1. The systems are identical in
that they all are in the same macrostate. Different systems
within the ensemble will be in different microstates. Imagine
that at some instant of time we “freeze” all the systems in
the ensemble and examine which microstate each is in. From
this we can determine the probability that a system in the
ensemble is in microstate i:

P(of being in microstate i)

= number of systems in microstate i

total number of systems in the ensemble
.

Imagine that we now “unfreeze” all the systems in the
ensemble and let the particles move however they want. At
some later time we freeze them again and examine the proba-
bility that a system is in each microstate. These probabilities

may have changed with time. For example, if the system is
a group of particles in a box, and if the initial “freeze” was
done just after a partition confining all the particles to the
left half of the box had been removed, we would have found
many systems in the ensemble in microstates for which most
of the particles are on the left-hand side. Later, this would not
be true. We would find microstates corresponding to particles
in both halves of the box.

We will make two basic postulates about the systems in
the ensemble.7

1. If an isolated system (really, an ensemble of isolated sys-
tems) is found with equal probability in each one of its
accessible microstates, it is in equilibrium.8 Conversely,
if it is in equilibrium, it is found with equal probability in
each one of its accessible microstates.

2. If it is not in equilibrium, it tends to change with time
until it is in equilibrium. Therefore the equilibrium state
is the most random, most probable state.
For the rest of this chapter, we deal with equilibrium

systems. According to our first postulate, each microstate
that is accessible to the system (that is, consistent with
the total energy that the system has) is equally probable.
We will discover that this statement has some far-reaching
consequences.

Suppose that we want to consider some variable x, which
takes on various values. This variable might be the pressure
of a gas, the number of gas molecules in some volume of
the box, or the energy that one of the molecules has. For
each value of x, there will be some number of microstates in
which the system could be that are consistent with that value
of x. There will also be some total number of microstates in
which the system could be, consistent with its initial prepara-
tion. We will use the Greek letter Ω to denote the number of
microstates. The total number of accessible microstates (for
all possible values of x) is Ω; the number for which x has
some particular value is Ωx . It is consistent with the first as-
sumption to say that the probability that the variable has a
value x when the system is in equilibrium is

Px = Ωx

Ω
. (3.6)

We have been considering ensemble averages. For exam-
ple, the variable of interest might be the pressure, and we

7 For a more detailed discussion of these assumptions, see Reif (1964,
Chap. 3).
8 In thermodynamics and statistical mechanics, equilibrium and steady
state do not mean the same thing. Steady state means that some vari-
able is not changing with time. The concentration of sodium in a salt
solution flowing through a pipe could be in steady state as the solution
flowed through, but the system would not be in equilibrium. Only a few
microstates corresponding to bulk motion of the fluid are occupied. In
other areas, such as feedback systems, the words equilibrium and steady
state are used almost interchangeably.
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could find the ensemble average by calculating p̄ =∑Ppp,
where Pp is the probability of having pressure p. In equi-
librium Pp is given by Eq. 3.6, and p̄ does not change
with time. We could also consider a single system, mea-
sure p(t) M times, and compute the time average, 〈p(t)〉 =∑

i p(ti)/M . (The equivalence of the time average and the
ensemble average for systems in equilibrium is called the
ergodic hypothesis.)

3.5 Thermal Equilibrium

A system that never interacts with its surroundings is an
idealization. The adiabatic walls of Fig. 3.8a can never
be completely realized. However, much can be learned by
considering two systems that can exchange heat, work, or
particles, but that, taken together, are isolated from the rest
of the universe. Once we have learned how these two sys-
tems interact, the second system can be taken to be the rest of
the universe. Eventually, we will allow all three exchanges—
heat flow, work, and particles—to take place; for now, it will
be convenient to consider only exchanges of energy by heat
flow. Figure 3.9 shows the two systems, A and A′, isolated
from the rest of the universe. The total system will be called
A∗. The total number of particles is N∗ = N + N ′. For now
N and N ′ are fixed. The total energy is U∗ = U + U ′. The
two systems can exchange energy by heat flow, so that U and
U ′ may change, as long as their sum remains constant.

The number of microstates accessible to the total system
is Ω∗. The combined system was originally given a total en-
ergy U∗ before it was sealed off from the rest of the universe.
The barrier between A and A′ prevents exchange of particles
or work. The total number of microstates depends on how
much energy is in each system: when system A has energy
U , the total number of microstates is Ω∗(U).9

There are many microstates accessible to the system, with
U and U ′ having different values, subject always to U∗ =
U + U ′. Let the total number of microstates, including all
possible values of U , be Ω∗

tot . Then, according to the pos-
tulate, the probability of finding system A with energy U is

P(U) = Ω∗(U)

Ω∗
tot

= C Ω∗(U). (3.7)

C = 1/Ω∗
tot is a constant (independent of U ).

If the meaning of Eq. 3.7 is obscure, consider the follow-
ing example. Systems A and A′ each consist of two particles,
the energy levels for each particle being at u, 2u, 3u, and so

9 If Ω is a continuous function of U , then Ω(U)dU is actually the
number of states wih energy between U and U + dU . We ignore this
distinction. For a discussion of it, see Chap. 3 of Reif (1964).

A A'

N N'

U U'

V V'

Fig. 3.9 Two systems are in thermal contact with each other but are
isolated from the rest of the universe. They can exchange energy only
by heat flow

Table 3.3 An example of two systems that can exchange heat energy.
The total energy is U∗ = 10u. Each system contains two particles for
which the energy levels are u, 2u, 3u, etc

System A System A′ System A∗

U Ω U ′ Ω ′ Ω∗
2u 1 8u 7 7
3u 2 7u 6 12
4u 3 6u 5 15
5u 4 5u 4 16
6u 5 4u 3 15
7u 6 3u 2 12
8u 7 2u 1 7

Ω∗
tot = 84

forth. The total energy available to the combined system is
U∗ = 10u. The smallest possible energy for system A is
U = 2u, both particles having energy u. If U = 3u, there
are two states: in one, the first particle has energy u and the
other 2u; in the second, the particles are reversed. Label these
states (u, 2u) and (2u, u). For U = 4u, there are three possi-
bilities: (u, 3u), (2u, 2u), and (3u, u). In general, if U = nu,
there are n − 1 states, corresponding to the first particle hav-
ing energy u, 2u, 3u, ..., (n−1)u. Table 3.3 shows values for
U,U ′,Ω, and Ω ′.

It is now necessary to consider Ω∗ in more detail. If there
are two microstates available to system A and 6 available to
system A∗, there are 2 × 6 = 12 states available to the total
system. Ω∗ = ΩΩ ′ is also given in Table 3.3. In a more
general case, the number of microstates for the total system
is the product of the number for each subsystem:

Ω∗(U) = Ω(U)Ω ′(U ′). (3.8)

For the specific example, there are a total of 84 mi-
crostates accessible to the system when U∗ = 10u. Equa-
tion 3.7 says that since each microstate is postulated to be
equally probable, the probability that the energy of system A

is 3u is 12/84 = 0.14. The most probable state of the com-
bined system is that for which A has energy 5u and A′ has
energy 5u.

The next question is how Ω and Ω ′ depend on energy in
the general case. In the example, Ω is proportional to U . For
three particles, one can show that Ω increases as U2 (See



3.5 Thermal Equilibrium 61

200

150

100

50

0

Ω
 o

r 
Ω

′

6420

U

Ω′(6 - U)

Ω(U)

200

150

100

50

0
6420

U'

Ω'(U')

2000

1500

1000

500

0

Ω*

6420

U

(a) (b) (c)

Fig. 3.10 Example of the behavior of Ω , Ω ′, and Ω∗. In this case, the
values used are Ω(U) = 5U2 and Ω ′(U ′) = 4(U ′)2. (These functions
give Ω = 0 when U = 0, which is not correct. But they are simple
and behave properly at higher energies.) The total energy is 6, so only
values of U between 0 and 6 are allowed. a Plot of Ω(U). The dashed
line is Ω ′(6 − U). b Plot of Ω ′(U ′). c Plot of Ω∗ = ΩΩ ′

Problem 19). In general, the more particles there are in a sys-
tem, the more rapidly Ω increases with U . For a system with
a large number of particles, increasing the energy drastically
increases the number of microstates accessible to the system.

As more energy is given to system A and Ω(U) increases,
there is less energy available for system A′ and Ω ′(U ′) de-
creases. The product Ω∗ = ΩΩ ′ goes through a maximum
at some value of U , and that value of U is therefore the
most probable. These features are shown in Fig. 3.10, which
assumes that U and Ω are continuous variables. The contin-
uous approximation becomes excellent when we deal with
a large number of particles and very closely spaced energy
levels. The solid line in Fig. 3.10a represents Ω(U); Ω ′(U ′)
is the solid line in Fig. 3.10b. The function Ω ′ is also plotted
against U , rather than U ′, as the dashed line in Fig. 3.10a.
As more energy is given to A, Ω increases but Ω ′ decreases.
The product, Ω∗ = ΩΩ ′, shown in Fig. 3.10c, reaches a
maximum at U = 3.

The most probable value of U is that for which P(U) is
a maximum. Since P is proportional to Ω∗, Ω∗(U) is also a
maximum. Therefore,

d

dU

[
Ω∗ (U)

] = 0 (3.9)

at the most probable value of U . This derivative can be eval-
uated using Eq. 3.8. Since U + U ′ = U∗, Eq. 3.8 can be
rewritten as

Ω∗(U) = Ω(U)Ω ′(U∗ − U). (3.10)

The derivative is

dΩ∗

dU
= dΩ

dU
Ω ′ + Ω

dΩ ′

dU
.

By the chain rule for taking derivatives,

dΩ ′

dU
=
(

dΩ ′

dU ′

)(
dU ′

dU

)
.

Since U ′ = U∗ − U , dU ′/dU = −1. Therefore

dΩ∗

dU
= Ω ′ dΩ

dU
− Ω

dΩ ′

dU ′ . (3.11)

Factoring out Ω Ω ′ gives

dΩ∗

dU
= Ω Ω ′

(
1

Ω

dΩ

dU
− 1

Ω ′
dΩ ′

dU ′

)
. (3.12)

In equilibrium, this must be zero by Eq. 3.9. Since Ω∗ =
ΩΩ ′ cannot be zero, the most probable state or the equilib-
rium state exists when

1

Ω

dΩ

dU
= 1

Ω ′
dΩ ′

dU ′ . (3.13)

It is convenient to define the quantity τ as

1

τ
≡ 1

Ω

dΩ

dU

for any system. We must remember that this derivative was
taken when the number of particles and the parameters that
determine the energy levels were held fixed. These param-
eters are such things as volume and electric and magnetic
fields. To remind ourselves that everything but U is being
held fixed, it is customary to use the notation for a partial
derivative: ∂ instead of d (Appendix N). Therefore, we write

1

τ
≡ 1

Ω

(
∂Ω

∂U

)

N,V,etc.
. (3.14)

Often we will be careless and just write ∂Ω/∂U .
The quantity τ defined by Eq. 3.14 depends only on the

variables of one system, system A. It is therefore a property
of that system. Thermal equilibrium occurs when τ = τ ′.
Since Ω is just a number, Eq. 3.14 shows that τ has the
dimensions of energy.

Systems A and A′, which are in thermal contact, will be
in equilibrium (the state of greatest probability) when τ =
τ ′. This is reminiscent of something that is familiar to all
of us: if a hot system is placed in contact with a cold one,
the hotter one cools off and the cooler one gets warmer. The
systems come to equilibrium when they are both at the same
temperature. This suggests that τ is in some way related to
temperature, even though it has the dimensions of energy.
We will not prove it, but many things work out right if the
absolute temperature T is defined by the relationship

τ = kBT . (3.15)
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The proportionality constant is called Boltzmann’s constant.
If T is measured in kelvin (K), kB has the value

kB = 1.380 651 × 10−23 J K−1

= 0.861 734 × 10−4 eV K−1. (3.16)

(The electron volt (eV) is a unit of energy commonly used
when considering atoms or molecules. 1 eV = 1.602 18 ×
10−19 J .) The most convincing evidence in this book that
Eq. 3.15 is reasonable is the derivation of the thermodynamic
identity in Sect. 3.16.

The absolute temperature T is related to the temperature
in degrees centigrade or Celsius by

T = (temperature in ◦C) + 273.15. (3.17)

3.6 Entropy

The preceding section used the idea that the number of mi-
crostates accessible to a system increases as the energy of the
system increases, to develop a condition for thermal equilib-
rium. There are two features of those arguments that suggest
that there are advantages to working with the natural loga-
rithm of the number of microstates. First, the total number of
microstates is the product of the number in each subsystem:
Ω∗ = ΩΩ ′. Taking natural logarithms of this gives

ln Ω∗ = ln Ω + ln Ω ′. (3.18)

The other feature is the appearance of (1/Ω) (∂Ω/∂U) in the
equilibrium condition. For any non-negative, differentiable
function y(x),

d

dx
(ln y) = 1

y

dy

dx
.

Therefore, Eq. 3.14 can be written as

1

τ
= ∂

∂U
(ln Ω) . (3.19)

The entropy S is defined by

S = kB ln Ω, Ω = eS/kB . (3.20)

If both sides of Eq. 3.19 are multiplied by kB , it is seen that

(
∂S

∂U

)

N,V,etc.
= kB

τ
= 1

T
. (3.21)

This is a fundamental property of entropy that may be fa-
miliar to you from other thermodynamics textbooks; if so, it
forms a justification for defining temperature as we did.

Another important property of the entropy is that the en-
tropy of system A∗ is the sum of the entropy of A and the
entropy of A′:

S∗ = S + S′. (3.22)

This can be proved by multiplying Eq. 3.18 by kB .
A third property of the entropy is that S∗ is a maximum

when systems A and A′ are in thermal equilibrium. This
result follows from the fact that Ω∗ is a maximum at equilib-
rium, since S∗ = kB ln Ω∗ and the logarithm is a monotonic
function.

Finally, the entropy change in the system can be related to
the heat flow into it. Equation 3.21 shows that if there is an
energy change in the system when N and the parameters that
govern the spacing of the energy levels are fixed, then

dS =
(

∂S

∂U

)

N,V,etc.
dU =

(
dU

T

)

N,V,etc.
.

But the energy change when N,V , and any other parameters
are fixed is the heat flow dQ:

dS = dQ

T
. (3.23)

3.7 The Boltzmann Factor

Section 3.5 considered the equilibrium state of two systems
that were in thermal contact. It is often useful to consider sys-
tems in thermal contact when one of the systems is a single
particle. This leads to an expression for the total number of
microstates as a function of the energy in the single-particle
system, known as the Boltzmann factor. The Boltzmann fac-
tor is used in many situations, as is its alternate form, the
Nernst equation (Sect. 3.8).

Let system A be a single particle in thermal contact with
a large system or reservoir A′. Transferring energy from A′
to A decreases the number of microstates in A′. The number
of microstates in A may change by some factor G or remain
the same. We will discuss G at the end of this section.

To make this argument quantitative, consider system A

when it has two different energies, Ur and Us . Reservoir A′
is very large so that its temperature T ′ remains constant, and
it has many energy levels almost continuously distributed.
Let Ω ′(U ′) be the number of microstates in A′ when it
has energy U ′. The relative probability that A has energy
Us compared to having energy Ur is given by the ratio of
the total number of microstates accessible to the combined
system:

P(Us)

P (Ur)
= Ω∗(U = Us)

Ω∗(U = Ur)
= Ω(Us)Ω ′(U∗ − Us)

Ω (Ur) Ω ′ (U∗ − Ur)
. (3.24)
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This probability is the product of two functions, one depend-
ing on system A and one on reservoir A′:

G = Ω(Us)

Ω(Ur)
,

R = Ω ′(U∗ − Us)

Ω ′(U∗ − Ur)
.

(3.25)

Ratio R is calculated most easily by using Eq. 3.14, re-
membering the definition τ = kBT . Since neither the volume
nor number of particles is changed, we use an ordinary
derivative. We write it in terms of the temperature of the
reservoir:

1

Ω ′

(
dΩ ′

dU ′

)
= 1

kBT ′ ,

dΩ ′

dU ′ =
(

1

kBT ′

)
Ω ′. (3.26)

Since T ′ is constant, this is easily integrated:

Ω ′(U ′) = const × eU ′/kBT ′
.

Therefore the ratio is

R = const × e(U
∗−Us)/kBT ′

const × e(U∗−Ur)/kBT ′

= e−(Us−Ur)/kBT . (3.27)

Although the temperature T ′ is a property of the reservoir,
we drop the prime. This ratio is called the Boltzmann factor.
It gives the factor by which the number of microstates in the
reservoir decreases when the reservoir gives up energy Us −
Ur to the system A.

The relative probability of finding system A with energy
Ur or Us is then given by

P(Us)

P (Ur)
= Ge−(Us−Ur)/kBT =

[
Ω(Us)

Ω(Ur)

]
e−(Us−Ur)/kBT .

(3.28)
The exponential Boltzmann factor is a property of the

reservoir. The factor G is called the density of states factor.
It is a property of the system. If system A is a single atom
with discrete energy levels and we want to know the relative
probability that the atom has a particular value of its allowed
energy, G may be unity. In other cases, there may be two or
more sets of quantum numbers corresponding to the same
energy, a situation called degeneracy. In that case G may
be a small integer. We would have to know the details to
calculate it.

3.8 The Nernst Equation

The Nernst equation is widely used in physiology to relate
the concentration of ions on either side of a membrane to the

electrical potential difference across the membrane. It is an
example of the Boltzmann factor.

Suppose that certain ions can pass easily through a mem-
brane. If the membrane has an electrical potential difference
across it, the ions will have different energy on each side of
the membrane. As a result, when equilibrium exists they will
be at different concentrations. The ratio of the probability of
finding an ion on either side of the membrane is the ratio of
the concentrations on the two sides:

C2

C1
= P(2)

P (1)
.

The total energy of an ion is its kinetic energy plus its po-
tential energy: U = Ek +Ep. Chapter 6 will show that when
the electrical potential is v, the potential energy is Ep = zev.
In this equation z is the valence of the ion (+1,−1,+2, etc.)
and e is the elementary charge (1.6 × 10−19 C).

The concentration ratio is given by a Boltzmann factor,
Eq. 3.28:

C2

C1
=
[
Ω(2)

Ω(1)

]
e−(U2−U1)/kBT . (3.29)

We must now evaluate the quantity in square brackets. It is
the ratio of the number of microstates available to the ion on
each side of the membrane. The concentration is the number
of ions per unit volume and is proportional to the probabil-
ity that an ion is in volume �x�y�z. We will state without
proof that for a particle that can undergo translational mo-
tion in three dimensions, Ω(U) is α �x�y�z, where α is a
proportionality constant. Therefore

Ω(2)

Ω(1)
= α �x�y�z

α �x�y�z
= 1.

The energy difference is

U2 − U1 = Ek(2) − Ek(1) + ze(v2 − v1).

It will be shown in Sect. 3.10 that the average kinetic energy
on both sides of the membrane is the same if the temperature
is the same. Therefore,

C2

C1
= e−ze(v2−v1)/kBT . (3.30)

If the potential difference is v2 − v1, then the ions will be in
equilibrium if the concentration ratio is as given by Eq. 3.30.
If the ratio is not as given, then the ions, since they are free
to move through the membrane, will do so until equilibrium
is attained or the potential changes.

If the ions are positively charged and v2 > v1, then the
exponent is negative and C2 < C1. If the ions are negatively
charged, then C2 > C1.

The concentration difference is explained qualitatively by
the electrical force within the membrane that causes the po-
tential difference. If v2 > v1, the force within the membrane
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on a positive ion acts from region 2 toward region 1. It
slows positive ions moving from 1 to 2 and accelerates those
moving from 2 to 1. Thus it tends to increase C1.

The Nernst equation is obtained by taking logarithms of
both sides of Eq. 3.30:

ln

(
C2

C1

)
= − ze

kBT
(v2 − v1).

From this,

v2 − v1 = kBT

ze
ln

(
C1

C2

)
.

Multiplying both numerator and denominator of kBT /ze by
Avogadro’s number NA = 6.022 141×1023 molecule mol−1

gives the quantities NAkB and NAe. The former is the gas
constant:

NAkB = R = 8.314 46 J mol−1 K−1. (3.31)

The latter is the Faraday constant:

NAe = F = 96 485.34 C mol−1. (3.32)

The coefficient is therefore

kBT

ze
= RT

zF
. (3.33)

At body temperature, T = 37 ◦C = 310 K, the value of
RT/F is 0.0267 J C−1 = 26.7 mV.

In the form

v2 − v1 = RT

zF
ln

(
C1

C2

)
, (3.34)

the Boltzmann factor is called the Nernst equation.

3.9 The Pressure Variation in the Atmosphere

It is well known that the atmospheric pressure decreases with
altitude. This truth has medical significance because of the
effects of lower oxygen at high altitudes. We will derive an
approximate, constant-temperature model for the decrease
using the Boltzmann factor, and then we will do it again
using hydrostatic equilibrium.

The gravitational potential energy of an air molecule at
height y is mgy, where m is the mass of the molecule and
g is the gravitational acceleration. If the atmosphere has a
constant temperature, there will be no change of kinetic en-
ergy with altitude. For a molecule to increase its potential
energy, and therefore its total energy, by mgy, the energy of
all the other molecules (the reservoir) must decrease, with

Area S
p(y + dy)S

p(y)S

y

y + dy

Nmg

Fig. 3.11 Forces on a small volume element of the atmosphere

a corresponding decrease in the number of accessible mi-
crostates. The number of particles per unit volume is given
by a Boltzmann factor:

C(y) = C(0)e−mgy/kBT . (3.35)

Since for an ideal gas p = NkBT/V = CkBT , the pressure
also decreases exponentially with height.

The same result can be obtained without using statistical
physics, by considering a small volume of the atmosphere
that is in static equilibrium. Let the volume have thickness dy

and horizontal cross-sectional area S, as shown in Fig. 3.11.
The force exerted upward across the bottom face of the ele-
ment is p(y)S. The force down on the top face is p(y+dy)S.
The N molecules in the volume each experience the down-
ward force of gravity. The total gravitational force is Nmg. In
terms of the concentration, N = CSdy. Therefore, the con-
dition for equilibrium is p(y)S−p(y+dy)S−CSmg dy = 0.
Since p(y)−p(y +dy) = −(dp/dy) dy, this can be written
as

[
−
(

dp

dy

)
− Cgm

]
S dy = 0.

The next step is to use the ideal gas law to write p = CkBT :

−kBT
dC

dy
− Cmg = 0.

If this is written in the form

dC

dy
= − mg

kBT
C (3.36)

it will be recognized as the equation for exponential decay.
The solution is Eq. 3.35.

3.10 Equipartition of Energy and Brownian
Motion

A very important application of the Boltzmann factor is the
proof that the average translational kinetic energy per degree
of freedom of a particle in thermal contact with a reservoir at
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temperature T is kBT /2. This result holds for any term in the
total energy that depends on the square of one of the variables
(such as a component of the position or the momentum).

The proof is done for the kinetic energy resulting from
the x component of momentum. The same procedure can be
used for the other components. When the x component of
the momentum of a particle is between px and px + dpx,

the kinetic energy is p2
x/2m. The relative probability that the

particle has this energy is given by the Boltzmann factor,
e−p2

x/2mkBT . We assert that the probability that the particle
has momentum in this interval is also proportional to dpx .10

The average kinetic energy associated with px is obtained by
multiplying the energy by the Boltzmann factor and integrat-
ing over all values of px . We normalize the probability by
dividing by the integral of the Boltzmann factor.

(
p2

x

2m

)
=
∫∞
−∞(p2

x/2m)e−p2
x/2mkBT dpx

∫∞
−∞ e−p2

x/2mkBT dpx

. (3.37)

The integral in the denominator is evaluated in Appendix K
and is (2πmkBT )1/2. The integral in the numerator of
Eq. 3.37 is

(
1

m

)(
1

4

)
(2mkBT )(2πmkBT )1/2.

Combining these gives

(
p2

x

2m

)
= kBT

2
. (3.38)

The average value of the kinetic energy corresponding to mo-
tion in the x direction is kBT /2, independent of the mass of
the particle. The only condition that went into this derivation
was that the energy depended on the square of the variable.
Any term in the total energy that is a quadratic function of
some variable will carry through the same way, so that the
average energy will be kBT /2 for that variable. This result is
called the equipartition of energy.

The total translational kinetic energy is the sum of three
terms (p2

x + p2
y + p2

z )/2m, so the total translational kinetic

energy has average value 3
2kBT .

This result is true for particles of any mass: atoms,
molecules, pollen grains, and so forth. Heavier particles will
have a smaller velocity but the same average kinetic en-
ergy. Even heavy particles are continually moving with this
average kinetic energy. The random motion of pollen parti-
cles in water was first seen by a botanist, Robert Brown, in
1827. This Brownian motion is an important topic in the next
chapter.

10 A more detailed justification of this is found in earlier editions of
this book, in texts on statistical mechanics, or on the web site associated
with this book.

3.11 Heat Capacity

Consider a system into which a small amount of heat Q

flows. In many cases the temperature of the system rises.
(An exception is when there is a change of state such as the
melting of ice.) The heat capacity C of the system is defined
as

C = Q

�T
. (3.39)

Heat capacity has units of J K−1. It depends on the size of
the object and the substance it is made of. The specific heat
capacity, c, is the heat capacity per unit mass (J K−1 kg−1)
or the heat capacity per mole (J K−1 mol−1).

The heat capacity also depends on any changes in the
macroscopic parameters that take place during the heat flow.
Recall the first law of thermodynamics, Eq. 3.5: �U =
Q − W. Only part of the energy transferred to the system
by the heat flow increases the internal energy. Some also
goes to work done by the system. For example, if the vol-
ume changes, there will be pressure-volume work done by
the system (Sect. 1.18).

One special case is the heat capacity at constant volume,
CV . In that case, no pdV work is done by the system and
�U = Q, so

CV =
(

∂U

∂T

)

V

. (3.40)

Many processes in the body occur at constant pressure. The
heat capacity at constant pressure, Cp, is not equal to CV .

If both the pressure and volume change during the process,
the heat capacity depends on the details of the pressure and
volume changes.

The simplest example is the heat capacity at constant vol-
ume of a monatomic ideal gas. The average kinetic energy
of a gas molecule at temperature T moving in three di-
mensions is 3

2kBT , and the total energy of N molecules is
U = 3

2NkBT . Therefore at constant volume CV = 3
2NkB.

For one mole of monatomic ideal gas the heat capacity is
3
2NAkB = 3

2R. Molecules with two or more atoms can
also have rotational and vibrational energy, and the heat ca-
pacity is larger. The heat capacity can also depend on the
temperature.

As a biological example, consider the energy loss from
breathing (Denny 1993). In each breath we inhale about
V = 0.5 l of air. Our body warms this air from the sur-
rounding temperature to body temperature. (The body has
a much higher heat capacity and does not significantly cool.
See Problem 49.) The specific heat of air under these con-
ditions is c ≈ 1000 J K−1 kg−1, and the density of air is
ρ = 1.3 kg m−3. Therefore the heat flow required to raise
the air temperature in each breath is

Q = cρV
(
Tbody − Tsurroundings

)
. (3.41)
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For a body temperature of 37 ◦C and surroundings at 20 ◦C,

the temperature difference is 17 ◦C = 17 K. From Eq. 3.41,
Q = 11 J. We breathe about once every 5 s, so the average
power lost to the air we breathe is 2.2 W. A typical basal
metabolic rate is about 100 W, so this represents 2 % of our
energy consumption.

3.12 Equilibrium When Particles Can Be
Exchanged: the Chemical Potential

Section 3.5 considered two systems that could exchange
heat. The most probable or equilibrium state was that in
which energy had been exchanged so that the total number of
microstates or total entropy was a maximum. This occurred
when (Eq. 3.13)

1

Ω

(
∂Ω

∂U

)

N,V

= 1

Ω ′

(
∂Ω ′

∂U ′

)

N ′,V ′
,

which is equivalent to T = T ′. Since S = kB ln Ω this is
also equivalent to

(
∂S

∂U

)

N,V

=
(

∂S′

∂U ′

)

N ′,V ′
.

This section considers the case in which the systems can
exchange both energy by heat flow and particles; they are
in thermal and diffusive contact (Fig. 3.12). The number of
particles in each system is not fixed, but their sum is constant:

N + N ′ = N∗. (3.42)

Equilibrium will exist for the most probable state, which
means that there is heat flow until the two temperatures are
the same and Eq. 3.13 is satisfied. The most probable state
also requires a maximum in Ω∗ or S∗ vs N . The arguments
used in the earlier section for heat exchange can be applied
to obtain the equilibrium condition

1

Ω

(
∂Ω

∂N

)

U,V

= 1

Ω ′

(
∂Ω ′

∂N ′

)

U ′,V ′
. (3.43)

The condition in terms of entropy is
(

∂S

∂N

)

U,V

=
(

∂S′

∂N ′

)

U ′,V ′
. (3.44)

For thermal contact, the temperature was defined in terms
of the derivative of S with respect to U , so that equilibrium
occurred when T = T ′. An analogous quantity, the chemical
potential, is defined by

μ ≡ −T

(
∂S

∂N

)

U,V

. (3.45)

A A'

N N'

U U'

V V'

Fig. 3.12 Two systems can exchange energy by heat flow and paticles.
The volume of each system remains fixed

(The reason T is included in the definition will become clear
later.) Both thermal and diffusive equilibrium exist when

T = T ′, μ = μ′. (3.46)

Two systems are in thermal and diffusive equilibrium when
they have the same temperature and the same chemical
potential.

Since the units of S are J K−1 and the units of N are
dimensionless,11 Eq. 3.45 shows that the units of chemical
potential are J.

Consider next what happens to the entropy of the total
system if particles are exchanged when the system is not in
equilibrium. Let the number of particles in the unprimed sys-
tem increase by �N and the number in the primed system
change by �N ′ = −�N . The change of total entropy is

�S∗ =
(

∂S∗

∂N

)
�N =

(
∂S

∂N

)
�N +

(
∂S′

∂N ′

)
�N ′.

Using the definition of the chemical potential we can rewrite
this as

�S∗ =
(
−μ

T

)
�N −

(
−μ′

T ′

)
�N.

If the two temperatures are the same, this is

�S∗ =
(

μ′ − μ

T

)
�N. (3.47)

We see again that the entropy change will be zero for a small
transfer of particles from one system to the other if μ = μ′.
Suppose now that particles flow from A′ to A, so that �N is
positive. If μ′ > μ, that is, the chemical potential of A′ is
greater than that of A, this will cause an increase in entropy
of the combined system. If particles move from a system of
higher chemical potential to one of lower chemical potential,
the entropy of the total system increases.

11 In this book, N represents the number of particles, and the chemical
potential has units of energy per particle. In other books it may have
units of energy per mole.
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3.13 Concentration Dependence of the
Chemical Potential

The change in chemical potential of an ideal gas (or a solute
in an ideal solution)12 when the concentration changes from
C0 to C and there is also a change in its potential energy has
the form

�μ = kBT ln

(
C

C0

)
+ �(potential energy per particle).

(3.48)
We will derive this in Sect. 3.18; for now we show that it is
plausible and consistent with the Boltzmann factor.

We know from experience that particles tend to move
from a region of higher to lower potential energy, thus in-
creasing their kinetic energy, which can then be transferred as
heat to other particles by collision. We also know that parti-
cles will move from a region of high concentration to a region
of lower concentration. This process, called diffusion, is dis-
cussed in Chap. 4. Both processes cause a decrease in the
chemical potential and therefore an increase in the entropy.

It is the combination of these two factors that causes the
Boltzmann distribution of particles in the atmosphere. When
the atmosphere is in equilibrium, the potential energy term
increases with height and the concentration term decreases
with height so that the chemical potential is the same at all
heights.

To see the equivalence between Eq. 3.48 and the Boltz-
mann factor, suppose that particles can move freely from
region 1 to region 2 and that the potential energy difference
between the two regions is �Ep. The particles will be in
equilibrium when μ1 = μ2. From Eq. 3.48 this means that

kBT ln C1 + Ep1 = kBT ln C2 + Ep2.

This equation can be rearranged to give

ln C2 − ln C1 = −Ep2 − Ep1

kBT
.

If exponentials are taken of each side, the result is

C2

C1
= e−�Ep/kBT .

If the temperature of each region is the same, the average
kinetic energy will be the same in each system, and �Ep =
�U . This is then the same as the Boltzmann factor, Eq. 3.29.

There is still another way to look at the concentration
dependence. In an ideal gas, the pressure, volume, temper-
ature, and number of particles are related by the equation of
state pV = NkBT . In terms of the particle concentration

12 An ideal solution is defined in Sect. 3.18.

C = N/V , this is p = CkBT . The work necessary to con-
centrate the gas from volume V1 and concentration C1 to V2

and C2 is (see Eq. 1.57)

Won gas = −
∫ V2

V1

p(V ) dV . (3.49)

The concentration work at a constant temperature is

W = −NkBT

∫ V2

V1

dV

V
= −NkBT ln

V2

V1
.

If the final volume is smaller than the initial volume, the log-
arithm is negative and the concentration work is positive. In
terms of the particle concentration C = N/V or the molar
concentration c = n/V , the concentration work is

Wconc = NkBT ln
C2

C1
= nRT ln

c2

c1
. (3.50)

The last form was written by observing that NkB = nR

where R is the gas constant per mole.
Comparing Eq. 3.50 with Eq. 3.48, we see that the con-

centration work at constant temperature is proportional to
the change in chemical potential with concentration. It is, in
fact, just the number of molecules N times the change in μ:
Wconc = N�μ.

The concentration work or change of chemical potential
can be related to the Boltzmann factor in still another way.
Particles are free to move between two regions of different
potential energy at the same temperature. The work required
to change the concentration is, by Eq. 3.50,

Wconc = N�μ = NkBT ln
C2

C1
.

The concentration ratio is given by a Boltzmann factor:

C2/C1 = e−(Ep2−Ep1)/kBT ,

so that ln(C2/C1) = −(Ep2 − Ep1)/kBT . Therefore, the
concentration work is Wconc = −N(Ep2 − Ep1).

If C2 < C1, W is negative and is equal in magnitude to the
increase in potential energy of the molecules. The concentra-
tion energy lost by the molecules is precisely that required
for them to move to the region of higher potential energy. If
C2 > C1, the loss of potential energy going from region 1
to region 2 provides the energy necessary to concentrate the
gas. Alternatively, one may say that the sum of the concen-
tration energy and the potential energy is the same in the two
regions. This was, in fact, the statement about the chemical
potential at equilibrium: μ2 = μ1.

The same form for the chemical potential is obtained for
a dilute solute. (We will present one way of understanding
why in Sect. 3.18.) Therefore, the concentration work calcu-
lated for an ideal gas is the same as for an ideal solute. The
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work required to concentrate 1 mol of substance by a factor
of 10 at 310 K is (1 mol)(8.31 J mol−1 K−1)(310 K) ln(10)

or 5.93 × 103 J. The H+ ion in gastric juice has a pH of 1.
Since it was concentrated from plasma with a pH of about 7,
the concentration ratio is 106. The work necessary to concen-
trate 1 mol is therefore RT ln(106) = (8.31)(310)(13.82) =
3.56 × 104 J.

3.14 Systems That Can Exchange Volume

We have considered two systems that can exchange energy
or particles. Now consider the systems shown in Fig. 3.13.
They are isolated from the rest of the universe. The vertical
line that separates them is a piston that can move and conduct
heat, so that energy and volume can be exchanged between
the two systems. The piston prevents particles from being
exchanged. The constraints are V ∗ = V + V ′ and U∗ =
U + U ′ from which dV = −dV ′, dU = −dU ′. As before,
equilibrium exists when the total number of microstates or
the total entropy is a maximum. The conditions for maximum
entropy are

(
∂S∗

∂U

)

N,V

= 0,

(
∂S∗

∂V

)

N,U

= 0.

The derivation proceeds as before. For example,

(
∂S∗

∂V

)

N,U

=
(

∂S

∂V

)

N,U

+
(

∂S′

∂V

)

N,U

=
(

∂S

∂V

)

N,U

−
(

∂S′

∂V ′

)

N ′,U ′
.

Equilibrium requires that T = T ′ so that there is no heat
flow. The piston will stop moving and there will be no change
of volume when

(
∂S

∂V

)

N,U

=
(

∂S′

∂V ′

)

N ′,U ′
. (3.51)

A A'

N N'

U U'

V V'

Fig. 3.13 Two systems that can exchange volume are separated by a
movable piston. Heat can also flow through the piston

These derivatives can be evaluated in several ways. The
method used here involves some manipulation of deriva-
tives; a more detailed description, consistent with the mi-
croscopic picture of energy levels, is found in Reif (1964,
pp. 267–273).

For a small exchange of heat and work, the first law can
be written as dU = dQ − dW . In the present case the only
form of work is that related to the change of volume, so
dU = dQ−pdV . It was shown in Eq. 3.23 that dQ = T dS.
Therefore dU = T dS − pdV . This equation can be solved
for dS:

dS =
(

1

T

)
dU +

(p

T

)
dV. (3.52)

The entropy depends on U ,V and N : S = S(U, V,N). If
N is not allowed to change, then

dS =
(

∂S

∂U

)

N,V

dU +
(

∂S

∂V

)

N,U

dV . (3.53)

Comparison of this with Eq. 3.52 shows that
(

∂S

∂U

)

N,V

= 1

T
,

(
∂S

∂V

)

N,U

= p

T
. (3.54)

The first of these equations was already seen as Eq. 3.21.
The second gives the condition for equilibrium under volume
change. Referring to Eq. 3.51 we see that at equilibrium

p

T
= p′

T ′ .

Therefore, equilibrium requires both T = T ′ and

p = p′. (3.55)

This agrees with common experience. The piston does not
move when the pressure on each side is the same.

3.15 Extensive Variables and
Generalized Forces

The number of microstates and the entropy of a system de-
pend on the number of particles, the total energy, and the
positions of the energy levels of the system. The positions of
the energy levels depend on the volume and may also depend
on other macroscopic parameters. For example, they may de-
pend on the length of a stretched muscle fiber or a protein
molecule. For charged particles in an electric field, they de-
pend on the charge. For a thin film such as the fluid lining the
alveoli of the lungs, the entropy depends on the surface area
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Table 3.4 Examples of extensive variables and the generalized force
associated with each of them

x X dU = −dW

Volume V −pressure −p −p dV

Length L Force F F dL

Area a Surface tension σ σ da

Charge q Potential v v dq

of the film. The number of particles, energy, volume, electric
charge, surface area, and length are all extensive variables: if
a homogeneous system is divided into two parts, the value of
the variable for the total system (volume, charge, etc.) is the
sum of the values for each part. A general extensive variable
will be called x.

An adiabatic energy change is one in which no heat flows
to or from the system. The energy change is due to work done
on or by the system as a macroscopic parameter changes,
shifting at least some of the energy levels. For each extensive
variable x we can define a generalized force X such that the
energy change in an adiabatic process is

dU = −dW = Xdx. (3.56)

(Remember that dU is the increase in energy of the system
and dW is the work done by the system on the surroundings.)
Examples of extensive variables and their associated forces
are given in Table 3.4.

3.16 The General Thermodynamic
Relationship

Suppose that a system has N particles, total energy U , vol-
ume V , and another macroscopic parameter x on which
the positions of the energy levels may depend. The num-
ber of microstates, and therefore the entropy, will depend on
these four variables: S = S(U,N, V, x). If each variable is
changed by a small amount, there is a change of entropy

dS =
(

∂S

∂U

)

N,V,x

dU +
(

∂S

∂N

)

U,V,x

dN (3.57)

+
(

∂S

∂V

)

U,N,x

dV +
(

∂S

∂x

)

U,N,V

dx.

Now consider the change of energy of the system. If only
heat flow takes place, there is an increase of energy dQ =
T dS. If an adiabatic process with a constant number of parti-
cles takes place, the energy change is −dW = Xdx − pdV .
If particles flow into the system without an accompanying
flow of heat or work, the energy change is dUN . It seems
reasonable that this energy change, due solely to the move-
ment of the particles, is proportional to dN : dUN = a dN .

(It will turn out that the proportionality constant is the chem-
ical potential.) For the total change of energy resulting from
all these processes, we can write a statement of the conser-
vation of energy: dU = T dS + Xdx − pdV + adN . This is
an extension of Eq. 3.5 to the additional variables on which
the energy can depend. It can be rearranged as

dS =
(

1

T

)
dU −

( a

T

)
dN +

(p

T

)
dV −

(
X

T

)
dx. (3.58)

Comparison of Eqs. 3.57 and 3.58 shows that
(

∂S

∂U

)

N,V,x

= 1

T
, (3.59a)

(
∂S

∂N

)

U,V,x

= − a

T
, (3.59b)

(
∂S

∂V

)

U,N,x

= p

T
, (3.59c)

(
∂S

∂x

)

U,N,V

= −X

T
. (3.59d)

Comparison of Eq. 3.59b with Eq. 3.45 shows that a = μ.
This is why the factor of T was introduced in Eq. 3.45.

Equation 3.58, with the correct value inserted for a, is

T dS = dU − μdN + p dV − X dx. (3.60)

This is known as the thermodynamic identity or the fun-
damental equation of thermodynamics. It is a combination
of the conservation of energy with the relationship between
entropy change and heat flow in a reversible process. (A re-
versible process is one that takes place so slowly that all parts
of the system have the same temperature, pressure, etc.) This
equation and derivative relations such as Eqs. 3.59 form the
basis for the usual approach to thermodynamics.

Finally, let us consider the addition of a particle to a sys-
tem when the volume is fixed. If we do this without changing
the energy, it increases the number of ways the existing en-
ergy can be shared and hence the number of microstates.
Therefore the entropy increases. If we want to restore the
entropy to its original value, we must remove some energy.
Exactly the same argument can be made mathematically. We
have seen in Eqs. 3.45 and 3.59b that

μ = −T

(
∂S

∂N

)

U,V

.

Since adding the particle at constant energy increases the
entropy, (∂S/∂N)U,V is positive and the chemical potential
is negative. Next, we rearrange Eq. 3.60 as dU = T dS +
μdN − p dV and by inspection see that

μ =
(

∂U

∂N

)

S,V

.
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Therefore adding a particle at constant volume while keeping
the entropy constant requires that energy be removed from
the system.

3.17 The Gibbs Free Energy

A conventional course in thermodynamics develops several
functions of the entropy, energy, and macroscopic param-
eters that are useful in certain special cases. One of these
is the Gibbs free energy, which is particularly useful in de-
scribing changes that occur in a system while the temperature
and pressure remain constant. Most changes in a biological
system occur under such conditions.

3.17.1 Gibbs Free Energy

Imagine a system A in contact with a much larger reservoir as
in Fig. 3.14. The reservoir has temperature T ′ and pressure
p′. A movable piston separates A and A′. (At equilibrium,
T = T ′ and p = p′.) The reservoir is large enough so that a
change of energy or volume of system A does not change T ′
or p′.

Consider the change of entropy of the total system that ac-
companies an exchange of energy or volume between A and
A′. Above, this entropy change was set equal to zero to obtain
the condition for equilibrium. In this case, however, we will
express the total entropy change of system plus reservoir in
terms of the changes in system A alone. The total entropy is
S∗ = S + S′, so the total entropy change is dS∗ = dS + dS′.

If reservoir A′ exchanges energy with system A, the
energy change is

dU ′ = T ′ dS′ − dW ′ = T ′ dS′ − p′ dV ′.

A

A'

U U'
V V'

Fig. 3.14 System A is in contact with reservoir A′. Heat can flow
through the piston, which is also free to move. The reservoir is large
enough to ensure that anything that happens to system A takes place at
constant temperature and pressure

This can be solved for dS′, and the result can be put in the
expression for the total entropy change:

dS∗ = dS + dU ′

T ′ + p′ dV ′

T ′ .

We are trying to get dS∗ in terms of changes in system A

alone. Since A and A′ together constitute an isolated system,
dU = −dU ′ and dV = −dV ′. Therefore,

dS∗ = −−T ′ dS + dU + p′ dV

T ′ . (3.61)

(Note that a minus sign was introduced in front of this equa-
tion.) This expresses the total entropy change in terms of
changes of S, U , and V in system A and the pressure and
temperature of the reservoir.

The Gibbs free energy is defined to be

G ≡ U − T ′S + p′V. (3.62)

If the reservoir is large enough so that interaction of the sys-
tem and reservoir does not change T ′ and p′, then the change
of G as system A changes is

dG = dU − T ′dS + p′dV. (3.63)

Comparison of Eqs. 3.61 and 3.63 shows that

dS∗ = −dG

T ′ . (3.64)

The change in entropy of system plus reservoir is related to
the change of G, which is a property of the system alone,
as long as the pressure and temperature are maintained
constant by the reservoir.

To see why G is called a free energy, consider the
conservation of energy in the following form:

(work done by the system) = (energy lost by the system)

+ (heat added to the system),

dW = −dU + T dS.

Subtracting pdV from both sides of this equation gives

dW − p dV = −dU + T dS − p dV = −dG.

The right-hand side is the decrease of Gibbs free energy of
the system. The work done in any isothermal, isobaric (con-
stant pressure) reversible process, exclusive of pdV work,
is equal to the decrease of Gibbs free energy of the system.
This non–p dV work is sometimes called useful work. It may
represent contraction of a muscle fiber, the transfer of parti-
cles from one region to another, the movement of charged
particles in an electric field, or a change of concentration of
particles. It differs from the change in energy of the system,
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dU , for two reasons. The volume of the system can change,
resulting in p dV work, and there can be heat flow during the
process. For example, let the system be a battery at constant
temperature and pressure which decreases its internal (chem-
ical) energy and supplies electrical energy. From a chemical
energy change dU we subtract T dS, the heat flow to the sur-
roundings, and −p dV , the work done on the atmosphere as
the liquid in the battery changes volume. What is left is the
energy available for electrical work.

3.17.2 An Example: Chemical Reactions

As an example of how the Gibbs free energy is used, consider
a chemical reaction that takes place in the body at constant
temperature and pressure. System A, the region in the body
where the reaction takes place, is in contact with a reservoir
A′ that is large enough to maintain constant temperature and
pressure. Suppose that there are four species of particles that
interact. Capital letters represent the species and small letters
represent the number of atoms or molecules of each that enter
in the reaction:

aA + bB ←→ cC + dD.

An example is 1 glucose+6O2 ←→ 6CO2+6H2O, where
a = 1, b = 6, c = 6, d = 6. The state of the system depends
on U , V , NA, NB , NC , and ND .

We begin with the definition of G, Eq. 3.62, and we call
the pressure and temperature of the system and reservoir p

and T :

G = U − T S + pV.

Differentiating, we obtain

dG = dU − T dS − S dT + p dV + V dp.

Generalize Eq. 3.60 for the case of four chemical species:

T dS = dU−μA dNA−μB dNB−μC dNC−μD dND+p dV.

Insert this in the equation for dG and remember that since
the process takes place at constant temperature and pressure,
dT and dp are both zero. The result is

dG = μA dNA + μB dNB + μC dNC + μD dND.

In Sect. 3.13 we saw that the concentration dependence of the
chemical potential is given by a logarithmic term. Equation
3.48 can be used to write

μA = μA0 + kBT ln(CA/C0),

where μA0 is the chemical potential at a standard concen-
tration (usually 1 molar, that is, 1 mol l−1) and depends

on temperature, pH, etc. Note that C0 is the same refer-
ence concentration for all species. As the reaction takes place
to the right, we can write the number of molecules gained
or lost as dNA = −adN, dNB = −bdN, dNC =
cdN, dND = ddN, so that we have

dG = [μA0 + kBT ln(CA/C0)
]
(−a dN)

+ [μB0 + kBT ln(CB/C0)
]
(−b dN)

+ [μC0 + kBT ln(CC/C0)
]
(c dN)

+ [μD0 + kBT ln(CD/C0)
]
(d dN).

This can be rearranged as (letting CA = [A], etc.)

dG = [cμC0 + dμD0 − aμA0 − bμB0

+kBT ln

( [C]c[D]d
[A]a[B]b

)
− kBT ln

( [C0]a[C0]b
[C0]c[C0]d

)]
dN.

The two logarithm terms together represent logs of concen-
tration ratios. Therefore concentrations [A], [B], [C], [D],
and C0 must all be measured in the same units. The last term
can be made to vanish if the units are such that C0 is unity
(for example 1 mol per liter). Then

dG = [cμC0 + dμD0 − aμA0 − bμB0

+kBT ln

( [C]c[D]d
[A]a[B]b

)]
dN.

Multiplying the expression in square brackets by Avogadro’s
number converts the chemical potential per molecule to
the standard Gibbs free energy per mole, and kBT to RT .
To compensate, the change in number of molecules dN is
changed to moles dn or �n:

�G = [(cGC0 + dGD0 − aGA0 − bGB0) (3.65)

+RT ln

( [C]c[D]d
[A]a[B]b

)]
�n.

The term in small parentheses is the standard free energy
change for this reaction, �G0, which can be found in tables.
At equilibrium �G = 0, so

0 = �G0 + RT ln

( [C]c[D]d
[A]a[B]b

)
= �G0 + RT ln Keq.

The equilibrium constant Keq is related to the standard (1
molar) free-energy change by

�G0 = −RT ln Keq,

Keq = [C]c[D]d
[A]a[B]b .

Many biochemical processes in the body receive free en-
ergy from the change of adenosine triphosphate (ATP) to
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adenosine diphosphate (ADP) plus inorganic phosphate (Pi).
This reaction involves a decrease of free energy. The energy
is provided initially by forcing the reaction to go in the other
direction to make an excess of ATP. One way this is done
is through a very complicated series of chemical reactions
known as the respiration of glucose. The net effect of these
reactions is13

glucose + 6O2 → 6CO2 + 6H2O, �G0 = −680 kcal,

36ADP + 36Pi → 36ATP + 36H2O, �G0 = +263 kcal .

The decrease in free energy of the glucose more than com-
pensates for the increase in free energy of the ATP. The
creation of glucose or other sugars is the reverse of the respi-
ration process and is called photosynthesis. The free energy
required to run the reaction the other direction is supplied by
light energy.

3.18 The Chemical Potential of a Solution

We now consider a binary solution of solute and solvent and
how the chemical potential changes as these two substances
are intermixed.14 This is a very fundamental process that will
lead us to the logarithmic dependence of the chemical poten-
tial on solute concentration that we saw in Sect. 3.13, as well
as to an expression for the chemical potential of the solvent
that we will need in Chap. 5.

To avoid having the subscript s stand for both solute and
solvent, we call the solvent water. The distinction between
solute and water is artificial; the distinction is usually that the
concentration of solute is quite small. We need the entropy
change in a solution when Ns solute molecules, which ini-
tially were segregated, are mixed with Nw water molecules.
We make the calculation for an ideal solution—one in which
the total volume of water molecules does not change on mix-
ing and in which there is no heat evolved or absorbed on
mixing. This is equivalent to saying that the solute and wa-
ter molecules are the same size and shape, and that the force
between a water molecule and its neighbors is the same as
the force between a solute molecule and its neighbors.15 The
resulting entropy change is called the entropy of mixing.

To calculate the entropy of mixing, imagine a system with
N sites, all occupied by particles. The number of microstates
is the number of different ways that particles can be placed in
the sites. The first particle can go in any site. The second can

13 There are multiple pathways in glucose respiration. The 36 is
approximate.
14 See also Hildebrand and Scott (1964), p. 17 and Chap. 6.
15 Extensive work has been done on solutions for which these assump-
tions are not true. See Hildebrand and Scott (1964); Hildebrand et al.
(1970).

Fig. 3.15 The system on the left contains three water molecules. Be-
cause they are indistinguishable there is only one way they can be
arranged. The system on the right contains two water molecules and
one solute molecule. Three different arrangements are possible. In each
case the number of arrangements in given by (Nw + Ns)!/(Nw!Ns !)

go in any of N−1 sites, and so forth. The total number of dif-
ferent ways to arrange the particles is N ! But if the particles
are identical, these states cannot be distinguished, and there
is actually only one microstate. The number of microstates is
N !/N !, where the N ! in the numerator gives the number of
arrangements and the N ! in the denominator divides by the
number of indistinguishable states.16

Suppose now that we have two different kinds of particles.
The total number is N = Nw + Ns , and the total number of
ways to arrange them is (Nw+Ns)!. The Nw water molecules
are indistinguishable, so this number must be divided by
Nw!. Similarly it must be divided by Ns !. Therefore, purely
because of the ways of arranging the particles, the number of
microstates Ω in the mixture is (Nw + Ns)!/ (Nw! Ns !) . An
example of counting microstates is shown in Fig. 3.15.

There could also be dependence on volume and energy;
in fact, the dependence on volume and energy may also con-
tain factors of Nw and Ns . However, our assumption that the
molecules of water and solute have the same size, shape, and
forces of interaction ensures that these dependencies will not
change as solute molecules are mixed with water molecules.
The only entropy change will be the entropy of mixing.

The entropy change of the mixture relative to the entropy
of Nw molecules of pure water and Ns molecules of pure
solute is

Ssolution − Spure water,
pure solute

= kB ln

⎛

⎝ Ωsolution

Ωpure water,
pure solute

⎞

⎠ . (3.66)

Since with our assumptions Ω is unity for the pure solute and
the pure water, the entropy difference is

Ssolution − Spure water,
pure solute

= kB ln

(
(Nw + Ns)!

Nw! Ns !
)

= kB {ln [(Nw + Ns)!] − ln(Nw!) − ln(Ns !)} . (3.67)

This is symmetric in water and solute, and it is valid for any
number of molecules.

16 The fact that there is only one microstate because of the indistin-
guishability of the particles is called the Gibbs paradox (Reif 1965).
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Since we usually deal with large numbers of molecules
and factorials are difficult to work with, let us use Stirling’s
approximation (Appendix I) to write

Ssolution − Spure water,
pure solute

(3.68)

= kB [(Nw + Ns) ln(Nw + Ns) − Nw ln Nw − Ns ln Ns] .

The next step is to relate the entropy of mixing to the
chemical potential. This is done by recalling the definition
of the Gibbs free energy, (Eq. 3.62): G = U + p V − T S.

The sum of the first two terms, H = U + p V , is called the
enthalpy. Any change of the enthalpy is the heat of mixing;
in our case it is zero. (The present case is actually more
restrictive: p, V , and U are all constant.) Therefore, since T

is also constant, the change in Gibbs free energy is due only
to the entropy change:

�G = −T �S

= kBT

[
Nw ln

(
Nw

Nw + Ns

)
+ Ns ln

(
Ns

Nw + Ns

)]
.

This is still symmetric with water and solute, but it diverges
if either Nw or Ns is zero, because of our use of Stirling’s
approximation.

We now need an expression that relates the change in G

to the chemical potential. This can be derived for the general
case using the following thermodynamic arguments. We use
Eq. 3.62 to write the most general change in G:

dG = dU + p dV + V dp − T dS − S dT .

The fundamental equation of thermodynamics, Eq. 3.60,
generalized to two molecular species, is

T dS = dU − μw dNw − μs dNs + p dV,

so

dG = μw dNw + μs dNs + V dp − S dT . (3.69)

This can be used to write down some partial derivatives by
inspection that are valid in general:

μw =
(

∂G

∂Nw

)

Ns,p,T

, (3.70a)

μs =
(

∂G

∂Ns

)

Nw,p,T

, (3.70b)

V =
(

∂G

∂p

)

Ns,Nw,T

, (3.70c)

S = −
(

∂G

∂T

)

Ns,Nw,p

. (3.70d)

To find the chemical potential, we differentiate our ex-
pression for G, Eq. 3.69, with respect to Nw and Ns to obtain

μw = kBT ln xw, μs = kBT ln xs. (3.71)

These have been written in terms of the mole fractions or
molecular fractions

xw = Nw

Nw + Ns

, xs = Ns

Nw + Ns

. (3.72)

Each chemical potential is zero when the mole fraction for
that species is one (i.e., the pure substance). The expressions
for μ diverge for xw or xs close to zero because of the failure
of Stirling’s approximation for small values of x.

The last step is to write the chemical potential in terms of
the more familiar concentrations instead of mole fractions.
We can write the change in chemical potential of the solute
as the concentration changes from a value C1 to C2 as

�μs = μs(2) − μs(1) = kBT ln(x2/x1).

As long as the solute is dilute, Nw + Ns ≈ Nw, so x2/x1 =
C2/C1 and

�μs = kBT ln(C2/C1),

which agrees with Eq. 3.48.
The change in chemical potential of the water can be writ-

ten in terms of the solute concentration. Since xw + xs = 1,
μw = kBT ln(1 − xs). For small values of xs the logarithm
can be expanded in a Taylor’s series (Appendix D):

ln(1 − xs) = −xs − 1

2
x2
s − · · · .

The final result is

μw = −kBT xs = −kBT Ns/(Ns + Nw)

≈ −kBT (Ns/V )/(Nw/V ),

or

μw ≈ −kBT
Cs

Cw
. (3.73a)

To reiterate: this is the chemical potential of the water for
small solute concentrations. The zero of chemical potential is
pure water. The term is negative because the addition of so-
lute decreases the chemical potential of the water, due to the
entropy of mixing term. For a change of solute concentration,
the chemical potential of the water changes by

�μw = −kBT �Cs

Cw
. (3.73b)

We now know the concentration dependence of the chem-
ical potential. In Chap. 5 we will be concerned with the
movement of solute and water, and we will also need to know
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the dependence of the chemical potentials on pressure. To
find this, we write

�μw =
(

∂μw

∂p

)

T ,Nw,Cs

�p +
(

∂μw

∂Cs

)

T ,p,Nw

�Cs.

The second term is just Eq. 3.73b. To obtain the derivative in
the first term, we use the fact that when the partial derivative
of a function is taken with respect to two variables, the result
is independent of the order of differentiation (Appendix N):
[

∂

∂p

(
∂G

∂Nw

)

T ,p,Ns

]

T ,Nw

=
[

∂

∂Nw

(
∂G

∂p

)

T ,Nw,Ns

]

T ,p

From Eqs. 3.70a and 3.70c, we get
(

∂μw

∂p

)

T ,Nw

=
(

∂V

∂Nw

)

T ,p

. (3.74)

For a process at constant temperature, the rate of change of
μw with p for constant solute concentration is the same as
the rate of change of V with Nw when p is fixed.

The quantity (∂V/∂Nw)T ,p is the rate at which the vol-
ume changes when more molecules are added at constant
temperature and pressure. For an ideal incompressible liquid
it is the molecular volume, Vw. We can repeat this argument
for the solute to obtain

(
∂μw

∂p

)

T ,Nw

= Vw,

(
∂μs

∂p

)

T ,Ns

= V s. (3.75)

In a solution, the total volume is V = NwVw + NsV s

where Vw and V s are the average volumes occupied by
one molecule of water and solute. Dividing by V gives
1 = CwVw + CsV s . If the solution is dilute,

Vw ≈ 1

Cw
. (3.76)

In an ideal solution Vw = V s . For an ideal dilute solution,
we then have

�μw = Vw(�p − kBT �Cs) ≈ �p − kBT �Cs

Cw
. (3.77)

�μs = kBT ln(Cs2/Cs1) + V s �p

≈ kBT ln(Cs2/Cs1) + Vw �p. (3.78)

We saw this concentration dependence earlier, in Sect. 3.13.
If the concentration difference is small, we can write Cs2 =
Cs1 + �Cs and use the expansion ln(1 + x) ≈ x to obtain

�μs ≈ kBT �Cs

Cs

+ �p

Cw
. (3.79)

3.19 Transformation of Randomness to Order

When two systems are in equilibrium, the total entropy is
a maximum. Yet a living creature is a low-entropy, highly
ordered system. Are these two observations in conflict? The
answer is no; the living system is not in equilibrium, and it is
this lack of equilibrium that allows the entropy to be low. The
conditions under which order can be brought to a system—its
entropy can be reduced—are discussed briefly in this section.

A car travels with velocity v and has kinetic energy 1
2mv2.

In addition to the random thermal motions of the atoms mak-
ing up the car, all the atoms have velocity v in the same
direction (except for those in rotating parts, which have an
ordered velocity that is more complicated to describe). If the
brake shoes are brought into contact with the brake drums,
the car loses kinetic energy, and the shoes and drums become
hot. Ordered energy has been converted into disordered, ther-
mal energy; the entropy has increased. Is it possible to heat
the drums and shoes with a torch, apply the brakes, and have
the car move as the drums and shoes cool off? Energetically,
this is possible, but there are only a few microstates in which
all the molecules are moving in a manner that constitutes
movement of the car. Their number is vanishingly small com-
pared to the number of microstates in which the brake drums
are hot. The probability that the car will begin to move is
vanishingly small.

An animal is placed in an insulated, isolated container.
The animal soon dies and decomposes. Energetically, the
animal could form again, but the number of microstates cor-
responding to a live animal is extremely small compared to
all microstates corresponding to the same total energy for all
the atoms in the animal.

In some cases, thermal energy can be converted into work.
When gas in a cylinder is heated, it expands against a piston
that does work. Energy can be supplied to an organism and it
lives. To what extent can these processes, which apparently
contradict the normal increase of entropy, be made to take
place? These questions can be stated in a more basic form.
1. To what extent is it possible to convert internal energy dis-

tributed randomly over many molecules into energy that
involves a change of a macroscopic parameter of the sys-
tem? (How much work can be captured from the gas as it
expands the piston?)

2. To what extent is it possible to convert a random mixture
of simple molecules into complex and highly organized
macromolecules?

Both these questions can be reformulated: under what condi-
tions can the entropy of a system be made to decrease?

The answer is that the entropy of a system can be made
to decrease if, and only if, it is in contact with one or more
auxiliary systems that experience at least a compensating in-
crease in entropy. Then the total entropy remains the same or
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increases. This is one form of the second law of thermody-
namics. For a fascinating discussion of the second law, see
Atkins (1994).

One device that can accomplish this process is a heat en-
gine. It operates between two thermal reservoirs at different
temperatures, removing heat from the hotter one and inject-
ing heat into the cooler one. Even though less heat goes
into the cooler reservoir than was removed from the hot-
ter one (the difference being the mechanical work done by
the engine), the overall entropy of the two reservoirs in-
creases. The entropy change of the hot reservoir is a decrease,
−�Q/T , while the entropy change of the cooler reservoir is
an increase, +�Q′/T ′. Since T ′ < T , the entropy increase
more than balances the decrease, even though �Q′ < �Q.
The increase in the number of accessible microstates of the
cooler reservoir is greater than the decrease in the number
of accessible microstates of the hotter reservoir. The coupled
chemical reactions that we saw in Sect. 3.17 are analogous.

Symbols Used in Chap. 3
Symbol Use Units First

used
page

a Acceleration m s−2 53
a Number of atoms in a molecule 57
a, b, c, d Number of atoms of species

A,B,C, and D

71

a Area m2 69
cj Concentration (molar) mol m−3,

mol l−1
67

c Specific heat capacity J K−1 kg−1 65
e Elementary charge C 63
f Number of degrees of freedom 57
g Gravitational acceleration m s−2 64
kB Boltzmann’s constant J K−1 61
m Mass kg 53
n Number of particles in a

volume
54

p Probability of “success” 55
p Pressure Pa 60
px, py, pz Momentum kg m s−1 65
q Probability of “failure” 55
q Electric charge C 69
t Time s 53
ui Energy of the ith energy level J 58
v, v′ Volume m3 55
v Electrical potential V 63
v, vx, vy, vz Velocity m s−1 53
x, y, z Position coordinate m 53

x General variable 59
x Extensive variable 69

xs, xw Mole fractions of solute and
water

73

y General variable 62
y Height m 64
z Valence 63
A,A′, A∗ Thermodynamic systems 60
A,B,C,D Chemically reacting species 71
Ci, C Concentration (particles per

volume)
m−3, l−1 63

C Heat capacity J K−1 65
Ek Kinetic energy J 63
Ep Potential energy J 63
F, F Force N 53
F Faraday constant C mol−1 64
G Ratio of accessible microstates

in a small system
62

G Gibbs free energy J 70
H Enthalpy J 73
Keq Equilibrium constant in a

chemical reaction
71

M Number of molecules in a
system

57

M Number of repeated
measurements

60

N,N ′, N∗ Number of particles 54
Nw, Ns Number of solvent (water) or

solute molecules
72

NA Avogadro’s number mol−1 64
NA,NB ,
NC,ND

Number of molecues of species
A, B, C, and D consumed or
produced in a chemical reaction

71

P Probability 54
Q Flow of heat to a system J 58
R Ratio of accessible states in a

reservoir (Boltzmann factor)
63

R Gas constant J mol−1 K−1 64
S Area m2 64
S, S′, S∗ Entropy J K−1 62
T Absolute temperature K 61
U,U ′, U∗ Total energy of a system J 58
V Volume m3 55
V w, V s Volume of water or solute

molecule
m3 74

W Work done by a system on the
surroundings

J 58

Wconc Work done on a system to
increase the concentration

J 67

X Generalized force 69
α General variable 63
ρ Density kg m−3 65
σ Surface tension N m−1 69
τ kBT J 61
μ Chemical potential J molecule−1 66
μw, μs Chemical potential of water or

solute
J molecule−1 73

Ω,Ω ′,Ω∗ Number of accessible
microstates

59

An overscript bar means an
average over an ensemble

56

〈〉 Angular brackets mean an
average over time

56
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Problems

Section 3.1

Problem 1. Some systems are so small that only a few
molecules of a particular type are present, and statistical
arguments begin to break down. Estimate the number of hy-
drogen ions inside an E. coli bacterium with pH = 7. (When
pH = 7 the concentration of hydrogen ions is 10−7 mol l−1.)
Problem 2. Use the last column of Table 3.2 to calculate the
average value of n, which is defined by n =∑ nP (n). Verify
that n = Np in this case.
Problem 3. A loose statement is made that “if we throw a
coin 1 million times, the number of heads will be very close
to half a million.” What is the mean number of occurrences
of heads in 1 million tries? What is the standard deviation?
What does “very close” mean? (You may need to consult
Appendices G and H.)
Problem 4. Evaluate P(n; 4, 0.5) using Eq. 3.4. Check your
results against the histogram of Fig. 3.2 and by listing all
the possible arrangements of four particles in the left or right
sides of the box.
Problem 5. Write a computer program to simulate measure-
ments of which half of a box a gas molecule is in. Make
several measurements with different sets of random numbers,
and plot a histogram of the number of times n molecules are
found in the left half. Try this for N = 1, 10, and 100. Many
computer languages have a built-in routiine to generate ran-
dom numbers. For a discussion of how to construct and use
random number generators, see Press et al. (1992).
Problem 6. Color blindness is a sex-linked defect. The de-
fective gene is located in the X chromosome. Females carry
an XX chromosome pair, while males have an XY pair. The
trait is recessive, which means that the patient exhibits color
blindness only if there is no normal X gene present. Let Xd

be a defective gene. Then for a female, the possible gene
combinations are

XX, XXd, XdXd.

For a male, they are

XY, XdY.

In a large population about 8 % of the males are color-blind.
What percentage of the females would you expect to be
color-blind?
Problem 7. A patient with heart disease will sometimes go
into ventricular fibrillation, in which different parts of the
heart do not beat together, and the heart cannot pump. This
is cardiac arrest. The following data show the fraction of pa-
tients failing to regain normal heart rhythm after attempts at

ventricular defibrillation by electric shock (Weaver 1982).

Number of attempts Fraction persisting in fibrillation

0 1.00
1 0.37
2 0.15
3 0.07
4 0.02

Assume that the probability p of defibrillation on one at-
tempt is independent of other attempts. Obtain an equation
for the probability that the patient remains in fibrillation after
N attempts. Compare it to the data and estimate p.
Problem 8. There are N people in a class (N = 25). What
is the probability that no one in the class has a birthday on
a particular day? Ignore seasonal variations in birth rate and
ignore leap years.
Problem 9. The death rate for 75-year-old people is 0.089
per year (Commissioners 1941 Standard Ordinary Mortality
Table).
(a) What is the probability that an individual aged 75 will

die during a 12-h period? Neglect the fact that some are
sick, some are terminally ill, and so on, and assume that
the probability is the same for everyone.

(b) Suppose that 10 000 people, all aged 75, are given the flu
vaccine at t = 0. What is the probability that none will
die during the next 12 h? (This underestimates the prob-
ability, since sick people would not be given the vaccine,
but they are included in the death rate.)

Problem 10. This problem is intended to help you un-
derstand some of the nuances of the binomial probability
distribution.
(a) In a macabre “game” of “roulette” the victim places one

bullet in the cylinder of a revolver. (A less hazardous
game could be done with dice.) There is room for six
bullets in the cylinder. The victim spins the cylinder, so
there is a probability of 1/6 that the bullet is in firing
position. The victim then places the gun to the head and
fires. If the victim survives, the cylinder is spun again
and the process is repeated. We can look either at the
cumulative probability of “success” (being killed), or the
cumulative probability of “failure” (surviving). Make a
table for 1000 victims who keep playing the game over
and over. Plot the number surviving, the number killed
on each try, and the cumulative number killed.

(b) Show that the number surviving can be expressed as
1000e−bN , where N is the number of tries, and find b.

(c) The data in the following table are from Schwartz and
Mayaux (1982). They show the cumulative success rates
in different age groups for patients being treated for in-
fertility by artificial insemination from a donor. That is,
each month at the time of ovulation each patient who
has not yet become pregnant is inseminated artificially.
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The table shows the fraction of patients who have be-
come pregnant at the end of each cycle. Plot these data.
What do they suggest? Make whatever plots can confirm
or rule out what you suspect.

Cycle Age ≤ 25 Age � 35

0 0 0
1 0.11 0.03
2 0.23 0.14
3 0.30 0.20
4 0.39 0.27
5 0.44 0.35
6 0.51 0.35
7 0.55 0.36
8 0.63 0.39
9 0.65 0.43
10 0.67 0.43
11 0.70 0.46
12 0.74 0.54

Problem 11. Use Eq. 3.4 to verify that the probability of all
80 particles being in the left half of the box is approximately
10−24.
Problem 12. Appendix H describes how to calculate the
magnitude of fluctuations for N particles in a box (the stan-
dard deviation). Calculate 〈n〉 and its standard deviation for
N = 80 and p = q = 0.5. Estimate the value of N in
Fig. 3.4.

Section 3.3

Problem 13. A thermally insulated ideal gas of particles is
confined within a container of volume V . The gas is ini-
tially at absolute temperature T . The volume of the container
is very slowly reduced by moving a piston that constitutes
one wall of the container. Give qualitative answers to the
following questions.
(a) What happens to the energy levels of each particle?
(b) Is the work done on the gas as its volume decreases

positive or negative?
(c) What happens to the energy of the gas?

Section 3.5

Problem 14. Suppose you have a system with 10 particles
and three energy levels. The particles are distributed among
the levels as follows: 5 particles are in the level with energy 0,
three particles are in the level with energy 2E, and two in the
level with energy 4E. An interaction with the surroundings
occurs in which work is done on the system and heat flows
out of the system in such a way that �U = 0. The work
causes the energy of each level to rise by an amount E.

(a) Draw a picture like Fig. 3.7 showing the new levels and
the distribution of particles among the levels before and
after the interaction.

(b) Calculate the average energy of the particles before and
after the interaction.

(c) Draw a picture like that in Fig. 3.8 appropriate for this
system.

Problem 15. System A has 1020 microstates, and system
A′ has 1019 microstates. How many microstates does the
combined system have?
Problem 16. Calculate the Celsius and absolute tempera-
tures corresponding to a room temperature of 68 ◦F, a normal
body temperature of 98.6 ◦F, and a febrile body temperature
of 104 ◦F.
Problem 17. Calculate and plot Ω , Ω ′, and Ω∗ for Fig. 3.10,
thus reproducing the figure. Write down an analytic expres-
sion for Ω∗ and differentiate to find the value of U for which
Ω∗ is a maximum.
Problem 18. Let Ω(U) = 5U2 + 1, Ω ′(U ′) = U ′ + 1, and
U + U ′ = 100. Make plots like those in Fig. 3.10 for this
system and determine the most probable value of U .
Problem 19. Systems A and A′ each consist of 3 particles,
whose energy levels are u, 2u, 3u, etc. The total energy
available to the combined system is U∗ = 12u.

(a) Make a table similar to Table 3.3. (If you have difficulty,
see part (d) of this problem.)

(b) Find the most probable state. To what values of U and
U ′ does it correspond?

(c) Plot Ω∗ vs U. What is the probability that all three
particles in system A have energy u?

(d) Consider system A. If it has energy U, the maximum
energy the first particle can have is U − 2u. How many
microstates are there for which the first particle has en-
ergy U − 2u? U − 3u? Show that the total number of
microstates for system A is given by
U/u−2∑

i=1

(
U

u
− i − 1

)
= 1

2

[(
U

u

)2

− 3

(
U

u

)
+ 2

]

.

This proves the assertion in the text that for 3 particles, Ω

increases as U2.
Problem 20. We have seen that in general with volume,
number of particles, and other parameters that determine the
positions of the energy levels held fixed,

1

Ω

dΩ

dU
= 1

kBT
.

Suppose that U = CT , where C is the heat capacity of the
system. Find Ω(U).
Problem 21. Systems A and A′ are in thermal contact. Show
that if T < T ′, energy flows from A′ to A to increase Ω∗,
while if T > T ′, energy flows from A to A′.
Problem 22. A simple system has only two energy levels
for each single entity in the system. (The system could, for
example, be a collection of “gates” in a cell membrane, each
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with two states, open and closed.) One level has energy u1,
the other has energy u2. There are N entities in the system.
You can answer the following questions without doing any
calculations.
(a) What is the minimum energy of the system? How many

microstates are there for the minimum energy?
(b) What is the maximum energy of the system? How many

microstates are there for which the system has maximum
energy?

(c) Sketch what Ω(U) must look like.
(d) Recall the definition of T , Eqs. 3.14 and 3.15. Are there

any values of U for which the temperature is negative?
Where?

Section 3.6

Problem 23. Calculate the temperature (in K) and entropy
(in eV K−1) of system A′ in Fig. 3.10 at equilibrium. Assume
U and U ′ are given in electron volts. Your values may seem
odd because this example is not biologically realistic.
Problem 24. Consider the following arrangements of the 26
capital letters of the English alphabet: (a) TWO, (b) any three
letters, in any order, that are all different, and (c) any three
letters, in any order, which may repeat themselves. For (b)
and (c), consider the same letters in a different order to be a
different arrangement. If each arrangement is a “microstate,”
find Ω and S in each case.
Problem 25. Ice and water coexist at 273 K. To melt 1 mol
of ice at this temperature, 6 000 J are needed. Calculate the
entropy difference and the ratio of the number of microstates
for 1 mol of ice and 1 mol of water at this temperature. Do
not worry about any volume changes of the ice and water.
Problem 26. If a system is maintained at constant volume,
no work is done on it as the energy changes. In that case
dU = C(T ) dT , where U is the internal energy, C is the
heat capacity, and T is the temperature. The heat capac-
ity in general depends on the temperature. Suppose that in
some temperature region the heat capacity varies linearly
with temperature: C(T ) = C0 + DT.

(a) What is the entropy change of the system when it is
heated from temperature T1 to temperature T2, both of
which are in the region where C(T ) = C0 + DT ?

(b) What is the ratio of the number of microstates at T2 to
the number at T1?

Problem 27. A substance melts at constant temperature.
There are 7 times as many microstates accessible to each
molecule of the liquid as there were to each molecule of the
solid. Ignore volume changes.
(a) What is the change in entropy of each molecule?
(b) How much heat is required to melt a mole of the

substance if the melting temperature is 50 ◦C?
Problem 28. The entropy of a monatomic ideal gas at con-
stant energy depends on the volume as S = NkB ln V +const.

A gas of N molecules undergoes a process known as a free
expansion. Initially it is confined to a volume V by a parti-
tion. The partition is ruptured and the gas expands to occupy
a volume 2V . No work is done and no heat flows, so the total
energy is unchanged. Calculate the change of entropy and the
ratio of the number of microstates after the volume change to
the number before.

Section 3.7

Problem 29. A pore has three configurations with the en-
ergy levels shown. The pore is in thermal equilibrium with
the surroundings at temperature T . Find the probabilities p1,
p2, and p3 of being in each level. Each level has only one
microstate associated with it.

1

2

3

0

U

2U0

0

Problem 30. The DNA molecule consists of two inter-
twined linear chains. Sticking out from each monomer (link
in the chain) is one of four bases: adenine (A), guanine (G),
thymine (T), or cytosine (C). In the double helix, each base
from one strand bonds to a base in the other strand. The cor-
rect matches, A–T and G–C, are more tightly bound than are
the improper matches. The chain looks something like this,
where the last bond shown is an “error.”

A T G C G
T A C G A (error)

The probability of an error at 300 K is about 10−9 per
base pair. Assume that this probability is determined by a
Boltzmann factor e−U/kBT , where U is the additional energy
required for a mismatch.
(a) Estimate this excess energy.
(b) If such mismatches are the sole cause of mutations in

an organism, what would the mutation rate be if the
temperature were raised 20 ◦C?

Problem 31. In Chap. 18 we will study how the “spin” mag-
netic moment of an atomic nucleus interacts with a magnetic
field B, leading to magnetic resonance imaging. Assume a
nucleus has a magnetic dipole moment μ, which can point in
only one of two directions: parallel to B (“spin up”) or an-
tiparallel (“spin down”). The energy of a nucleus with spin
up is −μB; with spin down it is +μB. Use the Boltzmann
factor to determine an expression for the ratio of the num-
ber of particles with spin up to the number with spin down.
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Evaluate this ratio for μ = 1.4 × 10−26 J T−1, B = 2 T, and
T = 300 K .

Problem 32. The data of Problem 2.10 were used to obtain
an empirical relationship between the charge integration time
τ and the temperature T . It might be that τ is determined by a
chemical reaction whose rate is given by a Boltzmann factor.
Make a new plot based on that assumption and determine the
appropriate constants.
Problem 33. Oxygen and carbon monoxide compete for
binding to hemoglobin. If enough CO binds to hemoglobin,
the ability of the blood to deliver oxygen is impaired, and car-
bon monoxide poisoning ensues. Consider the hemoglobin
molecule to be a two-state system: the heme group is bound
either to O2 or to CO. Calculate the probability of binding to
CO. Let the G factor of Eq. 3.25 be equal to the ratio of the
concentrations of CO and O2. Assume CO is 100 times less
abundant than O2. CO is more tightly bound than O2 to the
heme group by about 0.15 eV. Let T = 300 K.
Problem 34. The function of many enzymes is to act as a
catalyst: they increase the speed of a chemical reaction. To
get an idea of how a catalyst works, consider the reaction

enzyme + substrate → enzyme + product.

In order for the reaction to proceed, some energy barrier �E

must be overcome. The probability of the substrate having
an energy �E or greater depends primarily on a Boltzmann
factor, e−�E/kBT . Determine by what factor this probability
increases if the enzyme decreases the activation energy by
(a) 0.1 eV, (b) 1 eV. Assume T = 310 K.
Problem 35. Chemists use Q10 to characterize a chemical
reaction. It is defined by

Q10 = (reaction rate at T + 10)

(reaction rate at T )
,

where T is the absolute temperature. If the reaction rate
is proportional to the fraction of reacting atoms that have
an energy exceeding some threshold �U , then to a first
approximation

R ∝
∫ ∞

�U

e−U/kBT dU.

(This neglects more slowly varying factors such as a U1/2

which are introduced in more accurate analyses.)
(a) Show that R ∝ kBT e−�U/kBT .
(b) Show that

Q10T

T + 10
= exp

[
�U

kB

10

T (T + 10)

]
.

(c) Estimate �U if Q10 = 2 at T = 300 K.
Problem 36. The vapor pressure of a substance can be calcu-
lated using the following model. All molecules in the vapor

that strike the surface of the liquid stick. (This number is pro-
portional to the pressure.) Those molecules in the liquid that
reach the surface and have enough energy escape. Equilib-
rium is established when the number sticking per unit area
per unit time is equal to the number escaping.
(a) The number of molecules with energy U is propor-

tional to e−U/kBT . What will be the number with energy
greater than the escape energy, U0?

(b) Use the result of part (a) and look up values for the va-
por pressure of water as a function of temperature, to
make a plot on semilog paper. From this plot, estimate
the escape energy U0.

(c) The “heat of vaporization” of water is 540 cal per g.
Convert the energy per molecule you found in part (b)
to calories per gram and compare it with this figure.

Problem 37. A macromolecule of density ρ and mass m is
immersed in an incompressible fluid of density ρw at tem-
perature T . The volume v occupied by one macromolecule
is known. A dilute solution of the macromolecules is placed
in an ultracentrifuge rotating with high angular velocity ω. In
the frame of reference rotating with the centrifuge, a particle
at rest is acted on by an outward force mω2r , where r is the
distance of the particle from the axis.
(a) What is the net force acting on the particle in this frame?

Include the effect of buoyancy of the surrounding fluid,
of density ρw.

(b) Suppose that equilibrium has been reached. Use the
Boltzmann factor to find the number of particles per unit
volume at distance r .

Problem 38. Suppose that particles in water are subjected to
an external force F(y) that acts in the y direction. The force
is related to the potential energy Ep(y) by F = −dEp/dy.
Neglect gravity and buoyancy effects.
(a) Apply Newton’s first law to a slice of the fluid in

equilibrium to obtain an expression for p(y).
(b) If the particles have a Boltzmann distribution, show that

p(y) − p(0) = kBT
[
C(y) − C(0)

]
.

Section 3.8

Problem 39. The concentrations of various ions are mea-
sured on the inside and outside of a nerve cell. The following
values are obtained when the potential inside the cell is
−70 mV with respect to the outside.

Ion Inside (mmol l−1) Outside (mmol l−1)
Na+ 15 145
K+ 150 5
Cl− 9 125

Comment on which species have concentrations that are con-
sistent with being able to pass freely through the cell wall.
Assume T = 300 K.
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Problem 40. Calculate the volume of 1 mole of water in
liters. Pour yourself a mole of water and drink it. Calculate
the concentration of water in moles per liter.

Section 3.9

Problem 41. A virus has a mass of 1.7×10−14 g. If the virus
particles are in thermal equilibrium in the atmosphere, their
concentration will vary with height as C(y) = C(0)e−y/λ.
Evaluate λ. Do you think this answer is reasonable?
Problem 42. Calculate the length constant λ for the expo-
nential decay (e−y/λ) of atmospheric pressure. Assume the
atmosphere is made up entirely of nitrogen, N2. Nitrogen
has an atomic weight of 14. Use your result to compare
air pressure at sea level to air pressure at the top of Mt.
Everest (8.8 km). Assume the atmosphere is all at the same
temperature; it is not.

Section 3.10

Problem 43. Use Appendix K to verify the expressions
given for the integrals in the numerator and denominator of
Eq. 3.37.
Problem 44. Calculate the average kinetic energy (in J
and eV) of a particle moving in three dimensions at body
temperature, 37 ◦C .

Problem 45. This is our first model for the important prob-
lem of detecting a “signal” in the presence of “noise.” We
will discuss this in detail in Chapters 9 and 11. A sensitive
balance consists of a weak spring hanging vertically in the
earth’s gravitational field. The equilibrium position of the
end of the spring is x = 0. When a mass m is added to the
spring, it elongates to an average position x0, around which it
vibrates because of thermal energy. In terms of �x = x−x0,
the momentum of the mass px and the spring constant K ,
the force which the spring exerts on the mass is Kx0, and the
total energy is U = p2

x/2m + 1
2K(�x)2.

(a) What is x0 in terms of m, g, and K?
(b) Find �x2 = (x − x0)2.
(c) What is the smallest mass that can be measured taking

a single “snapshot” of the system to find the position of
the mass?

Section 3.11

Problem 46. The specific heat capacity of water is
4 184 J K−1 kg−1 (Denny 1993). Convert this to cal
g−1 ◦C−1. Historically, the calorie was defined in terms of
the specific heat capacity of water.

Problem 47. The “Calorie” we see listed on food labels is
actually 1 000 cal or 1 kcal. How many kcal do you expend
each day if your average metabolic rate is 100 W?
Problem 48. Your body must dissipate energy from
metabolism at a rate of about 100 W by various mecha-
nisms to keep the body from overheating. Suppose these
mechanisms stopped working (perhaps you are wrapped in
a very good thermal blanket, so no heat can flow from or
to your body). At what rate will your body temperature in-
crease? How long will it take for your body temperature to
increase by 5 ◦C? Assume you have a mass of 70 kg, and
the specific heat of your body tissue is the same as of water,
4 200 J K−1 kg−1.
Problem 49. A person of mass 70 kg and body tempera-
ture 37 ◦C breathes in 0.5 l of air at a temperature of 20 ◦C.
Assume that there are no other sources of heat (turn off
metabolism for a moment), and the body as a whole is insu-
lated so no heat is lost to the environment. Find the equilib-
rium temperature that the air and body will ultimately attain.
Useful data: ρair = 1.3 kg m−3, ρwater = 1000 kg m−3,

cair = 1000 J K−1 kg−1, cwater = 4200 J K−1 kg−1. As-
sume that the person’s body tissue has the same heat capacity
and density as water.
Problem 50. Fish are cold blooded, and “breathe” water (in
other words, they extract dissolved oxygen from the water
around them using gills). Could a fish be warm blooded and
still breathe water? Assume a warm-blooded fish maintains
a body temperature that is 20 ◦C higher than the surround-
ing water. Furthermore, assume that the blood in the gills is
cooled to the temperature of the surrounding water as the fish
breathes water. Calculate the energy required to reheat 1 l of
blood to the fish’s body temperature. One liter of blood car-
ries sufficient oxygen to produce about 4000 J of metabolic
energy. Is the energy needed to reheat 1 l of blood to body
temperature greater than or less than the metabolic energy
produced by 1 l of blood? What does this imply about warm-
blooded fish? Why must a warm-blooded aquatic mammal
such as a dolphin breathe air, not water? Use c = 4 200 J
K−1 kg−1 and ρ = 103 kg m−3 for both the body and the
surrounding water. For more on this topic, see Denny (1993).
Problem 51. Forensic scientists sometimes use Newton’s
law of cooling to determine how long ago a victim died.
Assume that at the time of death (tdeath) the body had a tem-
perature Tbody, and after death it cools to the temperature of
the surroundings, Tsurr. Assume that the rate of heat loss by
the body is proportional to the surface area of the body, S,
and the temperature difference T −Tsurr. The constant of pro-
portionality is called the convection coefficient. As the corpse
cools, the decrease in temperature is determined by the heat
capacity.
(a) Relate the rate of heat loss to the rate of temperature

change, and derive a differential equation for the body
temperature T .
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(b) Solve this differential equation (if you are having trou-
ble, see Sect. 2.8). The solution is Newton’s law of
cooling.

(c) Write an expression for the time constant of cooling in
terms of the specific heat capacity, density, volume, area,
and the convection coefficient.

(d) For two bodies with the same shape but different sizes,
which will cool faster: the large body or the small one?

Problem 52. Determine whether the specific heat capacity
of air, 1000 J K−1 kg−1 is the same as the molar specific
heat capacity of a monatomic ideal gas, 3R/2. If not, why
not? Assume air is all nitrogen, N2.

Section 3.12

Problem 53. Modify the system shown in Fig. 3.10 so that
Ω(U,N) = 5U2N3, Ω ′(U ′) = 4(U ′)2(N ′)3, U + U ′ = 6,
and N + N ′ = 10.
(a) Show that this change does not affect the calculation of

the temperature.
(b) Plot Ω(N), Ω ′(N ′) and Ω∗(N) over 0 < N,N ′ < 10

using the equilibrium value U = 3 eV.
(c) Find the average value 〈N〉.
(d) Calculate the chemical potential (in eV) in equilibrium.
Problem 54. A small system A is in contact with a reservoir
A′ and can exchange both heat and particles with the reser-
voir. The number of microstates available to system A does
not change. Show that the difference in total entropy when A

is in two distinct states is

�S∗ = −(N1 − N2)

(
∂S

∂N

)

U

− (U1 − U2)

(
∂S

∂U

)

N

,

so that

P(N1, U1)

P (N2, U2)
= e(N1μ−U1)/kBT

e(N2μ−U2)/kBT
.

where T and μ are the temperature and chemical potential of
the reservoir. This is called the Gibbs factor, and it reduces to
the Boltzmann factor if N1 = N2. Chemists use the notation
λ = eμ/kBT , where λ is the absolute activity. Then

P(N1, U1)

P (N2, U2)
= λN1

λN2

e−U1/kBT

e−U2/kBT
.

Problem 55. Specialize the results of the previous problem
to a series of binding sites on a surface, such as a myoglobin
molecule. The two states are

No particle bound at the site N1 = 0, U1 = 0
One particle bound at the site N2 = 1, U2 = U0

(a) Show that the fraction of sites occupied is

f = λe−U0/kBT

1 + λe−U0/kBT
.

(b) If the sites are in equilibrium with a gas, then μgas =
μsites or λgas = λsites. From the definition μ =
−T (∂S/∂N)U,V and the expression for the entropy of
a monatomic ideal gas,

S(U, V,N) = NkB

(
ln V + 3

2
ln U − 5

2
ln N + 5

2
+ c

)
,

where c = 3
2 ln(m/3π�2), show that f = p/(p0 + p),

where p is the gas pressure and

p0 = (kBT )5/2 m3/2 eU0/kBT

(2π�2)3/2
.

This expression fits the data very well. See Rossi-Fanelli
and Antonini (1958).

Section 3.13

Problem 56. The entropy of a monatomic ideal gas is

S(U, V,N) = NkB

(
ln V + 3

2
ln U − 5

2
ln N + 5

2
+ c

)
,

where c = 3
2 ln(m/3π �

2) depends only on the mass of the
molecule. Consider two containers of gas at the same tem-
perature and pressure that can exchange particles. Expand
the total entropy in a Taylor’s series, keep terms to second
order, and use the result to find the variance in the fluctuat-
ing number of particles in one system. Assume N 	 N ′.
You should obtain the same result obtained from the bino-
mial distribution (σ 2 = N) if you take into account that it
is the temperature of the gas in the container, and not its
energy, that should be held fixed. (For a monatomic ideal
gas U = 3NkBT/2. Use this result to rewrite the entropy
in terms of T , V, and N .)
Problem 57. Show that the chemical potential of an ideal
gas is proportional to the logarithm of the concentration, a
result that we have now seen several times for dilute ideal
systems. To do so, use the expression for the entropy of a
monatomic ideal gas given in the previous problems. Rewrite
the thermodynamic identity as dU = T dS + μdN − p dV,

from which we can identify the partial derivative

μ =
(

∂U

∂N

)

S,V

.

The chemical potential is the increase in energy of the system
if one particle is added while keeping the entropy and volume
fixed. Use the expression for the entropy of the monatomic
ideal gas, for the case of N particles with total energy U and
N + 1 particles with total energy U + μ, to show that the
chemical potential of the ideal gas is

μ = kBT

[
ln

(
N

V

)
− 3

2
ln(3kBT /2) − const

]
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or

μ = −kBT ln

[
V

N

(
mkBT

2π�2

)3/2
]

.

A more extensive discussion for other simple systems is
given by Cook and Dickerson (1995).
Problem 58. Derive the Nernst equation (Eq. 3.34) by mak-
ing the chemical potential the same on each side of a charged
membrane. Use Eq. 3.48, with the potential energy per
particle given as zev.

Section 3.15

Problem 59. Consider two systems that can exchange en-
ergy U and surface area a, but not volume V or number of
particles N . The total energy is U∗ = U + U ′ and the total
surface area is a∗ = a + a′. Repeat the analysis of Sect. 3.5
and show that in equilibrium T = T ′ and σ = σ ′, where the
surface tension is defined as

σ = −T

(
∂S

∂a

)

U,V,N

.

Problem 60. Consider a spherical air bubble in water.
(a) Equate the pressure-volume work to the surface work,

and find a relationship between the pressure and the
radius. This relationship is analogous to the Law of
Laplace (Problem 1.19).

(b) Consider a small bubble attached to a large one. Use the
relationship derived in (a) to determine which bubble
has the larger internal pressure. Which bubble tends to
shrink and which tends to expand?

(c) The bubbles in (b) are a model for two alveoli connected
by a bronchiole in our lungs. Explain why a special fluid
called a surfactant is needed to reduce the surface ten-
sion in the water on the surface of the alveolus. For
more on the biological implications of surface tension,
see Denny (1993).

Section 3.16

Problem 61. Use the analysis presented in Sect. 3.16 to
show that the surface tension is

σ =
(

∂U

∂a

)

S,V,N

.

Therefore, increasing the surface area when the entropy,
volume and number of particles are fixed requires energy.
For water, the surface tension is approximately 0.07 J m−2,
which is a large value Denny (1993).

Section 3.17

Problem 62. The reaction 1 glucose+6O2 ↔ 6CO2+ 6H2O
must conserve the number of each type of atom. Determine
the chemical formula of glucose.

Section 3.18

Problem 63. System A consists of N particles that move
from a region where the concentration is C1 to another where
the concentration is C2, each experiencing a change in chem-
ical potential �μ = kBT ln(C2/C1). The process occurs at
constant temperature and pressure. What is the ratio of the
total number of microstates of system and surroundings af-
ter the move to the number before the move? Assume the
concentrations do not change.
Problem 64. In pure water, some of the molecules dissociate
into H2O → H++ OH−. The standard Gibbs free energies
are G0

H2O = −237.2 kJ mol−1, G0
OH = −157.3 kJ mol−1

and G0
H = 0.

(a) Determine �G0 for this reaction.
(b) Calculate Keq assuming T = 25 ◦C.

(c) Derive an expression that relates Keq , [H+] and
[OH−]. Note: By convention the reference concentra-
tion for water is taken to be the concentration of pure
water instead of 1 mole per liter. The small amount of
dissociation does not change [H2O] significantly, so the
logarithmic term for water is zero: Keq = [H+][OH−].

(d) H+ and OH− are produced as a pair, so their concen-
trations are equal. Calculate [H+].

(e) The pH of water is defined as − log10([H+]). What is
the pH of pure water?

Problem 65. If one increases the volume of a liquid at con-
stant p and T , a portion of the liquid evaporates. The amount
of liquid decreases as V increases until all the liquid is vapor-
ized. The pressure at which the two phases coexist is called
the vapor pressure. The vapor pressure depends on the tem-
perature, as shown. When two phases are in equilibrium,
they are in mechanical, thermal, and diffusive equilibrium:
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Tl = Tg , pl = pg , μl = μg . Thus, at any arbitrary point
on the vapor-pressure curve, μg(T0, p0) = μl(T0, p0). Con-
sider some nearby point in the vapor-pressure curve, and
expand both chemical potentials in a Taylor’s series to show
that

dp

dT
= (∂μg/∂T )p − (∂μl/∂T )p

(∂μl/∂p)T − (∂μg/∂p)T
,

where dp/dT is the slope of the vapor-pressure curve. Use
the fact that G = Nμ(p, T ), that (∂G/∂T )N,p = −S, and
that (∂G/∂p)N,T = V , to show that

dp

dT
= L

T �V
,

where L is the latent heat of vaporization and �V is the
volume change on vaporization. (Since L and V are both ex-
tensive parameters, they can be expressed per mole or per
molecule.) This is called the Clausius–Clapeyron equation.

Problem 66. Use the Clausius–Clapeyron equation for the
vapor pressure as a function of temperature (see Problem 65),
dp/dT = L/T �V , and assume an ideal gas so that �V ≈
Vg = NkBT/p to find the vapor pressure p as a function of
temperature.
Problem 67. Use the definition of Gibbs free energy G =
U − T S + p V and the thermodynamic identity T dS =
dU −μdN +p dV to find the partial derivatives of G when
N , T , and p are the independent variables. Note that U , S,
and V are all extensive variables so that G is proportional to
N : G = NΦ. Thereby relate Φ to the chemical potential.

Problem 68.(a) Find the change in Gibbs free energy G =
U − T S + p V for an ideal gas which changes pressure
reversibly from p1 to p2 at a constant temperature.

(b) Since �G = N�μ, find �μ.
Problem 69. The argument leading to the change in G in
a chemical reaction can be applied to a single particle mov-
ing from a region where the chemical potential is μA to a
region where the chemical potential is μB by letting dN =
−dNA = dNB , in which case dG = (μB −μA) dN . We saw
in Sect. 3.13 that the chemical potential of a solute in an ideal
solution had the form �μ = kBT ln(C/C0) + �(potential
energy per particle). Sodium ions of charge +e (e = 1.6 ×

10−19 C) are found on one side of a membrane at concen-
tration 145 mmol l−1. The electrical potential is zero. On the
other side of the membrane the concentration is 15 mmol l−1

and the potential is −90 mV. The change in electrical poten-
tial energy is e�v. What is the change in Gibbs free energy
if a single sodium ion goes from one side to the other? The
temperature is 310 K and the pressure is atmospheric.

Section 3.18

Problem 70. Suppose that a potential energy term as well as
a pressure must be added to the chemical potential, as was
argued in Sect. 3.13. Consider a column of pure water. What
is the difference in chemical potential between the top of the
column and the bottom?
Problem 71. The open circles in the drawing represent water
molecules. The solid circles are solute molecules. The verti-
cal line represents a membrane that is permeable to water
but not solute. In case (a) there are two water molecules to
the right of the membrane. In (b) there is one, and in (c) none.
What is the total number of microstates of the combined
system in each case?

(a)

(b)

(c)

Problem 72. If we want to apply Eq. 3.79 when there is
an appreciable difference in concentration, we can define an
average concentration by

�μs = kBT ln(Cs2/Cs1) ≡ kBT (�Cs/Cs),

Cs ≡ �Cs

ln(Cs2/Cs1)
= �Cs

ln(1 + �Cs/Cs1)
.

Use the Taylor’s-series expansion y = x/ln(1 + x) ≈ 1 +
x/2−x2/12+· · · to find an approximate expression for Cs .
Problem 73. Verify that differentiation of Eq. 3.69 with
respect to Nw and Ns gives Eq. 3.71.
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4Transport in an Infinite Medium

In this book, Chaps. 4 and 5 are devoted to one of the most
fundamental problems in physiology: the transport of solvent
(water) and uncharged solute particles. Chapter 4 develops
some general ideas about the movement of solutes in solu-
tion. Chapter 5 applies these ideas to movement of water and
solute through a membrane.

Section 4.1 defines flux and fluence rate and derives the
continuity equation. Section 4.2 shows how to calculate the
solute fluence rate when the solute particles are drifting with
a constant velocity, as when they are being dragged along by
flowing solvent.

The next several sections are devoted to diffusion, the ran-
dom motion of solute particles. Sections 4.3–4.5 describe
random motion in a gas and a liquid. Section 4.6 states Fick’s
first law, which relates the fluence rate of diffusing parti-
cles to the gradient of their concentration. Section 4.7 relates
the proportionality constant in Fick’s first law to the viscous
drag coefficient of the particle in the solution. Section 4.8
combines Fick’s first law and the equation of continuity to
give Fick’s second law, the diffusion equation, that tells how
the concentration C(x, y, z, t) evolves with time. Section 4.9
discusses various time-independent (steady-state) solutions
to the diffusion equation. Section 4.10 analyzes steady-state
diffusion to or from a cell, including both diffusion through
the membrane and in the surrounding medium. Section 4.11
discusses a model of steady-state diffusion of a substance
that is being produced at a constant rate inside a spherical
cell. Section 4.12 develops a steady-state solution when both
drift and diffusion are taking place in one dimension. One
technique for solving the time-dependent diffusion equation
is introduced in Sect. 4.13. Section 4.14 describes a simple
random-walk model for diffusion.

This chapter discusses how molecules and other objects
can diffuse or drift. These physical processes occur in both
living and nonliving material. However, much motion in the
body arises from truly biological mechanisms (Fletcher and
Theriot 2004; Hoffmann 2012). A simple example is the
flagella that power the swimming of Escherichia coli bac-
teria (Berg 2003). Perhaps the best known example is the

contractions caused by myosin and actin in skeletal muscle.
Actin proteins form a “track,” and myosin proteins “step”
along the track, using energy stored in ATP. A similar molec-
ular motor, kinesin, causes motion along microtubules, and
is responsible for many intracellular types of motion such
as chromosome migration during cell division (mitosis). The
details about how these motors work is beyond the scope of
our book, but understanding them requires knowledge from
Chap. 1 (viscosity), Chap. 3 (bioenergetics), and this chapter
(Brownian motion).

4.1 Flux, Fluence, and Continuity

Flow was introduced in Sect. 1.17 of Chap. 1. The flow rate,
volume flux, or volume current i is the total volume of ma-
terial transported per unit time and has units of m3 s−1. One
can also define the mass flux as the total mass transported per
unit time or the particle flux as the total number of particles,
and so on.

The particle fluence is the number of particles transported
per unit area across an imaginary surface (m−2). The volume
fluence is the total volume transported across the surface per
unit area and has units m3 times m−2, or m.

The fluence rate or flux density is the amount of “some-
thing” transported across an imaginary surface per unit area
per unit time. It can be represented by a vector pointing in
the direction the “something” moves and is denoted by j. It
has units of “something” m−2 s−1. It is traditional to use a
subscript to tell what is being transported: js is the solute
particle fluence rate (m−2 s−1), jm is the mass fluence rate
(kg m−2 s−1), and jv is volume flux density (m3 m−2 s−1 or
m s−1). In a flowing fluid, jv is the velocity with which the
fluid moves.

Slightly different nomenclature is used in different fields.
The words flux and flux density are often used interchange-
ably. Table 4.1 shows some of the names that are encoun-
tered. Do not spend much time memorizing it; it is provided
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Table 4.1 Units and names for j and jS in various fields

j jS

Units Names Units Names

Particles m−2 s−1 Particle fluence rate s−1 Particle flux
Particle current density Particle current
Particle flux density Particle flux
Particle flux

Electric charge C m−2 s−1 or A m−2 Current density C s−1 or A Current
Mass kg m−2 s−1 Mass fluence rate kg s−1 Mass flux

Mass flux density Mass flow
Mass flux

Energy J m−2 s−1 or W m−2 Energy fluence rate J s−1 or W Energy flux
Intensity Power
Energy flux

Fig. 4.1 The fluence rates used to derive the continuity equation in one
dimension

to help you when you must deal with the notation in other
books.

4.1.1 The Continuity Equation in One
Dimension

As long as we are dealing with a substance that does not
appear or disappear (as in a chemical reaction, radioactive
decay, or the like), the number of particles or the mass, or
in the case of an incompressible liquid, the volume, remains
constant or is conserved. This conservation leads to a very
useful equation called the equation of continuity. It will be
derived here in terms of the number of particles.

We will first derive it in one dimension. Let the fluence
rate of some species be j particles per unit area per unit time,
passing a point. All motion takes place in the x direction
along a tube of constant cross-sectional area S. The value
of j may depend on the position in the tube and on the time:
j = j (x, t). The number of particles in the volume shown in
Fig. 4.1 between x and x + �x is N(x, t). At x, there may
be particles moving both to the right and to the left; the net
number to the right in �t is j (x, t) times the area S times the
time �t . A flux density in the +x direction is called positive.
The net number of particles in at x is j (x, t)S�t . Similarly,
the net number out at x+�x is j (x+�x, t)S�t . Combining

these gives the net increase in the number of particles in the
volume S�x:

�N = [j (x, t) − j (x + �x, t)
]

S �t. (4.1)

As �x → 0, the quantity involving j is, by definition, related
to the partial derivative of j with respect to x (Appendix N):

j (x, t) − j (x + �x, t) = −∂j (x, t)

∂x
�x.

Similarly, the increase in N(x, t) is

�N(x, t) = N(x, t + �t) − N(x, t) = ∂N

∂t
�t.

These two expressions can be substituted in Eq. 4.1 to give

∂

∂t
N(x, t) = −(S�x)

∂

∂x
j (x, t).

This equation can be written in terms of the concentration
C(x, t) by dividing both sides by the volume S�x:

∂C

∂t
= − ∂j

∂x
. (4.2)

This is the continuity equation in one dimension.

4.1.2 The Continuity Equation in Three
Dimensions

In three dimensions j is a vector with components jx , jy , and
jz. The flux across a surface dS oriented at some arbitrary
direction with the x, y, z axes is equal to the component of
j perpendicular to the surface times dS. To see this, imagine
that j lies in the xy plane with components jx and jy . If j
makes an angle φ with the vertical, then jx = j sin φ, jy =
j cos φ.

Consider the small volume shown in Fig. 4.2. If there is
no buildup of particles within the volume, the flux in across
the two faces parallel to the axes is equal to the flux across
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Fig. 4.2 Volume element used to relate the fluence rate across the slant
face to the components of the fluence rate parallel to the x and y axes

dS. The area dS of the slant surface is drdz, where dz

is the thickness of the volume perpendicular to the paper.
The number of particles per second across the face dydz is
jx dydz = (j sin φ)(dydz). Since dy = dr sin θ , this may
be written as j sin φ sin θdzdr . Similarly, the number of par-
ticles per second in across the bottom face is jy dxdz =
j cos φ cos θdzdr . The sum of these must be equal to the
number leaving across the slant face: j dzdr(sin φ sin θ +
cos φ cos θ) = j dzdr cos(φ − θ) = j dS cos(φ − θ). The
number of particles per unit area per second across the slant
face is, therefore, j cos(φ − θ). Now φ − θ is the angle be-
tween j and the unit vector n̂ perpendicular to the surface. We
can write the flux density across dS as jn (the component of
j parallel to n̂), or j · n̂ (the dot product of j and the normal).
The flux (flow per second) is sometimes written as

(j · n̂)dS, jndS, or (j · dS). (4.3)

These are all equivalent: vector dS is defined to have mag-
nitude dS and to point along the normal to the surface that
points outward from the enclosed volume. The same result is
obtained (with more algebra) when j is not in the xy plane.

4.1.3 The Integral Form of the Continuity
Equation

If we consider a closed volume as shown in Fig. 4.3, the total
number of particles flowing out of the volume can be ob-
tained by adding up the contribution from each element dS.
It is

(total number of particles out in time �t)

=
( �

closed surface

jndS

)

�t.

Since the total number of particles in the volume enclosed by
the surface is �

enclosed volume

C(x, y, z, t) dxdydz,

Fig. 4.3 The total number of particles per second passing through the
closed surface (flux) is the sum of the contributions jndS from all
elements of the surface

we can write1

∂

∂t

�
enclosed volume

C dV = −
�

surface enclosing
the volume

jn dS. (4.4)

The outward flux density or fluence rate of the substance
integrated over a closed surface (the net flux through the
surface) is equal to the rate of decrease of the amount of
substance within the volume enclosed by the surface.

How to evaluate the surface integral is best shown by two
examples. First consider a volume defined by a sphere of
radius r . A lamp at the center of the sphere radiates light
uniformly in all directions. The light leaves through the sur-
face of the sphere. The amount of light energy in the volume
defined by the sphere is not changing, so the rate of energy
production by the lamp P is equal to the energy flux through
the surface of the outer sphere:

P =
�

jn dS. (4.5)

Because of the spherical symmetry, j is perpendicular to the
surface and is the same at all points on the sphere. Therefore,

P = jn

�
dS.

Since the integral of dS over the surface of a sphere of radius
r is 4πr2,

j = jn = P

4πr2
. (4.6)

The amount of energy per unit area per unit time crossing
the surface of the sphere is the energy fluence rate or the
intensity.

The second example is slightly more complicated. Sup-
pose that j is parallel to the z-axis and has the same value
everywhere. The net flux through any closed surface will
be zero in that case, and we will verify it to show how to
evaluate a surface integral. Consider the situation shown in

1 We can write dV as d3r or dxdydz.
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θ

j
n

j

j j

Fig. 4.4 The fluence rate is the same everywhere. The flux is
∫

jndS

over the entire sphere. When the normal component of the fluence rate is
outward, the contribution is positive. When it is inward, the contribution
is negative

Fig. 4.4, where jn is integrated over the surface of the sphere.
At every point in the shaded strip, jn = j cos θ . The strip
has width r dθ and circumference 2π r sin θ, so its area is
2π r2 sin θ dθ . Thus

∫
jn dS =

∫ π

0
j cos θ 2πr2 sin θ dθ

= 2πr2j

∫ π

0
cos θ sin θ dθ = 0.

4.1.4 The Differential Form of the Continuity
Equation

The continuity equation can be expressed in terms of deriva-
tives instead of integrals. To derive this form, consider the
increase in the number of particles in a small rectangular
volume located at (x, y, z) and having sides (dx, dy, dz) as
shown in Fig. 4.5. Apply Eq. 4.4 to each face of the vol-
ume. The rate at which the substance flows in through the
face at x is jx(x)(dydz). At face x +dx, it flows out at a rate
jx(x+dx)dydz. There is no contribution to the flow through
this face from jy or jz, since they are parallel to the face. The
net increase in the number of particles in the volume due to
the two terms is

− [jx(x + dx) − jx(x)
]

dydz = −∂jx

∂x
dxdydz.

Similar terms can be written for the faces perpendicular to
the y and z axes. The total amount of the substance enter-
ing the volume per unit time is the rate of change of the
amount within the volume, which is the rate of change of
concentration times the volume dxdydz. Therefore,

∂C

∂t
(dxdydz) = −

(
∂jx

∂x
+ ∂jy

∂y
+ ∂jz

∂z

)
(dxdydz)

Fig. 4.5 The small volume used to derive the differential form of the
continuity equation

or

−∂C

∂t
= ∂jx

∂x
+ ∂jy

∂y
+ ∂jz

∂z
. (4.7)

This is the differential form of the continuity equation. Equa-
tion 4.2 was a special case of this when j was parallel to the
x axis.

The combination of derivatives on the right-hand side of
Eq. 4.7 occurs frequently enough to warrant a special name.
It is called the divergence of the vector j:2

div j = ∇ · j = ∂jx

∂x
+ ∂jy

∂y
+ ∂jz

∂z
.

The continuity equation is therefore

∂C

∂t
= −div j. (4.8)

This differential form of the continuity equation is com-
pletely equivalent to the integral form, Eq. 4.4. It is some-
times more convenient to use Eq. 4.4 and at other times more
convenient to use Eq. 4.8.

The continuity equation says that the rate of decrease of
the amount of a conserved substance in a certain region ex-
pressed as −∂C/∂t is equal to the rate at which it leaves the
region expressed as the flow through the surface surrounding
the region. The substance may be a certain kind of molecule,
electric charge, heat, or mass. If it is electric charge, j is the
electric current per unit area and C is the charge per unit vol-
ume. If it is mass, C is the mass per unit volume or density ρ.
The continuity equation is found in many contexts; in each,
it expresses the conservation of some quantity.

In the flow of a liquid, the density of the liquid ρ, the mass
M , and volume V are related by M = ρV . If the liquid is

2 The divergence is one of the concepts of vector calculus. A good
review of vector calculus is Schey (2004).
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incompressible, a given mass always occupies the same vol-
ume, and the density does not change. Therefore, ∂ρ/∂t = 0,

and the equation of continuity gives

div jm = 0. (4.9)

4.1.5 The Continuity Equation with a
Chemical Reaction

Our derivation of the continuity equation assumed that the
substance was conserved—neither created nor destroyed. If
a chemical reaction is creating the substance at a rate Q

particles m−3 s−1 (which may depend on position) then the
continuity equation becomes

∂C

∂t
= Q − div j, (4.10a)

∂

∂t

�
volume

C(x, y, z) dV (4.10b)

=
�

volume

Q(x, y, z) dV −
�

surface
enclosing

the volume

jn dS.

If particles are being consumed in the chemical reaction, then
Q is negative.

4.2 Drift or Solvent Drag

One simple way that solute particles can move is to drift
with constant velocity. They can do this in a uniform elec-
tric or gravitational field if they are also subject to viscous
drag, or they can be carried along by the solvent, a process
called drift or solvent drag. (The solute particles are dragged
by the solvent.) The solute fluence rate is js , with units of
particles m−2 s−1 or just m−2 s−1. The number of solute par-
ticles passing through a surface is the volume of solution that
moves through the surface times the concentration of solute
particles. Therefore,

js = C jv. (4.11)

This effect will be explored in greater detail in Sect. 4.12.

4.3 BrownianMotion

There is also movement of solute molecules when the water
is at rest. If the solution is dilute, the solute particles are far
apart and hit each other only occasionally. They are struck by

Table 4.2 Values of the rms velocity for various particles at body
temperature

Particle Molecular weight Mass (kg) vrms (m s−1)

H2 2 3.4 × 10−27 1940
H2O 18 3 × 10−26 652
O2 32 5.4 × 10−26 487
Glucose 180 3 × 10−25 200
Hemoglobin 65,000 1 × 10−22 11
Bacteriophage 6.2 × 106 1 × 10−20 1.1
Tobacco mosaic virus 40 × 106 6.7 × 10−20 0.4
E. coli 2 × 10−15 0.0025

water molecules much more often. The result is that they are
in continual helter–skelter motion. Each solute molecule is
influenced by the water molecules around it, but not by other
solute molecules.

In Chap. 3, it was shown that the relative probability
for a particle to have energy u when it is in thermal equi-
librium with a reservoir at temperature T is given by a
Boltzmann factor:3P ∝ e−u/kBT . In Chap. 3, the Boltzmann
factor was used to show that if any energy term depends on
the square of some variable, then the average value of that
term is kBT /2. A particle with kinetic energy of translation
m(v2

x + v2
y + v2

z )/2 has an average energy kBT /2 for each
of the three terms, or a total translational kinetic energy of
3kBT /2. This is true regardless of the mass of the particle.
Any particle in thermal equilibrium with a reservoir (which
can be the surrounding fluid) will move with a mean square
velocity given by4

v2 = 3kBT

m
. (4.12)

The square root of v2 is called the root-mean-square or
rms velocity. It decreases with increasing mass of the parti-

cle. Table 4.2 shows values of vrms = (
v2
)1/2

for different
particles at body temperature.

This movement of microscopic-sized particles, resulting
from bombardment by much smaller invisible atoms, was
first observed by the English botanist Robert Brown in 1827
and is called Brownian motion. Solute particles are also sub-
ject to this random motion. If the concentration of particles
is not uniform, there will be more particles wandering from
a region of high concentration to one of low concentration
than vice versa. This motion is called diffusion.

3 The Boltzmann factor provided Jean Perrin with the first means to de-
termine Avogadro’s number. The density of particles in the atmosphere
is proportional to exp(−mgy/kBT ), where mgy is the gravitational po-
tential energy of the particles. Using particles for which m was known,
Perrin was able to determine kB for the first time. Since the gas con-
stant R was already known, Avogadro’s number was determined from
the relationship R = NAkB . See Problem 12.
4 The average velocity is v̄x = 0, since a particle with a given speed
moves with equal probability to the left or right.
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In the next several sections, we study random motion and
diffusion, first for a gas and then for a liquid.

4.4 Motion in a Gas: Mean Free Path and
Collision Time

It is possible to define a mean free path, which is the aver-
age distance a particle travels between successive collisions,
and a collision time, the average length of time between col-
lisions. Consider a collection of N0 molecules. The number
that have moved distance x without suffering a collision is
N(x). For short distances dx, the probability that a molecule
collides with another molecule is proportional to dx: call
it (1/λ)dx. Then, on the average, the number of molecules
having their first collision between x and x + dx is dN =
−N(x)(1/λ)dx. This is the familiar equation for exponen-
tial decay. The number of molecules surviving without any
collision is N(x) = N0e

−x/λ.

To compute the average distance traveled by a molecule
between collisions, we multiply each possible value of x by
the number of molecules that suffer their first collision be-
tween x and x + dx. Since N(x) is the number surviving at
distance x, and dx/λ is the probability that one of those will
have a collision between x and x + dx, the mean value of x

is

x = 1

N0

∫ ∞

0
xN(x)

1

λ
dx.

With the substitutions s = x/λ and N(x) = N0e
−s , this can

be written as

x = λ

∫ ∞

0
e−ss ds (4.13)

= −λ
[
e−s(s + 1)

]∞
0 = λ.

Thus λ is the mean free path.
A similar argument can be made for the length of time

that each molecule survives before being hit. The probability
that a molecule is hit during a short time dt is proportional
to dt : call it (1/tc)dt . The number of molecules surviving a
time t is given by N = N0e

−t/tc , and the mean time between
collisions can be calculated as above. It is tc, which is called
the collision time. The number of collisions per second is the
collision frequency, 1/tc.

It is possible to estimate the mean-free path and the col-
lision frequency. Consider a particle of radius a1 moving
through a dilute gas of other particles of radius a2. For con-
venience, imagine that particle 1 is moving and that all the
other particles are fixed in position. The path of the first
particle is shown in Fig. 4.6. If the center of one of these
other molecules lies within a distance a1 + a2 of the moving

Fig. 4.6 A particle of radius a1 moves through a gas of particles of ra-
dius a2. A collision will occur if the center of another particle lies within
a distance a1 + a2 of the trajectory of the particle under consideration

molecule, there will be a collision. The effect is the same as
if the moving particle had radius a1 + a2 and all the other
particles were points. In moving a distance x, the particle
sweeps out a volume V (x) = π(a1 + a2)

2x. On average,
when the particle has traveled a mean-free path there is one
collision. The average number of gas particles in the volume
V (λ) = π(a1 + a2)

2λ is therefore 1. The average number of
particles per unit volume is C. Thus 1 = Cπ(a1 + a2)

2λ, or

λ = 1

π(a1 + a2)2C
. (4.14)

The quantity π(a1+a2)
2 is the area of a circle. It is called the

cross-section for the collision of these particles. The concept
of cross-section is used extensively in Chap. 15.

This estimation is somewhat crude in its assumption that
only one molecule is moving. If all the molecules are of the
same kind then the factor 1 in the numerator is replaced by
2−1/2 = 0.707 (Reif 1965, p. 471).

For a gas at standard temperature and pressure, the vol-
ume of 1 mol is 22.4 l = 22.4 × 10−3 m3, so C = 2.7 ×
1025 m−3. If a1 = a2 = 0.15 nm, then Eq. 4.14 can be used
to calculate the mean free path:

λ = 1

(3.14)(.3 × 10−9)2 m2(2.7 × 1025 m−3)

= 0.13μm.

For a gas at standard temperature and pressure, the mean-
free path is about 1000 times the molecular diameter, and the
assumption of infrequent collisions is justified.

The collision time can be estimated by saying that

tc = λ

v
,

where v is the average speed of the molecules. Using the rms
velocity for v, we can use Eq. 4.12 to write

tc ≈ λ

(
m

3kBT

)1/2

. (4.15)
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The important feature of this is the dependence on m1/2 and
on λ. For air at room temperature, tc = 2 × 10−10 s.

4.5 Motion in a Liquid

The assumptions of the previous section do not hold in a liq-
uid, in which the particle is being continually bombarded by
neighbors. Blindly applying Eq. 4.14 to water, we can use
the fact that 1 mol is 18 g and occupies 18 cm3, to obtain
λ = 0.1 nm, so that a/λ ≈ 1, and the assumptions behind
the derivation break down. Estimating the collision time with
Eq. 4.15 gives a value that is a factor of 1000 less than for the
gas, or 10−13 s.

Although these estimates of the mean-free path and the
collision time are undoubtedly wrong, the concepts appear to
be valid. Computer simulations of molecular collisions show
that the distribution of free paths is exponential even though
the mean-free path is only a fraction of a molecular diameter.
In Sect. 4.12, we will regard diffusion as a random walk of
the diffusing particles and relate the diffusion constant to the
mean-free path and collision time. Equations 4.14 and 4.15
can then be used to show that the diffusion constant should
be inversely proportional to the square of the particle ra-
dius. This has been verified experimentally for the diffusion
of certain liquids. Evidence for the validity of this random-
walk model for diffusion in liquids has been summarized by
Hildebrand et al. (1970, pp. 36–39).

A particle in a liquid is subject to a fluctuating force F(t),
which is random in magnitude and direction. The particle
begins to move in response to this force. However, once it has
begun to move, it suffers more collisions in front than behind,
so the force slows it down. As the particle can neither stay at
rest nor continue to move in the same direction, it undergoes
a random, zig-zag motion with average translational kinetic
energy 3kBT /2. The mean square velocity is not zero, but
the mean vector velocity is zero.

For each particle, Newton’s second law is m(dv/dt) =
F(t). This is not very useful as it stands. To make it more
tractable, consider a particle with average velocity v. (The
average means that an ensemble of identically prepared par-
ticles is examined.) The particle has more collisions on the
front that slow it down. We therefore break up F(t) into two
parts: an average drag force, which will be the same for all
the particles in the ensemble, and a rapidly fluctuating part
g(t), which will vary with time and from particle to particle.
Newton’s second law is then m(dv/dt) = (drag force)+g(t),
where g(t) is random in direction. The drag force will be zero
when v is zero. For average velocities that are not too large,
it can be approximated by a linear term:

(drag force) = −β v.

With this approximation, Newton’s second law is known as
the Langevin equation:

m
dv
dt

= −β v + g(t). (4.16)

(If the liquid is moving, the drag force will be zero when
the particle has the same average velocity as the liquid. So
v can be interpreted as the relative velocity of the particle
with respect to the liquid.) This equation often has another
term in it, which does not average to zero and which rep-
resents some external force such as gravity that acts on all
the particles. This approximate equation can be solved in
some cases, though with difficulty, and has formed the ba-
sis for some treatments of the motion of large particles in
fluids. With suitable interpretation, it can describe motion of
the fluid molecules themselves.5 In particular, when dealing
with molecular motion it is necessary to consider the fact that
the molecules do not move independently of one another.

For a Newtonian fluid (Eq. 1.33) with viscosity η, one
can show (although it requires some detailed calculation,6

see Problem 46 in Chap. 1) that the drag force on a spherical
particle of radius a is given by

Fdrag = −βv = −6πηav. (4.17)

This equation is valid when the sphere is so large that there
are many collisions of fluid molecules with it and when the
velocity is low enough so that Reynolds number is small.
This result is called Stokes’ law.

If the sphere is not moving in an infinite medium but is
confined within a cylinder, then a correction must be ap-
plied.7 In that case, the viscous drag depends on the velocity
of the spherical particle through the fluid, the average veloc-
ity of the fluid through the cylinder, and the distance of the
particle from the axis of the cylinder.8

5 See, for example, Pryde (1966, p. 161).
6 This is an approximate equation. See Barr (1931, p. 171).
7 An early correction for particles on the axis of a cylinder is found
in Barr (1931, p. 183). More recent work is by Levitt (1975), by Bean
(1972), and by Paine and Scherr (1975).
8 Stokes’ law is valid for a particle in a gas if the mean free path
is much less than the particle radius a, so that many collisions with
neighboring molecules occur. At the other extreme, a mean free path
much greater than the particle radius, the drag force turns out to be
Fdrag = αηa(a/λ)v. Although this will not be directly useful to us in
considering biological systems, it is mentioned here to show how im-
portant it is to understand the conditions under which an equation is
valid. Although the dimensions of this new equation are unchanged (we
have introduced a factor a/λ, which is dimensionless), the drag force
depends on a2 instead of on a. The reason for the difference is that col-
lisions are now infrequent and that the probability of a collision that
imparts some average momentum change is proportional to the pro-
jected cross-sectional area of the sphere, πa2. In the regime of interest
to us, in which there are many collisions, we would not expect the force
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Fig. 4.7 An example of diffusion. Each molecule at A or B can wander
with equal probability to the left or right. There are more molecules at
A to wander to the right than there are at B to wander to the left. There
is a net flow of molecules from A to B

4.6 Diffusion: Fick’s First Law

Diffusion is the random movement of particles from a region
of higher concentration to a region of lower concentration.
The diffusing particles move independently of one another;
they may collide frequently with the molecules of the fluid
in which they are immersed, but they rarely collide with one
another. The surrounding fluid may be at rest, in which case
diffusion is the only mechanism for transport of the solute,
or it may be flowing, in which case it carries the solute along
with it (solvent drag). Both effects can occur together.

We first consider diffusion from a macroscopic point of
view and write down an approximate differential equation to
describe it. We then obtain a second equation describing dif-
fusion by combining this with the continuity equation. After
discussing some solutions to these equations, we look at the
problem from a microscopic point of view, considering the
random motion of the particles, and show that we get the
same results.

Suppose that the surrounding solvent does not move. If
the solute concentration is completely uniform, there is no
net flow. As many particles wander to the left as to the
right, and the concentration remains the same. There will
be local fluctuations in concentration, analogous to those we
have seen in the preceding chapter for fluctuations in the
concentration of a gas, but that is all.

However, if the concentration is higher in region A than in
region B to the right of it, there are more particles to wander
to the right from A to B than there are to wander to the left
from B to A (Fig. 4.7). If the problem is one-dimensional,
there is no net flow if ∂C/∂x = 0, but there is flow if
∂C/∂x �= 0. If the concentration difference is small, then the

to depend on λ. We hope that this will convince you of the danger in
using someone else’s equation without understanding it.

flux density j is linearly proportional to the concentration
gradient ∂C/∂x. The equation is

jx = −D
∂C

∂x
. (4.18a)

Constant D is called the diffusion constant. The units of
D are m2 s−1, as may be seen by noting that the units
of j are (something) m−2 s−1 and the units of ∂C/∂x are
(something) m−4. This relationship is called Fick’s first law
of diffusion, after Adolf Fick, a German physiologist in the
last half of the nineteenth century. The minus sign shows that
the flow is in the direction from higher concentration to lower
concentration: if ∂C/∂x is positive, the flow is in the −x

direction.
If the actual process is not linear, this can be thought of as

the first term of a Taylor’s series expansion (Appendix D).
Fick’s first law is one of many forms of the transport equa-

tion. Other forms are shown in Table 4.3. The units of the
constant are different for the last three entries in the table
because the quantity that appears on the right has different
units than the quantity on the left. In each case, however, a
fluence rate or flux density (of particles, mass, energy, elec-
tric charge, or momentum) is related to a rate of change
of some other quantity with position. This rate of change
is called the gradient of the quantity. The gradient is often
called the driving force. The concentration gradient or driv-
ing force causes the diffusion of particles; the temperature
gradient “causes” the heat flow; the electric voltage gradient
“causes” the current flow; the velocity gradient “causes” the
momentum flow.

The diffusive fluence rate can be related to the gradient of
the chemical potential of the solute. With the notation C1 =
Cs and C2 − C1 = �Cs, Eq. 3.48 can be rewritten as

�μs = kBT ln(C2/C1) = kBT ln(1 + �Cs/Cs)

≈ kBT �Cs/Cs,

from which �Cs ≈ Cs�μs/kBT , so

∂Cs

∂x
= Cs

kBT

∂μs

∂x

and

jsx = −DCs

kBT

∂μs

∂x
. (4.18b)

The solute flux density is proportional to the diffusion
constant, the solute concentration, and the gradient in the
chemical potential per solute particle.

In three dimensions, the flow of particles can point in
any direction and have components jx , jy , and jz. An equa-
tion can be written for each component that is analogous to
Eq. 4.18a or 4.18b. We can write one vector equation instead
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Table 4.3 Various forms of the transport equation

Substance flowing Equation Units of j Units of the constant

Particles js = −D
∂C

∂x
m−2 s−1 m2 s−1

Mass jm = −D
∂ρ

∂x
kg m−2 s−1 m2 s−1

Heat jH = −κ
∂T

∂x
J m−2 s−1 or kg s−3 J K−1 m−1 s−1

Electric charge je = −σ
∂V

∂x
C m−2 s−1 C m−1 s−1 V−1 or Ω−1 m−1

Viscosity (y component of momentum transported in the x direction) jp = −η
∂vy

∂x
N m−2 or kg m−1 s−2 kg m−1 s−1 or Pa s

of three equations for the three components by defining x̂, ŷ,
and ẑ to be unit vectors along the axes. Then

jx x̂ + jy ŷ + jzẑ

= −D

(
∂C

∂x
x̂ + ∂C

∂y
ŷ + ∂C

∂z
ẑ
)

.

We have created a vector that depends on C(x, y, z, t) by
performing the indicated differentiations on C and multiply-
ing the results by the appropriate unit vectors. This vector
function is the gradient of C in three dimensions:

grad C = ∇C = ∂C

∂x
x̂ + ∂C

∂y
ŷ + ∂C

∂z
ẑ. (4.19)

Fick’s first law with this notation is

j = −D grad C = −D ∇C. (4.20)

Remember that this is simply shorthand for three equations
like Eq. 4.18a. If you feel a need to review vector calculus,
which deals with the divergence and gradient, an excellent
text is the one by Schey (2004).

4.7 The Einstein Relationship Between
Diffusion and Viscosity

Before we can apply Fick’s first law to real problems, we
must determine the value of the diffusion constant D. The
experimental determination of D is often based on Fick’s
second law of diffusion, which combines the first law with
the equation of continuity and is discussed in the next sec-
tion. It is closely related to the viscosity, as was first pointed
out by Albert Einstein. This is not surprising, since diffusion
is caused by the random motion of the particles under the
bombardment of neighboring atoms, and viscous drag is also
caused by the bombardment by neighboring atoms. What is
remarkable is that a general relationship between them can

Fig. 4.8 Particles drifting under the influence of a downward force Fext

be deduced quite easily by imagining just the right sort of
experiment.

Consider a collection of particles uniformly suspended in
a fluid at rest. Imagine that each particle is suddenly sub-
jected to an external force Fext (such as gravity) that acts in
the −y direction, as shown in Fig. 4.8. The particles will all
begin to drift downward, speeding up until the upward vis-
cous force on them balances the external force: Fext − β v =
0. In terms of magnitudes, Fext = βv.

Because these particles are all moving downward, there
is a downward flux density. With reference to Fig. 4.9, the
number of particles crossing area S in time �t will be those
within the cylinder of height v�t . That number is the con-
centration times the volume (Sv�t). Dividing by S and �t

gives

jdrift = −vC(y)ŷ.

As the particles move down, they deplete the upper region
of the fluid and cause a concentration gradient. This concen-
tration gradient causes an upward diffusion of particles, with
a flux density given by

jdiff = −D
∂C

∂y
ŷ.
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Fig. 4.9 Calculating the fluence rate of particles drifting downward

Equilibrium will be established when these two flux
densities are equal in magnitude:|jdrift| = |jdiff|,

|vC(y)| =
∣
∣∣∣D

∂C

∂y

∣
∣∣∣ . (4.21)

But equilibrium means that the particles have a Boltzmann
distribution in y, because their potential energy increases
with y (work is required to lift them in opposition to
Fext). For a constant Fext independent of y, the energy is
u(y) = Fexty, where Fext is the magnitude of the force. The
concentration is

C(y) = C(0)e−Fexty/kBT .

Therefore
∂C

∂y
= − Fext

kBT
C(y).

Inserting this in Eq. 4.21 gives v = DFext/kBT or D =
vkBT /Fext. In equilibrium, the magnitude of Fext is equal
to the magnitude of the viscous force f. Therefore D =
kBT v/f . Since the viscous force is proportional to the
velocity, |f | = |βv|,

D = kBT

β
. (4.22)

The derivation of this equation required only that the ve-
locities be small enough so that the linear approximations for
Fick’s first law and the viscous force are valid. It is indepen-
dent of the nature of the particle or its size. If in addition
the diffusing particles are large enough so that Stokes’ law is
valid, then β = 6πηa and

D = kBT

6πηa
. (4.23)

The diffusion constant is inversely proportional to the fluid
viscosity and the radius of the particle.

Combining Eqs. 4.18b and 4.22 shows that in terms of the
chemical potential,

jsx = −Cs

β

∂μs

∂x
.

Fig. 4.10 Viscosity of water at various temperatures. (Data are from
Weast 1972, p. F-36)

Sometimes minus the gradient of the chemical potential is
called the driving force. To see why, note that for solvent
drag, js = Csv, so βv = −∂μs/∂x is the driving force.

The viscosity of water varies rapidly with temperature, as
shown in Fig. 4.10. These values of viscosity and Eq. 4.23
have been used to calculate the solid lines for D vs a shown
in Fig. 4.11. Various experimental values are also shown. The
diffusion constant increases rapidly with temperature, so that
care must be taken to specify the temperature at which the
data are obtained. Since not all the molecules are spherical,
there is some uncertainty in the value of the particle radius a.

Figure 4.12 is a plot of D for particles diffusing in water
at 20 ◦C (293 K) vs. molecular weight M . Although the solid
line provides a rough estimate of D if M is known, scatter
is considerable because of varying particle shape. DNA lies
a factor of 10 below the curve, presumably because it is par-
tially uncoiled and presents a larger size than other molecules
of comparable molecular weight.

It is possible to measure the self-diffusion of water in wa-
ter by using a few water molecules in which one hydrogen
atom is radioactive and measuring how they diffuse. Water
has an unusually large self-diffusion constant.9

9 For self-diffusion (such as radioactively tagged water in water), a hy-
drodynamic calculation shows that β = 4πηa instead of 6πηa (Bird
et al. 1960, p. 514ff.).



4.8 Fick’s Second Law of Diffusion 95

10-11

2

3

4
5
6
7

10-10

2

3

4
5
6
7

10-9

2

3

4
5
6
7

10-8
D

 (
m

2  s
-1

) 

0.1
2 3 4 5 6 7

1
2 3 4 5 6 7

10

a (nm)

310 K

298 K

293 K

293 K (20º C)
298 K (25º C)

H2O 

Urea
O2 Mannitol, Glucose

Sucrose
Raffinose

Inulin

Ribonuclease

β-lactoglobin
Hemoglobin

Catalase

Fig. 4.11 Diffusion constant versus sphere radius a for diffusion in
water at three different temperatures. Experimental data at 20 ◦C (293
K) are from Benedek and Villars (2000, Vol. 2, p. 122). Data at 25 ◦C
(298 K) are from Weast (1972, p. F-47)

If all of the molecules shown had the same density, then
their radius would depend on M1/3 and the line would have
a slope of − 1

3 . The slope is steeper than this, suggest-
ing that the molecules are larger for large M than constant
density would predict. This increase in size may be par-
tially attributable to water of hydration. The precise values
of diffusion constants depend on many details of the par-
ticle structure; however, the lines in Fig. 4.12 provide an
order-of-magnitude estimate.

The assumption that the flux depends linearly on the
concentration gradient was an approximation. The diffusion
constant is found, as a result, to be somewhat concentration
dependent.

4.8 Fick’s Second Law of Diffusion

Fick’s first law of diffusion, Eq. 4.18a, is the observation that
for small concentration gradients, the diffusive flux density is
proportional to the concentration gradient: jx = −D ∂C/∂x.

If this is differentiated, one obtains ∂jx/∂x = −D ∂2C/∂x2.
Similar equations hold for the y and z directions. The
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Fig. 4.12 Diffusion constant versus molecular weight in daltons. (One
dalton is the mass of one hydrogen atom.) Data at 293 K are from
Benedek and Villars (2000, Vol. 2, p. 122). The 293-K solid line was
drawn by eye through the data; the line at 310 K was drawn parallel to
it using the temperature change in Eq. 4.23. Data scatter around the line
by about 30%, with occasional larger departures

equation of continuity, Eq. 4.2, is

−∂C

∂t
= ∂jx

∂x
+ ∂jy

∂y
+ ∂jz

∂z
.

If we combine these two equations, we get Fick’s second law
of diffusion, also known as the diffusion equation:

∂C

∂t
= D

(
∂2C

∂x2
+ ∂2C

∂y2
+ ∂2C

∂z2

)
. (4.24)

The first law relates the flux of particles to the concentra-
tion gradient. The second law tells how the concentration at
a point changes with time. It combines the first law and the
equation of continuity. The function on the right-hand side of
Eq. 4.24,

∂2C

∂x2
+ ∂2C

∂y2
+ ∂2C

∂z2
,

is called the Laplacian of C. It is often abbreviated as ∇2C

(read “del squared C”) in American textbooks or �C in
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European books. It is given in other coordinate systems in
Appendix L.

In principle, if C(x, y, z) is known at t = 0, Eq. 4.24
can be solved for C(x, y, z, t) at all later times. (We de-
velop a general, and sometimes useful, equation for doing
this below.) We may also look at this equation as a local
equation, telling how C changes with time at some point
if we know how the concentration changes with position in
the neighborhood of that point. The change of concentration
with position determines the flux j. The changes in flux with
position determine how the concentration changes with time.

There is extensive literature on how to solve the diffu-
sion equation (or the heat-flow equation, which is the same
thing).10 Instead of discussing a large number of techniques,
we show by substitution that a Gaussian or normal distribu-
tion function, spreading in a certain way with time, is one
solution to Eq. 4.24. In Sect. 4.14, we independently derive
the same solution from a random-walk model of diffusion.
An important feature of the Gaussian solution is that the
center of the distribution of concentration does not move.

For simplicity, consider the one-dimensional case. Take
the distribution to be centered at the origin and find those
conditions under which11

C(x, t) = N√
2πσ(t)

e−x2/2σ 2(t). (4.25)

We can view the one-dimensional case in either of two ways.
If it represents diffusion along a pipe, then C(x, t) is the
number of particles per unit length in a slice between x and
x +dx, and N is the total number of particles. If it represents
a three-dimensional problem with concentration changing
only in the x direction, then C(x, t) is the number of par-
ticles per unit volume and N is the number of particles per
unit area.

Eq. 4.25 is a solution to the one-dimensional version of
Eq. 4.24:

∂C

∂t
= D

∂2C

∂x2
. (4.26)

To check this, we will need various derivatives of Eq. 4.25.
They can be evaluated using the chain rule:

∂C

∂t
= N√

2π

(
− 1

σ 2
e−x2/2σ 2 + x2

σ 4
e−x2/2σ 2

)
dσ

dt
,

∂C

∂x
= − N√

2π
e−x2/2σ 2 x

σ 3
,

∂2C

∂x2
= N√

2π

(
− 1

σ 3
e−x2/2σ 2 + x

σ 3
e−x2/2σ 2 x

σ 2

)
.

10 See, for example, Crank (1975) or Carslaw and Jaeger (1959).
11 The properties of the Gaussian function, Eq. 4.25, are discussed in
Appendix I.

When these are substituted in Eq. 4.26, the result is

N√
2πσ 2

e−x2/2σ 2
(

−1 + x2

σ 2

)
dσ

dt

= D
N√

2πσ 3
e−x2/2σ 2

(
−1 + x2

σ 2

)
.

We can divide both sides of this equation by

N√
2πσ 2

e−x2/2σ 2

because this factor is never zero. The result is
(

x2

σ 2
− 1

)
dσ

dt
= D

σ

(
x2

σ 2
− 1

)
.

We can divide by
(
x2/σ 2 − 1

)
for all values of x except x =

±σ . These values of x are where the second derivative of C

vanishes; at these points, ∂C/∂t = 0 for any value of σ . At
all other points, the solution will satisfy the equation only if

σ
dσ

dt
= D.

This can be integrated to give
∫

σ dσ =
∫

D dt

or
1

2
σ 2(t) = Dt + const.

Multiply through by 2 and observe that σ 2(0) = 2const, so
that

σ 2(t) = 2Dt + σ 2(0). (4.27)

If the concentration is initially Gaussian with variance σ 2(0),
after time t it will still be Gaussian, centered on the same
point, with a larger variance given by Eq. 4.27. Figure 4.13
shows this spreading in a typical case. At still earlier times,
the concentration would have been even more narrowly
peaked. In the limit when σ(t) is zero, all the particles are at
the origin, giving an infinite concentration. This is, of course,
impossible. However, all the particles could be very close to
the origin, giving a very tall, narrow curve for C(x).

The width of the curve, determined by σ, increases as the
square root of the time. A square-root increase is less rapid
than a linear increase, reflecting the fact that as the particles
spread out, the concentration does not change as rapidly with
distance, so that the flux and the rate of spread decrease.

Note that the rate of change of concentration with time
depends on the second derivative of the concentration with
distance. This is because the rate of buildup is the flux into a
region at some surface minus the flux out through a nearby
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Fig. 4.13 Spreading of particles by diffusion assuming D = 1

surface; each flux is proportional to the gradient of the con-
centration, so the buildup is proportional to the difference in
gradients or the second derivative.

In the problems at the end of this chapter, you will dis-
cover that diffusion of small particles through water for a
distance of 1 μm takes about 1 ms, and diffusion through
100 μm takes 1002 times as long, or 10 s. The times are
even longer for larger particles. Thus, diffusion is an effec-
tive mode of transport for distances comparable to the size
of a cell, but it is too slow for larger distances. This is why
multicelled organisms evolve circulatory systems.

4.9 Time-Independent Solutions

In this section, we develop general solutions for diffusion and
solvent drag when particles are conserved and the concentra-
tion and fluence rate are not changing with time. The system
is in the steady state. The continuity equation, Eq. 4.8, then
becomes div j = 0. We consider the solutions for C and j in
one, two, and three dimensions when the symmetry is such
that j depends on only one position coordinate, x or r . These
solutions are sometimes appropriate models for limited re-
gions of space. There is always some other region of space,
serving as a source or sink for the particles that are diffusing,
where the model does not apply.

The behavior of j can be deduced from the continuity
equation. In one dimension, such as flow in a pipe or between
two infinite planes, the continuity equation is

djx

dx
= 0, (4.28)

which has a solution jx = b1 where b1 is a constant. (The
subscript denotes the constant for the one-dimensional case.)

The total flux or current i is constant, so

jx = i

S
, (4.29)

where S is the area perpendicular to the flow.
In two dimensions, we consider a problem with cylindri-

cal symmetry and consider only flow radially away from or
toward the z-axis. In that case, the equation in Table L.1 for
the divergence becomes

1

r

d

dr
(rjr ) = 0, (4.30)

from which
d

dr
(rjr ) = 0. (4.31)

This means that (rjr ) is constant, or

jr = b2

r
. (4.32)

This is valid everywhere except along the z-axis, where there
is a source of particles and the divergence is not zero. The
total current i leaving a region of length L parallel to the z

axis is also constant,

jr = i

2πLr
. (4.33)

In three dimensions with spherical symmetry, the radial
component of the divergence is

1

r2

d

dr
(r2jr ) = 0,

from which
d

dr
(r2jr ) = 0, (4.34)

so that

jr = b3

r2
(4.35)

or

jr = i

4πr2
. (4.36)

This is valid everywhere except at the origin, where there is
a source of particles.

These results depend only on continuity, time indepen-
dence, and the assumed symmetry. They are true for diffu-
sion, solvent drag, or any other process. Note the progression
in going to higher dimensions: in n dimensions rn−1jr is
constant.

Now consider how the concentration varies in the two
limiting cases of pure solvent drag and pure diffusion.
(Sect. 4.12 discusses what happens when both transport
modes are important.)
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For solvent drag, the velocity of the solvent is the volume
flux density jv , which also satisfies the continuity equation.
In one dimension jv = iv/S. In two dimensions jv =
iv/2πLr , and in three dimensions jv = iv/4πr2. In each
case

Cs = js

jv
= is

iv
. (4.37)

Since Cs is constant, there is no diffusion.
For the case of diffusion, j = −D∇C. In one dimension

this becomes
dC

dx
= − i

SD
,

which is integrated to give

C = − i

SD
x + b1,

where b1 is the constant of integration. The concentration
varies linearly in the one-dimensional case. If i is positive
(flow in the +x direction), C decreases as x increases. Often
the concentration is known at x1 and x2, and one wants to
know the current. We can write

C1 = − i

SD
x1 + b1,

C2 = − i

SD
x2 + b1,

and solve for i:

i = (C1 − C2)

(x2 − x1)
SD. (4.38a)

In two dimensions

dC

dr
= − i

2πLD

1

r
,

and the solution is

C(r) = − i

2πLD
ln r + b2.

We can again solve for the current when the concentrations
are known at two different radii:

i = 2πLD(C1 − C2)

ln(r2/r1)
= 2πLD(C2 − C1)

ln(r1/r2)
. (4.38b)

Diffusion in two dimensions with cylindrical symmetry has
been used to model the concentration of substances in the
region between two capillaries.

In three dimensions, the diffusion equation is

dC

dr
= − i

4πDr2
,

which has a solution

C(r) = i

4πDr
+ b3.

The current in terms of the concentration is

i = 4πD [C(r1) − C(r2)]

1/r1 − 1/r2
. (4.38c)

The three-dimensional case is worth further discussion,
because it can help us to understand the diffusion of nutrients
to a single spherical cell or the diffusion of metabolic waste
products away from the cell. Consider the case in which the
cell has radius r1 = R, the concentration at the cell surface
is C0, and the concentration at infinity is zero. Then

i = 4πD C0R, (4.39a)

C(r) = C0R

r
, (4.39b)

jr = C0DR

r2
. (4.39c)

The particle current depends on the radius of the cell, R,
not on R2. This very important result is not what we might
naively expect. Diffusion-limited flow of solute in or out of
the cell is proportional not to the cell surface area, but to
the cell radius. The reason is that the particle movement is
limited by diffusion in the region around the cell, and as the
cell radius increases, the concentration gradient decreases.
(It is possible for the rate of particle migration into the cell
to be proportional to the surface area of the cell if some other
process, such as transport through the cell membrane, is the
rate-limiting step.)

If diffusion is toward the cell, the concentration is C0 in-
finitely far away. At the cell surface, every diffusing molecule
that arrives is assumed to be captured, and the concentration
is zero. The solutions are then

i = −4πDC0R, (4.40a)

C(r) = C0 (1 − R/r) , (4.40b)

jr (r) = −C0DR

r2
. (4.40c)

4.10 Example: Steady-State Diffusion to a
Spherical Cell and End Effects

In the preceding section, we considered diffusion from in-
finitely far away to the surface of a spherical cell where the
concentration was zero. We now add the effect of steady-
state diffusion through a series of pores or channels in the
cell membrane. This will lead to a very important result: it
does not require very many pores per unit area in the cell
membrane to “keep up with” the rate of diffusion of chem-
icals toward or away from the cell. The result is important
for understanding how cells acquire nutrients, how bacteria
move in response to chemical stimulation (chemotaxis), and
how the leaves of plants function.
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Fig. 4.14 The diffusion flux from the disk of radius a and concentra-
tion C1 to the infinite sheet where the concentration is C2 is given by
i = 4Da(C1 − C2)

Fig. 4.15 End effects in diffusion through a pore

To develop the model we need one more result: the current
due to diffusion from a disk of radius a where the concentra-
tion is C1 to a plane far away where the concentration is C2.
The disk is embedded in the surface of an impervious plane
as shown in Fig. 4.14, so particles cannot cross to the region
behind the disk. The current is (Eq. 6.97)

i = 4Da (C1 − C2). (4.41)

It is proportional to the radius of the disk, not its surface area.
(Obtaining this result requires solving the diffusion equation
in three dimensions. See Carslaw and Jaeger (1959), p. 215.)

Consider diffusion through a pore of radius Rp which
pierces a membrane of thickness �Z, including diffusion in
the medium on either side of the membrane (Fig. 4.15). If
the material on either side were well stirred, there would be a
uniform concentration C1 on the left and C4 on the right. Be-
cause it is not stirred, there is diffusion in the exterior fluid.
Let C1 and C4 be measured far away, and call the concen-
trations at the ends of the pore C2 on the left and C3 on the
right.

Fig. 4.16 Diffusive end effects for a spherical cell pierced by pores

Equation 4.38a gives the diffusion flux within the pore

i = πR2
pD (C2 − C3)

�Z
. (4.42)

Diffusion from C1 to C2 is given by Eq. 4.41. It is

i = 4D Rp(C1 − C2), (4.43)

while from C3 to C4, it is

i = 4D Rp(C3 − C4). (4.44)

In the steady state, there is no buildup of particles and
i is the same in each region. We can solve Eqs. 4.42–4.44
simultaneously to relate i to concentrations C1 and C4:

i = πR2
p D

�Z + 2πRp/4
(C1 − C4). (4.45)

This has the same form as Eq. 4.42, except that the membrane
thickness has been replaced by an effective thickness

�Z′ = �Z + 2
πRp

4
. (4.46)

An extra length πRp/4 has been added at each end to correct
for diffusion in the unstirred layer on each side of the pore.
This correction is important when the pore length is less than
two or three times the pore radius.

Now consider diffusion in or out of the spherical cell
shown in Fig. 4.16. The radius of the cell is B. The mem-
brane has thickness �Z and is pierced by a total of N pores,
each of radius Rp. Within the cell, we do not know the de-
tails of the concentration distribution, since they depend on
what sort of chemical reactions are taking place and where.
But we will assume that at the radius where diffusion to the
pores becomes important, the concentration is C1. At the in-
ner face of each pore it is C2, at the outer face it is C3, and
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over an approximately spherical surface of radius B ′ it is C4.
Far away, the concentration is C5. As a result, there are four
separate regions in which we must consider diffusion. The
first is from C1 to the opening of each pore; the second is
through the pore; third, there is diffusion from the outer face
of each pore to C4; and, finally, there is diffusion from the
spherical object of radius B ′ to the surrounding medium.

4.10.1 Diffusion Through a Collection of
Pores, Corrected

The first three processes are taken into account by applying
the end correction to each end of the pores. The flow through
one pore is, using Eq. 4.45,

ipore = πR2
p D

�Z′ (C1 − C4), (4.47)

where �Z′ is given by Eq. 4.46. Since there are N pores in
all, the total flow through the cell membrane is

icell = Nipore = NπR2
p D

�Z′ (C1 − C4). (4.48)

The diffusion from C4 to infinity is given by Eq. 4.38c.

icell = 4πD B ′(C4 − C5), (4.49)

where B ′ is the effective radius for diffusion to the sur-
rounding medium. It is slightly larger than B. If we equate
Eqs. 4.48 and 4.49, solve for C4 and substitute this result
back in Eq. 4.49, we get

icell = 4πDB ′ NR2
p

NR2
p + 4B ′�Z′ (C1 − C5). (4.50)

This can be rewritten as

icell = NπR2
pD

�Zeff
(C1 − C5), (4.51)

where

�Zeff = �Z + 2
πRp

4
+ N

R2
p

4B ′ . (4.52)

The first term in �Zeff is the membrane thickness. The
second term corrects for diffusion from the end of each pore
to the surrounding fluid; the last corrects for diffusion away
from the cell into the surrounding medium. The third term
can be expressed as

NR2
p

4B ′ = B

B ′ Bf,

where

f = NπR2
p

4πB2
(4.53)

is the fraction of the cell surface occupied by pores.
We now assume that B = B ′. (Problem 33 shows that the

difference is usually very small.) The effective pore length is
then

�Zeff = �Z + 2

(
πRp

4

)
+ Bf. (4.54)

Equations 4.51–4.54 treat the problem as diffusion
through a collection of N pores, corrected for diffusion
outside the pore by increasing the length of the pore.

4.10.2 Diffusion from a Sphere, Corrected

It is also useful to write these results as the equation for diffu-
sion to or from a sphere, Eqs. 4.39, corrected for the diffusion
through the cell membrane. Writing it in this form gives us
insight into how much of the cell membrane must be occu-
pied by pores for efficient particle transfer. Solve Eq. 4.53
for NR2

p and substitute the result in Eq. 4.50. The result is

icell = 4πD B ′B2 f (C1C5)

B2f + B ′�Z′

= 4πBD (C1 − C5)

(
B ′

B

)
f

f + (B ′/B)(�Z′/B)
.

(4.55)

This has the form of diffusion to the sphere multiplied by a
correction factor. With B ′/B again approximated by unity,
the correction factor is

f

f + �Z′/B
.

The correction factor is zero when f is zero and becomes
nearly unity when the entire cell surface is covered by pores.

4.10.3 HowMany Pores Are Needed?

We now ask what fraction of the cell’s surface area must be
occupied by pores. The cell will receive half the maximum
possible diffusive flow when the fraction f = �Z′/B. For
a typical cell with B = 5 μm and �Z = 5 nm, f = 0.001.
This is a surprisingly small number, but it means that there
is plenty of room on the cell surface for different kinds of
pores. There are two ways to understand why this number
is so small. First, we can regard the ratio of concentration
difference to flow as a resistance, analogous to electrical
resistance. The total resistance from the inside of the cell to
infinity is made up of the resistance from the outside of the
cell to infinity plus the resistance of the parallel combination
of N pores. Once the resistance of this parallel combination
is equal to the resistance from the cell to infinity, adding
more pores in parallel does not change the overall resistance
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very much. The second way to look at it is in terms of the
random walks of the diffusing solute molecules. Once a
solute molecule has diffused into the neighborhood of the
cell, it undergoes many random walks. When it strikes the
cell membrane, it wanders away again, to return shortly and
strike the cell membrane someplace else. If the first contact
is not at a pore, there are more opportunities to strike a pore
on a subsequent contact with the surface.

4.10.4 Other Applications of theModel

The same sort of analysis that we have made here can be
applied to a plane surface area, such as the underside of a leaf
(Meidner and Mansfield 1968) and to a cylindrical geometry,
such as a capillary wall.

The analysis can also be applied to the problem of bac-
terial chemotaxis—the movement of bacteria along concen-
tration gradients. This problem has been discussed in detail
by Berg and Purcell (1977).12 The cell detects a chemical
through some sort of chemical reaction between the chemical
and the cell. Suppose that the reaction takes place between
the chemical and a binding site of radius Rp on the surface
of the cell. We want to know what fraction of the surface area
of the cell must be covered by binding sites. This is similar to
the diffusion problem of Eq. 4.55, except that if the binding
site is on the surface of the cell, there is no diffusion through
a pore of length �Z. The effective pore length �Z′ is just
the end correction for one end of the pore, πRp/4. Half of
the maximum possible flow to the binding site occurs when

f = πRp/4B.

A typical bacterium might have a radius B = 1 μm; the
binding site might have a radius of a few atoms or 1 nm. With
these values f = 7.9 × 10−4. The number of sites would be
f 4πB2/πR2

p = πB/Rp = 3000. There is plenty of room on
the cell surface for many different binding sites, each specific
for a particular chemical.

An E. coli cell typically travels 10–20 body lengths per
second. It detects concentration gradients as changes with
time. Because of this, Berg and Purcell concluded that a uni-
form distribution of chemoreceptors over the surface of the
cell would be optimum. It would give the highest probabil-
ity of capture of a chemical molecule that wandered near
the cell. However, studies of E. coli have shown that the re-
ceptors are located near the poles of the cell [Maddock and
Shapiro (1993); see also the comment by Parkinson and Blair
(1993), who point out that the reduced efficiency of sensors
could make sense if “eating” or transport into the cell is more
important than “smelling.”]

12 See also Berg (1975, 1983) and Purcell (1977).

The Berg–Purcell model has been extended to provide a
time-dependent solution and allow the receptors not to be
perfectly absorbing (Zwanzig and Szabo 1991) and also to
have a process in which the molecules attach to the mem-
brane and then diffuse in the two-dimensional membrane
surface (Wang et al. 1992; Axelrod and Wang 1994).

4.11 Example: A Spherical Cell Producing a
Substance

Here is a simple model that extends the arguments of
Sect. 4.9 to develop a steady-state solution for a spherical cell
excreting metabolic products. The cell has radius R. The
concentration of some substance inside the cell is C(r), inde-
pendent of time t and the spherical coordinate angles θ and
φ. (Spherical coordinates are described in Appendix L.) The
substance is produced at a constant rate Q particles per unit
volume per second throughout the cell and leaves through
the surface of the cell at a constant fluence rate j (R), in-
dependent of t , θ , and φ. Assume that all transport is by
pure diffusion and the diffusion constant for this substance
is D everywhere inside and outside the cell. The material in-
side the cell is not well stirred. (For this model we assume
that the cell membrane does not affect the transport process.
We could make the model more complicated by introducing
the features described in Sect. 4.10.) With these assumptions,
the cell can be modeled as an infinite homogeneous medium
with diffusion constant D that contains a spherical region
producing material at rate Q per unit volume per second.

We first find the concentration C(r) inside and outside
the cell by using a technique that only works because of the
spherical symmetry. We use the continuity equation in the
form Eq. 4.10b. Because the concentration is not changing
with time, the total amount of material flowing through a
spherical surface of radius r is equal to the amount produced
within that sphere. For r < R

4πr2j (r) = 4πr3Q/3,

j (r) = Qr/3.

For r > R

4πr2j (r) = 4πR3Q/3,

j (r) = QR3/3r2.

Using the fact that j (r) = −DdC/dr , we obtain for r < R

dC

dr
= − Q

3D
r,

C(r) = −Qr2

6D
+ b1,
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where b1 is the constant of integration. For r > R,

dC

dr
= − QR3

3D r2
,

C(r) = QR3

3D r
+ b2.

The fact that the concentration must be zero far from the cell
means that b2 = 0. Matching the two expressions at r = R

gives

−QR2/6D + b1 = QR2/3D,

b1 = QR2/2D,

so that

C(r) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Q

6D
(3R2 − r2), r ≤ R

QR3

3D r
, r ≥ R.

The other method is more general and can be extended to
problems that do not have spherical symmetry. We find solu-
tions to Fick’s second law, modified to include the production
term Q and with the concentration not changing with time:

0 = ∂C

∂t
= D ∇2C + Q,

∇2C = −Q

D
.

In spherical coordinates (Appendix L; Schey 2004) this is

1

r2

∂

∂r

(
r2 ∂C

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂C

∂θ

)

+ 1

r2 sin2 θ

(
∂2C

∂φ2

)
= −Q

D
.

Since there is no angular dependence, we have separate
equations for each domain:

1

r2

d

dr

(
r2 dC

dr

)
=

⎧
⎪⎨

⎪⎩

−Q

D
, r < R

0, r > R.

It is necessary to solve each equation in its domain, and then
at the boundary require that C be continuous and also that j

and therefore dC/dr be continuous. For r < R we get the
following (b1 and b2 are constants of integration):

r2 dC

dr
= −Qr3

3D
+ b1,

dC

dr
= −Qr

3D
+ b1

r2
,

C(r) = −Qr2

6D
− b1

r
+ b2.

Since the concentration is finite at the origin, b1 = 0:

C(r) = b2 − Qr2

6D
, r < R.

For r > R, we can use the general solution with Q = 0 and
different constants:

C(r) = −b′
1

r
+ b′

2.

Far away, the concentration is zero, so b′
2 = 0. Matching

dC/dr at the boundary gives

−QR

3D
= b′

1

R2
, b′

1 = −Q
R3

3D
.

Matching C(r) at the boundary gives

−QR2

6D
+ b2 = −b′

1

R
.

Putting all of this together gives the same expression for the
concentration we had earlier. This technique is a bit more
cumbersome, but there are many mathematical tools to ex-
tend this technique to cases where there is not spherical
symmetry and where Q is a function of position. These ad-
vanced techniques can also be used when C is changing with
time.

4.12 Drift and Diffusion in One Dimension

The particle fluence rate due to diffusion in one dimension is
jdiff = −D (∂C/∂x). That of particles drifting with velocity
v is jdrift = vC. The total flux density or fluence rate is the
sum of both terms:

js = −D
∂C

∂x
+ vC. (4.56)

The homogeneous (js = 0) solution was discussed in
Sect. 4.7, where cancellation of these two terms in equi-
librium was used to derive the relationship between the
diffusion constant and viscosity. Using the techniques of
Appendix F, we can write the homogeneous solution as

C(x) = Ae(v/D)x. (4.57)

This can be used to solve the problem of js = const when
the concentration is C0 at x = 0 and C′

0 at x = x1. C(x)

must vary in such a way that the total flux density, the sum of
the diffusive and drift terms, is constant. Suppose both terms
give flow from left to right. If the concentration is high, then
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the drift flux density is large and the concentration gradient
must be small. If the concentration is small, the diffusive flux,
and hence the gradient, must be large. To develop a formal
solution, write Eq. 4.56 as

dC

dx
− 1

λ
C = −js

D
, (4.58)

where λ = D/v has the dimensions of length and can be
interpreted as the distance over which diffusion is important.
If the velocity is zero, diffusion is important everywhere and
λ = ∞. If the velocity is very large, λ → 0. Since v can be
either positive or negative, so can λ. A particular solution to
Eq. 4.58 is

C(x) = λjs

D
= js

v
.

The general solution is the sum of the particular solution and
the homogeneous solution, Eq. 4.57:

C(x) = Aex/λ + js/v. (4.59)

The situation is slightly different than what we encoun-
tered in Chap. 2. We must determine two constants, A and
js , given the two concentrations C0 and C′

0. Writing Eq. 4.59
for x = 0 and for x = x1, we obtain

C0 = A + js

v
,

C′
0 = Aex1/λ + js

v
.

(4.60)

Subtracting these gives

C′
0 − C0 = A(ex1/λ − 1),

A = (C′
0 − C0)/(e

x1/λ − 1).
(4.61)

This can be combined with either of Eqs. 4.60 to give

js = C0e
x1/λ − C′

0

ex1/λ − 1
v. (4.62)

We can also substitute Eqs. 4.61 and 4.62 in 4.59 to obtain
an expression for C(x). The result is

C(x) = C0(e
x1/λ − ex/λ) + C′

0(e
x/λ − 1)

ex1/λ − 1
. (4.63)

We will discuss the implications of this equation below.
Let us first determine the average concentration between

x = 0 and x = x1. The average concentration is defined by

C = 1

x1

∫ x1

0
C(x) dx. (4.64)

While one could integrate this directly, it is much easier to
integrate Eq. 4.56 from 0 to x1:

−D

∫ x1

0

(
dC

dx

)
dx + v

∫ x1

0
C(x) dx = +js

∫ x1

0
dx.

0.5

0.4

0.3

0.2

0.1

0.0

|G
(ξ

)|

121086420

|ξ|=|x/λ|

|ξ/12|

|G(ξ)|

Fig. 4.17 The correction factor G(ξ) used in Eq. 4.68. The dashed
line is the approximation G(ξ) = ξ/12, which is valid for small ξ and
is used in Eq. 4.67

The first term is −D(C′
0 − C0). The second is vx1C. The

third is jsx1. The equation can therefore be rewritten as

vC = D (C′
0 − C0)

x1
+ js. (4.65)

Substituting Eq. 4.62 for js gives the average concentration

C = C0e
x1/λ − C′

0

ex1/λ − 1
− λ

x1
(C0 − C′

0). (4.66)

The exponentials can be expanded to give an approximate
expression for small values of x1/λ

13

C = (C0 + C′
0)

2
+ x1

λ

1

12
(C0 − C′

0). (4.67)

For larger values of x1/λ, the mean can be written

C = (C0 + C′
0)

2
+ (C0 − C′

0)G
(x1

λ

)
. (4.68)

The correction factor G(x1/λ) = G(ξ), given by

G(ξ) = 1

2

eξ + 1

eξ − 1
− 1

ξ
, (4.69)

is plotted in Fig. 4.17. The function is odd, and only values
for ξ ≥ 0 are shown. For ξ = 0 (λ = ∞, pure diffusion), the
average concentration is (C0 + C′

0)/2.
Figure 4.18 shows the concentration profile calculated

from Eq. 4.63. The concentration is 5 times larger on the left,
so diffusion is from left to right. When x1/λ = x1v/D = 0.8,
drift is also from left to right. As the concentration falls, the
magnitude of the gradient rises, so that the sum of the diffu-
sive and drift fluxes remains the same. When x1/λ = −0.8,

13 See Levitt (1975, p. 537). For x1/λ = 1.5, this approximation is
within 1%. For x1/λ = 2.5, the error is about 6 %.
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Fig. 4.18 Concentration profile for combined drift and diffusion. The
concentration is 1.0 on the left and 0.2 on the right. For x1/λ =
x1v/D = 0.8, drift and diffusion are both to the right. As the con-
centration falls, the magnitude of the gradient increases. For x1/λ =
x1v/D = −0.8 drift opposes diffusion. As the concentration falls, so
does the magnitude of the gradient

drift is opposite to diffusion. Therefore, both the concentra-
tion and the magnitude of the gradient must rise and fall
together to keep total flux density constant.

Equation 4.65 can be rewritten as

js = −D (C′
0 − C0)

x1
+ vC. (4.70)

This can be interpreted as meaning that the fluence rate is
given by the sum of a diffusion term with the average con-
centration gradient and a drift term with the average concen-
tration. However, the discussion in the preceding paragraph
showed that there is actually a continuous change of the rel-
ative size of the diffusion and drift terms for different values
of x.

4.13 A General Solution for the Particle
Concentration as a Function of Time

If C(x, 0) is known for t = 0, it is possible to use the result
of Sect. 4.8 to determine C(x, t) at any later time. The key
to doing this is that if C(x, t) dx is the number of particles
in the region between x and x + dx at time t , it may be
be interpreted as the probability of finding a particle in the
interval (x, dx) multiplied by the total number of particles.
(Recall the discussion on p. 96 about the interpretation of
C(x, t).) The spreading Gaussian then represents the spread
of probability that a particle is between x and x + dx.

If a particle is definitely at x = ξ at t = 0, then σ 2(0) = 0.
The particle cannot remain there because of equipartition of
energy: collisions cause it to acquire a mean square velocity

Fig. 4.19 Diffusion from ξ to x

3kBT /m and move. Some time later

σ(t) = (2Dt)1/2. (4.71)

Define P(ξ, 0; x, t) dx to be the probability that a particle
has diffused to a location between x and x + dx at time t , if
it was at x = ξ when t = 0. This probability is given by
Eq. 4.25, except that the distance it has diffused is now x − ξ

instead of x. The variance σ 2(t) is given by Eq. 4.71. The
result is

P(ξ, 0; x, t) dx = 1√
4πDt

e−(x−ξ)2/4Dt dx. (4.72)

The number of particles initially between x = ξ and x =
ξ + dξ is the concentration per unit length times the length
of the interval N = C(ξ, 0)dξ , as shown in Fig. 4.19.

The particles can diffuse in either direction. At a later time
t , the average number between x and x + dx that came orig-
inally from between x = ξ and x = ξ + dξ is the original
number in (ξ, dξ) times the probability that each one got
from there to x. This number is a differential of a differential,
d [C(x, t)dx], because it is only that portion of the particles
in dx that came from the interval dξ :

d [C(x, t) dx] = C(ξ, 0) dξ
1√

4πDt
e−(x−ξ)2/4Dt dx.

To get C(x, t)dx, it is necessary to integrate over all possible
values of ξ :

C(x, t) dx = 1√
4πDt

[∫ ∞

−∞
C(ξ, 0)e−(x−ξ)2/4Dt dξ

]
dx.

(4.73)
This equation can be used to find C(x, t) at any time, pro-
vided that C(x, t) was known at some earlier time. The factor
that multiplies C(ξ, 0) in the integrand is called the influ-
ence function or Green’s function for the diffusion problem;
it gives the relative weighting of C(ξ, 0) in contributing to
the later value C(x, t).

As an example of using this integral, consider a situation
in which the initial concentration has a constant value C0

from ξ = −∞ to ξ = 0 and zero for all positive ξ , as shown
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Fig. 4.20 The initial concentration is constant to the left of the origin
and zero to the right of the origin

in Fig. 4.20. At t = 0 the diffusion starts. The concentration
at later times is given by

C(x, t) = C0√
4πDt

∫ 0

−∞
e−(x−ξ)2/4Dt dξ.

Such integrals are most easily evaluated by using the error
function, defined by

erf(z) = 2√
π

∫ z

0
e−t2

dt. (4.74)

The error function is plotted in Fig. 4.21. One must be careful
in using tables, which may be for related functions that differ
in normalization constants or the limits of integration.

To use the error function in evaluating the integral in
Eq. 4.73, make the substitution s = (x − ξ)/(4Dt)1/2. The
integral becomes

C(x, t) = −C0√
4πDt

∫ x/
√

4Dt

∞
e−s2√

4Dt ds.

Fig. 4.22 The spread of an initially sharp boundary due to diffusion

Since
∫ B

A
f (x) dx = ∫ B

0 f (x) dx + ∫ 0
A

f (x) dx =
∫ B

0 f (x) dx − ∫ A

0 f (x) dx, this can be written as

C(x, t) = −C0√
π

(∫ x/
√

4Dt

0
e−s2

ds −
∫ ∞

0
e−s2

ds

)

= C0

2

[
1 − erf(x/

√
4Dt)

]
. (4.75)

The plot in Fig. 4.22 shows how the initially sharp con-
centration step becomes more diffuse with passing time.
Quantitative measurements of the concentration can be used
to determine D. Benedek and Villars (2000, pp. 126–136)
discuss some experiments to verify the solution we have
obtained above and to determine D.

Many other solutions to the diffusion equation and tech-
niques for solving it are known. See Crank (1975) or Carslaw
and Jaeger (1959).

4.14 Diffusion as a RandomWalk

The spreading solution to the one-dimensional diffusion
equation that we verified can also be obtained by treating the

Fig. 4.21 Plot of the error function erf(x)
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motion of a molecule as a series of independent steps either
to the right or to the left along the x axis. (The same treatment
can be extended to three dimensions, but we will not do so.)
The derivation gives us a somewhat simplified molecular pic-
ture of diffusion. The derivation also provides an opportunity
to see how the Gaussian distribution approximates the bino-
mial distribution. This section is not necessary to understand
the rest of Chaps. 4 and 5, and you should tackle it only if
you are familiar with the binomial and Gaussian probability
distributions (Appendices H and I). The model is more re-
strictive than the diffusion equation derived above, since the
latter is the linear approximation to the transport problem.

We use a simplified model in which the diffusing particle
always moves in steps of length λ (the mean free path), either
in the +x or −x direction. Let the total number of steps taken
by the particle be N , of which n are to the right and n′ are to
the left: N = n + n′. Also let m = n − n′. The particle’s net
displacement in the +x direction is then

nλ − n′λ = mλ.

Since the steps are independent and a step to the left or
right is equally likely (p = 1/2), the probability of hav-
ing a displacement mλ is given by the binomial probability
P(n;N):

P(n;N) = N !
(n!)(N − n)!

(
1

2

)n (1

2

)n′

. (4.76)

Since this problem is analogous to a coin being tossed, and
we know that on the average we get the same number of
heads (steps to the left) as tails (steps to the right), we
know that the distribution is centered at n = n′ or m = 0.
We also know [Eq. G.4] that the variance in n is given
by n2 − n2 = Npq = N/4. Since n = N/2, this says
that n2 = N/4 + N2/4. However, we need the variance
in m, m2 − m2. To obtain it, we write m = 2n − N and
m2 = 4n2 + N2 − 4nN . Therefore,

m2 = 4n2 + N2 − 4Nn = N.

The variance of the distribution of displacement x is equal
to the step length λ times the variance in the number of steps:

σ 2 = x2 = λ2m2 = λ2N.

The number of steps is the elapsed time divided by the
collision time N = t/tc. Therefore,

σ 2 = λ2t

tc
.

Comparing this with Eq. 4.71, we identify D = λ2/2tc, so
that

σ 2 = 2Dt. (4.77)

Fig. 4.23 Relationship between the values of x and the allowed values
of m. Every other value of m is missing

We have shown that this simple model gives a distribution
with fixed mean which spreads with a variance proportional
to t . We now must show that the shape is Gaussian. Ap-
pendix I shows that the Gaussian is an approximation to the
binomial distribution in the limit of large N . Since σ 2

n = N/4
and n = N/2, Eq. G.4 can be used to write

P(n) =
(

2πN

4

)−1/2

e−(n−N/2)2/(2N/4).

This can be rewritten in terms of the net number of steps to
the right, since m = n − n′ = 2n − N :

P(m) =
(

2

πN

)1/2

e−m2/2N.

Note that only every other value of m is allowed. Since m =
2n − N , m goes in steps of 2 from −N to N as n goes from
0 to N .

To write the probability distribution in terms of x and t ,
refer to Fig. 4.23. The spacing between each allowed value of
x is 2, so that the number of allowed values of m in interval
(x, x + dx) is dx/2λ. Therefore, P(x) dx = P(m)(dx/2λ),

P(x) =
√

2

πN4λ2
e−m2/2N.

With the substitutions m = x/λ and N = t/tc, this becomes

P(x, t) =
√

tc

2πλ2t
e−x2(tc/2λ2t).

With the substitutions D = λ2/2tc and C(x, t) =
C(0)P (x, t), we obtain Eq. 4.25.

The result of Eq. 4.71 is easily extended to two dimen-
sions. Imagine that a total of N steps are taken, half in the
x direction and half in the y direction. Then σ 2

x = σ 2
y =

λ2(N/2). If r2 = x2 + y2, σ 2
r = σ 2

x + σ 2
y = λ2N . We still

define D in any direction as λ2/2tc, where tc is the time be-
tween steps in that direction. After a total time t , N steps
have been taken, but only half of them were in, say, the x

direction. Therefore tc = 2t/N . Therefore

σ 2
r = σ 2

x + σ 2
y = 4Dt (two dimensions). (4.78)
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(b)(a)

Fig. 4.24 a Trail of a particle for 4000 steps. b Trail for additional
steps to total 40,000

A similar argument in three dimensions gives

σ 2
r = σ 2

x + σ 2
y + σ 2

z = 6Dt (three dimensions). (4.79)

Figure 4.24 shows the result of a computer simulation of a
two-dimensional random walk. A random number is selected
to determine whether to step one pixel to the left, up, right,
or down—each with the same probability. The trail for 4000
steps is shown in Fig. 4.24a. The results of continuing for
40,000 steps are shown in Fig. 4.24b. Note how the particle
wanders around one region of space and then takes a num-
ber of steps in the same direction to move someplace else.
The particle trajectory is “thready.” It does not cover space
uniformly. A uniform coverage would be very nonrandom. It
is only when many particles are considered that a Gaussian
distribution of particle concentration results.

Both results in Fig. 4.24 were for the same sequence of
random numbers. A computer simulation with 328 runs of
10,000 steps each gave x = −3.3, σ 2

x = 5142, y = 8.2,

σ 2
y = 4773, and x2 +y2 = 10, 027. The expected values are,

respectively, 0, 5000, 0, 5000, and 10,000.

Symbols Used in Chap. 4
Symbol Use Units First

used
page

a, a1, a2 Particle radius m 90
b1, b2, b3 Constants 97
f Fraction of cell surface area 100
g Gravitational acceleration m s−2 89
g Force N 91
i Particle current s−1 85
j, j, js Solute fluence rate m−2 s−1 85
jdrift, jdiff Solute fluence rate due to drift

velocity, diffusion
m−2 s−1 93

jm Mass fluence rate kg m−2 s−1 85

jn Component of j normal to a
surface

m−2 s−1 87

jp Momentum fluence rate N m−2 93
jv Volume fluence rate m s−1 85
jx, jy, jz Components of j m−2 s−1 87
kB Boltzmann’s constant J K−1 89
l Linear separation of pores on

cell surface
m 112

m Mass kg 89
m n − n′ 106
n̂ Unit vector normal to a surface 87
n, n′ Number of steps to right, left 106
p, q Probabilities 106
r Distance, radius m 87
s Dummy variable 90
t Time s 85
tc Collision time s 90
u Energy of a particle J 89
v, v Velocity m s−1 89
x, y, z Cartesian coordinates m 85
A Constant 103
B,B ′ Cell radius m 99
C,Cs Concentration m−3 85
D Diffusion constant m2 s−1 92
F, F, Fext Force N 91
G Correction factor for average

concentration
103

K Thermal conductivity J K−1 m−1 s−1 93
L Length m 97
M Mass kg 88
M Molecular weight 94
N,N0 Number of molecules 86
N Number of pores on cell surface 100
N Number of steps in a random

walk
106

P Rate of energy production
(power)

W 87

P Probability 89
Q Rate of creating a substance per

unit volume
m−3 s−1 89

R Gas constant J K−1 mol−1 103
R Radius of a sphere m 98
Rp Radius of a pore m 99
S Surface area m2 86
dS Vector surface element pointing

in the direction of the normal
m2 87

T Absolute temperature K 89
V Volume m3 88
�Z Cell membrane thickness m 99
α Proportionality constant 91
β Proportionality constant

between force and velocity
N s m−1 91

λ Mean free path m 90
λ Ratio of D/v m 103
θ, φ Angles 86
η Coefficient of viscosity Pa s 93
σ Standard deviation 96
σ Electrical conductivity Ω−1 m−1 93
ξ Position m 104
ξ Dimensionless variable 103
ρ Mass density kg m−3 88
μs Chemical potential of solute J molecule−1 92
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Problems

Section 4.1

Problem 1. A cylindrical pipe with a cross-sectional area
S = 1 cm2 and length 0.1 cm has js(0)S = 200 s−1 and
js(0.1)S = 150 s−1.
(a) What is the total rate of buildup of particles in the pipe?
(b) What is the average rate of change of concentration in

the section of pipe?
Problem 2. Write the continuity equation in cylindrical
coordinates if jφ = 0 but jr and jz can be nonzero.
Problem 3. Consider two concentric spheres of radii r and
r +dr . If the particle fluence rate points radially and depends
only on r , and the number of particles between r and r + dr

is not changing, show that d(r2j)/dr = 0.
Problem 4. Integrate Eq. 4.8 over a volume and subtract the
result from Eq. 4.4. The resulting relationship is called the
divergence theorem.

Section 4.2

Problem 5. Suppose that the total blood flow through a re-
gion is F (m3 s−1). A chemically inert substance is carried
into the region in the blood. The total number of molecules of
the substance in the region is N . The amount of blood in the
region is not changing. Show that dN/dt = (CA − CV )F ,
where CA and CV are the concentrations of substance in the
arterial and venous blood. This is known as the Fick princi-
ple or the Fick tracer method. It is often used with radioactive
tracers.

Section 4.3

Problem 6. Allen et al. (1982) report seeing regular move-
ment of particles in the axoplasm of a squid axon. At a
temperature of 21 ◦C, the following mean drift speeds were
observed:

Particle size (μm) Typical speed (μm s−1)
0.8 − 5.0 0.8
0.2 − 0.6 2

How do these values compare to thermal speeds? (Make
a reasonable assumption about the density of particles and
assume that they are spherical.)
Problem 7. This problem looks at the original observations
of Robert Brown that established Brownian motion.
(a) Combine Eqs. 4.23 and 4.71 to determine an expression

for the average distance a particle of radius a will diffuse
through a fluid of viscosity η in time t .

(b) Assume you observe a pollen grain with a radius of 50
microns in water at room temperature, and that your
visual perception is particularly sensitive to motions oc-
curring over a time of about one second. What is the
average distance you observe the grain to move?

(c) Now assume your eye cannot see movements that occur
over angles of less than 1 min of arc, or 3 × 10−4 ra-
dians (In Chap. 14, we estimate 3 min of arc, but use
1 min here to be conservative). Most eyes cannot fo-
cus on objects closer than 25 cm. Determine the smallest
displacement you can observe with the naked eye.

(d) Robert Brown had a microscope that could magnify ob-
jects by a factor of about 370. What is the smallest
displacement he could observe with his microscope? Is
this larger or smaller than the displacement of a pollen
grain in one second?

In fact, Brown did not observe the motion of entire pollen
grains. He observed fat and starch particles about 2 μm in
diameter that are released by pollen. For more on Brown’s
original observations, see Pearle et al. (2010).

Section 4.4

Problem 8.(a) Use the ideal gas law, pV = NkBT =
nRT to compute the volume of 1 mole of gas at T =
30 ◦C and p = 1 atm . Express your answer in liters.
Show that this is equivalent to a concentration of 2.4 ×
1025 molecule m−3.

(b) Find the concentration of liquid water molecules at room
temperature.

Problem 9. Using the information on the mean free path
in the atmosphere and assuming that all molecules have a
molecular weight of 30, find the height at which the mean
free path is 1 cm. Assume the atmosphere has a constant
temperature.

Section 4.6

Problem 10. Suppose C(x, t) =
(
N/

√
4πDt

)
e−x2/4Dt .

Find an expression for js(x, t).
Problem 11. Show that the momentum flux density, jp, in
Table 4.3 has the same units as force per unit area. Compare
the equation to Eq. 1.33 and interpret η physically.
Problem 12. Jean Perrin measured the distribution of gam-
boge particles in water as a function of height, to determine
Avagadro’s number (Perrin 1910). The radius of the spherical
particles was 0.212 μm, the density of water was 1 g cm−3,
the density of the particles was 1.207 g cm−3, and the tem-
perature was 20 ◦C. He counted 13,000 particles, and found
their relative number, N , as a function of height, z, to be (data
normalized so N is 100 at z = 5 μm)
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z (μm) N

5 100
35 47
65 22.6
95 12

(a) Fit these data to a Boltzmann distribution, and determine
a value for Boltzmann’s constant. Include the effect
of buoyancy in your calculation. Fitting techniques are
discussed in Chap. 11.

(b) In Perrin’s time, the gas constant was known approxi-
mately: R = 8.32 J K−1 mol−1. Use this value and your
result from part (a) to calculate Avogadro’s number.

Section 4.7

Problem 13. If all macromolecules have the same density,
derive the expression for D versus the molecular weight that
was used to draw the line in Fig. 4.12.
Problem 14. For diagnostic studies of the lung, it would be
convenient to have radioactive particles that tag the air and
that are small enough to penetrate all the way to the alveoli.
It is possible to make the isotope 99mTc into a “pseudogas”
by burning a flammable aerosol containing it. The resulting
particles have a radius of about 60 nm (Burch et al. 1984).
Estimate the mean free path for these particles. If it is
small compared to the molecular diameter, then Stokes’ law
applies, and you can use Eq. 4.23 to obtain the diffusion
constant. (The viscosity of air at body temperature is about
1.8×10−5 Pa s.)
Problem 15. Figure 4.12 shows that D for O2 in water at
298 K is 1.2 × 10−9 m2 s−1 and that the molecular radius of
O2 is 0.2 nm. The diffusion constant of a dilute gas (where
the mean free path is larger than the molecular diameter) is
D = λ2/2tc, where the collision time is given by Eq. 4.15.
(a) Find a numeric value for the diffusion constant for O2 in

O2 at 1 atm and 298 K and its ratio to D for O2 in water.
The molecular weight of oxygen is 32.

(b) Assuming that this equation for a dilute gas is valid
in water, estimate the mean free path of an oxygen
molecule in water.

Section 4.8

Problem 16. (a) The three-dimensional normalized analog
of Eq. 4.25 is

C(x, y, z, t) = N
[
2π σ 2(t)

]3/2
exp

(
−x2 + y2 + z2

2σ 2(t)

)
.

Find the three-dimensional analog of Eq. 4.27.

(b) Show that σ 2 = x2 + y2 + z2 = 6Dt .
Problem 17. A crude approximation to the Gaussian prob-
ability distribution is a rectangle of height P0 and width 2L.
It gives a constant probability for a distance L either side of
the mean.
(a) Determine the value of P0 and L so that the distribution

has the same value of σ as a Gaussian.
(b) Plot P(x, t) if σ is given by Eq. 4.27 and the mean re-

mains centered at the origin for times of 1, 5, 50, 100,
and 500 ms. Use D for oxygen diffusing in water at body
temperature.

(c) How long does it take for the oxygen to have a rea-
sonable probability of diffusing a distance of 8 μm, the
diameter of a capillary?

(d) For t = 100 ms, plot both the accurate Gaussian and the
rectangular approximation.

Problem 18. Write an equation for Fick’s second law in
three-dimensional Cartesian coordinates when the diffusion
constant depends on position: D = D(x, y, z).
Problem 19. The heat-flow equation in one dimension is

jH = −κ

(
∂T

∂x

)
,

where κ is the thermal conductivity in W m−1 K−1. One of-
ten finds an equation for the “diffusion” of energy by heat
flow:

∂T

∂t
= DH

(
∂2T

∂x2

)
.

The units of jH are J m−2 s−1. The internal energy per unit
volume is given by u = ρcT , where c is the heat capacity
per unit mass and ρ is the density of the material. Derive the
second equation from the first and show how DH depends on
κ , c, and ρ.
Problem 20. The dimensionless Lewis number is defined
as the ratio of the diffusion constant for molecules and the
diffusion constant for heat flow (see Problem 19). If the
Lewis number is large, molecular diffusion occurs much
more rapidly than the diffusion of energy by heat flow. If the
Lewis number is small, energy diffuses more rapidly than
molecules. Use the following parameters:

Air Water
D (m2 s−1) 2 × 10−5 2 × 10−9

κ (W m−1 K−1) 0.03 0.6
c (J kg−1 K−1) 1000 4000
ρ (kg m−3) 1.2 1000.

(a) Calculate the Lewis number for oxygen in air and in
water.

(b) Is it possible using either air or water to design a system
in which oxygen is transported by diffusion with almost
no transfer of heat?
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Problem 21. A sheet of labeled water molecules starts at the
origin in a one-dimensional problem and diffuses in the x

direction.
(a) Plot σ vs t for diffusion of water in water.
(b) Deduce a “velocity” versus time.
(c) How long does it take for the water to have a reason-

able chance of traveling 1 μm? 10 μm? 100 μm? 1 mm?
1 cm? 10 cm?

Problem 22. In three dimensions the root-mean-square dif-
fusion distance is σ = √

6Dt, where t is the diffusion time.
Consider the diffusion of oxygen from air to the blood in the
lungs. The terminal air sacs in the lungs, the alveoli, have a
radius of about 100 μm. The radius of a capillary is about
4 μm. Estimate the time for an oxygen molecule to diffuse
from the center to the edge of an alveolus, and the time to
diffuse from the edge to the center of a capillary. Which is
greater? From the data in Table 1.4 estimate how long blood
remains in a capillary. Is it long enough for diffusion of oxy-
gen to occur? Assume the diffusion constant of oxygen in air
is 2 × 10−5 m2 s−1 and in water is 2 × 10−9 m2 s−1.
Problem 23. Why breathe? Estimate the time required for
oxygen to diffuse from our nose to our lungs. Assume the
diffusion constant of oxygen in air is 2 × 10−5 m2 s−1.

Problem 24. At a nerve-muscle junction, the signal from
the nerve is transmitted to the muscle by a chemical junction
or synapse. Molecules of acetylcholine (ACh) must diffuse
from the end of the nerve cell across an extracellular gap
about 20 nm wide, to the muscle cell in order to activate the
muscle. Assuming one-dimensional diffusion, estimate the
signal delay caused by the time needed for ACh to diffuse.
The delay of the signal at the nerve-muscle junction is about
0.5 ms. How does this compare to the diffusion time? Use a
diffusion constant of 5 × 10−10 m2 s−1.
Problem 25. A substance has diffusion constant D, and its
concentration is distributed in space according to C(x, t) =
A(t) sin(2πx/L), where L is the wavelength and A(t) is
the amplitude of the distribution. Use the one-dimensional
diffusion equation, Eq. 4.26, to show that the concentration
decays exponentially with time, A(t) ∝ e−t/τ . Determine
an expression for the time constant τ in terms of L and
D. Which decays faster: a long-wavelength (diffuse) distri-
bution, or a short-wavelength (localized) distribution? This
result can be used with the Fourier methods developed in
Chap. 11 to derive very general solutions to the diffusion
equation.
Problem 26. Some tissues, such as skeletal muscle, are
anisotropic: the rate of diffusion depends on direction. In
these tissues, Fick’s first law in two dimensions has the form

(
jx

jy

)
= −

(
Dxx Dxy

Dyx Dyy

)(
∂C/∂x

∂C/∂y

)
.

The 2 × 2 matrix is called the diffusion tensor. It is always
symmetric, so Dxy = Dyx.

(a) Derive the two-dimensional diffusion equation for
anisotropic tissue. Assume the diffusion tensor depends
on direction but not on position.

(b) If the coordinate system is rotated from (x, y) to (x′, y′)
by

(
x′
y′
)

=
(

cos θ sin θ

− sin θ cos θ

)(
x

y

)
,

the diffusion tensor changes by

(
Dx′x′ Dx′y′
Dx′y′ Dy′y′

)

=
(

cos θ sin θ

− sin θ cos θ

)(
Dxx Dxy

Dxy Dyy

)(
cos θ − sin θ

sin θ cos θ

)
.

Find the angle θ such that the tensor is diagonal (Dx′y′ =
0). Typically, this direction is parallel to a special di-
rection in the tissue, such as the direction of fibers in a
muscle.

(c) Show that the trace of the diffusion tensor (the sum of
the diagonal terms) is the same in any coordinate system
(Dxx + Dyy = Dx′x′ + Dy′y′ for any θ ). Basser et al.
(1994) invented a way to measure the diffusion tensor
using Magnetic Resonance Imaging (Chap. 18). From
the diffusion tensor, they can image the direction of the
fiber tracts. When they want images that are independent
of the fiber direction, they use the trace.

Problem 27. Calcium ions diffuse inside cells. Their con-
centration is also controlled by a buffer:

Ca + B ⇐⇒ CaB.

The concentrations of free calcium, unbound buffer, and
bound buffer ([Ca], [B], and [CaB]) are governed, assuming
the buffer is immobile, by the differential equations

∂[Ca]
∂t

= D∇2[Ca] − k+[Ca][B] + k−[CaB],
∂[B]
∂t

= −k+[Ca][B] + k−[CaB],
∂[CaB]

∂t
= k+[Ca][B] − k−[CaB].

(a) What are the dimensions (units) of k+ and k− if the
concentrations are measured in mol l−1 and time in s?

(b) Derive differential equations governing the total calcium
and buffer concentrations, [Ca]T = [Ca] + [CaB] and
[B]T = [B] + [CaB] . Show that [B]T is independent of
time.

(c) Assume calcium and buffer interact so rapidly that they
are always in equilibrium:

[Ca][B]
[CaB] = K,
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where K = k−/k+. Write [Ca]T in terms of [Ca] ,

[B]T , and K (eliminate [B] and [CaB]).
(d) Differentiate your expression in (c) with respect to time

and use it in the differential equation for [Ca]T found in
(b). Show that [Ca] obeys a diffusion equation with an
“effective” diffusion constant that depends on [Ca]:

Deff = D

1 + K[B]T
(K+[Ca])2

.

(e) If [Ca] 	 K and [B]T = 100K (typical for the
endoplasmic reticulum), determine Deff/D.

For more about diffusion with buffers, see Wagner and
Keizer (1994).
Problem 28. Inside cells, calcium is stored in compartments,
such as the sarcoplasmic reticulum. In some cells, a rise in
calcium concentration, C, triggers the release of this stored
calcium. A model of such calcium-induced calcium release
is

dC

dt
= − k

C2
0

C (4C − C0) (C − C0) (1)

(a) Plot the rate of calcium release (the right-hand side
of Eq. 1) vs C. Identify points for which the calcium
release is zero (steady-state solutions to Eq. 1). By qual-
itative reasoning, determine which of these points are
stable and which are unstable. (Will a small change in
C from the steady-state value cause C to return to the
steady-state value or move farther away from it?)

(b) If C 	 C0/4, what does Eq. 1 become, and what is its
solution?

(c) Eq. 1 is difficult to solve analytically. To find a numerical
solution, approximate it as

C(t + �t) − C(t)

�t
= − k

C2
0

C(t) [4C(t) − C0] [C(t) − C0] .

(2)
Write a computer program to determine C(t) at times
t = n�t, n = 1, 2, 3, . . . , 100, using �t = 0.1 s,
k = 1 s−1, C0 = 1 μM, and C(t = 0) = C′. Find the
threshold value of C′, below which C(t) goes to zero,
and above which C(t) goes to C0.

(d) If we include diffusion of calcium in one dimension,
Eq. 1 becomes

∂C

∂t
= D

∂2C

∂x2
− k

C2
0

C (4C − C0) (C − C0) . (3)

This is a type of reaction–diffusion equation. To solve
Eq. 3 numerically, divide the distance along the cell
into discrete points, x = m�x, m = 0, 1, 2, . . . ,M.

Approximate Eq. 3 as

C(x, t + �t) − C(x, t)

�t
(4)

= D
C(x + �x, t) − 2C(x, t) + C(x − �x, t)

(�x)2

− k

C2
0

C(x, t) (4C(x, t) − C0) (C(x, t) − C0)

Assume the ends of the cell are sealed, so C(0, t) =
C(�x, t) at one end and C(M�x, t) = C((M −
1)�x, t) at the other. Start with the cell at C(x, 0) = 0
for all points except at one end, where C(0, 0) = C0.

Calculate C(x, t) using �x = 5μm, �t = 0.1 s,
D = 200μm2 s−1, and C0 = 1 μM. You should get
a wave of calcium propagating down the cell. What is
its speed?
Calcium waves play an important role in many cells.
This simple model does not include a mechanism to
return the calcium concentration to its originally low
value after the wave has passed (a process called recov-
ery). For a more realistic model, see Tang and Othmer
(1994). For more information about numerical methods,
see Press et al. (1992).

Problem 29. The numerical approximation for the diffusion
equation, derived as part of Problem 28, has a key limita-
tion: it is unstable if the time step is too large. This problem
can be avoided using the Crank–Nicolson method. Replace
the first time derivative in the diffusion equation with a fi-
nite difference, as was done in Problem 28. Next, replace the
second space derivative with the finite difference approxima-
tion from Problem 28, but instead of evaluating the second
derivative at time t , use the average of the second derivative
evaluated at times t and t + �t .
(a) Write down this numerical approximation to the diffu-

sion equation, analogous to Eq. 4 in Problem 28.
(b) Explain why this expression is more difficult to compute

than the expression given in the first two lines of Eq. 4.
Hint: consider how you determine C(t + �t) once you
know C(t). The difficulty you discover in part (b) is off-
set by the advantage that the Crank–Nicolson method is
stable for any time step. For more information about the
Crank–Nicolson method, stability, and other numerical
issues, see Press et al. (1992).

Section 4.9

Problem 30. Consider steady-state diffusion through two
plane layers as shown in the figure. Show that the diffu-
sion is the same as through a single plane layer of thickness
�x1 + �x2, with diffusion constant

D = D1D2

�x1

�x1 + �x2
D2 + �x2

�x1 + �x2
D1

.
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Problem 31. A fluid on the right of a membrane has dif-
ferent properties than the fluid on the left. Let the diffusion
constants on left and right be D1 and D2, respectively, and let
the pores in the membrane be filled by the fluid on the right
a distance xL, where L is the thickness of the membrane.

L

xL

D1
D2

(a) Use the results of Problem 30 to determine the effec-
tive diffusion constant D for a membrane of thickness
L when D2 = yD1, �x1 = (1 − x)L, and �x2 = xL.
Neglect end effects.

(b) In the case that oxygen is diffusing in air and water
at 310 K, the diffusion constants are D1 = 2.2 ×
10−5 m2 s−1, D2 = 1.6 × 10−9 m2 s−1. Plot D/D1

vs x.

Section 4.10

Problem 32.

(a) Derive Eq. 4.45.
(b) Derive Eqs. 4.51 and 4.52 from Eqs. 4.48 and 4.49.
Problem 33. We can estimate B/B ′ of Eqs. 4.49–4.55 by
noting that B ′ must be larger than B because of two effects.
First, it is larger by πRp/4 because of end effects. Second,
the concentration varies near the pores and smooths out fur-
ther away, so B ′ must also be larger by an amount roughly
equal to l, the spacing of the pores. There are N/4πB2 pores
per m2, so l ≈ Rp(π/f )1/2. Use the example in the text:
B = 5 μm, �Z = 5 nm, f = 0.001, to estimate these two
corrections. Assume that the pore radius, Rp, is smaller than
�Z. Are these corrections important?
Problem 34. Consider an impervious plane at z = 0 con-
taining a circular disk of radius a having a concentration C0.

The concentration at large z goes to zero. Carslaw and Jaeger

(1959) show that the steady-state solution to the diffusion
equation is

C(r, z) = 2C0

π
sin−1

[
2a

√
(r − a)2 + z2 +√(r + a)2 + z2

]

.

(a) (optional) Verify that C(r, z) satisfies ∇2C = 0. The
calculation is quite involved, and you may wish to use
a computer algebra program such as Mathematica or
Maple.

(b) Show that for z = 0, C = C0 if r < a.

(c) Show that for z = 0, dC/dz = 0 if r > a.
(d) Integrate jz over the disk (z = 0, 0 < r < a) and show

that i = 4DaC0.

Problem 35. Apply the analysis of Sect. 4.10 to determine
how the current ivessel depends on the fraction of surface area
covered by pores, for a cylindrical vessel of radius B. As-
sume that the concentration reaches a value C5 at some large
finite radius R.

Section 4.11

Problem 36. The processes of heat conduction and diffusion
are similar: the concentration and temperature both obey the
diffusion equation (Problem 19). Consider a spherical cow of
radius R having a specific metabolic rate Q W kg−1. Assume
the temperature of the outer surface of the cow is the same as
the surroundings, Tsur. Assume that heat transfer within the
cow is by heat conduction.
(a) Calculate the steady state temperature distribution inside

the animal and find the core temperature at the center of
the sphere.

(b) Consider a smaller (but still spherical) animal such as a
rabbit. What is its core temperature?

(c) Calculate the temperature distribution and core temper-
ature in a rabbit covered with fur of thickness d.

Assume the bodies of the cow and rabbit have the thermal
properties of water and that the fur has the thermal properties
of air. Let d = 0.03 m and Tsur = 20 ◦C .

Water Air
κ (W m−1 K−1) 0.6 0.03
c (J kg−1 K−1) 4000 1000
ρ (kg m−3) 1000 1.2

Cow Rabbit
R (m) 0.3 0.05
Q (W kg−1) 0.6 1.6

Problem 37. The goal of this problem is to estimate how
large a cell living in an oxygenated medium can be before
it is limited by oxygen transport. Assume the extracellular
space is well stirred with uniform oxygen concentration C0.
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The cell is a sphere of radius R. Inside the cell oxygen is con-
sumed at a rate Q molecule m−3 s−1.The diffusion constant
for oxygen in the cell is D.
(a) Calculate the concentration of oxygen in the cell in the

steady state.
(b) Assume that if the cell is to survive the oxygen concen-

tration at the center of the cell cannot become negative.
Use this constraint to estimate the maximum size of the
cell.

(c) Calculate the maximum size of a cell for C0 =
8 mol m−3, D = 2 × 10−9 m2 s−1, Q =
0.1 mol m−3 s−1. (This value of Q is typical of pro-
tozoa; the value of C0 is for air and is roughly the same
as the oxygen concentration in blood.)

Problem 38. A diffusing substance is being consumed by a
chemical reaction at a rate Q per unit volume per second. The
reaction rate is limited by the concentration of some enzyme,
so Q is independent of the concentration of the diffusing sub-
stance. For a slab of tissue of thickness b with concentration
C0 at both x = 0 and x = b, solve the equation to find
C(x) in the steady state. This is known as the Warburg equa-
tion (Warburg 1923). It is a one-dimensional model for the
consumption of oxygen in tissue: points x = 0 and x = b

correspond to the walls of two capillaries side by side.
Problem 39. Suppose that a diffusing substance disappears
in a chemical reaction and that the rate at which it disap-
pears is proportional to the concentration −kC. Write down
the Fick’s second law in this case. Show what the equa-
tion becomes if one makes the substitution C(x, y, z, t) =
C′(x, y, z, t)e−kt .
Problem 40. A spherical cell has radius R. The flux density
through the surface is given by js = −D grad C. Suppose
that the substance in question has concentration C(t) inside
the cell and zero outside. The material outside is removed
fast enough so that the concentration remains zero. Using
spherical coordinates, find a differential equation for C(t)

inside the cell. The thickness of the cell membrane is �r 	
R.
Problem 41. The cornea of the eye must be transparent,
so it can contain no blood vessels. (Blood absorbs light.)
Oxygen needed by the cornea must diffuse from the sur-
face into the corneal tissue. Model the cornea as a plane
sheet of thickness L = 500μm . The oxygen concentration,
C, is governed by a one-dimensional steady-state diffusion
equation

D
d2C

dx2
= Q.

Assume the cornea is consuming oxygen at a rate Q =
4 × 1022 molecule m−3 s−1 and has a diffusion constant
D = 3 × 10−9 m2 s−1 . The rear surface of the cornea is in
contact with the aqueous humor, which has a uniform oxygen

concentration C2 = 1.8×1024 molecule m−3. Consider three
cases for the front surface:
(a) Solve the diffusion equation for C(x) when the front

surface is in contact with air, which has an oxygen
concentration C1 = 5 × 1024 m−3.

(b) The eye is closed, but a layer of tears maintains the con-
centration at the front surface that is the same as the
aqueous humor: C1 = 1.8 × 1024 m−3. Plot C(x).

(c) The eye is covered by an oxygen-impermeable contact
lens, so that at the front surface dC/dx = 0. Solve the
diffusion equation and plot C(x).

Supplying oxygen to the cornea is a major concern for
people who wear contact lenses. Often a tear layer be-
tween the contact and cornea, replenished by blinking, is
sufficient to keep the cornea oxygenated. If you sleep wear-
ing a contact lens, this tear layer may not be replenished,
and the cornea will be deprived of oxygen. For a simi-
lar but somewhat more realistic model, see Fatt and Bieber
(1968).
Problem 42. The distance L that oxygen can diffuse in the
steady-state is approximately L = √

CD/Q,where C is the
oxygen concentration, D is the diffusion constant, and Q is
the rate per unit volume that oxygen is used for metabolism.
(a) Show that L has dimensions of length.
(b) The diffusion of oxygen in air is about 10,000 times

larger than the diffusion of oxygen in water (Denny
1993). By how much will the diffusion distance L

change if oxygen diffuses through air instead of water,
all other things being equal?

Insects deliver oxygen to their flight muscles by diffusion
down air-filled tubes instead of by blood vessels, thereby tak-
ing advantage of the large diffusion constant of oxygen in air
(Weiss-Fogh 1964).

Section 4.12

Problem 43. Dimensionless numbers, like the Reynolds
number of Chap. 1, are often useful for understanding phys-
ical phenomena. The Péclet number is the ratio of transport
by drift to transport by diffusion. When the Péclet num-
ber is large, drift dominates. The solute fluence rate from
drift is Cv, where C is the concentration and v the sol-
vent speed. The solute fluence rate from diffusion is D times
the concentration gradient (roughly C/L, where L is some
characteristic distance over which the concentration varies).
(a) Determine an expression for the Péclet number in terms

of C, L, v, and D.
(b) Verify that the Péclet number is dimensionless.
(c) Which parameter in Sect. 4.12 is equivalent to the Péclet

number?
(d) Estimate the Péclet number for oxygen for a person

walking.
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(e) Estimate the Péclet number for a swimming bacterium.
For more about the Péclet number, see Denny (1993) and
Purcell (1977).

The Péclet number is sometimes known as the Sherwood
number.
Problem 44. Extend Fick’s second law in one dimension
∂C/∂t = D (∂2C/∂x2) to include solvent drag.
Problem 45. Use Eqs. 4.63 and 4.64 to derive Eq. 4.66.
Problem 46. Expand ex = 1 + x + x2/2! + x3/3! to derive
Eq. 4.67 from Eq. 4.66.
Problem 47. Use a Taylor’s series expansion to show that
G(ξ)in Eq. 4.69 is equal to ξ/12 for small ξ .
Problem 48. Consider Eq. 4.63 with C0 = 0 and C′

0 = 1.
(a) If v > 0, write an equation for C(x). Plot C(x) for 0 <

x/x1 < 1 for two cases: x1 	 λ and x1 � λ. Interpret
these results physically.

(b) Repeat the analysis for v < 0.

Section 4.14

Problem 49. We can use the microscopic model of a random
walk to derive important information about diffusion without
ever using the binomial probability distribution. Let xi(n) be
the position of the ith particle after n steps of a random walk.
Then

xi(n) = xi(n) ± λ,

where half the time you take the + sign and half the time
the − sign. Then x(n), the value of x averaged over N

particles, is

x(n) = 1

N

N∑

i=1

xi(n).

(a) Show that x(n) = x(n − 1) so that on average the
particles go nowhere.

(b) Show that x2(n) = x2(n − 1) + λ2. Use this result to
show that x2(n) = nλ2.

For a detailed discussion of this approach, see Denny (1993).
Problem 50. We can write the diffusion constant, D, and
the thermal speed, vrms, in terms of the step size, λ, and the
collision time, tc, as

D = λ2

2tc
,

vrms = λ

tc
.

Solve for λ and tc in terms of D and vrms.

Problem 51. Using the definitions in Prob. 50, write the dif-
fusion constant in terms of λ and vrms. By how much do you
expect the diffusion constant for heavy water (water in which
the two hydrogen atoms are deuterium, 2H) to differ from the

diffusion constant for water? Assume the mean free path is
independent of mass.
Problem 52. Write a computer program to model a two-
dimensional random walk. Make several repetitions of a
random walk of 3600 steps and plot histograms of the
displacements in the x and y directions and mean square
displacement.
Problem 53. Write a program to display the motion of 100
particles in two dimensions.
Problem 54. Particles are released from a point between two
perfectly absorbing plates located at x = 0 and x = 1. The
particles random walk in one dimension until they strike a
plate. Find the probability of being captured by the right-
hand plate as a function of the position of release, x. (Hint:
The probability is related to the diffusive fluence rate to the
right-hand plate if the concentration is C0 at x and is 0 at
x = 0 and x = 1.)
Problem 55. The text considered a one-dimensional
random-walk problem. Suppose that in two dimensions the
walk can occur with equal probability along +x, +y, −x, or
−y. The total number of steps is N = Nx + Ny , where the
number of steps along each axis is not always equal to N/2.
(a) What is the probability that Nx of the N steps are

parallel to the x axis?
(b) What is the probability that the net displacement along

the x axis is mxλ?
(c) Show that the probability of a particle being at

(mxλ,myλ) after N steps is

P ′(mx,my) =
∑

Nx

(
N !

Nx ! (N − Nx)!
)(

1

2

)N

P (mx,Nx) P (my,N − Nx),

where P(m,N) on the right-hand side of this equation
is given by Eq. 4.76.

(d) The factor N !/Nx !(N − Nx)! is proportional to a bi-
nomial probability. What probability? Where does this
factor peak when N is large?

(e) Using the above result, show that P ′(mx,my) =
P(mx,N/2) P (my,N/2).

(f) Write a Gaussian approximation for two-dimensional
diffusion.
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5Transport Through Neutral Membranes

The last chapter discussed some of the general features of
solute movement in an infinite medium. Solute particles can
be carried along with the flowing solution or they can diffuse.
This chapter considers the movement of solute and solvent
through membranes, ignoring any electrical forces on the
particles.

The movement of electrically neutral particles through
aqueous pores in membranes has many applications in phys-
iology. They range from the flow of nutrients through cap-
illary walls, to the regulation of the amount of fluid in the
interstitial space between cells, to the initial stages of the
operation of the kidney.

Sections 5.1–5.4 are a qualitative introduction to the flow
of water through membranes as a result of hydrostatic pres-
sure differences or osmotic pressure differences. The reader
who is not interested in the more advanced material can
read just this part of the chapter, culminating in the clinical
examples of Sect. 5.4.

Sections 5.5 and 5.6 present phenomenological trans-
port equations that are simple linear relationships between
the flow of water and solute particles and the pressure and
concentration differences that cause the flows. These re-
lationships are valid for any type of membrane as long
as a linear relationship adequately describes the flow and
the proportionality constants are regarded as experimentally
determined quantities. These equations are applied to the
artificial kidney in Sect. 5.7.

Section 5.8 presents a simple model for countercurrent
transport, which is important in artificial organs, the kidney,
and in conserving heat loss from the extremities.

The last section, Sect. 5.9, provides a more advanced
treatment of one particular membrane model: a membrane
pierced by pores in which electrical forces can be neglected
and in which Poiseuille flow takes place. The model leads to
expressions for the phenomenological coefficients that can
be compared to experimental data, though that is not done
here. The last part of the section uses this model to calculate
the forces on a membrane when there are osmotic effects.

5.1 Membranes

All cells are surrounded by a membrane 7–10 nm thick. Fur-
thermore, virtually all the physical substructures within the
cell are also bounded by membranes. Membranes separate
two regions of space; they allow some substances to pass
through but not others. The membrane is said to be perme-
able to a substance that can pass through it; it is semiper-
meable when only certain substances can get through. A
substance that can pass through is said to be permeant.

Simple models for a semipermeable membrane are shown
in Fig. 5.1. Figure 5.1a shows a pore that pierces the mem-
brane. A narrower pore, in which the transported particles
move single-file, is shown in Fig. 5.1b. Another simple
model is shown in Fig. 5.1c: there are no pores, but water and
small solute molecules actually “dissolve” in the membrane
and diffuse through. The examples in Fig. 5.1 shows water
molecules (open circles), solute molecules (small solid cir-
cles), and a large protein molecule that cannot pass through
the membrane.

In Fig. 5.1a and b the motion of the water molecules
is quite different from that of the small solute molecules.
Each water molecule is in contact with neighboring water
molecules so that when the water molecules move, they flow
together. The result is the familiar bulk flow that occurs in
a pipe. The solute molecules, on the other hand, are so di-
lute that they seldom collide with one another. Each solute
molecule’s motion is independent of other solute molecules.

The motion of each solute molecule is not independent of
the motion of the surrounding water molecules. If the water
is at rest, the movement of the solute molecules is diffusion;
if the water is moving, this diffusion is superimposed on a
flow of the solute molecules with the moving fluid (solvent
drag).

In Fig. 5.1c, both the water and solute molecules dissolve
into the bilayer lipid membrane. They are very dilute within
the membrane, so that both kinds of molecules diffuse. The
water molecules are not in contact with each other, but are

R. K. Hobbie, B. J. Roth, Intermediate Physics for Medicine and Biology, 117
DOI 10.1007/978-3-319-12682-1_5, c© Springer International Publishing Switzerland 2015
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Fig. 5.1 Simple models for a semipermeable membrane. a A “large”
pore. b A single-file pore such as an aquaporin channel. c Small
molecules dissolve in the membrane and diffuse through

in some sort of interstices within the membrane structure,
walking randomly in response to thermal agitation of the
membrane.

It has long been known that the rate of water transport
through cell membranes was too large to be explained by
diffusion as in Fig. 5.1c, although such diffusion does take
place. The pores that allow transport are more like those
shown in Fig. 5.1a and b. Pores like the one in Fig. 5.1b,
called aquaporins, were first discovered by Peter Agre in
1993 (Parisi et al. 2007).1 Other mechanisms for water flow
are associated with ion transport and are not discussed here
(Zeuthen 2010).

1 Some aquaporins are permeable only to water, and not to any other
small molecules or ions, even hydrogen ions (Preston et al. 1992).
Aquaporins are formed by proteins that span the cell membrane. Their
structure has been determined by x-ray crystallography (Murata et al.
2000). Their selectivity arises from a narrowing of the channel to about
0.3 nm, about the size of a single water molecule. Aquaporins allow wa-
ter to cross cell membranes at a much higher rate than it could diffuse
through. Genetically defective aquaporins may be responsible for some
clinical diseases, such as nephrogenic diabetes insipidus and congenital
cataracts (Agre et al. 2002).

5.2 Osmotic Pressure in an Ideal Gas

The selective permeability of a membrane gives rise to some
striking effects. The flow of water that occurs because so-
lutes are present that cannot get through the membrane is
called osmosis. This phenomenon seems strange when it is
first encountered, and explanations are often fraught with
misconceptions (Kramer and Myers 2012). Osmosis is im-
portant in a variety of clinical problems that are described in
Sect. 5.4. We begin by finding the conditions under which no
flow takes place and the direction of flow when it does occur.
Later, in Sect. 5.5, we consider the rate of flow in response
to a given pressure difference.

It is easiest to understand osmotic pressure by consider-
ing the special case of two ideal gases and a membrane that
is permeable to one but not the other. This case is simple
because the gas molecules do not interact with one another.
Then, in Sect. 5.3, we will examine the phenomenon when
the substances are liquids.

Suppose a box with total volume V ∗ contains N∗
1

molecules of gas species 1. If the box is at temperature T ,
the ideal-gas law relates the pressure, temperature, and the
number of molecules:

p1V
∗ = N∗

1 kBT . (5.1)

This has been written the way physicists like to write it, in
terms of the number of molecules N∗

1 . Chemists write it in
terms of the number of moles n∗

1:

p1V
∗ = n∗

1RT .

The only difference is that the gas constant R is per mole
while the Boltzmann constant kB is per molecule. Since
1 mole contains NA molecules, where NA is Avogadro’s
number, N∗

1 = NAn∗
1 and R = NAkB . Numerical values

are

NA = 6.022 × 1023 mol−1,

kB = 1.3806 × 10−23 J K−1,

R = 8.3145 J mol−1 K−1,

R = 0.08206 atm l mol−1 K−1.

The concentration is the number of molecules or moles
per unit volume. We denote molecular concentration by
capital letter C and molar concentration by lowercase c:

C1 = N∗
1

V ∗ m−3 or molecules m−3,

c1 = n∗
1

V ∗ m−3 or mol m−3.

Chemists often express concentrations in moles per liter.
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Fig. 5.2 An ideal gas fills a box of volume V ∗

Fig. 5.3 The introduction of a semipermeable membrane does not
change the pressure or concentration of the gas

If we were to imagine volume V ∗ divided into two sub-
volumes of volume V and V ′, the average concentration
of molecules in each subvolume would remain unchanged.
The pressure in each subvolume would still be p1, and the
temperature would be T . We can write

p1V = N1kBT , p1V
′ = N ′

1kBT .

Dividing both sides of each equation by the appropriate
volume gives

p1 = C1kBT , p1 = p′
1 = C′

1kBT . (5.2)

Now place a membrane along the surface separating the
subvolumes. The membrane has small holes so that the
molecules can pass through, as shown in Fig. 5.3. This does
nothing to change the fact that at equilibrium p1 = p′

1. When
the pressures are the same on both sides of the membrane, no
molecules pass through on average. If the pressure is greater
on one side than the other, molecules pass through to bring
the pressures into equilibrium, as we saw in Chap. 3. Equa-
tions 5.2 say nothing about how frequently a molecule that
strikes the membrane passes through. It could take hours
or days for equilibrium to be attained if we started away
from equilibrium and the molecules do not pass through very
often.

Next, keeping V fixed, introduce species 2 on the left
as in Fig. 5.4. Suppose that species 2 cannot pass through
the membrane. Bombardment of the membrane by the new
molecules causes an additional force on the left side of the
membrane. The total pressure in volume V is now the sum
of the partial pressures p1 due to species 1 and p2 due to the
second species:

p = p1 + p2,

Fig. 5.4 Species 2, which cannot pass through the membrane, has been
introduced in V . The pressure in V is higher than in V ′ by the partial
pressure p2

p1V = N1kBT , (5.3)

p2V = N2kBT .

The ideal-gas law is still obeyed in terms of the total number
of molecules in V , N = N1 + N2: pV = p1V + p2V =
N1kBT + N2kBT = (N1 + N2)kBT = NkBT .

In an ideal gas the presence of the second species does
not change the partial pressure p1. The total pressure on the
walls and the membrane is increased by p2 so the membrane
is bowed towards the right, but the total pressure is simply
the sum of the two partial pressures. The ratio p1/p is the
fraction of the pressure due to collisions of molecules of the
first kind with the membrane.

Suppose now that the pressure in V ′ is raised, either by
compressing the gas or by introducing more molecules of
type 1, so that instead of p′

1 = p1, we have p′
1 = p. The

partial pressure of species 1 is higher in V ′ than in V . Since
these molecules can pass through the membrane, they will
flow from V ′ to V . An identical flow could have been caused
without having species 2, simply by raising the pressure in
V ′. Not every molecule striking the membrane will pass
through, but some fraction of all collisions with the mem-
brane will result in a molecule passing through. The fraction
will depend on the details of the membrane structure. The
number going through will be proportional to the number
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of collisions on one side minus the number of collisions on
the other and hence to the difference of partial pressures. If
p1 > p′

1, species 1 will flow from V to V ′. If p1 < p′
1, the

flow will be in the other direction. The details of the mem-
brane will determine how rapid this flow is. The movement of
any species of gas molecule that can pass through the mem-
brane will be from the region of higher partial pressure to
lower partial pressure.

Suppose we start out with only species 1 on each side
of the membrane and equal pressures on both sides so that
p = p1 = p′ = p′

1. There are three ways to make p1 less
than p′

1, thereby causing movement from right to left. One is
simply to let the gas on the left expand into a larger volume,
which lowers p = p1. (Or we could have compressed the gas
on the right, raising p′ = p′

1.) The other two ways involve
introducing on the left a species 2 that cannot pass through
the membrane. The second way would be to keep the total
pressure and volume on the left the same, but remove one
molecule of species 1 for every molecule of species 2 that is
introduced. The third way would be to increase the volume
on the left as each molecule of species 2 is introduced, so
that p = p1 + p2 remains the same.

The total partial pressure of all species that cannot pass
through the membrane is called the osmotic pressure in re-
gion V and is usually denoted by π . If the subscript 2 denotes
all impermeant species,

π2 = C2kBT . (5.4)

The flow through the membrane because of an increase in the
osmotic pressure or a decrease in the total pressure is iden-
tical. In each case the flow is determined by the difference
across the membrane of p1, the total partial pressure of all
the species that can pass through.

The description in the previous paragraphs of partial pres-
sure is easy to visualize, and for the case given it is correct. It
is more general, however, to express the condition for equi-
librium in terms of the chemical potential, μ. Recall that in
Chap. 3 we derived the pressure in terms of volume changes
of a system and the chemical potential in terms of the number
of particles in the system. Suppose that the membrane sepa-
rating the two sides is actually a semipermeable piston that
is free to move. Equality of the total pressure on both sides
of the piston means that the piston will not move and the two
systems will not exchange volume. Equality of the chemi-
cal potential of a species that can get through the membrane
means that the two systems will not exchange particles. It
is better, therefore, to say the flow of any species that can
pass through the membrane will be from the region of higher
chemical potential to the region of lower chemical potential
for that species. If the chemical potentials are the same, there
will be no flow.

The mixture of two ideal gases is a special case of the
ideal solution that was described in Sect. 3.18. The chemical
potential of species 1 that can pass through the membrane is
given by Eq. 3.77:

�μ1 = V 1(�p − kBT �C2),

μ1 − μ′
1 = V 1

[
p − p′ − kBT (C2 − 0)

]
,

μ1 − μ′
1 = V 1(p1 + p2 − p′

1 − kBT C2).

Since p2 = kBT C2, the chemical potential is the same on
both sides of the membrane when p1 = p′

1.

5.3 Osmotic Pressure in a Liquid

Imagine now that the two volumes are filled with a solvent,
such as water. If the pressure of the water is the same in both
regions there is no movement of water through the mem-
brane, nor is there exchange of volume if the membrane
piston is free to move. Increasing the pressure on one side
of the fixed membrane causes water to move through the
membrane from the side with higher pressure to the side with
lower pressure. There is no flow when �p = 0. If there is a
solute in the water that can pass freely through the membrane
along with the water, the situation is unchanged.

Now let us add some solute on the left that cannot pass
through the membrane. We will keep the volume on the left
fixed. To add the solute in such a way that the pressure does
not change, we must remove some water molecules as we
add it.

We saw in Chap. 3 that replacing some water molecules
with solute increases the entropy of the solution.2 This means
that the Gibbs free energy and the chemical potential are de-
creased. Water moves from the region on the right, where the
chemical potential is higher, to the region on the left, where
it is lower. The chemical potential of the water on the left can
be increased by increasing the total pressure on the left.

The chemical potential contains terms proportional to the
pressure and the concentration of the impermeant solute. It

2 This, recall, is because the water molecules are indistinguishable. A
simple model (Fig. 3.15) shows why this happens. Suppose that three
water molecules occupy three identical energy levels, and that these
are the only three levels available. Because the molecules are indistin-
guishable, there is only one microstate and the entropy is zero. If one
molecule of water is replaced by one solute molecule, there are then
three separate microstates, corresponding to the solute molecule being
in any one of the three. The entropy is kB ln(3).
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was shown in Sect. 3.18 that for an ideal solution3

�μw = �p − kBT �Cs

Cw
.

The osmotic pressure is the excess pressure that we must ap-
ply on the left to prevent the movement of water through the
membrane. There is no movement of water when p = p′+π.

It is more convenient to write all the unprimed quantities on
the left: p − π = p′. The quantity p − π will occur so often
in what follows that it is worth a special name. We will define
the driving pressure

pd ≡ p − π. (5.5)

As far as we know, it has not been used by other authors. It
is a monotonic function of the chemical potential. In an ideal
solution it is Cwμw. Except in an ideal gas, it is not the same
as the partial pressure (a concept that is not normally used in
a liquid). On the right there is no solute and p′

d = p′. There is
no movement when the driving pressure is the same on both
sides,

pd = p′
d , (5.6a)

or the chemical potential of the water is the same on both
sides,

μw = μ′
w. (5.6b)

The water passes through the membrane in the direction from
higher pd to lower pd (or from higher chemical potential
to lower chemical potential). Either the total pressure or
the osmotic pressure can be manipulated to change pd (and
μw). An increase of total pressure has the same effect as a
decrease of osmotic pressure.

Increasing the concentration of the solute increases the
osmotic pressure. The fact that pd = p −π = Cwμw means
that for ideal solutions obeying Eq. 3.77,

π = CkBT = cRT . (5.7)

In many cases this is confirmed by experiment, particularly
in dilute solutions. This is known as the van’t Hoff law for
osmotic pressure.

An osmole is the equivalent of a mole of solute particles.
The term osmolality is used to refer to the number of os-
moles per kilogram of solvent, while osmolarity refers to the
number of osmoles per liter of solution. The reason for in-
troducing the osmole is that not all impermeant solutes are
ideal; their osmotic effects are slightly less than CkBT . The
osmole takes this correction into account.

3 An ideal solution can be defined in several equivalent ways. One is
that it is a solution that obeys Eq. 3.77. Another is that when the sepa-
rated components are mixed, there is no change of total volume and no
heat is evolved or absorbed. See Hildebrand and Scott (1964, Chap. 2).

5.4 Some Clinical Examples

As blood flows through capillaries, oxygen and nutrients
leave the blood and go to the cells. Waste products leave
the cells and enter the blood. Diffusion is the main pro-
cess that accomplishes this transfer. The capillaries are about
the diameter of a red cell; the red cells therefore squeeze
through the capillary in single file. They move in plasma,
which consists of water, electrolytes, small molecules such
as glucose and dissolved oxygen or carbon dioxide, and large
protein molecules. All but the large protein molecules can
pass through the capillary wall.

Outside the capillaries is the interstitial fluid, which
bathes the cells. The concentration of protein molecules in
the interstitial fluid is much less than it is in the capillaries.
Osmosis is an important factor determining the pressure in
the interstitial fluid and therefore its volume. The following
values (in units4 of torr) are typical for the osmotic pressure
inside and outside the capillary:5

Inside capillary πi = 28 torr

Outside capillary, interstitial fluid πo = 5 torr

Measurements of the total pressure in the interstitial fluid are
difficult, but the value seems to be about −6 torr. It is main-
tained below atmospheric pressure (taken here to be 0 torr)
by the rigidity of the tissues. The driving pressure of water
and small molecules outside is therefore

pdo = po − πo = −6 − 5 = −11 torr.

The total pressure within the capillary drops from the ar-
terial end to the venous end, causing blood to flow along
the capillary. A typical value at the arterial end is 25 torr;
at the venous end, it is 10 torr. If the drop is linear along
the capillary, the total pressures versus position is as plotted
in Fig. 5.5a.6 Subtracting from this the osmotic pressure of
the large molecules gives the curve for the driving pressure
inside, pdi , which is also plotted in Fig. 5.5a. Figure 5.5b
shows the total and driving pressures in the interstitial fluid.
Figure 5.5c compares the driving pressure inside and out-
side. The driving pressure is larger inside in the first half of
the capillary and larger outside in the second half of the cap-
illary. The result is an outward flow of plasma through the
capillary wall in the first half and an inward flow in the sec-
ond half. There is a very slight excess of outward flow. This
fluid returns to the circulation via the lymphatic system.

4 1 torr = 1 mmHg = 133.3 Pa = 0.019 34 lb in.−2.
5 A short account of the pressures used here is found in Hall (2011,
Chap. 16). A more detailed discussion is in Guyton et al. (1975).
6 This simple discussion uses pressures that compensate for the fact that
the surface area of the capillary is larger at the venous end than at the
arterial end.



122 5 Transport Through Neutral Membranes

-20

-10

0

p 
(t

or
r)

(c) comparison of pd inside and outside

pdi

pdo

Inward flowOutward flow

Artery          Distance along capillary          Vein

30

20

10

0

-10

-20

p 
(t

or
r)

(b) interstitial fluid outside capillary

po

πo = 5
pdo

Artery          Distance along capillary          Vein

30

20

10

0

-10

-20

p 
(t

or
r)

(a) inside capillary

pi

π i = 28
pdi

Artery          Distance along capillary          Vein

Fig. 5.5 Pressures inside and outside the capillary. a Inside. b Outside.
c Comparison of the water driving pressure inside and outside

There are three ways that the balance of Fig. 5.5 can
be disturbed, each of which can give rise to edema, a col-
lection of fluid in the tissue. The first is a higher average
pressure along the capillary. The second is a reduction in
osmotic pressure because of a lower protein concentration
in the blood (hypoproteinemia). The third is an increased
permeability of the capillary wall to large molecules, which
effectively reduces the osmotic pressure. Each is discussed
below.

5.4.1 Edema Due to Heart Failure

A patient in right heart failure exhibits an abnormal collec-
tion of interstitial fluid in the lower part of the body (the legs

for a walking patient; the back and buttocks for a patient in
bed). This can be understood in terms of the mechanism dis-
cussed above. The right heart pumps blood from the veins
through the lungs. If it can no longer handle this load, the
venous blood is not removed rapidly enough, and the pres-
sure in the veins and the venous end of the capillaries rises.
There is a corresponding rise in pd along the capillary. More
fluid flows from the capillary to the interstitial space. The
interstitial pressure rises until the net flow is again zero.

The same process can occur in left heart failure in which
the pressure in the pulmonary veins builds up. The patient
then has pulmonary edema and may literally drown.

5.4.2 Nephrotic Syndrome, Liver Disease,
and Ascites

Patients can develop an abnormally low amount of protein
in the blood serum, hypoproteinemia, which reduces the os-
motic pressure of the blood. This can happen, for example,
in nephrotic syndrome. The nephrons (the basic functioning
units in the kidney) become permeable to protein, which is
then lost in the urine. The lowering of the osmotic pressure
in the blood means that the pd rises. Therefore, there is a net
movement of water into the interstitial fluid. Edema can re-
sult from hypoproteinemia from other causes, such as liver
disease and malnutrition.

A patient with liver disease may suffer a collection of
fluid in the abdomen. The veins of the abdomen flow through
the liver before returning to the heart. This allows nutrients
absorbed from the gut to be processed immediately and effi-
ciently by the liver. Liver disease may not only decrease the
plasma protein concentration, but the vessels going through
the liver may become blocked, thereby raising the capillary
pressure throughout the abdomen and especially in the liver.
A migration of fluid out of the capillaries results. The sur-
face of the liver “weeps” fluid into the abdomen. The excess
abdominal fluid is called ascites.

5.4.3 Edema of Inflammatory Reaction

Whenever tissue is injured, whether it is a burn, an infec-
tion, an insect bite, or a laceration, a common sequence of
events initially occurs that cause edema. They include the
following:
1. Vasodilation. Capillaries and small blood vessels dilate,

and the rate of blood flow is increased. This is respon-
sible for the redness and warmth associated with the
inflammatory process.

2. Fluid exudation. Plasma, including plasma proteins, leaks
from the capillaries because of increased permeability of
the capillary wall.
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3. Cellular migration. The capillary walls become porous
enough so that white blood cells of the immune system
move out of the capillaries at the site of injury.

5.4.4 Headaches in Renal Dialysis

Dialysis is used to remove urea from the plasma of patients
whose kidneys do not function. Urea is in the interstitial brain
fluid and the cerebrospinal fluid in the same concentration as
in the plasma; however, the permeability of the capillary–
brain membrane is low, so equilibration takes several hours
(Patton et al. 1989, Chap. 64). Water, oxygen, and nutrients
cross from the capillary to the brain at a much faster rate
than urea. As the plasma urea concentration drops, there is
a temporary osmotic pressure difference resulting from the
urea within the brain. The driving pressure of water is higher
in the plasma, and water flows to the brain interstitial fluid.
Cerebral edema results, which can cause severe headaches.

The converse of this effect is to inject into the blood urea
or mannitol, another molecule that does not readily cross the
blood–brain barrier. This lowers the driving pressure of wa-
ter within the blood, and water flows from the brain into the
blood. Although the effects do not last long, this technique
is sometimes used as an emergency treatment for cerebral
edema (Fishman 1975; White and Likavec 1992).

5.4.5 Osmotic Diuresis

The functional unit of the kidney is the nephron. Water
and many solutes pass into the nephron from the blood at
the glomerulus. As the urine flows through the rest of the
nephron, a series of complicated processes cause a net re-
absorption of most of the water and varying amounts of the
solutes. Some medium-weight molecules such as mannitol
are not reabsorbed at all. If they are present in the nephron—
for example, from intravenous administration—the driving
pressure of water is lowered and less water is reabsorbed
than would be normally. The result is an increase in urine
volume and a dehydration of the patient called osmotic diure-
sis (Gennari and Kassirer 1974; Hall 2011). Similar diuretic
action takes place in a diabetic patient who “spills” glucose
into the urine.

5.4.6 Osmotic Fragility of Red Cells

Red blood cells (erythrocytes) are normally disk-shaped,
with the center thinner than the rim. In the disease called
hereditary spherocytosis the red cells are more rounded. If
a red cell is placed in a solution that has a higher driving
pressure than that inside the cell, water moves in and the cell

swells until it bursts. Since cell membranes (as distinct from
the lining of capillaries) are nearly impermeable to sodium,
sodium is osmotically active for this purpose. The osmotic
fragility test consists of placing red cells in solutions with
different sodium concentrations and determining what frac-
tion of the cells burst. A patient with hereditary spherocytosis
has cells that will be destroyed at a lower external pd (higher
sodium concentration) than normal, because the membrane
is more permeable to the sodium.

5.5 Volume Transport Through aMembrane

In this section and the next we develop phenomenologi-
cal equations to describe flow of fluid and flow of solute
through a membrane. These are linear approximations to the
dependence of the flows on pressure and solute concentra-
tion differences. Three parameters are introduced that are
widely used in physiology: the filtration coefficient (or hy-
draulic permeability), the solute permeability, and the solute
reflection coefficient.

The volume fluence rate or volume flow per unit area per
second through a membrane is Jv .

Jv =

(
total volume per second

through membrane area S

)

S
= iv

S
m s−1. (5.8)

Consider pure water. The fluence rate depends on the pres-
sure difference across the membrane. When the pressure
difference is zero there is no flow. The direction of flow,
and therefore the sign of the fluence rate, depends on which
side of the membrane has the higher pressure. The simplest
relationship that has this property is a linear one:7

Jv = Lp�p. (5.9)

The proportionality constant is called the filtration coefficient
or hydraulic permeability. It depends on the details of the
membrane structure, such as the properties of the pores. The
SI units for Lp are m s−1 Pa−1, m3 N−1 s−1, or m2 s kg−1.
Often in the literature, however, values of Lp are reported in
units of cm s−1 atm−1. Since 1 atm = 1.01 × 105 Pa, the
conversion is

1 cm s−1 atm−1 = 0.99 × 10−7 m s−1 Pa−1. (5.10)

7 The traditional sign convention has been followed here. There would
be a minus sign in the equation if �p were defined to be p(x + �x) −
p(x). However, it is usually defined as p − p′. The flow is from the
region of higher pressure to the region of lower pressure.
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If a solute is present to which the membrane is completely
impermeable, only water will flow, and the flow will depend
on �pd :

�pd = pd − p′
d = p − π − (p′ − π ′)

= p − p′ − (π − π ′)
= �p − �π

so

Jv = Lp(�p − �π). (5.11)

Figure 5.6 shows the pressure relations on each side of the
membrane for no flow and for flow in either direction.

It is important to note that the quantity in parentheses is a
property of the solutions on either side of the membrane. The
permeability depends on the transport mechanism.

Fig. 5.6 Different flow possibilities for a completely impermeant so-
lute. a �pd = 0, so there is no flow even though p > p′. b Flow to the
right even though p = p′. c Flow to the left even though p = p′

When the solute is partially permeant, the volume fluence
rate in the linear approximation still depends on both �p and
�π , but the proportionality constants may be different. Since
the solute does not reduce the flow as much as in Eq. 5.11, it
is customary to write the two constants as Lp and σLp:

Jv = Lp(�p − σ�π). (5.12)

Parameter Lp is determined by measuring Jv and �p when
�π = 0, while σ is determined from measurements of �p

and �π when Jv = 0.
Parameter σ is called the reflection coefficient. It has dif-

ferent values for different solutes. When σ = 0 there is no
reflection, and the solute particles pass through like water.
When σ = 1 all the solute particles are reflected and Eq. 5.12
is the same as Eq. 5.11.

We can imagine that part of the solute moves freely with
the water and part is reflected. (Later, we will consider a
model for partial reflection in which a solute particle of ra-
dius a < Rp can enter the pore, but its center cannot be
closer to the wall than its radius.) We can write

p = pd + σπ, (5.13)

and we can further break this down to a driving pressure for
the water pdw and one for the permeant solute:

osmotic pressure

of all solute molecules
︷ ︸︸ ︷

p = pdw + (1 − σ)π + σπ.

︸ ︷︷ ︸ ︸︷︷︸
driving pressure osmotic pressure

for permeant of impermeant

molecules molecules

(5.14)

With this substitution the flow equation becomes

Jv = Lp

[
�pdw + (1 − σ)�π

]
. (5.15)

Figure 5.7 shows the pressure relationships across the mem-
brane.

In the approximation that van’t Hoff’s law holds, π =
kBT C = RT c and Eq. 5.12 can be written as

Jv = Lp(�p − σkBT �C), (5.16)

Jv = Lp(�p − σRT �c). (5.17)

In Eq. 5.16 the concentration is in molecules m−3; in
Eq. 5.17 it is mol m−3. In both cases the units of kBT �C

and RT �c are pascals.
As an example of volume flow, consider ultrafiltra-

tion. Ultrafiltration is the process whereby water and small
molecules are forced through a membrane by a hydrostatic
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Fig. 5.7 Pressure relationships on each side of the membrane when
σ = 2

3 . a There is no bulk flow. b There is flow to the right

pressure difference while larger constituents are left behind.
An interesting clinical application of ultrafiltration has been
proposed. A severely edematous patient (for any of the rea-
sons mentioned in the previous section) must have the extra
water removed from the body. This is usually accomplished
with diuretics, drugs that increase the renal excretion of wa-
ter. Some patients may not respond to these drugs, and in
other cases, particularly pulmonary edema, the response may
not be fast enough. In the latter case, phlebotomy (bloodlet-
ting) is sometimes used to reduce the body water rapidly.
This has obvious disadvantages, for example, the removal of
blood cells. Silverstein et al. (1974) used ultrafiltration to re-
move water and sodium from the plasma while leaving the
other constituents behind. Ultrafiltration is sometimes called
reverse osmosis. The name is unfortunate, because it sug-
gests some mysterious process unrelated to the principles of
this section. Ultrafiltration is often used by campers for puri-
fying water and has been suggested for desalinization of sea
water.

5.6 Solute Transport Through aMembrane

Solute can pass through the membrane in two ways: it can
be carried along with flowing water (solvent drag), and it can
diffuse.

If there is no reflection (σ = 0) and the solute concentra-
tion is the same on both sides of the membrane so there is no

diffusion, the flux density or fluence rate is caused by solvent
drag and is simply the solute concentration (particles per unit
volume) times the volume fluence rate (Sect. 4.2):

Js = CsJv.

If the solute particles are completely reflected (σ = 1) then
Js = 0.

In the intermediate case with coefficient σ ,

Js = (1 − σ)CsJv.

This is consistent with the idea expressed by Eq. 5.14 that a
fraction (1 − σ) of the solute particles can enter the mem-
brane. In that case, Cs is the outside solute concentration on
both sides of the membrane, and Cs(1−σ) is the solute con-
centration inside the membrane. We will develop a detailed
model for transport in a right-cylindrical pore in Sect. 5.9.
We anticipate that discussion and present a simple justifica-
tion of the factor 1−σ. In bulk solution the concentration Cs

is obtained by imagining a certain volume of solution, count-
ing the number of solute particles whose centers lie within
the volume, and taking the ratio. In a cylindrical pore of
radius Rp and length �Z, the volume of fluid is πR2

p�Z.
The centers of solute particles of radius a cannot be within
distance a of the pore wall. The number of solute particles
within the pore is therefore Csπ

(
Rp − a

)2
�Z. The concen-

tration in the pore is the number of particles divided by the
pore volume:

Cs, inside = Csπ
(
Rp − a

)2
�Z

πR2
p�Z

= Cs

(
1 − a

Rp

)2

= Cs (1 − σ) .

This correction is called the steric factor. Solvent flow within
a distance a of the walls contributes to Jv but not to solvent
drag. This model will be extended to a volume flow with a
parabolic velocity profile in Sect. 5.9.4.

If Jv = 0 there will be no solvent drag but there will
be diffusion. The solute flux will be proportional to the
concentration gradient and therefore to the concentration
difference across the membrane: Js ∝ �Cs . The propor-
tionality constant depends on properties of the membrane.
If the membrane is pierced by pores, for example, it de-
pends on pore size, membrane thickness, number of pores per
unit area, and the diffusion constant. The dependence will be
derived later in this chapter. It is customary to write the pro-
portionality constant as ωRT : Js = ωRT �Cs . The factor ω

is called the membrane permeability or solute permeability.
In the linear approximation the fluence rate resulting from

both processes is the sum of these two terms:

Js = (1 − σ)CsJv + ωRT �Cs. (5.18)
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Here an average value Cs has been written for the solvent
drag term, because the concentration on each side of the
membrane is not necessarily the same. The way that this av-
erage is taken will become clearer in the discussion of the
pore model described in Sect. 5.9.

The solute equation has been written for both fluence rate
and concentration in terms of particles. In terms of molar
fluence rate and concentration, it is exactly the same:

Js(molar) = (1 − σ)csJv + ωRT �cs. (5.19)

Either way, the diffusion proportionality constant is ωRT . It
does not change because Cs and Js(particles) are both written
in terms of particles, and cs and Js(molar) are both written in
terms of moles. Referring to Eq. 5.18, the solvent drag term
has units of (particles m−3) (m s−1) = particles m−2 s−1.
Therefore the factor ωRT has units of m s−1. Since the units
of RT are joules or N m (per mole), the units of ω are

mol m s−1

N m
= mol N−1 s−1. (5.20)

Further interpretation of ω will be made for specific models.
We have used the same σ in both the solvent drag term and

in the preceding section. Although this was made plausible
by saying that 1 − σ is the fraction of solute molecules that
gets through the membrane, its rigorous proof is more subtle.
It has been proved in general using thermodynamic argu-
ments, which can be found in Katchalsky and Curran (1965).
It can be proved in detail for specific membrane models.

5.7 Example: The Artificial Kidney

The artificial kidney provides an example of the use of the
transport equations to solve an engineering problem. The
problem has been extensively considered by chemical en-
gineers, and we will give only a simple description here.
Those interested in pursuing the problem further can begin
with reviews by Mavroidis (2006) or Lysaght and Moran
(2006). The reader should also be aware that this “high-
technology” solution to the problem of chronic renal disease
is not entirely satisfactory. It is expensive and uncomfort-
able and leads to degenerative changes in the skeleton and
severe atherosclerosis (Lindner et al. 1974). The alternative
treatment, a transplant, has its own problems, related pri-
marily to the immunosuppressive therapy. Anyone who is
going to be involved in biomedical engineering or in the
treatment of patients with chronic disease should read the
account by Calland (1972), a physician with chronic renal
failure who had both chronic dialysis and several transplants.
The distinction between a high-technology treatment and a
real conquest of a disease has been underscored by Thomas
(1974, pp. 31–36).

Fig. 5.8 The simplest model of dialysis. All the body fluid is treated
as one compartment; transport across the membrane is assumed to take
longer than transport from various body compartments to the blood

The simplest model of dialysis is shown in Fig. 5.8. Two
compartments, the body fluid and the dialysis fluid, are sep-
arated by a membrane that is porous to the small molecules
to be removed and impermeable to larger molecules. If such
a configuration is maintained long enough, then the concen-
tration of any solute that can pass through the membrane will
become the same on both sides. The dialysis fluid is pre-
pared with the desired composition of such small molecules
as sodium, potassium, and glucose. Volume V ′ must be larger
than V for effective dialysis to take place; otherwise, the con-
centration of solutes in the dialysis fluid builds up from the
initially prepared values. In early work, V ′ was up to 100 l
(since V is about 40 l). Although the fluid was replaced ev-
ery two hours or so, it was an excellent medium in which to
grow bacteria. Although the bacteria could not get through
the membrane, they released exotoxins (or, if they died, en-
dotoxins) which diffused back into the patient and caused
fever. Now a continuous flow system has been used in which
the solutes are continually metered into flowing dialysis fluid
that is then discarded. Because of this, we will assume that
there is no buildup of concentration in the dialysis fluid. (Ef-
fectively volume V ′ is infinite.) We will assume that �p = 0.
(Actually, proteins cause some osmotic pressure difference,
which we will ignore.)

Without solvent drag, the solute transport is by diffusion,
Js = ωRT (C−C′), where C is the concentration of solute in
the blood and C′ is the concentration in the dialysis fluid. If
the surface area of the membrane is S, then the rate of change
of the number of solute molecules N is

dN

dt
= −SωRT (C − C′).

If the solute is well mixed in the body fluid compartment,
then N = CV , and this equation can be written as

dC

dt
= −SωRT

V
(C − C′).

This is the equation for exponential decay. The steady state
solution is C = C′. The complete solution is (Appendix F)

C(t) = [C(0) − C′] e−t/τ + C′, (5.21)
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where the time constant is

τ = V

SωRT
. (5.22)

The only things that are adjustable in this equation are the
membrane area S and its permeability ω. The size of pores
in the membrane is dictated by what solutes are to be retained
in the blood. The number of pores per unit area and the thick-
ness of the membrane can be controlled. Typical cellophane
membranes have ωRT = 5 × 10−6 m s−1 (with a thick-
ness of 500 μm). The area may be 2 m2. With a fluid volume
V = 40 l, this gives

τ = 40 × 10−3 m3
(
2 m2

) (
5 × 10−6 m s−1

) = 4 × 103 s = 1.1 h.

Typically, dialysis requires several hours. This longer period
is for two reasons. Some of the larger molecules have smaller
permeabilities and therefore longer time constants, and rapid
dialysis causes cerebral edema and severe headaches.

The actual apparatus is quite complicated. First, it must be
sterile, which requires a sterilized, disposable dialysis mem-
brane. Second, the apparatus causes clots, so the blood must
be treated with heparin as it enters the machine, and the hep-
arin must be neutralized with protamine as it returns to the
patient.

5.8 Countercurrent Transport

This section considers a problem that demonstrates the prin-
ciple of countercurrent transport. An apparatus (perhaps a
dialysis machine or an oxygenator) transports a single solute
across a thin membrane of permeability ωRT . On one side
of the membrane (the “inside”) is a thin layer of solvent that
flows along the membrane in the +x direction as shown in
Fig. 5.9. On the “outside” is another thin layer of solvent that
may be at rest or may flow in either the +x or the −x di-
rection. When it flows in the opposite direction of the fluid
inside we have the countercurrent situation.

x

y
z

jv in

v outj

Fluid 
Membrane
Fluid

Fig. 5.9 Layers of fluid containing a solute flow parallel to the x axis
on either side of a membrane

Suppose that the concentration of solute in the two layers
is Cin(x) inside and Cout(x) outside. Solute is transported
in the x direction in each fluid layer by pure solvent drag.
It diffuses through the membrane from the side with higher
concentration to the other. We develop the model below and
show that the steady-state concentration profiles are quite
different depending on whether the solvent flows are in
the same or opposite directions. The results are shown in
Fig. 5.10 for the situation in which the value of Cin is 1 and
the value of Cout is 0 where each solvent starts to flow across
the membrane. In Fig. 5.10a both layers flow to the right; in
Fig. 5.10b they flow in opposite directions. The countercur-
rent case is more effective in reducing Cin. The final value of
Cin is 0.5 in the first case and 0.33 in the second.

To develop the model, we make the following assump-
tions. The concentration of solute in each fluid layer is
independent of y, z, and t . The thickness of the fluid layer
inside is hin. The fluid velocity jv in is everywhere constant.
The only important mechanism for solute transport within
the fluid is solvent drag. Let the width of the slab in the
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(a) Both flows are to the right.

(b) The flows are in opposite directions.

Fig. 5.10 Solute concentration profiles for two different situations
where solvent flows parallel to the membrane surface and solute moves
through the membrane from inside to outside. a Both fluid layers flow to
the right. The concentrations rise and falls exponentially, eventually be-
coming the same on both sides of the membrane. b The countercurrent
case, in which the solvent flows are in opposite directions. The solvent
outside flows from right to left. The concentrations vary linearly
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y direction be Y . Inside, the number of particles per sec-
ond in through the face of the rectangle of area Yhin at x is
Cin(x)jv inYhin. The number out through the face at x + dx

is Cin(x + dx)jv inYhin. The number through the membrane
into the exterior volume is [Cin(x) − Cout(x)] ωRT Ydx.
Combining these we get

dCin

dx
= − ωRT

jv inhin
[Cin(x) − Cout(x)] . (5.23)

A similar expression can be derived for the exterior:

dCout

dx
= ωRT

jv outhout
[Cin(x) − Cout(x)] . (5.24)

Our notation allows jv to have a different direction (sign).
Defining a = ωRT/jvh we have the coupled differential
equations

dCin

dx
= −ain(Cin − Cout),

dCout

dx
= +aout(Cin − Cout).

(5.25)

We restrict ourselves to the case in which |ain| = |aout| =
a. Changing the direction of jv changes the sign of a. As-
sume a is the same on both sides. The equations show that
the slope of Cin(x) is minus the slope of Cout(x) if both cur-
rents are in the same direction, and the two slopes are the
same if the currents are in opposite directions. This can be
seen in the solutions in Fig. 5.10.

You can verify that Eqs. 5.26 represent a solution of
Eqs. 5.25:

Cin(x) = c1

2

(
1 + e−2ax

)+ c2

2

(
1 − e−2ax

)
,

Cout(x) = c1

2

(
1 − e−2ax

)+ c2

2

(
1 + e−2ax

)
,

(5.26)

where c1 and c2 are the values of Cin and Cout at x = 0.

Figure 5.10a shows the concentrations for c1 = 1 and c2 = 0
with a = 1 and 0 < x < 2. If the sign of a is changed in the
second differential equation, then the fluid outside is flowing
in the opposite direction to the fluid inside. Again you can
verify that the most general solution is

Cin(x) = c1 + (c2 − c1)ax,

Cout(x) = c2 + (c2 − c1)ax.
(5.27)

Figure 5.10b is a plot with the constants set so that the con-
centration inside on the left is 1 and on the outside on the
right is zero (c1 = 1, c2 = 2/3, a = 1, 0 < x < 2). This con-
figuration is called countercurrent flow. We can see from the
figure that the transport through the membrane is increased
because the concentration difference across the membrane is,
on average, greater.

The countercurrent principle is found in the renal tubules
(Hall 2011, p. 309; Patton et al. 1989, p. 1081), in the villi

of the small intestine (Patton et al. 1989, p. 915), and in
the lamellae of fish gills (Schmidt-Nielsen 1972, p. 45). The
principle is also used to conserve heat in the extremities—
such as people’s arms and legs, whale flippers, or the leg of
a duck. If a vein returning from an extremity runs closely
parallel to the artery feeding the extremity, the blood in the
artery will be cooled and the blood in the vein warmed. As a
result, the temperature of the extremity will be lower and the
heat loss to the surroundings will be reduced.

5.9 A Continuum Model for Volume and
Solute Transport in a Pore

In this section we develop a model to predict the values of the
phenomenological coefficients of Sects. 5.5 and 5.6. The suc-
cess of the model depends on its ability to predict behavior,
particularly as the size of solute particles is varied. This was
an important problem in physiology in the 1960s and 1970s.
Instead of comparing the model to experiment, we conclude
the section by showing what the forces are on the membrane.
This is important because there has been a fair amount of
confusion in the literature about the forces on a semiperme-
able membrane. This section is fairly long. It stands alone;
you can skip it if you wish.

The model assumes that the membrane has a particularly
simple structure.
1. The membrane is pierced by n circular pores per unit area,

all having radius Rp and all being right cylinders. The
membrane thickness is �Z.

2. The pore and the fluid are electrically neutral. No electri-
cal forces are considered.

3. There is complete mixing on both sides of the pore, so
that flow within the liquid on either side can be neglected.

4. The system is in the steady state. There is no variation in
flux density (fluence rate) or concentration as a function
of time.

5. The pores are large enough so that the bulk flow can be
calculated by continuum hydrodynamics.

The quantities considered in this section are summarized in
Table 5.1.

5.9.1 Volume Transport

The results of Chap. 1 can be used when the pore is filled
with pure water or water and a solute for which σ = 0. From
Eq. 1.40 the flux through a single pore is

iv(single pore) = πR4
p

8η

�p

�x
. (5.28)
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Table 5.1 Symbols used for porous membrane

Quantity On left In pore On right
Total pressure p p′
Solute concentration Cs C(z) C′

s

Osmotic pressure π = kBT Cs π ′ = kBT C′
s

Effectively impermeant part of osmotic pressure σπ σπ ′
Effectively permeant part of osmotic pressure plus water driving pressure (1 − σ)π + pdw pd(z) (1 − σ)π ′ + p′

dw

The fluence rate through the membrane is obtained by multi-
plying iv by n, the number of pores per unit area. The result
is

Jv = nπR4
p

8η

�p

�Z

so that

Lp = nπR4
p

8η �Z
. (5.29)

While Lp can be measured fairly easily using Eq. 5.12, it
is much more difficult to measure the microscopic quantities
needed to test Eq. 5.29. We will not compare the model to
experiment here;8 we will simply give an example of how
calculations are done.

A commercial filter used for ultrafiltration might have the
property Lp ≈ 1 ml min−1 m−2 torr−1. Since 760 torr =
1 × 105 Pa, the hydraulic permeability in SI units is

Lp = 1 ml

1 torr min m2

1 min

60 s

10−6 m3

1 ml

760 torr

1 × 105 Pa

= 1.27 × 10−10 m s−1 Pa−1.

The manufacturer’s literature9 can be used to estimate

Rp ≈ 4.5 nm,

�Z ≈ 10 μm.10

The viscosity of water is 0.9×10−3 Pa s at 25 ◦C. This gives
us enough information to estimate n and the fraction of the
filter surface that is pores. From Eq. 5.29

n = 8η �Z Lp

πR4
p

=
(

(8)(0.9 × 10−3 Pa s)(10 × 10−6 m)

π
(
4.5 × 10−9

)4 m4

)

× (1.27 × 10−10 m s−1 Pa−1)

= 7.1 × 1015 m−2.

8 See the third or earlier editions or, for example, Bean (1969, 1972).
9 Amicon XM-50.
10 This value may not be consistent with the value of Lp quoted. The
pore length �Z is not well known, and Lp is variable, depending on
experimental conditions.

Since the area of one pore is πR2
p = 6.36 × 10−17 m2,

the total pore area in 1 m2 is 0.45 m2, a number that is not
unreasonable.

Next consider the volume flow when the reflection coeffi-
cient is not zero. The position within the pore is specified by
cylindrical coordinates (r, φ, z). The position along the axis
of the pore is given by z. The position in a plane perpendic-
ular to the axis of the pore is specified by polar coordinates
r and φ. Flow of the fluid is described by the vector vol-
ume fluence rate jv(r, φ, z). (We use J for fluence rate for
the membrane as a whole and j for the fluence rate in bulk
solution inside a pore.) It is possible to show rigorously that
as long as the pore is a right circular cylinder, jv points only
along z and is independent of φ (the fluid does not flow in a
spiral and does not flow into or out of the walls):

jv(r, φ, z) = jv(r, z)ẑ. (5.30)

The solution is in a steady state and the flow is not changing
with time. Therefore the flux density into a volume at z must
be the same as the flux density out at z + dz:

∂jv

∂z
= 0 (5.31)

so that jv is constant along the z axis (although it can be
a function of r). This is just what we saw in Chap. 1 for
Poiseuille flow; the variation of jv with r corresponds to the
parabolic velocity profile. A value of jv(r) that is constant in
the z direction requires a constant value of ∂p/∂z inside the
pore.

In the pore, the driving pressure is pd(z). A typical pres-
sure profile is shown in Fig. 5.11. The symbols are defined
in Table 5.1. The pressure in the pore has been drawn with
constant slope, since ∂pd/∂z is constant. Using Eqs. 5.16 and
5.29, we can write

Jv = Lp(�p − σkBT �Cs), (5.32)

where Lp is given by Eq. 5.29. The value of σ is derived in
the next section.

The average value of jv(r) within the pore will be called
jv . It is the total flux density through the pore divided by
πR2

p:

jv = i(single pore)

πR2
p

= 1

πR2
p

∫ Rp

0
jv(r) 2πr dr
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Fig. 5.11 Pressure within a pore and at the boundaries in the steady
state

= Jv

nπR2
p

= −R2
p

8η

∂pd

∂z
. (5.33)

5.9.2 Solute Transport

We now consider solute transport in our model pore. The
arguments here are very similar to those for combined dif-
fusion and solvent drag that were developed in Sect. 4.12.
Those arguments are extended by averaging over the cross
section of the pore.

Within the pore, the local solute flux is js(r, φ, z). Argu-
ments similar to those in the preceding section can be offered
to show that js points along the z axis and is independent of
φ:

js(r, φ, z) = js(r, z)ẑ. (5.34)

The solute concentration does not depend on φ, or else there
would be diffusion in the φ direction and js would have a φ

component. So C = C(r, z). The r dependence must be kept
because the center of a solute molecule of radius a cannot be
within a distance a of the wall. (Recall the discussion of the
steric correction on p. 125) Thus C(r, z) = 0 if r > Rp − a.
We write11

C(r, z) =
{

0, Rp − a < r

C(z), 0 � r � Rp − a.
(5.35)

The solute flux due to solvent drag is Csjv . For diffu-
sion in one dimension the solute flux along the z axis is

11 It can be argued that this is the only possible form for C(r, z). See
Levitt (1975, p. 535ff.).

−D(∂C/∂z). For the cylindrical pore we can combine these
and write

js(r, z) = C(r, z)jv(r, z) − D(r, a, Rp)
∂C(r, z)

∂z
. (5.36)

The diffusion constant has been written as a function of r ,
a, and Rp because in the pore, as distinct from an infinite
medium, the constant depends on how close the particle is to
the walls. (Remember the relation of D to the viscous drag
and the fact that Stokes’ law requires modification when the
fluid is confined in a tube.)

The preceding section showed that for the steady state jv
is independent of z. A similar argument can be made using
the continuity equation for solute particles, implying that js

is independent of z. Therefore Eq. 5.36 simplifies to

D(r, a, Rp)
∂C(r, z)

∂z
− jv(r)C(r, z) = −js(r). (5.37)

The easiest way to write C(r, z) in accordance with Eq. 5.35
is

C(r, z) = C(z)Γ (r),

where

Γ (r) =
{

0, Rp − a < r

1, 0 � r < Rp − a.
(5.38)

With this substitution Eq. 5.37 becomes

Γ (r)D(r, a, Rp)
dC(z)

dz
− C(z)Γ (r)jv(r) = −js(r).

This equation can be multiplied by 2πr dr and integrated
from r = 0 to r = Rp. The result is

(∫ Rp

0
Γ (r)D(r, a, Rp)2πr dr

)
dC(z)

dz

−
(∫ Rp

0
Γ (r) jv 2πr dr

)
C(z) = −

∫ Rp

0
js(r)2πr dr.

(5.39)

The physical meaning of this integration can be under-
stood with the aid of Fig. 5.12, which shows a slab of fluid in
the pore between z and z+dz. Solute does not cross a surface
of constant r but moves parallel to the z axis. Diffusion and
solvent drag are considered in each shaded area 2πr dr . The
integration of Eq. 5.39 establishes an average solute fluence
rate, since the right-hand side of the equation is the total flux
or current of solute particles per second passing through the
pore:

is =
∫ Rp

0
js(r)2πr dr.
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As with the volume fluence rate, it is convenient to call the
average solute fluence rate j s :

j s = is

πR2
p

= 1

πR2
p

∫ Rp

0
js(r)2πr dr. (5.40)

The first term of Eq. 5.39 is the diffusive flux at z averaged
over the entire cross section of the pore. Define an effective
diffusion constant

Deff = 1

πR2
p

∫ Rp

0
Γ (r)D(r, a, Rp)2πr dr. (5.41)

The second term on the left of Eq. 5.39 is the solvent drag
flux averaged over the entire cross section of the pore. The
integral is
∫ Rp

0
jv(r)Γ (r)2πr dr =

∫ Rp−a

0
jv(r)2πr dr. (5.42)

This integral can be evaluated because we know the velocity
profile, jv(r), Eq. 1.39:12

jv(r) = 1

4η

�p

�z

(
R2

p − r2
)

. (5.43)

We have already defined the average volume fluence rate to
be

jv = 1

πR2
p

∫ Rp

0
jv(r)2πr dr.

The desired quantity differs only in the limits of integration.
To calculate it, write

∫ Rp−a

0
jv(r)2πr dr = πR2

p jv

∫ Rp−a

0
jv(r)2πr dr

∫ Rp

0
jv(r)2πr dr

.

12 This ignores the fact that since the walls affect the force on the solute
particles, the solute must distort the velocity profile slightly. This point
is discussed below.

Fig. 5.12 A slab of fluid in a pore between z and z + dz, showing how
the integration over r is done

The integrals are easily evaluated (see the Problems). The
result is

∫ Rp

0
jv(r)Γ (r)2πr dr = πR2

p jv f (a/Rp), (5.44a)

where the function f is

f (ξ) = 1 − 4ξ2 + 4ξ3 − ξ4. (5.44b)

When Eqs. 5.40, 5.41, and 5.44a are substituted into Eq. 5.39
and each term is divided by πR2

p, the result is

Deff

(
dC

dz

)
− jvf

(
a

Rp

)
C(z) = −j s (5.45a)

or

dC

dz
− jvf (a/Rp)

Deff
C(z) = − j s

Deff
. (5.45b)

This is a differential equation for C(z). The right-hand side
is the total solute fluence rate, which is constant. On the left-
hand side, C varies along the pore so that the diffusive and
solvent-drag fluence rates add up to this constant value. If the
constant in front of C(z) is written as

1

λ
= jvf (a/Rp)

Deff
, (5.46)

this is recognized as Eq. 4.58 for drift plus solvent drag in
an infinite medium. The results of Sect. 4.13 can be applied
here. It is only necessary to determine values for C0 and C′

0.
Recall that in the pore C(r, z) = C(z)Γ (r). The function
Γ (r) takes into account the reflection that occurs because
solute particles cannot be closer to the pore wall than their
radius. It was also assumed that the solution on either side
of the membrane is well stirred. Therefore, C0 = Cs and
C′

0 = C′
s . Equation 4.70 becomes

j s = f jv Cs + Deff
(Cs − C′

s)

�Z
. (5.47)

This is an expression for j s , the average solute fluence rate in
the pore. To get solute fluence rate in the membrane, it must
be multiplied by πR2

p and the number of pores per unit area.

Since Jv = nπR2
p jv , we have

Js = f Cs Jv + nπR2
p Deff

�Z
Cs. (5.48)

Comparing this with the general phenomenological equation
for solute flow, Eq. 5.18,

Js = (1 − σ)CsJv + ωRT �Cs

we see that

1 − σ = f,
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ωRT = nπR2
p Deff

�Z
, (5.49)

λ = Deff

jv(1 − σ)
= ωRT (�Z)

Jv(1 − σ)
.

The average solute concentration C is obtained from
Eq. 4.66 with the substitution of �Z for the pore length:

Cs = Cse
x − C′

s

ex − 1
− 1

x
(Cs − C′

s).

This can be rearranged as

Cs = 1
2 (Cs + C′

s) + G(x)(Cs − C′
s) (5.50a)

with

G(x) = 1

2

(
ex + 1

ex − 1

)
− 1

x
, (5.50b)

where x = �Z/λ. This is the same function we saw in
Fig. 4.17.

The solute concentration away from the sides of the pore
is

C(z) = Cs(e
�Z/λ − ez/λ) + C′

s(e
z/λ − 1)

e�Z/λ − 1
. (5.51)

While the concentration profile is not usually measured ex-
perimentally, it is useful to plot it to help us visualize the
interrelation of diffusion and solvent drag. Call φ = C′

s/Cs .
Equation 5.51 can be rearranged as

C(z) = C(0)

(
1 − (1 − φ)

ez/λ − 1

e�Z/λ − 1

)
. (5.52)

We can see several things from this equation. First, if the
concentration is the same at each end of the pore, φ = 1,
the second term in the large parentheses vanishes, and the
concentration is uniform throughout the pore. If φ �= 1, then
the concentration is that at z = 0, plus a factor which may
be positive or negative, depending on whether φ is less than
or greater than 1. The ratio of exponentials occurring in that
factor is plotted in Fig. 5.13 for different values of �Z/λ, the
ratio of the pore length to the effective diffusion distance.

These curves determine the shape of the concentration
profile along the pore. If the flow is zero, λ = Deff/jv(1−σ)

is infinite and �Z/λ is zero. We then have pure diffusion,
and the concentration changes uniformly along the pore, cor-
responding to the straight line in Fig. 5.13. The plots in
Fig. 5.14 show what the concentration profiles are like for
diffusion to the left and to the right when the flow is to the
right. Compare the shape of the concentration profile on the
left in Fig. 5.14 with the curve for �Z/λ = 1 in Fig. 5.13.
When the concentration is higher on the left, we have to take
the mirror image of Fig. 5.13; the curve for �Z/λ = −1
gives the concentration profile in Fig. 5.14 on the right.

1.0

0.8

0.6

0.4

0.2

0.0

(e
z/

λ  -
 1

)/
(e

Δ Z
/λ

 -
 1

)

1.00.80.60.40.20.0

z/ΔZ

ΔZ/λ = -10

ΔZ/λ = -1

ΔZ/λ = 0

ΔZ/λ = 1

ΔZ/λ = 10

Fig. 5.13 Plot of the factor (ez/λ − 1)/(e�Z/λ − 1), which appears in
Eq. 5.52

Fig. 5.14 A possible set of values for p, pd , and C along a pore for
diffusion to the left and diffusion to the right. The fluid on each side of
the pore is well stirred and of sufficient volume so that concentrations
do not change with time

As the pore becomes very long compared to the diffusion
length (for example, |�Z/λ| = 10 or more), the concen-
tration along the pore is nearly that carried into the pore by
bulk flow from the left until we get to the far end, where dif-
fusion back up the pore gives a smooth transition to the final
concentration on the right.
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We can think of the pressure in the pore as being made up
of driving pressures due to water and to the solute within the
pore:

pd(z) = pdw(z) + pds(z).

Since the effective driving pressure for impermeant solute in
the Jv equation is kBT �C, it would be nice to be able to
write

pd(z) = pdw(z) + (1 − σ)kBT C(z).

This is consistent with the solvent drag flux at position z in
the pore, which was given in Eq. 5.45a by

jv f C(z) = jv(1 − σ)C(z).

The “effective” concentration for solvent drag is (1−σ)C(z).

5.9.3 Summary

To summarize, the combination of solvent and a solute with
reflection coefficient has a volume flux

Jv = Lp(�p − σ kBT �Cs) (5.53)

and a solute flux

Js = (1 − σ)CsJv + ωRT �Cs. (5.54)

The hydraulic permeability is

Lp = nπR4
p

8η�Z
. (5.55)

The solute permeability is

ωRT = nπR2
p Deff

�Z
. (5.56)

The characteristic length for diffusion is

λ = Deff

jv(1 − σ)
= �Z ωRT

Jv(1 − σ)
. (5.57)

The average concentration is

Cs = 1
2 (Cs + C′

s) + G(x)�Cs, (5.58)

where G(x) is given by Eq. 5.50b. The parameter x is

x = Jv(1 − σ)

ωRT
= �Z

λ
. (5.59)

Notice that the solvent drag term as well as the diffusion term
depends on �Cs , through the factor Cs .

Fig. 5.15 Calculated values of the reflection coefficient are indicated
by the lines. Calculations are shown for the simple steric factor, the
steric factor weighted by a parabolic velocity profile, Eq. 5.60, and
a more detailed calculation, which takes account of the distortion of
the velocity profile by the solute particles by Levitt (1975) and by
Bean (1972, pp. 29–35). The data points are from Durbin (1960) as
reinterpreted by Bean (1972)

5.9.4 Reflection Coefficient

We have referred previously to the fact that the centers of
solute particles can occupy only a fraction of the pore vol-
ume. A solute particle’s center cannot be further from the
pore axis than Rp − a. The simplest correction is the steric
factor, seen on p. 125 . The ratio of effective area to total area
approximates 1 − σ . If ξ = a/Rp, then

1 − σ ≈ π(Rp − a)2

πR2
p

= 1 − 2a

Rp

+ a2

R2
p

,

σ = 2ξ − ξ2.

A better calculation was seen in the preceding subsection.
Accept the fact (quoted from thermodynamic results) that the
same σ occurs in the equations for Jv and Js . We saw that
the edges of the pore have less bulk flow than the center, so
that the steric effect overestimates how many particles are
reflected. From Eq. 5.44b,

σ = 1 − f = 4ξ2 − 4ξ3 + ξ4. (5.60)

These two approximations to σ are plotted in Fig. 5.15, along
with the results of a more detailed calculation that takes ac-
count of distortions in the velocity profile due to rotation of
the solute molecules.
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Fig. 5.16 Plot of ω/ω0 for experimental data by Beck and Schultz
(1970) and a calculation by Bean (1972)

5.9.5 The Effect of PoreWalls on Diffusion

The solute permeability is given by

ωRT = nπR2
pDeff

�Z
.

The effective diffusion coefficient takes into account the
steric factor as well as the drag on the solute particles by
the pore walls. If the pore had an infinitely large diameter,
the unrestricted permeability would be

ω0RT = nπR2
pD

�Z
,

where D is the diffusion coefficient for an infinite medium.
Figure 5.16 shows some data from Beck and Schultz (1970)
and a curve for ω/ω0 calculated by Bean (1972).13

In Europe, filtration rather than dialysis is used to treat
kidney patients. There is evidence that some as yet uniden-
tified toxin of medium molecular weight accumulates in the
blood. Comparison of 1 − σ from Fig. 5.15 with ω/ω0 from
Fig. 5.16 shows that solvent drag removes medium-sized
molecules more effectively. The fluid and electrolytes lost
by the patient must be replaced.

13 The steric factor, which Bean includes separately, is built into Deff
through the function Γ (r).

F1 1F'

F2

F3

A
B

F'2

Fig. 5.17 The forces on a membrane with pores. The fluid on the left
exerts force F1 due to the hydrostatic pressure p. A similar force F′

1 is
exerted on the right. Solute molecules like A are reflected at the pore
edge and exert force F2. Solute molecule B enters the pore. It con-
tributes to the viscous force of the flowing fluid on the cylindrical walls
of the pore, F3. F3 is to the right if the fluid flows from left to right
through the pore

5.9.6 Net Force on theMembrane

We conclude the section by calculating the force of the fluid
on our model membrane. The results give some insight into
the nature of osmotic pressure.

A membrane of total area S is pierced by n pores per unit
area of radius Rp. The pressures in the fluid on each side of
the membrane are p and p′. A solute with reflection coeffi-
cient σ has concentration C on the left and C′ on the right.
We want to calculate the total force exerted by the fluid on the
membrane. There are three contributions to this force. These
can be understood by referring to Fig. 5.17.

Forces F1 and F ′
1 are the forces exerted by the fluid on

the walls of the membrane on each side. They are obtained
by multiplying the total pressure on each side by the area of
the membrane that is not occupied by pores. In a total area S

there are nS pores, each of area πR2
p.

F1 = pS
(

1 − nπR2
p

)

F ′
1 = p′S

(
1 − nπR2

p

)
.

The net force to the right is

F1 − F ′
1 = S

(
p − p′) (1 − nπR2

p

)
. (5.61)

Forces F2 and F ′
2 are exerted by solute molecules reflected

from the pore region, such as molecule A in Fig. 5.17. These
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are the ones that contribute to the osmotic pressure. The net
force to the right is therefore the total pore area SnπR2

p times
the impermeant part of the osmotic pressure difference:

F2 − F ′
2 = SnπR2

p

(
σπ − σπ ′) . (5.62)

Force F3 is the viscous drag exerted on the walls of the
pores by the water and permeant solute molecules flow-
ing through them. To calculate it we recall that the viscous
force per unit area is − η (∂v/∂r) . The velocity is v = jv.

Differentiating Eq. 5.43,we obtain

∂jv

∂r
= − 1

4η

� (p − σπ)

�Z
2r.

The total force is η times this quantity evaluated at r = Rp,

times total area of the cylindrical walls of all the pores, which
is (Sn)

(
2πRp�Z

) :

F3 = Sn2πRp�Zη

(
1

4η

(p − p′) − σ
(
π − π ′)

�Z
2Rp

)

= SnπR2
p

[
(p − p′) − σ

(
π − π ′)] . (5.63)

The net force on the membrane is the sum of these forces:

F1 − F ′
1 + F2 − F ′

2 + F3 = S(p − p′). (5.64)

We see that the net force on the membrane is the total
pressure difference times the total area of the membrane, re-
gardless of the differences in osmotic pressure on each side.
Both solute and solvent exert a force on the nonpore area of
the membrane. The solute molecules at the membrane sur-
face whose centers are within the area of a pore may be
reflected or may enter the pore. If they are reflected, they
contribute to the force when they strike the membrane at the
edge of a pore. If they are not reflected, they enter the pore
and contribute to the viscous drag on the membrane due to
flow through the pore.

Symbols Used In Chapter 5
Symbol Use Units First

used
page

a Solute particle radius m 125
a, ain, aout Parameters m−1 128
c1, c2, c

′
1, c

′
2 Solute concentration (mole) m−3 118

f Temporary function 131
h Thickness of fluid layer m 127
i Solute current through

membrane
s−1 137

is Solute flow s−1 130
iv Volume flow m3 s−1 123
js , js Solute fluence rate in pore m−2 s−1 130

jv, jv Volume fluence rate in pore m s−1 129
kB Boltzmann’s constant J K−1 118
n Number of moles 118
n Number of pores per unit area m−2 125
p1, etc. Pressure Pa 118
pd Driving pressure Pa 121
p Total pressure Pa 121
pdw Driving pressure of water Pa 121
r Radius in cylindrical coordinates m 129
x, y, z Position m 127
x �Z/λ 133
z Distance along pore m 129
ẑ Unit vector in z direction 129
C,Cs, etc. Particle concentration of the

species indicated by the
subscript

(particle)
m−3

118

D,Deff Diffusion constant m2 s−1 130
F Force N 134
G Factor relating solvent drag and

diffusion
132

Js Solute fluence rate through
membrane

m−2 s−1 125

Jv Volume fluence rate through
membrane

m s−1 123

Lp Hydraulic permeability m s−1 Pa−1 123
N1, etc. Number of molecules 118
NA Avogadro’s number 118
R Gas constant J mol−1 K−1 118
Rp Pore radius m 125
S Surface area m2 123
T Absolute temperature K 118
V, V ′, V ∗ Volume m3 118
X, Y Distance m 127
�Z Pore length m 125
η Viscosity Pa s 128
λ Effective diffusion distance m 131
μ Chemical potential J molecule−1 120
ξ a/Rp 133
π Osmotic pressure Pa 120
π Geometric constant
σ Reflection coefficient 124
τ Time constant s 127
ω Solute permeability mol N−1 s−1 125
ω0 Solute permeability in an infinite

medium
mol N−1 s−1 134

φ Angle in cylindrical coordinates 129
φ C′

s/Cs 132
Γ Radial dependence

of solute concentration
130

Problems

Section 5.3

Problem 1. Use estimates of the size of a water molecule,
the osmolarity of body fluids, and the thickness of a cell
membrane to decide if Fig. 5.1 is drawn to scale or if
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(a) the size of the water molecules has been exaggerated for
clarity

(b) the ratio of the number of solute molecules to the
number of solvent molecules has been exaggerated for
clarity.

Problem 2. Perform the unit conversions to verify that
8.3145 J mol−1 K−1 is equivalent to 0.08206 atm l mol−1

K−1.
Problem 3. The protein concentration in serum is made
up of two main components: albumin (molecular weight
75,000) 4.5 g per 100 ml and globulin (molecular weight
170,000) 2.0 g per 100 ml. Calculate the osmotic pressure
due to each constituent. (These results are inaccurate because
of electrical effects.)
Problem 4. If the osmotic pressure in human blood is
7.7 atm at 37 ◦C, what is the solute concentration assuming
that σ = 1? What would be the osmotic pressure at 4 ◦C?
Problem 5. Sometimes after trauma the brain becomes very
swollen and distended with fluid, a condition known as cere-
bral edema. To reduce swelling, mannitol may be injected
into the bloodstream. This reduces the driving force of wa-
ter in the blood, and fluid flows from the brain into the
blood. If 0.01 mol l−1 of mannitol is used, what will be the
approximate osmotic pressure?

Section 5.4

Problem 6. When a person is given an intravenous fluid,
the solute concentration in the fluid must be matched to the
solute concentration in the blood to avoid problems arising
from a change in the blood’s osmotic pressure. One such
fluid, called “isotonic saline,” can be made by adding salt
(NaCl) to distilled water. The osmolarity of the blood is about
0.3 osmole.

(a) How many grams of NaCl must be added to a liter of
water to make isotonic saline? What fraction of the solution’s
mass is NaCl? (Hint: recall that NaCl dissolves into Na+ and
Cl−, and both contribute to the osmotic pressure.)

(b) Repeat for dextrose, C6H12O6, which does not disso-
ciate.
Problem 7. An understanding of osmotic pressure is impor-
tant in medicine. Consider the case reported by Steinmuller
(1998) in the New England Journal of Medicine. A 5 %
solution of albumin was needed to infuse into a patient
with kidney disease (renal insufficiency). No 5 % solution
was available, so the hospital pharmacy used 25 % albumin
diluted 1:4 with pure water. Injection of the solution into the
patient caused renal failure. The albumin in a 25 % albumin
solution has an osmolarity of about 36 mosmol. Typically,
such a solution also contains about 300 mosmol of other
ions (see Problem 6).
(a) Calculate the osmolarity of the solution injected into

the patient.

(b) Calculate the osmolarity of the solution if the pharmacy
had properly used isotonic saline instead of pure water
to perform the 1:4 dilution.

Problem 8. Articular cartilage covers the ends of bones in
joints and allows the bones to move smoothly against each
other. It contains a network of collagen fibers that can exert
a mechanical tensile stress to resist tissue swelling, result-
ing in a pressure Pc within the cartilage. The collagen fibers
do not withstand compression. The cartilage also contains
proteoglycan molecules that cause tissue swelling because
of their osmotic pressure, πPG. One can determine Pc by
placing the cartilage in a polyethylene glycol solution with
osmotic pressure πPEG, measuring πPG and πPEG, and using
the relationship Pc = πPG − πPEG.

bone

collagen

fluid

cartilage

PG

PEG

Typical data are

πPEG (atm) πPG (atm)
0.0 4.0
2.5 5.5
5.0 7.0
7.5 8.5
10.0 10.0

(a) What is the excess pressure Pc exerted by the collagen
matrix under normal conditions (πPEG = 0)?

(b) At what value of πPEG does the collagen matrix exert no
tensile stress (become “limp”)?

(c) Plot Pc vs πPEG. Find a linear equation that fits the data.
(d) If the collagen in an arthritic joint can only exert a pres-

sure of 2 atm when πPEG = 0, by how much will the
tissue swell (by what percent will its volume change?)

In (b) and (d), assume that only the proteoglycans cause
osmotic pressure and that their number does not change, but
the tissue volume increases as the tissue swells with water.
This problem is based on the work of Basser et al. (1998),
but the data have been modified.

Section 5.5

Problem 9. Suppose that Lp is expressed in m3 N−1 s−1 or
m s−1 Pa−1. Find conversion factors to express it in
(a) ml min−1 cm−2 torr−1.
(b) ml s−1 cm−2 (in. water)−1.
(c) ml s−1 cm−2 (lb in.−2)−1.
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Problem 10. An ideal semipermeable membrane is set up
as shown. The membrane surface area is S; the cross-
sectional area of the manometer tube is s. At t = 0,
the height of fluid in the manometer is zero. The den-
sity of fluid is ρ. Show that the fluid height rises to a
final value with an exponential behavior. Find the final
value and the time constant. Ignore dilution of the solute.

Problem 11. Consider the design of a lecture demonstration
apparatus to show osmotic pressure that uses a commercially
available filter as shown in the drawing. Assuming well-
stirred fluid on both sides of the membrane and neglecting
the change of solute concentration in the manometer tube as
water flows in, one finds that height z increases to the equi-
librium value exponentially, with a time constant obtained in
the previous problem. What would be the time constant if one
used a membrane for which Lp = 1 ml min−1 m−2 torr−1,
and the total membrane area is S = 0.2 m2. Suppose that
the inner radius of the manometer tube is 1 mm. (One could
not use sucrose as a solute, because this particular mem-
brane is permeable to molecules of molecular weight less
than 50,000.)

Problem 12. A cell has variable volume V and fixed surface
area S. The total hydrostatic pressure p is the same inside
and outside the cell, and there is complete and instantaneous
mixing. Initially the interior and exterior are both pure water.
The initial volume of the cell is V0. At t = 0 the exterior
is bathed in a solution containing an impermeant solute of
concentration C0.
(a) Does the cell shrink to zero volume or expand to its

maximum volume, which is a sphere of surface area S?

(b) Derive a differential equation for the volume change and
integrate it to find how long it takes for the cell to reach
zero or maximum volume.

Problem 13. A cell has variable volume V and fixed sur-
face area S. The total hydrostatic pressure p is always the
same both inside and outside the cell. There is complete and
instantaneous mixing both inside and out. An impermeant
solute has an initial concentration C(0) both inside and out-
side. The initial cell volume is V0. At t = 0 the exterior solute
is removed.
(a) Does the cell shrink to zero volume or expand to its

maximum volume, which is a sphere of surface area S?
(b) Derive a differential equation for V (t) and find how long

it takes for the cell to reach zero or maximum volume.

Section 5.6

Problem 14. Two membranes have permeabilities ω1RT

and ω2RT . Find the permeability of a two-layered membrane
in terms of ω1 and ω2.
Problem 15. Solute is carried through a pipe by solvent
drag. The radius of the pipe is b. The average flow along
the pipe is jv (independent of r because it has been averaged
over r). Assume that within the pipe the concentration of so-
lute is independent of radius and can be written as C(z). The
solute is carried along purely by solvent drag. Solute con-
centration outside the pipe is zero. Solute diffuses through
the wall of the pipe, which has solute permeability ωRT . In
terms of jv , b, and ωRT , obtain a differential equation for
C(z) and show that C decays exponentially along the pipe.
Find the decay constant.

Section 5.7

Problem 16. A kidney machine has a membrane permeabil-
ity ωRT = 0.5 × 10−3 cm s−1. If the membrane area is
1 m2, the volume of body fluid is 40 l, and the volume of
dialysate is effectively infinite, what is the time constant?
How long will it take to reduce the BUN (blood urea nitro-
gen) concentration from 120 mg per 100 ml to 20 mg per
100 ml?
Problem 17. Find the pair of coupled differential equations
for C and C′ for a dialysis machine in which V ′ is not
infinite.

Section 5.8

Problem 18. In the countercurrent model (Eq. 5.25) the total
current i through the membrane when its length is X is

i = ωRT Y

∫ X

0
[Cin(x) − Cout(x)] dx.
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Solve this integral for the two cases given by Eqs. 5.26 and
5.27. Show that the current ratio in these two cases is 1.36
when a = 1 and X = 2.
Problem 19. The countercurrent model applies to the trans-
port of heat as well as particles, with temperature tak-
ing the place of concentration. Consider a countercurrent
heat exchanger, which represents the arrangement of blood
vessels in the flipper of a whale (Schmidt-Nielsen 1972).

x = 0 x = L

artery

vein

T  (x)a

T  (x)v

The temperatures of the arterial and venous blood are gov-

erned by equations similar to Eq. 5.27:

Ta = c1 + (c2 − c1)ax,

Tv = c2 + (c2 − c1)ax.

Assume that the arterial blood at x = 0 is at the warm tem-
perature of the whale’s body, Tw. The arterial blood at x = L

enters the capillaries at temperature Ta(L) and is cooled to
the temperature of the surrounding ocean water, Tc, by the
time it enters the vein at x = L.

(a) Determine c1 and c2 in terms of Tw, Tc, a, and L.
(b) Plot Ta(x) and Tv(x) for Tw = 37 ◦C, Tc = 7 ◦C, a =

1 mm−1 and L = 3 mm .

(c) The loss of heat from the body to the surroundings is
proportional to �T = Ta(L) − Tc. Find an expression
for �T . What does �T reduce to if aL � 1? Inter-
pret these results physically. To minimize heat loss to
the ocean should aL be large or small?

(d) The energy the body must supply to heat the returning
venous blood is proportional to �T ′ = Tw − Tv(0).

Find an expression for �T ′.

Section 5.9

Problem 20. Derive Eqs. 5.44a and 5.44b.
Problem 21. Show that Eq. 5.51 gives C(z) = const when
λ = 0 (pure solvent drag) and gives dC/dz = const when
λ → ∞ (pure diffusion).
Problem 22. Obtain expressions for Js when λ = 0 and
λ → ∞.
Problem 23. Show that for very large pores when σ = 0
the parameter x = �Z/λ = Jv/ωRT depends only on pore
radius, solute particle radius, pressure difference and temper-
ature, and not on viscosity, the number of pores per unit area,
or the membrane thickness.
Problem 24. When C′

s = 0, what are the limiting values of
Cs as x → 0? As x → ∞? As x → −∞?

Problem 25. (a) Write Js in terms of Cs , C′
s , Jv and x.

(b) Specialize to the case C′
s = 0.

Problem 26. (a) Find the ratio (1 − σ)CsJv/[ωRT (Cs −
C′

s)] in terms of x, Cs and C′
s .

(b) Specialize to the case C′
s = 0 and discuss limiting values

for small and large x.
Problem 27. (a) Show that

Js = ωRT

(
Cs

xex

ex − 1
− C′

s

x

ex − 1

)

where x = Jv(1 − σ)/ωRT .
(b) Discuss the special case C′

s = 0 in the limits x → 0 and
x→ ∞.

(c) From the data shown, estimate Lp and ωRT . The data
are for the transport of radioactive water with a con-
centration of 1015 molecules m−3 on one side of the
membrane and zero on the other.

Problem 28. Consider the following cases for transport of
water through a membrane.
(a) Water flows by bulk flow through the membrane with

�p = 0. There is an impermeant solute (σ = 1) on the
right with concentration Cbig and zero concentration on
the left. Find the particle fluence rate of water in terms
of Lp.

(b) There is no volume flow through the membrane (Jv =
0). Some of the water molecules on the left are tagged
with radioactive hydrogen (tritium). The concentration
of tagged water molecules is Cs on the left and 0 on the
right. Find the particle fluence rate of tagged water in
terms of Lp and ωRT .

(c) There is volume flow, as in case (a), and there are also
tagged water molecules on the left. Find the particle
fluence rate of tagged water in terms of Lp and ωRT .

(d) Restate the answers in terms of the parameters of a col-
lection of n pores per unit area of radius Rp and length
�Z.

(e) Estimate the value of x for part (c) if Rp = 10−8 m and
cbig = cs = 0.1 mol 1−1.
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Problem 29. Construct diagrams analogous to Fig. 5.14a
when the total pressure is the same on both sides and π ′ = 0
and (b) when (p − σπ) < p′ and π ′ = 0.
Problem 30. Consider the case of water permeability shown
in Fig. 5.1c. Water and solute molecules move through the
membrane in the same way. They “dissolve” from solution
into the membrane. Assume that the concentration of wa-
ter molecules just inside the membrane is proportional to the
pressure just outside: C = αp. The membrane has thick-
ness �Z and the diffusion constant for water in the mem-
brane material is D. Under steady-state conditions, derive an
expression for Lp.
Problem 31. Consider the case in which solute moves along
a tube by a combination of diffusion and solvent drag. Ig-
nore radial diffusion within the tube, but assume that solute
is moving out through the walls so that js is changing with
position in the tube. In particular, the number of solute par-
ticles passing out through the wall in length dz in time dt is
CA2πRp dz dt , where A is related to the permeability of the
wall. Consider a case in which C does not change with time,
but depends only on position along the tube.
(a) Write down the conservation equation for an element of

the tube and show that

−∂j

∂z
− 2AC

Rp

= 0.

(b) Combine the results of part (a) with Eq. 5.45a and show
that C(z) must satisfy the differential equation

∂2C

∂z2
− jvf

D

∂C

∂z
− 2A

DRp

C = 0.

Show that this equation will be satisfied if the concentration
decreases exponentially along the tube as C(z) = C0e

−αz,
where

α = jvf

2D

⎡

⎣−1 +
(

1 + 8AD

Rpj
2
vf

2

)1/2
⎤

⎦ .

Problem 32. The volume of a water molecule is Vw and the
volume of a solute molecule is Vs . Define a new quantity
Jw that is the number of water molecules per unit area per
second passing through the membrane. What is Jw in terms
of Jv and Js?
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6Impulses in Nerve andMuscle Cells

A nerve cell conducts an electrochemical impulse because of
changes that take place in the cell membrane. These allow
movement of ions through the membrane, setting up currents
that flow through the membrane and along the cell. Similar
impulses travel along muscle cells before they contract. This
chapter reviews the basic properties of electric fields and cur-
rents that are needed to understand the propagation of the
nerve- or muscle-cell impulse.

Section 6.1 introduces the physiology of nerve conduc-
tion. The next eight sections develop the electrostatics and
the physics of current flow needed to understand how the
action potential propagates along the cell.

The next sections deal with the charge distribution on
a resting cell membrane (Sect. 6.10) and the cable model
of the axon (Sect. 6.11). If the membrane properties do
not change as the voltage across the membrane changes,
this leads to electrotonus or passive spread (Sect. 6.12). If
the membrane properties do change, a signal can propagate
without change of shape. Section 6.13 tells how Hodgkin
and Huxley developed equations to describe the membrane
changes, and Sects. 6.14 and 6.15 apply their results to the
propagation of a nerve impulse. The chapter to this point
forms an integrated story of conduction in an unmyelinated
axon.

Propagation in a myelinated axon is described in Sect.
6.16. Section 6.17 examines the capacitance of a bilayer
membrane that has layers with different properties. Sec-
tion 6.18 shows how minor alterations in the membrane
properties can transform the Hodgkin–Huxley model to one
that displays repetitive electrical activity.

Section 6.19 illustrates how tabulated solutions to the
electrical capacitance of conductors in different geome-
tries can be used to solve diffusion problems with similar
geometric configurations.

6.1 Physiology of Nerve andMuscle Cells

A nerve1 consists of many parallel, independent signal paths,
each of which is a nerve cell or fiber. Each cell has an
input end (dendrites), a cell body, a long conducting por-
tion or axon, and an output end. The axon portion of the cell
can transmit a nerve pulse in either direction. The ends give
the cell its unidirectional character. The input end can be a
transducer (stretch receptor, temperature receptor, etc.) or a
junction (synapse) with another cell. A threshold mechanism
is built into the input end; when an input signal exceeding
a certain level is received, the nerve fires an impulse or ac-
tion potential of fixed size and duration that travels down
the axon. There may be several inputs that can either aid or
inhibit each other, depending on the nature of the synapses.

Muscle cells are also long and cylindrical. An electrical
impulse travels along a muscle cell to initiate its contraction.
This chapter concentrates on the propagation of the action
potential in a nerve cell, but the discussion can be regarded
as a model for what happens in muscle cells as well.

The axon transmits the impulse without change of shape.
The axon can be more than a meter in length, extending from
the brain to a synapse low in the spinal cord or from the
spinal cord to a finger or toe. Bundles of axons constitute
a nerve. The output end branches out in fine nerve endings,
which appear to be separated by a gap from the next nerve or
muscle cell that they drive.

The long cylindrical axon has properties that are in some
ways similar to those of an electric cable. Its diameter may
range from less than one micron (1 μm) to as much as 1 mm

1 A good discussion of the properties of nerves and the Hodgkin–
Huxley experiments is found in Katz (1966). More modern descriptions
of nerves and nerve conduction are found in many books, such as Patton
et al. (1989) or Nicholls et al. (2011).
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Fig. 6.1 A typical nerve impulse or action potential, plotted as a
function of time

for the giant axon of a squid; in humans the upper limit is
about 20 μm. Pulses travel along it with speeds ranging from
0.6 to 100 m s−1, depending, among other things, on the
diameter of the axon. The axon core may be surrounded by
either a membrane (for an unmyelinated fiber) or a much
thicker sheath of fatty material (myelin) that is wound on
like tape. A myelinated fiber has its sheath interrupted at
intervals and replaced by a short segment of membrane sim-
ilar to that on an unmyelinated fiber. These interruptions are
called nodes of Ranvier. A typical human nerve might con-
tain twice as many unmyelinated fibers as myelinated. We
will see in Sect. 6.16 that the myelin gives a faster impulse
conduction speed for a given axon radius. Myelinated fibers
conduct information where speed is important, such as motor
information; unmyelinated fibers conduct information such
as temperature, for which speed is not important. A typical
unmyelinated axon might have a radius of 0.7 μm with a
membrane thickness of 5–10 nm. Myelinated fibers have a
radius of up to 10 μm, with nodes spaced every 1–2 mm. We
will find later that the spacing of the nodes is about 140 times
the inner radius of the fiber, a fact that is quite important in
the relationship between conduction speed and fiber radius.

A microelectrode inserted inside a resting axon records
an electrical potential that is about 70 mV less than out-
side the cell. (We will define electrical potential difference in
Sect. 6.4.) A nerve impulse or action potential or spike in an
unmyelinated axon is shown as a function of time in Fig. 6.1.
As the impulse passes by the electrode, the potential rises in
a millisecond or less to about +40 mV. The potential then
falls to about −90 mV and then recovers slowly to its resting
value of −70 mV. The membrane is said to depolarize and
then repolarize.

The history of recording the action potential has been de-
scribed by Geddes (2000). The propagation speed of the ac-
tion potential was first measured by Helmholtz around 1850.
The measurement technology steadily improved, culminat-
ing in the use of a microelectrode inserted by Hodgkin and

Fig. 6.2 The response of a mechanical receptor in the cornea to an ap-
plied force. a The impulses recorded on the surface of the nerve bundle.
b The applied force. Impulses occur while the force is applied. (Source:
Kane et al. 1995) c© 1995 IEEE. Reprinted by permission

Huxley (1939) into the cut end of the giant axon of the squid
to record the action potential directly.

The information sent along a nerve fiber is coded in the
repetition rate of these pulses, all of which are the same
shape. Figure 6.2 shows the response of a low-threshold
mechanoreceptor in the cornea to a mechanical stimulus. The
heavy curve in the bottom panel shows the applied force, and
the upper panel shows the impulses.

Comparison of the intracellular fluid or axoplasm with
the extracellular fluid surrounding each axon shows an ex-
cess of potassium and a deficit of sodium and chloride ions
within the cell, as shown in Fig. 6.3. The regenerative action

Fig. 6.3 Ion concentrations in a typical mammalian nerve and in
the extracellular fluid surrounding the nerve. Concentrations are in
mmol l−1; co/ci is the concentration ratio. The membrane thickness
is b
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that produces the sudden changes of membrane potential is
caused by changing permeability of the membrane to ions—
primarily sodium and potassium—as discussed in Sects. 6.13
and 6.14. On the molecular level these permeability changes
are due to the opening and closing of selected ion channels,
discussed in more detail in Chap. 9.

The axon can be removed from the rest of the cell and it
will still conduct nerve impulses. The speed and shape of the
action potential depend on the membrane and the concentra-
tion of ions inside and outside the cell. The axoplasm has
been squeezed out of squid giant axons and replaced by an
electrolyte solution without altering appreciably the propaga-
tion of the impulses—for a while, until the ion concentrations
change significantly. The axoplasm does contain chemicals
essential to the long-term metabolic requirements of the cell
and to maintaining the ion concentrations.

At the end of a nerve cell the signal passes to another
nerve cell or to a muscle cell across a synapse or junction.
A few synapses in mammals are electrical; most are chem-
ical (Nolte 2002, p. 193; Hall 2011, Chap. 45). In electrical
synapses, channels connect the interior of one cell with the
next. In the chemical case a neurotransmitter chemical is se-
creted by the first cell. It crosses the synaptic cleft (about
50 nm) and activates or inhibits the next cell.

At the neuromuscular junction the transmitter is acetyl-
choline (ACh). ACh increases the permeability of nearby
muscle to sodium, which then enters and depolarizes the
muscle membrane. The process is quantized.2 Packets of
acetylcholine of definite size are liberated (Katz 1966,
Chap. 9; Patton et al. 1989, Chap. 6).

There are a number of neurotransmitters in the central
nervous system. Glutamate is a common excitatory neuro-
transmitter in the central nervous system. It increases the
membrane permeability to sodium ions, which enhances de-
polarization. Glycine, on the other hand, is an inhibitory
neurotransmitter. It causes the interior potential to become
more negative (hyperpolarized) and firing is inhibited. A
number of other chemical mediators such as norepinephrine,
epinephrine, dopamine, serotonin, histamine, aspartate, and
gamma-aminobutyric acid, are also found in the nervous
system (Hall 2011, Chap. 45).

If the potential becomes high enough (that is, more pos-
itive or less negative), the regenerative action of the mem-
brane takes over, and the cell initiates an impulse. If the input
end of the cell acts as a transducer, the interior potential rises
when the cell is stimulated. If the input is from another nerve,
the signal may cause the potential to increase by a subthresh-
old amount so that two or more stimuli must be received
simultaneously to cause firing, or it may decrease the poten-
tial and inhibit stimulation by another nerve at the synapse.

2 See Prob. 3 in Appendix J.

Fig. 6.4 Force F is exerted by charge q1 on charge q2. It points along
a line between them. An equal and opposite force −F is exerted by q2
on q1

This makes possible the logic network that comprises the
central nervous system.

6.2 Coulomb’s Law, Superposition, and the
Electric Field

Coulomb’s law relates the electrical force between two
charged objects. If two objects have electrical charge q1 and
q2, respectively, and are separated by a distance r , then there
is a force between them, the magnitude of which is given by

|F| =
(

1

4πε0

)
q1q2

r2
. (6.1)

When the charge is measured in coulombs (C), F in newtons
(N), and r in meters (m), the constant has the value

1

4πε0
≈ 9 × 109 N m2 C−2 (6.2)

to an accuracy of 0.1 %. The direction of the force is along
the line between the two charges as shown in Fig. 6.4. If
the charges are both positive or both negative, the force is
repulsive, which is consistent with assigning a positive sign
to F. If one is positive and the other negative, then the force is
attractive, and F is assigned a minus sign. Force F is exerted
by charge q1 on charge q2. The force exerted by q2 on q1 has
the same magnitude but points in the opposite direction. The
forces on both charges act to separate them if they have the
same sign and to attract them if the signs are opposite.

If two or more charges exert a force on the particular
charge being considered, the total force is found by applying
Coulomb’s law to each charge (paired with the one on which
we want to find the force) and adding the vector forces that
are so calculated. An example of this is shown in Fig. 6.5.
Charges q1, q2, and q3 are +1.0 × 10−6, −2.0 × 10−6, and
+3.0×10−6 C, respectively. The magnitude of the force that
q1 exerts on q3 is

F1 on 3 = (9 × 109)(1 × 10−6)(3 × 10−6)

(2 × 10−2)2
= 67.5 N.
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Fig. 6.5 An example of applying Coulomb’s law and adding forces on
q3 due to charges q1 and q2. a The arrangement of charges. b The forces
on q3

Similarly, the force exerted by q2 on q3 is

F2 on 3 = (9 × 109)(−2 × 10−6)(3 × 10−6)

(6 × 10−2)2
= −15 N.

The minus sign means that the force is attractive, that is, to-
ward q2. The two forces are shown in Fig. 6.5b, along with
their vector sum. The sum can be found by components as in
Chap. 1. The result is 78.8 N at an angle of 7.7 ◦ clockwise
from the direction of F1 on 3.

If a collection of charges causes a force to act on some
other charge (a test charge) located somewhere in space, we
say that the collection of charges produces an electric field at
that point in space. One can think, for example, of charge q1

producing an electric field vector, of magnitude

|E1| = 1

4πε0

q1

r2
(6.3)

pointing radially away from q1 (if q1 is positive) or radi-
ally toward q1 (if q1 is negative). The force on test charge
q2 placed at the observing point is then

F = q2E1. (6.4)

6.3 Gauss’s Law

It is possible to derive a theorem about the electric field from
a collection of charges, known as Gauss’s law. Rather than
derive it from Coulomb’s law, we will state it and show that

Fig. 6.6 Calculating the integral of the normal component of E through
a surface

Coulomb’s law can be derived from it. Then we will consider
some examples of its use.

Divide up any closed surface into elements of surface
area, such as �S in Fig. 6.6. For each element �S, calculate
the component of E normal to the surface, En, and multi-
ply it by the magnitude of the surface area �S. Add these
quantities for the entire closed surface, calling them positive
if the normal component of E points outward and negative if
E points inward. Gauss’s law says that the resulting sum is
equal to the total charge inside the surface, divided by ε0. In
symbols,3

�
En dS = q

ε0
= 4πq

4πε0
. (6.5)

This surface integral is exactly the same as the flux of the
continuity equation, Eq. 4.4. It is in fact called the electric
field flux.4 The surface is called a Gaussian surface.

While Gauss’s law is always true, it is not always useful.
It is helpful only in cases where E is constant over the entire
surface of integration, or when the surface can be divided
into smaller surfaces, on each of which En can be argued to
be constant or zero. One of the few cases in which Gauss’s
law is useful to calculate E is the case of a point charge,
and another is related to the cell membrane. In each case, the
symmetry of the problem allows the surface of integration to
be specified so that En is either constant or zero.

The first example is a point charge in empty space. Since
such a charge has no preferred orientation (it is a point), and
since there is nothing else around to specify a preferred direc-
tion in space, the electric field must point radially toward or
away from the charge and must depend only on distance from
the charge. Therefore, if the Gaussian surface is a sphere cen-
tered on the charge, En is the same everywhere on the sphere.

3 Some books use one integral sign in this equation and others use
two. Strictly speaking the integral over a surface is a two-dimensional
integral.
4 Additional discussion and examples can be found in Schey (2004).
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Fig. 6.7 Gauss’s law is used to calculate the electric field from an in-
finite line of charge. The Gaussian surface is a segment of a cylinder
concentric with the line of charge

It can be taken outside the integral in Eq. 6.5 to give
�

En dS = E
�

dS.

The integral of dS over the entire surface of the sphere is
just the surface area of the sphere, 4πr2 (see Appendix L).
Gauss’s law gives

4πr2E = q

ε0

or

E = q

4πε0r2
.

Gauss’s law implies Coulomb’s law for the case of a point
charge.

If the charge in this problem is not a point charge, nothing
changes in the argument as long as the charge distribution is
spherically symmetric. The electric field at a distance r from
the center of the distribution is the same as if all the charge
within the sphere of radius r were located at the center of the
sphere.

Next, consider a problem with cylindrical symmetry
rather than spherical symmetry. An example is an infinitely
long line of charge. For a segment of the line of charge of
length L, the amount of charge is proportional to L, q = λL,
where λ is the linear charge density in units C m−1. Sym-
metry shows that E must point radially outward (or inward)
and be perpendicular to the line. Therefore if the Gaussian
surface is a cylinder of length L and radius r , the axis of
which is the line of charge, one can argue that on the end
caps En = 0, while on the wraparound surface of the cylin-
der En = |E|. This is shown in Fig. 6.7. The total integral
is therefore the integral for the wraparound surface, which is
E

�
dS. The surface area of the cylinder is its circumference

(2πr) times its length (L). Therefore Gauss’s law becomes
2πrLE = λL/ε0, or

E = λ

2πε0r
. (6.6)

Fig. 6.8 A portion of an infinite sheet of charge and the appropriate
Gaussian surface

Since the constant 1/4πε0 is so easily remembered, it is
convenient to write this as

E = 1

4πε0

2λ

r
. (6.7)

Consider next an infinite sheet of charge, with charge per
unit area σ C m−2. The symmetry of the situation requires
that E be perpendicular to the sheet. To see why, suppose that
E is not perpendicular to the sheet. I stand on the sheet look-
ing in such a direction that E points diagonally off to my left.
If I turn around in place, I see E pointing diagonally off to my
right. Since the charge per unit area is constant and extends
an infinite distance in every direction, the charge distribution
looks exactly the same as it did before I turned around. The
only way to resolve this contradiction (that E changed direc-
tion while the charge distribution did not change) is to have
E perpendicular to the sheet.

The Gaussian surface can be a cylinder with end caps of
area S and sides perpendicular to the sheet. Let the end caps
be a distance a from the charge sheet on one side and b from
the charge sheet on the other, as in Fig. 6.8. Since there is
no component of E across the sides of the cylinder, changing
b or a does not change the total flux through the surface.
Since the charge inside the volume does not change, E must
be independent of distance from the sheet of charge. (This is
true only because the charge sheet is infinite.) By symmetry,
the flux through each end cap is the same, as may be seen
from the cross section of the surface in Fig. 6.9. The total
flux is therefore 2ES, while the charge within the volume is
σS. Therefore, Gauss’s law gives

E = σ

2ε0
= 1

4πε0
2πσ. (6.8)
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Fig. 6.9 A side view of the Gaussian surface in Fig. 6.8

z

 2c 

2b

Fig. 6.10 A rectangular sheet of charge. The electric field along the z
axis is shown in Fig. 6.11 for 2b = 200 m and 2c = 2 m

There is, of course, something quite unreal about a sheet
of charge extending to infinity. However, it is a good approx-
imation for an observation point close to a finite sheet of
charge. If the sheet is limited in extent and the observation
point is far away, the distance to all parts of the sheet from
the observation point is nearly the same, and the charge sheet
may be regarded as a point charge. If one considers a rectan-
gular sheet of charge lying in the xy plane of width 2c and
length 2b, as shown in Fig. 6.10, it is possible to calculate
exactly the E field along the z axis. By symmetry, the field
points along the z axis. The surface charge density is σ . The

distance is r = (x2 + y2 + z2
)1/2

. The component of E par-
allel to the z axis is E cos θ = Ez/r . Therefore, if the charge
in element of area dx dy is σ dx dy, the field is

E = σz

4πε0

∫ b

−b

∫ c

−c

(x2 + y2 + z2)−3/2 dxdy. (6.9)
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Fig. 6.11 A log-log plot of the electric field from a sheet of charge of
width 2 m and length 200 m, measured along the perpendicular bisector
of the sheet (Fig. 6.10). Much closer than 1 m, the field is constant.
Around 10 m the field is proportional to 1/r , the field from a line charge.
Farther away than 100 m the field is proportional to 1/r2, the field from
a point charge

Fig. 6.12 The electric field due to two infinite sheets of charge of
opposite sign

This integral can be evaluated (see Problem 7). The result is

E = 4σ

4πε0
tan−1

(
bc

z
√

c2 + b2 + z2

)
. (6.10)

This is plotted in Fig. 6.11 for c = 1 m, b = 100 m. Close to
the sheet (z 	 1) the field is constant, as it is for an infinite
sheet of charge. Far away compared to 1 m but close com-
pared to 100 m, the field is proportional to 1/r as with a line
charge. Far away compared to 100 m, the field is proportional
to 1/r2, as from a point charge.

As a final example, consider two infinite sheets of charge,
one with density −σ and the other with density +σ , as shown
in Fig. 6.12. This can be solved by using the result for a single
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Fig. 6.13 A Gaussian surface to determine the electric field between
two sheets of charge

sheet of charge, Eq. 6.8, and the principle of superposition.
Consider first the region I of Fig. 6.12. There, the negative
charge will give an E field that has magnitude σ/2ε0 and
points toward the right, while the positive sheet of charge
will give an E field of σ/2ε0 pointing to the left. The total E
field in region I is zero. A similar argument can be made in
region III with the field of the negative charge pointing left
and that of the positive charge pointing to the right. Again
the sum is zero. In region II, however, the two E fields point
in the same direction, and the total field is

E = σ

ε0
= 1

4πε0
4πσ. (6.11)

Notice the factor of 2 difference between Eqs. 6.8 and 6.11.
Another way to explain the difference is that there is no E
in region III, so that a Gaussian surface can be constructed
as shown in Fig. 6.13. Then the flux is zero through every
surface except cap A. The charge within the volume is σS,
while the flux through cap A is ES. Therefore, E = σ/ε0.

Within a cell membrane of 6 nm thickness surrounding
a cell of radius 5 μm or 5 000 nm, the electric field can be
calculated by making the approximation that the sheets of
charge are infinite. Suppose that the electric field within the
membrane is 1.17 × 107 N C−1. (We will learn how to de-
termine this value later.) From Eq. 6.11 the charge density
is

σ = E

4π(1/4πε0)
= 1.17 × 107

4π(9 × 109)
= 1.03 × 10−4 C m−2.

This tells us something about the makeup of the cell. The
membrane is in contact with atoms, each of which has a di-
ameter of about 10−10 m. Therefore there are approximately
1020 atoms (in water molecules, as ions, etc.) in contact
with 1 m2 of the membrane surface. Suppose that the excess
charge that causes the electric field in the membrane resides
in these atoms and that each atom is either neutral or a mono-
valent ion. The number of atoms in the square meter which

are charged is

1.03 × 10−4 C m−2

1.6 × 10−19 C atom−1
= 6.4 × 1014 atoms m−2.

The fraction of atoms that are charged is (6.4 × 1014)/

(1020) = 6.4 × 10−6. Roughly 1 in every 105 atoms in
contact with the membrane carries an unneutralized charge.
(This result is modified by partial neutralization of this exter-
nal charge by charge movement within the membrane. See
Eq. 6.35 and the footnote on p. 157.)

6.4 Potential Difference

It is often convenient to talk about the electrical potential
difference, or voltage difference, instead of the electric field.
The potential is related to the difference in energy of a charge
when it is at different points in space. Suppose that an electric
field E of magnitude Ex points along the x axis. A positive
charge is located at point A. A force Fext must be applied
to the charge by something besides the electric field, or else
the charge will be accelerated to the right by the force qEx .
The charge can be moved slowly to the right at a constant
speed so that its kinetic energy remains fixed, if the external
force is always to the left and its magnitude is adjusted so
that Fext = −qEx .

This situation is shown in Fig. 6.14. The external force
does work on the charge. One can either say that the total
work done on the charge by both forces is equal to zero, or
one can ignore the work done by the electric force and invent
the idea of potential energy—energy of position—due to the
electric field. The increase in potential energy5 as the charge
moves a distance dx is

dU = Fext dx = −qEx dx.

If Ex varies with position, the total change in potential en-
ergy when the particle is moved without acceleration from A

to B is given by

�U = U(B) − U(A) = −q

∫ B

A

Ex(x) dx. (6.12)

For example, in a constant electric field of 1.4 ×
107 N C−1, a particle with charge q = 1.6×10−19 C experi-
ences an electric force equal to 2.24×10−12 N. If it is moved
5 nm along the x axis, the electric force does 1.12 × 10−20 J
of work on it, increasing its kinetic energy. To prevent this

5 In earlier chapters the potential energy was called Ep , and the total
energy was called U . For the next few pages U will be used for potential
energy, to avoid confusion with a component of the electric field.
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Fig. 6.14 A charge q is moved from A to B, a distance dx in the x

direction. External force Fext keeps the charge from being accelerated

increase in kinetic energy, Fext must be applied. The external
force does work −1.12 × 10−20 J. We can either say that the
total work done by both forces is zero or we can ignore the
electrical force and say that the external force changed the
potential energy of the particle by −1.12 × 10−20 J as the
particle moved from A to B.

If the displacement of the particle is perpendicular to the
direction of the electric field, it is also perpendicular to the
direction of Fext. Therefore neither force does work on the
particle and the potential energy is unchanged. This fact can
be used to prove (Serway and Jewett 2013, p. 567) that in
three dimensions,

�U = U(B) − U(A) (6.13)

= −q

(∫ B

A

Ex dx +
∫ B

A

Ey dy +
∫ B

A

Ez dz

)
.

Using the notation of a “dot” or scalar product of two vectors
(Sect. 1.9), this can also be written as a line integral along any
path from A to B:

�U = −q

∫ B

A

E · dr. (6.14)

It is easier to evaluate the integral along some paths than
along others.

The potential energy difference is measured in joules. It
is always proportional to the charge of the particle that is
moved in the electric field. It is convenient to define the po-
tential difference �v to be the potential energy difference per
unit charge. When the energy difference is in joules and the
charge is in coulombs, the ratio is J C−1, which is called a
volt (V):

�v (V) = �U (J)

q (C)
. (6.15)

To move a charge of +3 C from point A to point B where
the potential is 5 V higher requires that 15 J of work be
done on the charge. If the charge is then allowed to move
back to point A under the influence of only the electric field,
its kinetic energy increases by 15 J as the potential energy
decreases by the same amount.

This definition of potential, when combined with the
definition of potential energy, Eq. 6.12, gives

�v = −
∫ B

A

Ex dx

or

Ex = − ∂v

∂x
. (6.16a)

That is, the component of the electric field in any direction
is the negative of the rate of change of potential in that di-
rection. The units of E were seen earlier to be N C−1 (from
F = qE). Equation 6.16 shows that the units of E are also
V m−1. In three dimensions this relationship becomes

E = − grad v = −∇v, (6.16b)

where grad is the gradient operation defined in Eq. 4.19.
Notice that only differences in potential energy and dif-

ferences in potential (or colloquially, differences in voltage)
are meaningful. We can speak of the potential at a point only
if we have previously agreed that the potential at some other
point will be called zero. Then we are really speaking of the
difference of potential between the reference point and the
point in question.

In many cases, it is customary to define the potential to be
zero at infinity. Then the potential at point B is

v(B) = −
∫ B

∞
Ex dx.

If you try to apply this equation to the infinite line and sheet
of charge, you will discover that it does not work. The rea-
son is that you cannot get infinitely far away from a charge
distribution that extends to infinity.

6.5 Conductors

In some substances, such as metals or liquids containing ions,
electric charges are free to move. When all motion of these
charges has ceased and static equilibrium exists, there is no
net charge within the conductor. To see why there is not,
consider a small volume within the conductor. If there were
an electric field within that region, the charges there would
experience an electric force. Since they are free to move,
this force would accelerate them. This force will vanish only
when the electric field within the conductor is zero. There-
fore, in the static case the electric field within a conductor
is zero. Now apply Gauss’s law to a small volume within the
conductor. Since the electric field in the conductor is zero ev-
erywhere, the flux through the Gaussian surface is zero, and
the net charge within the volume is zero.
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Fig. 6.15 The electric field in and around an infinite plane conductor
carrying a charge on each surface

At the surface of the conductor, there may well be charge
that gives rise to electric fields outside the conductor. Con-
sider, for example, an infinite sheet of metal that has positive
charge on it. The positive charge will distribute itself as
shown in Fig. 6.15, and either superposition or Gauss’s
law may be used to show that the electric field outside the
conductor is σ/ε0.

Because the electric field is zero throughout a conductor
in equilibrium, no work is required to move a charge from
one point to another. All parts of the conductor are at the
same potential. This statement is true only if the charges are
not moving. We will see later that if they are (that is, if a
current is flowing), then the electric field in the conductor is
not zero and the potential in the conductor is not the same
everywhere.

6.6 Capacitance

Suppose that two conductors are fixed in space, with charge
+Q on one and −Q on the other. The potential difference
v between the conductors is proportional to Q. The propor-
tionality constant depends on the geometrical arrangement of
the conductors. When the proportionality is written as

Q = Cv (6.17)

the proportionality constant C is called the capacitance. The
units of capacitance are C V−1 or farads (F).

As an example of capacitance, consider two parallel con-
ducting plates side by side. Let the area of each be S and
the separation be b. The charge layers of Fig. 6.13 might
be charge on the inner surface of each conductor. The total
charge on each plate has magnitude σS. The electric field
between the plates is σ/ε0 and the potential difference is
v = Eb = σb/ε0. (Note that the potential difference is

proportional to the charge per unit area.) The capacitance is

C = Q

v
= σSε0

σb
= ε0S

b
. (6.18)

If the plates are separated further with a fixed charge on them,
the potential difference increases and the capacitance is de-
creased. Increasing the area and charge of the plates with
fixed σ and fixed b increases Q and C but not v.

6.7 Dielectrics

Charges rearrange themselves so that there is no static elec-
tric field within a conductor. In a dielectric, charges are not
free to move far enough to completely cancel the effect of
any external electric field, but they can move far enough to
cause a partial cancellation.6

The partial neutralization of the external electric field can
be understood from the following model. Consider a dielec-
tric in the absence of external fields. The electron distribution
of each atom is centered on the nucleus so that there is no
electric field (at least when we average over a region contain-
ing many atoms). This is shown schematically in Fig. 6.16a,
in which each + sign represents a nucleus and each circle
represents a distribution of negative charge in an atom. Fig-
ure 6.16b shows some external charges producing an electric
field. If the dielectric is introduced in the space where this
electric field exists, the negative electron clouds are shifted
with respect to the nuclei, as shown in Fig. 6.16b. The result
is a polarization electric field Ep, which is in the opposite
direction to the external electric field. The total field within
the dielectric is the vector sum of these two fields:7

Etot = Eext + Ep. (6.19)

In simple materials all three vectors are parallel and Ep

is proportional to Etot. Then we can define the electric
susceptibility χ by the equation

Ep = −χEtot.

This can be combined with the previous equation to get

Ep = − χ

1 + χ
Eext.

6 In some materials an electric field applied along one direction can
cause charge displacement in a different direction. This book deals only
with cases in which the induced electric field is parallel to the applied
electric field.
7 In most textbooks, it is customary to define the polarization by
P = −Ep or P = −ε0Ep . We have not done that in order to make
the phenomenon easier to understand.
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Fig. 6.16 The polarization of a dielectric by an external electric field.
a Atoms in the absence of an external field. b An external electric field
causes a shift of each electron cloud relative to the positively charged
nucleus. c There is a net buildup of positive charge at the left edge of the
dielectric and of negative charge at the right edge. d The total electric
field within the dielectric is the sum of the external electric field and the
polarization electric field induced in the dielectric

The polarization electric field is thus proportional to both
the total electric field (proportionality constant −χ ) and the
external field [proportionality constant −χ/(1 + χ)]. The
former relationship is more fundamental, since the field dis-
placing charges in one atom is the total field, due to both
external charges and to the charges in neighboring atoms.

The total field within the dielectric is

Etot = Eext − χ

1 + χ
Eext = 1

1 + χ
Eext = 1

κ
Eext. (6.20)

The factor κ = 1 + χ is called the dielectric constant of
the dielectric. The electric field within the dielectric is re-
duced by the factor 1/κ from that which would exist without

Fig. 6.17 The polarization electric field reduces the electric field be-
tween the plates. The conducting plates could be extracellular and
intracellular fluid, and the dielectric could be the cell membrane

the dielectric. The dielectric constant for typical nerve mem-
branes8 is about 7. The dielectric constant of water is quite
high (around 80) because the water molecules can easily
reorient their charged ends.

The relationship between the applied field, the polariza-
tion field, and the total field can be seen in the following
example. The electric field between two parallel sheets of
charge of density +σ and −σ per unit area has magnitude
Eext = σ/ε0. If there is dielectric between them (such as
a cell membrane) and if the polarization in the dielectric
is uniform, then there is effectively a charge ±σ ′ induced
on the surface of the dielectric that partially neutralizes the
external charges. This is shown in Fig. 6.17. The total elec-
tric field within the membrane is Etot = ∣∣Eext + Ep

∣∣ =
σ/ε0 − σ ′/ε0 = σnet /ε0 = Eext/κ .

To recapitulate, in Fig. 6.17 Eext is σ/ε0 and depends on
the external charge distribution; the potential difference be-
tween the plates depends on the total field, and its magnitude
is Etot times the plate separation.

It is customary to refer to two different kinds of charge.
The free charge is the charge that we bring into a region. We
have some control over it. The bound charge is the charge
induced in the dielectric by the movement or distortion of
atoms and molecules in the dielectric in response to the free
charge that has been introduced. Gauss’s law can be written
either in terms of the total charge (free plus bound)

�
En dS = qtot

ε0
= qfree + qbound

ε0
(6.21a)

8 This value is high compared to the dielectric constant for a pure lipid,
which is between 2 and 3. See the discussion in Sect. 6.17.
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Fig. 6.18 A schematic diagram of a water molecule. The hydrogen nu-
clei are 96.5 pm from the oxygen nucleus; the included angle is about
104 ◦. The radius of each hydrogen atom is about 120 pm; the radius
of the oxygen atom is about 140 pm. The water molecule has a perma-
nent electric dipole moment because the oxygen atom carries a partial
negative charge and each hydrogen atom carries a partial positive charge

or in terms only of the free charge

�
κEn dS = qfree

ε0
. (6.21b)

The dielectric constant is placed inside the integral sign be-
cause the Gaussian surface could pass through materials with
different values of the dielectric constant.

As another example of the effect of a dielectric, consider
a spherical ion of radius a in which all the charge resides
on the surface. In a vacuum, the potential at distance r is
v = q/4πε0r , so on the surface of the ion, the potential is
q/4πε0a. The work required to bring to the surface an ad-
ditional charge dq is dW = vdq = qdq/4πε0a. The total
work required to place charge Q on the ion is therefore

W =
∫

dW = 1

4πε0a

∫ Q

0
q dq =

1
2Q2

4πε0a
.

If the sphere is immersed in a uniform dielectric the total
electric field and therefore the potential is reduced by a factor
κ . The energy required to assemble the ion is then

W =
1
2Q2

4πε0 κ a
. (6.22)

This is called the Born charging energy. For an ion of ra-
dius 0.2 nm (200 pm) and Q = 1.6 × 10−19 C, the Born
charging energy in a vacuum is 5.8 × 10−19 J ion−1. Multi-
plying by Avogadro’s number gives 3.5×105 J mol−1. Often
in problems involving charges of a few times the electronic
charge, it is convenient to use the energy unit electron volt:
1 eV= 1.6 × 10−19 J. For this problem, the Born charging
energy is 3.6 eV ion−1.

If the ion is in a dielectric with κ = 2 (a lipid, for exam-
ple), the Born charging energy is reduced to 1.8 eV ion−1.
Water has a very high dielectric constant (about 80) be-
cause the water molecules look roughly like that in Fig. 6.18,
and the molecules can easily align with an applied electric

field. The same ion in water has a Born charging energy of
0.045 eV. At room temperature, the Boltzmann factor for the
energy required to create the ion in vacuum is 3.32 × 10−61.
In a lipid, it is 5.76 × 10−31, and in water, it is 0.175. This
explains why it is easy to form ionic solutions in water but
not in lipids.

6.8 Current and Ohm’s Law

In the electrostatic case, there are no moving charges and no
electric field within a conductor. When a current flows in a
conductor, charges are moving and there is an electric field.

The electric current i in a wire is the amount of charge per
unit time passing a point on the wire. If the amount of charge
in time dt is dQ, the current is

i = dQ

dt
. (6.23)

The units of the current are C s−1 or amperes (A) (sometimes
called amps). The current density j (or jQ in the notation
of Chap. 5) is the current per unit area, i/S. The units are
C m−2 s−1 or A m−2. In an extended medium, the cur-
rent density is a vector j at each point in the medium. The
direction of j is the direction charge is moving at that point.

If there is no electric field in the conductor, there is no av-
erage motion of the charges. (There will be random thermal
motion, but it will be equally likely in every direction. This
random motion of charges is one cause of “noise” in elec-
trical circuits.) To have a current there must be an electrical
field in the conductor; this means that there will be a poten-
tial difference between two points in the conductor. If there
is no potential difference between two points in the conduc-
tor, there is no current. For the simple conductor of Fig. 6.19,
the current is found to be proportional to the voltage differ-
ence between the ends of the conductor. The current is shown
flowing from B to A. When v(B) is greater than v(A), v is
positive and the current is positive. When v is negative, the
current is in the other direction and is also negative.

For the wire of Fig. 6.19, the relationship between current
and voltage difference is linear. In that case, we can write
Ohm’s law:

i = 1

R
v = Gv (6.24a)

or

v = iR. (6.24b)

R is called the resistance of the conductor. Since the current
is measured in amps and the voltage in volts, its units are
V A−1 or ohms (Ω). The reciprocal of the resistance is the
conductance G. Its units are Ω−1 or siemens (S).
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Fig. 6.19 A current flows in the wire as long as the battery or some
other device maintains a potential difference between two points on the
wire. The potential difference means that there is an electric field within
the wire. If the wire obeys Ohm’s law, the current is proportional to the
potential difference

Ohm’s law is not universal. It describes only certain types
of conductors. Figure 6.20 shows the current–voltage charac-
teristics of several devices that have nonlinear behavior and
that make modern electronic circuits possible (Horowitz and
Hill 2015). They are shown here not for their own sake, but
to emphasize the limited validity of Ohm’s law. The nerve
cell membrane is not linear.

It is possible to write Ohm’s law in another form. Plac-
ing two identical wires in parallel in the circuit of Fig. 6.19
would cause twice as much current to flow (assuming that the
battery maintains the voltage difference at the original level).
The current density j remains constant as the cross-sectional
area of the wire is changed, when the wire length and volt-
age difference are held fixed. Similarly, to maintain the same
current through a single wire twice as long requires a volt-
age difference twice as great. Therefore, it is voltage per unit
length that determines the current. In this spirit, Ohm’s law
can be written as

j = i

S
= v(B) − v(A)

SR
.

If L is the length of the wire and x the position along it,
this can be written as

jx = − L

SR

v(x = L) − v(x = 0)

L
= − L

SR

∂v

∂x
, (6.25a)

Fig. 6.20 Current–voltage relationships for some nonlinear devices
used in electronic circuits. a Diode. b Transistor. c Tunnel diode. d
Zener diode

jx = −σ
∂v

∂x
. (6.25b)

In three dimensions this alternative statement of Ohm’s law
becomes

j = σE. (6.26)

The σ in this equation9 is the electrical conductivity, mea-
sured in (A m−2)/(V m−1) or S m−1. Its reciprocal is the
resistivity of the material, ρ. The units of resistivity are Ω m.
For a cylindrical conductor, the resistivity and the resistance
are related by

1

ρ
= L

SR

or

R = ρ
L

S
. (6.27)

This shows that making the conductor longer increases its
resistance, while increasing the cross-sectional area lowers
the resistance.

Suppose that an electric field acts on a charge moving in a
medium that obeys Ohm’s law. The electric field does work
on the charge, but the energy is continually transferred to the
medium by collisions between the charge and other particles

9 Note that σ has now been used for two things in this chapter: sur-
face charge per unit area and conductivity. This notation is standard
in the literature. You can tell from the context which is meant. Simi-
larly, the symbol ρ is used for charge per unit volume and for resistivity
(and for mass density in other chapters). These double usages are found
frequently in the literature.
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Fig. 6.21 A resistor connected to a battery

in the medium. If a charge Q moves to a lower potential, all
the energy it gained is transferred to heat. The rate of energy
dissipation is the power

P = vi. (6.28)

The units of power are J s−1 or watts (W). For a material that
obeys Ohm’s law, Eq. 6.28 can be combined with Ohm’s law
to give

P = i2R (6.29)

or

P = v2

R
. (6.30)

This type of energy loss has clinical significance. If a
patient contacts a source of very high voltage such as an
11, 000-V power line, the strong electric fields will cause
current to flow throughout the patient’s body or limb, be-
cause j = σE. The resistive heating can be enough to boil
water within the tissues. If the limb is x rayed, the steam
bubbles will look very much like the bubbles that appear
in clostridium (gas gangrene) infections; if the x ray is de-
ferred a few days, it will be impossible to tell from the x
ray whether the bubbles are due to the electrical injury or
subsequent infection.

6.9 The Application of Ohm’s Law to Simple
Circuits

The ultimate goal of this chapter is to apply Ohm’s law to
the axon. Before doing that, however, it is worthwhile to see
how it can be applied to some simpler circuits in which the
current and voltage are not changing with time.

The simplest circuit is a resistance R connected across a
battery, as shown in Fig. 6.21. The battery voltage of 6 V is
the potential difference across the resistor. If the resistance is
3 Ω, the current is i = v/R = 6/3 = 2 A. The rate of heat
production in the resistor is P = vi = (6)(2) = 12 W. This
could also have been calculated from P = v2/R = 36/3, or
P = i2R = (4)(3). A current of 2 A means that every second

2 C of charge leave the positive terminal of the battery and
flow through the resistor. When the charge arrives at the other
end of the resistor, it has lost 12 J of energy to heat. The 2 C
then travel through the battery back to the positive terminal,
gaining 12 J from a chemical reaction within the battery.

This example has been stated as though the positive
charge moves. In a metallic conductor negative charges (elec-
trons) move from the negative terminal of the battery through
the resistor to the positive terminal. In salt water and most
body fluids, both positive and negative ions move. From a
macroscopic point of view, we cannot tell the difference be-
tween the transport of a charge −q from point A to point B,
and the transport of a charge +q from point B to point A.
Both processes make the total charge at B less positive and
the total charge at A more positive by an amount q.

Two fundamental principles used in this discussion have
not been explicitly stated. The first is the conservation of
electric charge: all charge that leaves the battery passes
through the resistor. The second is the conservation of en-
ergy: a charge that starts at some point in the circuit and
comes back to its starting point has neither lost nor gained
energy. (The energy gained by a charge in the battery is
equal to the energy lost by it in passing through the resis-
tor.) These principles become less obvious and more useful
in a circuit that is more complicated than the one considered
above. They are known as Kirchhoff’s laws.

In a more complicated circuit, Kirchhoff’s first law (con-
servation of charge) takes the following form. Any junction
where the current can flow in different paths is called a node.
The algebraic sum of all the currents into a node is zero. (By
algebraic sum we mean that currents into the node are pos-
itive, while currents leaving the node are negative, or vice
versa.) This ensures that no charge will accumulate at the
node.10

As an example of Kirchhoff’s first law, consider the node
in Fig. 6.22. Conservation of charge requires that 2+3+ i =
0 or i = −5 A. (In this case positive currents flow into the
node; the negative current means that 5 A is flowing out of
the node as current i.)

Kirchhoff’s second law was used implicitly in the exam-
ple above to say that the voltage across the resistor is 6 V. In
general, Kirchhoff’s second law says that if one goes around
any closed path in a complicated circuit, the total voltage
change is zero.

10 More generally, the node could represent a conductor, such as the
plate of a capacitor, on which charge can accumulate. In that case the
charge Q changes with time:

dQ

dt
=
∑

(all currents into the node).

This statement is quite similar to the continuity equation of Sect. 4.1.
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Fig. 6.22 Conservation of charge means that current i is −5 A

Fig. 6.23 A more complicated circuit, sometimes called a voltage
divider

Kirchhoff’s laws can be applied to show that the total
resistance of a set of resistors in series is

R = R1 + R2 + R3 + · · · .

This follows from the definition of resistance, the fact that
the same current flows in each resistor, and the total potential
difference across the set of resistors is the sum of the poten-
tial difference across each one. Kirchhoff’s laws can also be
used to show that for a collection of resistors in parallel, the
total resistance is given by

1

R
= 1

R1
+ 1

R2
+ 1

R3
+ · · · ,

(see Problem 24).
Consider a more complicated example in which two resis-

tors are connected across a battery. The battery voltage is v,
and the resistances are R1 and R2, as shown in Fig. 6.23. If
no current flows out lead A, then conservation of charge re-
quires that the same current i flows in each resistor. The sum
of the voltages v1 and v2 is v. Therefore, i = v1/R1 = v2/R2

and v = v1 + v2 = iR1 + iR2 = i(R1 + R2). The voltage
across R2 is iR2 or

v2 = R2

R1 + R2
v. (6.31)

6.10 Charge Distribution in the Resting
Nerve Cell

The axon consists of an ionic intracellular fluid and an ionic
extracellular fluid, separated by a membrane. The intracellu-
lar and extracellular media are electrical conductors. When
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Fig. 6.24 The potential, electric field, and charge at different points
on the diameter of a resting nerve cell. Portions of the cell membrane
on opposite sides of the cell are shown. Outside the cell on the left the
potential and electric field are zero. As one moves to the right into the
cell, the electric field in the membrane causes the potential to decrease
to −70 mV. Within the cell the field is zero and the potential is con-
stant. Moving out through the right-hand wall the potential rises to zero
because of the electric field within the membrane

the cell is in equilibrium there is no current and no electric
field in these regions. There will be a field and currents when
an impulse is traveling along the axon.

Because the electric field in the resting cell is zero, there
is no net charge in the fluid. Positive ions are neutralized by
negative ions everywhere except at the membrane. A layer of
charge on each surface generates an electric field within the
membrane and a potential difference across it.

Measurements with a microelectrode show that the po-
tential within the cell is about 70 mV less than outside. If the
potential outside is taken to be zero, then the interior resting
potential is −70 mV. Figure 6.24 shows a slice across the
cell, showing the membrane on opposite sides of the cell and
the charges and electric field. If the potential drops 70 mV
as one enters the cell on the left, if the membrane thick-
ness is 6 nm, and if the electric field within the membrane
is assumed to be constant, then

E = −dv

dx
= −−70 × 10−3 V

6 × 10−9 m
= 1.17 × 107 V m−1.

(6.32)
This is how the value of E was determined for use on p. 147.

Except for the layers of charge on the inside and outside
of the membrane, which are shown in Fig. 6.24 and which
give rise to the electric field and potential difference, the
extracellular and intracellular fluids are electrically neutral.
However, the ion concentrations are quite different in each
(Fig. 6.3). There is an excess of sodium ions outside and an
excess of potassium ions inside.
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It is possible to see which concentrations (if any) are
consistent with the hypothesis that the ions can pass freely
through the membrane. If a species is in equilibrium, the
concentration ratio ci/co across the membrane is given by
a Boltzmann factor or the Nernst equation (see Chap. 3). The
potential energy of the ion is zev, where z is the valence of
the ion, e the electronic charge (1.6×10−19 C), and v the po-
tential in volts. Using subscripts i and o to represent inside
and outside the cell, we have

ci

co

= e−zevi /kBT

e−zevo/kBT
= e−ze(vi−vo)/kBT . (6.33)

Here kB is Boltzmann’s constant, 1.38 × 10−23 J K−1.
For a situation in which T = 310 K and vi − vo =
−70 × 10−3 V, ci/co is 13.7 for univalent positive ions and
1/13.7 = 0.073 for negative ions. The ratios in Fig. 6.3 are
0.103 for sodium, 30 for potassium, and 0.071 for chloride.
The chloride concentration ratio is consistent with equilib-
rium, while the sodium concentration ratio is much too small
(too few sodium ions inside) and the potassium concentra-
tion ratio is too large (too many potassium ions inside). A
potential of −90 mV would bring the potassium concentra-
tion ratio into equilibrium, but then chloride would not be
in equilibrium and sodium would be even farther from equi-
librium. In fact, tracer studies show that potassium leaks out
slowly and sodium leaks in slowly. The resting membrane
is not completely impermeable to these ions (Hodgkin 1964,
Chap. 6; Laüger 1991). To maintain the ion concentrations
a membrane protein called the sodium–potassium pump uses
metabolic energy to pump potassium into the cell and sodium
out. The usual ratio of sodium to potassium ions in this active
transport is 3 sodium to 2 potassium ions (Patton et al. 1989,
Vol. 1, p. 27).

The intracellular and extracellular fluids can be modeled
as two conductors separated by a fairly good insulator. The
conductors have a capacitance between them. We can esti-
mate this capacitance in two ways. We can either regard the
membrane as a plane insulator sandwiched between plane
conducting plates (as if the membrane had been laid out flat
as in Fig. 6.25), or we can treat it as a dielectric between
concentric cylindrical conductors. The text will use the first
approximation, while the second will be left to a problem.
Suppose that two parallel plates have area S and charge ±Q,
respectively, then the charge density on each is σ = ±Q/S.
Equation 6.11 gives the electric field without a dielectric
between the conductors: Eext = σ/ε0 = Q/ε0S.

With the dielectric of dielectric constant κ , the field is re-
duced to E = Eext/κ = σ/κε0 = Q/κε0S as was seen
in Eq. 6.20. The magnitude of the potential difference is E

times the plate separation b: v = Eb = Qb/κε0S. The
capacitance is C = Q/v:

C = Qκε0S

Qb
= κε0S

b
. (6.34)

Fig. 6.25 A portion of a cell membrane of length L, in its original
configuration and laid out flat. The membrane thickness is b and the
radius of the axon is a. The plane approximation is used to calculate
both the capacitance and resistance of the membrane

The charge density on the surface of the membrane is
obtained from σ = Q/S = Cv/S = κε0v/b.

Measurements of the dielectric constant κ for axon mem-
brane show it to be about 7. Using values of −70 mV for v
and 6 nm for b, the capacitance per unit area of membrane
can be calculated, as can σ :

C

S
= (7)(8.85 × 10−12)

6 × 10−9
= 0.01 F m−2 = 1 μF cm−2,

σ = (0.01)(70 × 10−3) = 7 × 10−4 C m−2. (6.35)

This value for the surface charge density is larger by a fac-
tor of 7 than that calculated in Sect. 6.3. The reduction of
the electric field by polarization of the dielectric has been
taken into account in the present calculation. A larger ex-
ternal charge is required to give the same field within the
dielectric.

The value of b for myelinated fibers is much greater, typi-
cally 2000 nm instead of 6 nm. This reduces the capacitance
per unit area by a factor of 300.

6.11 The Cable Model for an Axon

We now consider the rather complicated flow of charge in
the interior of an axon, through the membrane, and in the
conducting medium outside the cell during departures from
rest. We will model the axon by electric conductors that obey
Ohm’s law inside and outside the cell and a membrane that
has capacitance and also conducts current. We will apply
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Fig. 6.26 Leakage currents through the membrane. a The flow of positive and negative ions. b The membrane capacitance is represented by the
parallel plates and the leakage resistance by a single resistor. c The capacitance and resistance are usually drawn like this

Kirchhoff’s laws—conservation of energy and charge—to a
small segment of the axon. The result will be a differential
equation that is independent of any particular model for the
cell membrane. This is called the cable model for an axon.
We will then apply the cable model in two cases. The first
case is when the voltage change does not alter the proper-
ties of the membrane. The second case is a voltage change
that changes the ionic permeability of the membrane, thereby
generating a nerve impulse.

Consider the small segment of membrane shown in
Fig. 6.26a. For the moment we ignore the resting potential
on the membrane. We will see later that accounting for the
resting potential requires only a small change to the model.
The upper capacitor plate, corresponding to the inside of the
membrane, carries a charge Q. The lower capacitor plate (the
outside of the membrane) has charge −Q. The charge on
the membrane is related to the potential difference across the
membrane by the membrane capacitance Cm: Q = Cmv.
Figure 6.26a shows positive ions on the inside and negative
ions on the outside of the membrane. (In a resting nerve cell,
there is negative charge on the inside of the membrane, Q is
negative, −Q is positive, and v < 0.)

If the resistance between the plates of a capacitor is infi-
nite, no current flows, and the charge on the capacitor plates
remains constant. However, a membrane is not a perfect in-
sulator; if it were, there would be no nerve conduction. Some
current flows through the membrane. We call this current im
and define outward current to be positive, as in Fig. 6.26b.

Imagine for now that there is no current along the axon.
In that case im discharges the membrane capacitance, and the
charge and potential difference fall to zero as charge flows
through the resistor. When im is positive, Q and v decrease
with time:

−im = dQ

dt
= Cm

dv

dt
. (6.36)

Let us explore the behavior of this isolated segment of
axon a bit further. For now we think of the total leakage cur-
rent as being through a single effective resistance Rm. This
is shown in Fig. 6.26b. It is customary to draw the resistance

separately, as in Fig. 6.26c. The current is then im = v/Rm

and Cm(dv/dt) = −im = −v/Rm,

dv

dt
= − 1

RmCm

v. (6.37)

This is the familiar equation for exponential decay of the
voltage (see Chap. 2). If the initial voltage at t = 0 is v0,
the solution is

v(t) = v0e
−t/τ , (6.38)

where the time constant τ is given by

τ = RmCm. (6.39)

Referring to Fig. 6.25, we saw that if we have a section of
membrane of area S and thickness b the capacitance is given
by Eq. 6.34. For a conductor of the same dimensions we saw
[Eq. 6.27] that the resistance is Rm = ρmb/S, so the time
constant is

τ = RmCm = ρmb

S

κε0S

b
= κε0ρm. (6.40)

We have the remarkable result that the time constant is in-
dependent of both the area and thickness of the membrane.
Doubling the area S doubles the amount of charge that must
leak off, but it also doubles the membrane current. Doubling
b doubles the resistance, but it also makes the membrane ca-
pacitance half as large. In each case the factors S and b cancel
in the expression for the time constant.

If a very thin lipid membrane is produced artificially, it
is found to have a very high resistivity—about 1013 Ω m
(Scott 1975, p. 493). Certain proteins added to the lipid ma-
terial reduce the resistivity by several orders of magnitude.
For natural nerve membrane the resistivity is about

ρm = 1.6 × 107 Ω m. (6.41)

This is the effective resistivity for resting membrane, taking
into account all of the ion currents. If ρm had this con-
stant value the time constant would be τ = κε0ρm =
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Table 6.1 Properties of a typical unmyelinated nerve

a Axon radius 5 × 10−6 m
b Membrane thickness 6 × 10−9 m
ρi Resistivity of axoplasm 0.5 Ω m
ri = ρi/πa2 Resistance per unit length inside axon 6.4 × 109 Ω m−1

κ Dielectric constant of membrane 7a

ρm Resistivity of membrane 16 × 106 Ω m
κρm 112 × 106 Ω m
cm = κε0/b Membrane capacitance per unit area 10−2 F m−2

2πκε0a/b Membrane capacitance per unit length of axon 3 × 10−7 F m−1

gm = 1/ρmb Conductance per unit area of membrane 10 S m−2

1/gm Reciprocal of conductance per unit area 0.1 Ω m2

2πa/ρmb Membrane conductance per unit length of axon 3.2 × 10−4 S m−1

vr Resting potential inside axon −70 mV
E = vr /b Electric field in membrane 1.2 × 107 V m−1

κε0vr /b Charge per unit area on membrane surface 7 × 10−4 C m−2

Net number of univalent ions per unit area 4.4 × 1015 m−2

Net number of univalent ions per unit length 6.6 × 107 m−1

aSee Sect. 6.17 for a discussion of the dielectric constant.

(7)(8.85 × 10−12)(1.6 × 107) = 1 × 10−3 s. (Actually,
the resistivity changes drastically as the potential across the
membrane changes during the propagation of a nerve im-
pulse.) Since we observe a potential difference across the
membrane, there must be a mechanism for renewing the
charge on the membrane surface.

The resistance and capacitance of the portion of the axon
membrane in Fig. 6.25 can be written in terms of the axon
radius a and the length L of the segment by noting that S =
2πaL. Then one has

Cm = κε02πaL

b
, Rm = ρmb

2πaL
.

It is convenient to recall that v = iR can be written as i =
Gv and introduce the conductance of the membrane segment

Gm = 2πaL

ρmb
. (6.42)

Both the capacitance and the conductance are propor-
tional to the area of the segment S. It is also convenient to
introduce the lowercase symbols cm and gm to stand for the
membrane capacitance and membrane conductance per unit
area:

cm = Cm

S
= κε0

b
, (6.43)

gm = Gm

S
= 1

ρmb
= σm

b
. (6.44)

(Remember that σm = 1/ρm is the electrical conductivity,
the reciprocal of the resistivity. It is not the charge per unit
area. σ is frequently used for both quantities in the literature.)

Both cm and gm depend on the membrane thickness as
well as the dielectric constant and resistivity of the mem-
brane. The units of cm and gm are, respectively, F m−2

and S m−2. Be careful: many sources give them per square
centimeter instead of per square meter.

We can rewrite Eq. 6.36 in terms of the current density jm,
which is proportional to the capacitance per unit area, cm:

−jm = cm

dv

dt
. (6.45)

Table 6.1 shows typical values for these quantities and
some to be discussed later for an unmyelinated axon.11 These
values should not be associated with a particular species.
Parameters such as the resistance and capacitance per unit
length of the axon are measured directly. Others, such as ρm,
require an estimate of membrane thickness and are less well
known

Now let us consider current that flows inside and outside
the axon. Assume that the currents inside are longitudinal,
that is, parallel to the axis of the axon. A discussion of depar-
tures from this assumption is found in Scott (1975, p. 492).
With this assumption, the interior fluid can be regarded as a
resistance of length L and radius a as shown in Fig. 6.27. The
resistance of such a segment is Ri = ρiL/S = ρiL/πa2. It
is convenient to work with the resistance per unit length, ri :

ri = Ri

L
= ρi

πa2
= 1

πa2σi

. (6.46)

11 Some insight into the magnitude of the charge on the membrane can
be obtained from these numbers. The excess charge on the surface of the
membrane is 7 × 10−4 C m−2 for the unmyelinated fiber. This corre-
sponds to 4.4×1015 ions m−2, if each ion has a charge of 1.6×10−19 C.
Each atom or ion in contact with the membrane surface occupies an area
of about 10−20 m2; thus there are about 1020 atoms or ions in contact
with a square meter of membrane surface. These may be neutral or pos-
itively or negatively charged. If charged, most are neutralized by the
presence of a neighbor of opposite charge. The excess charge density
that is required can be obtained if 4.4 × 1015/1020 or roughly one out
of every 20, 000 of the atoms in contact with the surface is ionized and
not neutralized.
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Fig. 6.27 Axoplasm of length L and radius a can be treated like a
simple resistor

x x + dx
im

i  (x)i i  (x + dx)i
a

Fig. 6.28 The membrane surrounding a small portion of an axon is
shown, along with the longitudinal currents in and out of the segment

The question of resistance of the extracellular fluid for
currents outside the axon is more complicated. If the extra-
cellular fluid were infinite in extent, the longitudinal resis-
tance outside the cell would be very small (see Chap. 7). On
the other hand, in a nerve or a muscle the axons or muscle
cells are packed close together, there is not very much extra-
cellular fluid, and the external resistance per unit length can
be significant. There are some important effects that occur
because of this. We will discuss them in Chap. 7.

Now we can consider the effect of both membrane and
longitudinal currents. Figure 6.28 shows a small region of the
axon between x and x + dx and the surrounding membrane.
Current ii flows longitudinally along the axon on the inside.
The current through the membrane is im. The potential dif-
ference across the membrane is v = vi − vo. In this section
no attempt will be made to relate im or jm to v. Charge Q

resides on the inside surface of the membrane and can be ei-
ther negative or positive. An equal and opposite charge −Q

resides on the outer surface of the membrane.
Because the capacitance can charge or discharge, Kirch-

hoff’s law (conservation of charge) does not say that the sum
of the currents is zero. Rather, it says that the net current into
the volume of axoplasm between x and x + dx changes the
charge on the interior surface of the membrane:

ii(x) − ii(x + dx) − im = dQ

dt
= Cm

d(vi − vo)

dt
. (6.47a)

Fig. 6.29 A hypothetical plot of vi (x) and the longitudinal current ii
associated with it

When ii(x) = ii(x + dx) this gives Eq. 6.36. The mem-
brane current im represents an average value for the segment
of membrane between x and x+dx. It is also a function of x.

We can define dii = ii(x + dx) − ii(x) as the increase in
ii along segment dx. Then we can rewrite Eq. 6.47a as

−dii = Cm

dv

dt
+ im. (6.47b)

This is an important equation. It says that when the current
flowing inside the axon decreases in a small distance dx,
part of the current charges the capacitance of that segment
of membrane, and the rest flows through the membrane.

Consider a small segment of axoplasm of length dx. The
intracellular voltage at the left end is vi (x); at the right end
it is vi (x + dx). The current along the segment is the volt-
age difference between the ends divided by the resistance
of the segment. The resistance is Ri = ri dx. Therefore the
current is

ii(x) = vi (x) − vi (x + dx)

ri dx
= − 1

ri

dvi

dx
. (6.48)

The voltage must change along the axon for a current to
flow within it. The minus sign in Eq. 6.48 shows that a cur-
rent flowing from left to right (in the +x direction) requires
a voltage that decreases from left to right, and vice versa.
Figure 6.29 shows a hypothetical plot of vi (x) and the current
which would accompany it. Notice that the current is flowing
from the region of higher voltage to lower voltage–towards
both ends from the region between x1 and x2. In that region
either the charge on the membrane is changing or current is
flowing through the membrane.

Consider again the cylindrical geometry shown in
Fig. 6.28. The surface area of this portion of membrane is
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2πa dx. Dividing each term of Eq. 6.47a by the area and
remembering the definitions of jm and cm we obtain

cm

∂v

∂t
= −jm + 1

2πa

[
ii(x) − ii(x + dx)

dx

]
. (6.49)

It is necessary to use partial derivatives because the current
and voltage depend on both x and t as an impulse travels
down the nerve. As dx → 0

ii(x + dx) − ii(x)

dx
→ ∂ii

∂x
.

This can be evaluated using the expression for Ohm’s law in
the axoplasm, Eq. 6.48:

∂ii

∂x
= − 1

ri

∂2vi

∂x2
. (6.50)

When this is inserted in Eq. 6.49 the result is

cm

∂(vi − vo)

∂t
= −jm + 1

2πa ri

∂2vi

∂x2
. (6.51)

In many cases the extracellular potential is small. In that
case the voltage across the membrane, v, is approximately
the same as the intracellular voltage, vi , so we can rewrite
Eq. 6.51 as

cm

∂v

∂t
= −jm + 1

2πa ri

∂2v

∂x2
. (6.52)

This rather formidable looking equation is called the ca-
ble equation or telegrapher’s equation. It was once familiar
to physicists and electrical engineers as the equation for a
long cable, such as a submarine cable, with capacitance and
leakage resistance but negligible inductance (Jeffreys and
Jeffreys 1956, p. 602). It has the form of Fick’s second law
of diffusion, Eq. 4.26, with the addition of the jm term.

It is worth recalling the origin of each term and verify-
ing that the units are consistent. The term on the left is the
rate at which the membrane capacitance is gaining charge
per unit area. Therefore all terms in the equation have the
units of current per unit area. The first term on the right is
the current per unit area through the membrane in the direc-
tion that discharges the membrane capacitance. The second
term on the right gives the buildup of charge on this area
of the membrane because of differences in current along the
axon. If v(x) were constant, there would be no current along
the inside of the axon. If function v(x) had constant slope,
the current along the inside of the axon would be the same
everywhere and there would be no charge buildup on the
membrane. It is only because v(x) changes slope that ii is
different at two neighboring points in the axon and charge
can collect on the membrane.

Now, for the units. Since i = C(dv/dt), the units of
cm∂v/∂t are current per unit area. The jm term is by defi-
nition current per unit area. Since ri has the units of Ω m−1,

the term 2πari has the units of Ω. When this is combined
with ∂2v/∂x2, which has units V m−2, the result is A m−2 as
required.

This is a very general equation stating Kirchhoff’s laws
for a segment of the axon. The only assumptions are that the
currents depend only on time and position along the axon and
that voltage changes on the outside of the axon can be ne-
glected. Particular models for nerve conduction use different
relations between jm and v(x, t).

6.12 Electrotonus or Passive Spread

The simplest membrane model is one that obeys Ohm’s law.
This approximation is valid if the voltage changes are small
enough so that the membrane conductance does not change,
or if something has been done to inactivate the normal
changes of membrane conductance with voltage. It is also
useful for myelinated nerves between the nodes of Ranvier.
This is called electrotonus or passive spread.

In its quiescent state, the voltage all along the inside of
the axon has the constant resting value vr . Both ∂v/∂t and
∂2v/∂x2 are zero. Equation 6.52 can be satisfied only if
jm = 0. Although jm is zero, it may be made up of sev-
eral leakage components. In this section we simply assume
that jm is proportional to v − vr :

jm = gm(v − vr ). (6.53)

This simple model does predict that jm = 0 when v = vr .
It also predicts that the current will be positive (outward) if
v > vr and negative (inward) if v < vr . It does not explain
the propagation of an all-or-nothing nerve impulse. The con-
ductance per unit area, gm, is assumed to be independent of
v and of the past history of the membrane. This is a good
assumption only for very small voltage changes. With this
assumption, Eq. 6.52 becomes

cm

∂v

∂t
= −gm(v − vr ) + 1

2πa ri

∂2v

∂x2
. (6.54)

This equation is usually written in a slightly different form
by dividing through by gm:

1

2πa rigm

∂2v

∂x2
− v − cm

gm

∂v

∂t
= −vr .

It is also customary to make the assignments

λ2 = 1

2πa rigm

,

τ = cm

gm

,
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Fig. 6.30 The voltage distribution along an axon in electrotonus when
the membrane capacitance is charged and the voltage is not changing
with time

so that the equation becomes

λ2 ∂2v

∂x2
− v − τ

∂v

∂t
= −vr . (6.55)

In terms of the primary axon parameters, the parameters in
Eq. 6.55 are

λ2 = abρm

2ρi

, (6.56)

τ = κε0ρm. (6.57)

The time constant was seen before in Eq. 6.40. Equation 6.55
has a steady-state solution v = vr . If a new variable v′ =
v − vr is used, it becomes the homogeneous version of the
same equation with a steady-state solution v′ = 0.

For nerve conduction, the inhomogeneous equation with
various exciting terms corresponding to physiological stimuli
was discussed by Davis and Lorente de Nó (1947) and by
Hodgkin and Rushton (1946). Their work is summarized by
Plonsey (1969, p. 127).

Before considering general solutions to Eq. 6.55, consider
some special cases. If cm = 0, so that τ = 0, or if enough
time has elapsed so that the voltage is not changing with time
and ∂v/∂t = 0, the equation reduces to

λ2 ∂2v

∂x2
− v = −vr .

You can verify by substitution that this has a solution

v − vr =
{
v0e

−x/λ, x > 0
v0e

x/λ, x < 0.
(6.58)

If the voltage is held at a constant value v = vr + v0 at some
point on the axon, the voltage will decay exponentially to vr

in both directions from that point. This is shown in Fig. 6.30.
Next suppose that v(x, t) does not depend on x, so that

there is no longitudinal current in the axon and ∂2v/∂x2 = 0.
This can be accomplished experimentally by threading a wire
axially along the axon, if the axon is fat enough. The equation
reduces to

τ
∂v

∂t
+ v = vr .

This is the familiar equation for exponential decay. If v were
held at v0+vr and then the constraint were removed at t = 0,
the voltage would decay exponentially back to vr

v − vr = v0e
−t/τ .

This represents the discharge of the membrane capacitance
through the membrane resistance.

The behavior of v(x, t) − vr at various times after an ex-
citation is applied is shown in Fig. 6.31. The excitation is a
constant current injected at x = 0 for all time t > 0. Af-
ter a long time, the curve is identical to that in Fig. 6.30, as
the membrane capacitance has fully charged. Only the mem-
brane leakage current attenuates the signal. At earlier times
the solution is not precisely exponential; the analytic solution
involves error functions (Prob. 36). The change of voltage
with time at fixed positions along the cable is also shown.
Both the finite propagation time and the attenuation of the
signal are evident.

6.13 The Hodgkin–Huxley Model for
Membrane Current

If the voltage at some point along the axon changes by a few
millivolts from the resting value, the voltage at other points
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Fig. 6.31 Some representative solutions to the problem of electrotonus after the application of a constant current at x = 0. a The voltage along
the axon at different times. b Voltage at a fixed point on the axon as a function of time
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Fig. 6.32 Apparatus for voltage-clamp measurements

along the axon is described by electrotonus. However, if the
inside voltage rises from the resting value by 20 mV or more,
a completely different effect takes place. The potential rises
rapidly to a positive value, then falls to about −80 mV, and
finally returns to the resting value (Fig. 6.1). This behavior
is attributable to a very nonlinear dependence of membrane
current on transmembrane voltage.

Considerable work was done on nerve conduction in the
late 1940s, culminating in a model that relates the propa-
gation of the action potential to the changes in membrane
permeability that accompany a change in voltage. The model
(Hodgkin and Huxley 1952) does not explain why the mem-
brane permeability changes; it relates the shape and con-
duction speed of the impulse to the observed changes in
membrane permeability. Nor does it explain all the changes
in current. (For example, the potassium current does fall
eventually, and there are some properties of the sodium cur-
rent that are not adequately described.) Nonetheless, the
work was a triumph that led to the Nobel Prize for Alan
Hodgkin and Andrew Huxley.

Most of the experiments that led to the Hodgkin–Huxley
model were carried out using the giant axon of the squid.
This is a single cell several centimeters long and up to 1 mm
in diameter that can be dissected from the squid. The re-
moval of axoplasm from the preparation and its replacement
by electrolytes has shown that the critical phenomena all
take place in the membrane. The important results are re-
viewed in many places (Katz 1966, Chaps. 5 and 6; Plonsey
1969, p. 127; Plonsey and Barr 2007, Chap. 4; Scott 1975,
pp. 495–507).

6.13.1 Voltage Clamp Experiments

Voltage-clamp experiments were particularly illuminating.
Two long wire electrodes were inserted in the axon and con-
nected to the apparatus shown in Fig. 6.32. The resistance
of the wires was so low that the potential at all points along
the axon was the same at any instant of time. The potential
depended only on time, and not on position. This is called

a space-clamped experiment. One electrode, paired with an
electrode in the surrounding medium, measured the voltage
difference across the membrane. The other electrode was
used to inject or remove whatever current was necessary to
keep this voltage difference constant. Measurement of this
current allowed calculation of the membrane conductance.
This technique is called voltage clamping. The experiment
described here was both voltage- and space-clamped.

When the membrane potential was raised abruptly from
the resting value to a new value and held there, the resulting
current was found to have three components:
1. A current, lasting a few microseconds, that changed the

surface charge on the membrane.
2. A current flowing inward which lasted for 1 or 2 ms. Var-

ious experiments, such as replacing the sodium ions in
the extracellular fluid with some other monovalent ion,
showed that this was due to the inward flow of sodium
ions. (Had the potential not been voltage-clamped by the
electronic apparatus, this inrush of positive charge would
have raised the potential still further.)

3. An outward current that rose in about 4 ms and remained
steady for as long as the potential was clamped at this
value. Tracer studies showed that this current was due to
potassium ions. (Over a time scale of several tens of mil-
liseconds, the potassium current, like the sodium current,
does fall back to zero.)

The first current is the cm(∂v/∂t) term of Eq. 6.52; the sec-
ond and third currents together constitute jm. Because of the
clamping wires, the ∂2v/∂x2 term is zero.

The next step is to develop a model that describes the
major ionic constituents of the current. The sodium and
potassium contributions to the current will be considered
separately; all other contributions will be combined in a
leakage term:

jm = jNa + jK + jL. (6.59)

The leakage includes charge movement due to chloride ions
and any other ions that can pass through the membrane.

Consider movement of sodium through the membrane.
Similar considerations apply to potassium. The concentra-
tions of sodium inside and out are [Nai] and [Nao]. It will be
seen later that the total number of ions moving through the
membrane during a nerve pulse in a squid giant axon is too
small to change the concentrations significantly. Therefore,
the concentrations are fixed.

There would be no movement of sodium ions through the
membrane, regardless of how permeable it is, when the con-
centrations and potential are related by the Boltzmann factor
or Nernst equation (Eq. 6.33) with v = vi − vo:

[Nai]

[Nao]
= e−ev/kBT .
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Fig. 6.33 Equivalent circuits for the membrane current. a The sodium
current–voltage relationship of Eq. 6.61 is the same as that for a vari-
able resistance in series with a battery at the sodium Nernst potential. b
The total membrane current can be modeled with three such equivalent
circuits. See the discussion of the sign of the potassium and leakage
Nernst potentials in the text

For given concentrations, the sodium equilibrium or Nernst
potential is

vNa = kBT

e
ln

(
[Nao]

[Nai]

)
. (6.60)

The sodium Nernst potential is usually about 50 mV. If
v = vNa there is no current of sodium ions, regardless of the
membrane permeability to sodium. If v is greater than vNa

(more positive), jNa flows outward. If v < vNa , the sodium
current is inward. These currents can be described by

jNa = gNa(v − vNa). (6.61)

The coefficient gNa is the sodium conductance per unit area.
It is not constant but depends on the value of v and, in fact,
on the past history of v. Defining the conductance this way
makes the functional form of gNa less complex; in particular,
it does not have to change sign as v moves through vNa and
the sodium current reverses direction.

This equation can be multiplied by the membrane area
to give a current–voltage relationship . Many authors draw
a circuit diagram to represent the current flow through the
membrane and along the axon. The sodium voltage–current
relationship can be represented by a variable resistance corre-
sponding to gNa in series with a battery at the sodium Nernst
potential, as shown in Fig. 6.33a.
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Fig. 6.34 The behavior of the sodium and potassium conductivities
with time in a voltage-clamp experiment. At t = 0 the voltage was
raised by 25 mV from the resting potential. The values are calculated
from Eqs. 6.64–6.70 and are representative of the experimental data

An expression similar to Eq. 6.61 can be written for the
potassium current density:

jK = gK(v − vK). (6.62)

The potassium Nernst potential is negative—about
−77 mV—so the polarity of the potassium battery in
Fig. 6.33b has been reversed. The leakage term will be
considered later.

To summarize: v is the instantaneous voltage across the
membrane. Both vK and vNa are constants depending on the
relative ion concentrations inside and outside the cell and the
temperature. The conductances per unit area depend on both
the present value of v and its past history.

We can now describe the results of the voltage clamp
experiments. The voltage in each experiment was changed
from the resting value by an amount �v. Therefore, v − vNa

and v − vK had constant values after the change, and
the changes in current density mirrored the changes in
conductivity. Typical results for �v = 25 mV and T = 6 ◦C
are shown in Figs. 6.34 and 6.35. [The method of distin-
guishing sodium from potassium current is described in
the original papers, or in Hille (2001, p. 39).] For a voltage
clamp experiment the current and conductance have the
same time variation. The sodium conductance rises from
nearly zero and then falls, while the potassium conductance
rises more slowly from a small initial resting value. (The
potassium current before the voltage clamp was applied
was small, because the resting potential was close to the
potassium Nernst potential.) Measurements for longer times
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Fig. 6.35 The behavior of the potassium conductance for different val-
ues of the clamping voltage. These are representative curves calculated
from Eqs. 6.64–6.66

show that the potassium conductivity rises to a constant
value. Measurements for much longer times show that the
potassium current falls after tens of milliseconds. For other
values of �v the conductance changes are different.

6.13.2 Potassium Conductance

Hodgkin and Huxley wanted a way to describe their exten-
sive voltage-clamp data, similar to that in Figs. 6.34 and 6.35,
with a small number of parameters. If we ignore the small
nonzero value of the conductance before the clamp is ap-
plied, the potassium conductance curve of Fig. 6.34 is
reminiscent of exponential behavior, such as gK(v, t) =
gK(v)(1−e−t/τ (v)), with both gK(v) and τ(v) depending on
the value of the voltage. A simple exponential is not a good
fit. Figure 6.36 shows why. The curve (1 − e−t/τ ) starts with
a linear portion and is then concave downward. The potas-
sium conductance in Figs. 6.34 and 6.35 is initially concave
upward. The curve (1 − e−t/τ )4 in Fig. 6.36 more nearly has
the shape of the conductance data. This suggests that we try
to describe the conductance by

gK(v, t) = gK∞
[
n∞(v)(1 − e−t/τ (v))

]N
. (6.63)

In this expression, gK∞ is the largest possible conductance
per unit area. The value of n∞(v) varies between 0 and 1 and
determines the asymptotic value of the conductance change
for a particular value of the voltage step. Hodgkin and Hux-
ley found a good fit to their data with N = 4. If the initial
value of the conductance were zero, our empirical fit to the
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Fig. 6.36 A comparison of (1 − e−t/τ ) with (1 − e−t/τ )4. The latter
more closely approximates the shape of the potassium conductance in
Fig. 6.34

potassium conductance data would be

gK(v, t) = gK∞n4(v, t), (6.64a)

n(v, t) = n∞(v)(1 − e−t/τ (v)). (6.64b)

But the initial potassium conductance was not zero. How
should this be handled? Hodgkin and Huxley assumed that n

is a measure of some fundamental property of the potassium
channels, and that the conductance is always described by
Eq. 6.64a. When the clamp voltage changes, the subsequent
change of n is described by an exponential decay with the
appropriate values of n∞(v) and τ(v). If the initial value of
n is n0, the expression for n(v, t) after the voltage clamp
change is

n(v, t) = n∞(v)

[
1 −

(
n∞(v) − n0

n∞(v)

)
e−t/τ (v)

]
. (6.64c)

The function n is a solution to the differential equation

dn

dt
= −n

τ
+ n∞

τ
. (6.65a)

Hodgkin and Huxley wrote this instead in the form

dn

dt
= αn(1 − n) − βnn. (6.65b)

The subscript n on αn and βn distinguishes them from similar
parameters for the sodium conductance.

The dependence of αn and βn on voltage is quite pro-
nounced. With v in mV and αn and βn in ms−1, the equations
used by Hodgkin and Huxley to describe their experimental
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values of αn and βn are

αn(v) = 0.01 [10 − (v − vr )]

exp

(
10 − (v − vr )

10

)
− 1

,

βn(v) = 0.125 exp

(−(v − vr )

80

)
.

(6.66)

The quantities αn and βn are rate constants in Eq. 6.65b. Like
all chemical rate constants, they depend on temperature. The
values above are correct when T = 279 K (6.3 ◦C). Hodgkin
and Huxley assumed that the temperature dependence was
described by a Q10 of 3. This means that the reaction rate
increases by a factor of 3 for every 10 ◦C temperature rise.
The rate at temperature T is obtained by multiplying rates
obtained from Eq. 6.66 by

3(T −6.3)/10. (6.67)

For example, if the temperature is 18.5 ◦C, the rate must be
multiplied by 31.22 = 3.82.

The variable n is often called the potassium gate or
the n gate. It takes values between zero (a closed gate)
and 1 (an open gate). The n gate is partially open at rest,
making the resting membrane somewhat permeable to potas-
sium. As v becomes more positive than the resting potential
(“depolarizes”), the n gate opens further or “activates.”

The behavior of αn and βn was determined from voltage-
clamp experiments. In an actual nerve-conduction process, v
is not clamped. Hodgkin and Huxley assumed that when v
varies with time, the correct value of n can be obtained by
integrating Eq. 6.65b. At each instant of time the values of
αn and βn are those obtained from Eq. 6.66 for the voltage at
that instant. This was a big assumption—but it worked. The
value of gK∞ that they chose was 360 S m−2.

6.13.3 Sodium Conductance

The sodium conductance was described by two parameters:
one reproducing the rise and the other the decay of the
conductance. The equation was

gNa = gNa∞m3h.

The parameters m and h obeyed equations similar to that
for n:

dm

dt
= αm(1 − m) − βmm, (6.68)

dh

dt
= αh(1 − h) − βhh. (6.69)
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Fig. 6.37 Plots of the sodium and potassium conductance parameters
versus the transmembrane potential

The v dependences were

αm = 0.1[25 − (v − vr )]
exp

(
25 − (v − vr )

10

)
− 1

,

βm = 4 exp

(−(v − vr )

18

)
,

αh = 0.07 exp

(−(v − vr )

20

)
,

βh = 1

exp

(
30 − (v − vr )

10

)
+ 1

.

(6.70)

These values for α and β are also for a temperature of 6.3 ◦C.
The temperature scaling of Eq. 6.67 must be used for other
temperatures. The value of gNa∞ is 1200 S m−2. Figure 6.37
plots the time constants and asymptotic values as a func-
tion of membrane potential. These are the parameters for the
equations in the form of Eq. 6.65a rather than Eq. 6.65b.
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The variable m (called the sodium activation gate or m
gate) is nearly closed at rest, preventing the resting mem-
brane from being permeable to sodium. As v is depolarized
m opens, allowing sodium to rush in. The sodium ions carry
positive charge, so this inward current causes v to depolarize
further (if there is not a voltage clamp), causing m to increase
even more. This positive feedback (see Chap. 10) is responsi-
ble for the rapid upstroke of the action potential. The inward
sodium current ends when v approaches the sodium Nernst
potential, about 50 mV.

Variable h (the sodium inactivation gate or h gate) is dif-
ferent than the n- and m gates because it is open at rest but
closes upon depolarization. However, it is slow compared
to the m gate (see Fig. 6.37), so during an action poten-
tial it does not fully close until after the m gate has opened
completely. Once the action potential is finished and v has
returned to the resting value, the slow h gate takes a few
milliseconds to completely re-open. During this time, the
membrane cannot generate another action potential (it is re-
fractory) because the closed h gate suppresses the sodium
current.

6.13.4 Leakage Current

All other contributions to the current (such as movement
of chloride ions) were lumped in the leakage term jL =
gL(v − vL). The empirical value for gL is 3 S m−2. The
parameter vL was adjusted to make the total membrane cur-
rent equal zero when v = vr . For example, with the data
given, zero current is obtained with vr = −65 mV and
vL = vr + 10.6 = −54.4 mV. The three contributions to the
membrane current can be thought of as the circuit shown in
Fig. 6.33b.

The Hodgkin–Huxley parameters have been used for a
wide variety of nerve and muscle systems, even though
they were obtained from measurements of the squid axon.
A number of other models have since been developed that
incorporate the sodium–potassium pump, calcium, etc. They
have also been developed for various muscle and cardiac
cells (Demir et al. 1994; Luo and Rudy 1994; Wilders et al.
1991).

6.14 Voltage Changes in a Space-Clamped
Axon

A space-clamped axon has an interior potential v(t) which
does not depend on x. If such an axon is stimulated, a voltage
pulse is observed. The first test we can make of the Hodgkin–
Huxley model is to see if the parameters from the voltage-
clamp experiments can also explain this pulse. To do so, it
is necessary to insert Eq. 6.59, with all the other equations

that are necessary to use it, in Eq. 6.52. Life is made some-
what simpler by the fact that the spatial derivative in Eq. 6.52
vanishes when the wire is in the axon. The result is

cm

∂v

∂t
= −gNa(v−vNa)−gK(v−vK)−gL(v−vL). (6.71)

When v = vr the right-hand side of this equation is zero
and v does not change. It is necessary to introduce a stimulus
to cause the pulse. This has been done in the computer pro-
gram of Fig. 6.38, which solves Eq. 6.71. This program is not
the most efficient that can be used; it has been written for ease
of understanding. A stimulus of 10−4 A cm−2 = 1 A m−2 is
applied between 0.5 and 0.6 ms. This is an additional term in
Eq. 6.71, so that in the program, Eq. 6.71 becomes

dvdt = (−jMemb+ jStim)/Cmemb;
In this statement dvdt stands for ∂v/∂t , jMemb stands
for jm, Cmemb for cm, and jStim for the stimulus cur-
rent. The equation is solved by repeated application of the
approximation

v = v+ dvdt ∗ deltat;
which stands for

v(t + �t) = v(t) +
(

∂v

∂t

)
�t.

The program uses �t = 10−6 s. The present value of v is
used to calculate the rate constants in procedure Calcab.
These are then used to calculate the present value of each
conductivity. The membrane current is then calculated, and
the entire process is repeated for the next time step. The
results are tabulated in Fig. 6.39 and plotted in Fig. 6.40.

One can see from the plot that jm is proportional to ∂v/∂t .
Note that although gNa is a smooth curve, jNa has an extra
wiggle near t = 2 ms, caused by the rapid decrease in the
magnitude of v − vNa as the voltage approaches the sodium
Nernst potential. The initial depolarization is due to an inrush
of sodium ions. But there is still a considerable sodium cur-
rent during the potassium current. The sodium and potassium
currents are nearly balanced throughout most of the pulse.
The pulse lasts about 2 ms.

If the temperature is raised, the pulse is much shorter.
Figure 6.41 shows the impulse when the temperature is
18.5 ◦C, calculated by multiplying each of the α and β values
by 3(18.5−6.3)/10 = 3.82.

The potassium current is not actually needed to create a
nerve impulse because of the leakage current (primarily chlo-
ride) and the fact that the sodium conductance decreases after
the initial depolarization. The potassium current speeds up
the repolarization process. It is easy to modify the program
of Fig. 6.38 to show this.
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Fig. 6.38 The computer program used to calculate the response of a space-clamped axon to a stimulus. The results are shown in Figs. 6.39
and 6.40

6.15 Propagating Nerve Impulse

If the wire is not inserted along the axon, the voltage changes
in the x direction. A strong enough stimulus at one point re-
sults in a pulse that travels along the axon without change of
shape. The basic equation that describes it is again Eq. 6.52
with the spatial term and with the Hodgkin–Huxley model
for the membrane current:

∂v

∂t
= −jm

cm

+ 1

2πa ricm

∂2v

∂x2
,

jm = gNa(v − vNa) + gK(v − vK) + gL(v − vL).

(6.72)
These can be solved numerically by setting up arrays for val-
ues of v, n, m, and h at closely spaced discrete values of x

along the axon. If index i distinguishes different values of x,
then the discrete equation is

dvdt[i]=−jMemb[i]/Cmemb
+(1/(6.28 ∗ a ∗ ri ∗ Cmemb ∗ dx ∗ dx))

∗(v[i+ 1] − 2 ∗ v[i] + v[i− 1]).

Figure 6.42 shows each term in Eq. 6.72 multiplied
through by cm to have the dimensions of current per unit area.
The term

cm

∂v

∂t

is the rate at which charge per unit area on the membrane
must change in order to change the membrane potential at
the rate ∂v/∂t ,

−jm = −gNa(v − vNa) − gK(v − vK) − gL(v − vL)

is the rate of charge buildup because of current through the
membrane, and

1

2πa ri

∂2v

∂x2

is the rate of charge buildup on the inner surface of the
membrane because the longitudinal current is not uniform.
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Fig. 6.39 Results of the calculation for a space-clamped axon at 6.3 ◦C

6.16 Myelinated Fibers and Saltatory
Conduction

We have so far been discussing fibers without the thick
myelin sheath. Unmyelinated fibers constitute about two-
thirds of the fibers in the human body. They usually have
radii of 0.05–0.6 μm. The conduction speed in m s−1 is given
approximately by u ≈ 1800

√
a, where a is the axon radius

in meters.12 (Strictly speaking, in this formula a should be
replaced by the outer radius a + b including the membrane
thickness, but for an unmyelinated fiber b 	 a.)

Myelinated fibers are relatively large, with outer radii of
0.5–10 μm. They are wrapped with many layers of myelin
between the nodes of Ranvier, as shown in Fig. 6.43. Typ-
ically, the outer radius is a + b ≈ 1.67a and the spac-
ing between nodes is proportional to the outer diameter
D = 200(a + b) ≈ 330a (See Prob. 69). These empiri-
cal proportionalities between node spacing and radius and
between myelin thickness and radius will be very important
to our understanding of the conduction speed. The conduc-
tion speed in a myelinated fiber is given approximately by
u ≈ 12 × 106(a + b) ≈ 20 × 106a. The conduction
speeds of myelinated and unmyelinated fibers are compared
in Fig. 6.44.

In the myelinated region the conduction of the nerve
impulse can be modeled by electrotonus because the con-
ductance of the myelin sheath is independent of voltage. At

12 Values quoted in the literature range from u = 1000
√

a (Plonsey and
Barr 2007) to u = 3000

√
a (Rushton 1951).

each node a regenerative Hodgkin–Huxley-type (HH-type)
conductance change restores the shape of the pulse. Such
conduction is called saltatory conduction because saltare is
the Latin verb “to jump.”

We saw that electrotonus is described by

λ2 ∂2v

∂x2
− v − τ

∂v

∂t
= −vr , (6.73)

where the time constant is

τ = κε0ρm (6.74)

and the space constant is

λ =
√

ab ρm

2ρi

. (6.75a)

The results of Problem 68 can be used to show that when the
myelin thickness is appreciable compared to the inner axon
radius, the space constant should be modified:

λthick =
√

ln(1 + b/a) ρm

2ρi

a. (6.75b)

For a case in which a = 5 μm and b = 3.3 μm, the change
is not very large. The thin membrane equation contains the
quantity ab = 17 × 10−12 m2 and the thick myelin equation
contains a2 ln(1 + b/a) = 12.8 × 10−12 m2.

We now want to understand the different dependence on
radius of the conduction speed in the two kinds of fibers. We
could do computer modeling for the unmyelinated fiber us-
ing Eq. 6.72 with axons of different radii, but this would not
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Fig. 6.40 A plot of the computation presented in Fig. 6.38 for a pulse
in a space-clamped squid axon at T = 6.3 ◦C. The axon was stimulated
at t = 0.5 ms for 0.1 ms

provide an equation for u(a). Rather than review the work
that has been done (developing equations for the behavior of
the foot of the action potential, for example), we will use a
simple dimensional argument. This will not give an exact ex-
pression for u(a), but it will indicate the functional form it
must have.

In either the myelinated or the unmyelinated fiber the
signal travels to neighboring regions by electrotonus, where
it initiates HH-type membrane conductance changes. In the
myelinated case the signal jumps from node to node; in the
unmyelinated case the influence is on adjacent parts of the
axon. When the neighboring region begins to depolarize, the
HH change is much more rapid than that due to electrotonus.
(Another way to say this is that during depolarization ρm and
therefore τ become much smaller.) Therefore the conduction
speed is limited by electrotonus. Regardless of the details of
the calculation, the speed is proportional to the characteristic
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Fig. 6.41 A pulse in a space-clamped axon at 18.5 ◦C. The pulse lasts
about 1 ms

length in the problem divided by the characteristic time. For
the unmyelinated case it is plausible to assume that the only
characteristic length and time are λ and τ , so the speed is

uunmyelinated ∝ λ

τ
=
√

b

2ρiρm

1

κε0

√
a. (6.76)

Since the membrane thickness for an unmyelinated fiber is
always about 6 nm, this gives

uunmyelinated ∝ 270
√

a (6.77)

as shown in Table 6.2.
For myelinated nerves the myelin thickness is b ≈ 0.67a.

This means that the space constant is proportional to a:

λ =
√

ab ρm

2ρi

=
√

0.67a2ρm

2ρi

= a

√
0.67ρm

2ρi

= 1750a.

(6.78)
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Table 6.2 Properties of unmyelinated and myelinated axons of the same radius

Quantity Unmyelinated Myelinated
Axon inner radius a 5 μm 5 μm
Membrane thickness b′ 6 nm
Myelin thickness b 3.4 μm
κε0 6.20 × 10−11 s−1 Ω−1 m−1 6.20 × 10−11 s−1 Ω−1 m−1

Axoplasm resistivity ρi 1.1 Ω m 1.1 Ω m
Membrane (resting) or myelin resistivity ρm 107 Ω m 107 Ω m
Time constant τ = κε0ρm 6.2 × 10−4 s 6.2 × 10−4 s

Space constant λ
λ =

√
abρm

2ρi= 0.165
√

a

= 370 μm

λ =
√

abρm

2ρi

=
√

0.67a2ρm

2ρi

= a

√
0.67ρm

2ρi= 1750a

= 8.8 mm
Node spacing D D = 340a = 1.7 mm

Conduction speed from model uunmyelinated ∝ λ/τ ≈ 270
√

a

umyelinated ∝
λ/τ ≈ 2.9 × 106a

or
D/τ = 0.55 × 106a

Conduction speed, empirical uunmyelinated ≈ 1800
√

a umyelinated ≈ 17 × 106a

Ratio of empirical to model conduction speed 6.7 5.9 or 31

Space constant using thick membrane model

λ = a

√
ln(1 + b/a)ρm

2ρi

= a

√
ln(1.67)ρm

2ρi= 1530a

= 7.6 mm

The spacing between the nodes, D, is about 340a. There are
two characteristic lengths for the myelinated case, both pro-
portional to a because of the way the myelin is arranged. If
we assume that the speed is proportional to D/τ , we obtain

umyelinated ∝ 0.55 × 106a. (6.79)

If we assume that the speed is proportional to λ/τ , we obtain

umyelinated ∝ 2.9 × 106a. (6.80)

Table 6.2 compares the space constants, time constants and
conduction speeds for myelinated and unmyelinated fibers.
The empirical expressions for the conduction speed are 7 or 8
times greater than what we estimate based on λ/τ . We might
expect firing at the next node to occur when the signal has
risen to about 10 % of its maximum value. This would reduce
the time by about a factor of 10.

The internodal spacing is about 20 % of the space con-
stant. Suppose that a constant current is injected at one node,
as in Fig. 6.30. When the voltage has reached its full value at
the next node it is given by

v

v0
= e−D/λ = e−1.4/6.2 = 0.8.

If for some reason this node does not fire, the signal at the
next node will be 0.64 of the original value, and so on. A

local anesthetic such as procaine works by preventing per-
meability changes at the node. It is clear from this discussion
that a nerve must be blocked over a distance of several
nodes (a centimeter or more) in order for an anesthetic to
be effective (Covino 1972).

6.17 Membrane Capacitance

The value of 7 for the dielectric constant, which has been
used throughout this chapter, is considerably higher than
the value 2.2, which is known for lipids. The inconsistency
arises because part of the membrane is very easily polarized
and effectively belongs to the conductor rather than to the
dielectric; if the thickness of the lipid alone is considered
in calculating the capacitance, then a value of 2.2 for κ is
reasonable; if the entire membrane thickness is used, then
the much higher dielectric constant for water and the po-
lar groups within the membrane contributes, and κ = 7 is
a reasonable value.

The easiest experiments to understand are those done with
artificial bimolecular layers of lipid. The architecture of such
a film is shown in Fig. 6.45. Each lipid molecule has a polar
head and a hydrophobic tail. The molecules are arranged in a
double layer with the heads in the aqueous solution. The di-
mensions in Fig. 6.45 are consistent with both measurements
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Fig. 6.42 A propagating pulse plotted against position along the axon
at an instant of time. The middle graph shows the longitudinal current
inside the axon. The bottom curve shows the current charging or dis-
charging the membrane and the two terms comprising the right-hand
side of Eq. 6.72

Fig. 6.43 The idealized structure of a myelinated fiber in longitudinal
section and in cross section. The internodal spacing D is actually about
100 times the outer diameter of the axon

of the film thickness and with the known structure of the lipid
molecules. Linear aliphatic hydrocarbons have a bulk dielec-
tric constant of about 2. The polar heads have a much higher
dielectric constant, probably about 50. Water has a dielectric
constant of about 80.
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Fig. 6.44 The conduction speed versus the inner axon radius a for
myelinated and unmyelinated fibers. Unmyelinated fibers with a >

0.6 μm are not found in the body

Fig. 6.45 Structure of a bimolecular lipid membrane

The capacitance per unit area of bimolecular lipid films is
about 0.3 × 10−2 F m−2 (0.3μF cm−2). The simplest way to
explain this value is to assume that the polar heads are part
of the surrounding conductor. The capacitance per unit area
is then

C

S
= κε0

b1
= (2.2)(8.85 × 10−12)

5 × 10−9
= 0.4 × 10−2 F m−2.
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Fig. 6.46 A membrane composed of two phases. The ith phase has
thickness bi and dielectric constant κi . The total thickness is b and the
effective dielectric constant is κ . The charges shown are external charge;
polarization of the dielectric is not shown but determines the value of κ

A more sophisticated approach is to regard the membrane
as made up of three layers: polar, lipid, polar. The same ef-
fect can be obtained by considering two layers with all the
polar component lumped together, as in Fig. 6.46. Suppose
that we put charge +Q on one surface and −Q on the other
surface of the membrane. We put no charge on the interface
between layers 1 and 2. The charge of zero on the interface
can be thought of as a superposition of positive and negative
charges as shown in Fig. 6.46. We are referring only to ex-
ternal charge which we place on the membrane; the charges
induced by polarization of the dielectric are not shown. They
are taken into account by the value of κ . The situation is that
of two parallel-plate capacitors in series. Each layer has a
capacitance Ci : Q = Civi = κiε0Svi/bi . The total poten-
tial across the membrane is v = v1 + v2 = Q/C. The total
capacitance is

C = Q

v1 + v2
= Q

Qb1/κ1ε0S + Qb2/κ2ε0S

= 1

b1/κ1ε0S + b2/κ2ε0S
. (6.81)

The effective dielectric constant is obtained by equating the
total capacitance to κε0S/b:

κ = b

b1/κ1 + b2/κ2
. (6.82)

Application of these equations to the bimolecular lipid mem-
brane (with κ1 = 2.2, κ2 = 50, b1 = 5 nm, b2 = 2 nm)
gives

κ = 3.0,
C

S
= 0.38 × 10−2 F m−2.

(6.83)

The capacitance per unit area is nearly that obtained by
assuming the polar groups are perfect conductors.
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Fig. 6.47 The results of x-ray diffraction measurements of the struc-
ture of myelin surrounding frog sciatic nerve. Data are adapted from
Worthington (1971, p. 35).

The myelin surrounding a nerve fiber consists of sev-
eral layers wrapped tightly together. Each repeating layer is
made up of two single layers back to back. The best data on
the structure of these layers are from x-ray diffraction ex-
periments. The layers repeat every 17 nm. One model for
the structure within a repeat distance is shown in Fig. 6.47
(Worthington 1971, p. 35). A single layer of the myelin has
a thickness of 8.55 nm. A surprising feature of this model is
that the lipid layer is less than half the thickness of that in a
bilayer lipid membrane. However, the measured capacitance
of a nerve-cell membrane or myelin is greater than for the bi-
layer lipid membrane; if one is to keep the lipid value for κ ,
the membrane must be thinner. It is gratifying that the mem-
brane thickness as measured by x-ray diffraction is consistent
with the observed membrane capacitance.

To check the consistency, note that Eqs. 6.81 and 6.82 are
easily extended to more than two phases. Use the following
data:

κi bi (nm)
Water 80 2.2
Lipid 2.2 4.2
Polar 50 10.8

With these values, the effective dielectric constant is

κ = 17.2

4.2/2.2 + 2.2/80 + 10.8/50
= 7.95.
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If we assume that the membrane on an unmyelinated axon
has the same structure as a half-unit of the myelin, then
the thickness is 8.55 nm. With a dielectric constant of 7.95,
the capacitance per unit area is calculated to be 0.82 ×
10−2 F m−2. The measured value is 1.0 × 10−2 F m−2.

When one begins to look at the detailed structure of the
membrane as we have done in this section, there is no jus-
tification for using the same membrane thickness b for the
capacitance and the conductance of the membrane. The ca-
pacitance is determined primarily by the thickness of the
lipid portion of the membrane; the conductance includes the
effect of ions passing through the polar layers. The product,
κρ, of the previous section is meaningful only for a mem-
brane that is homogeneous and has the same thickness for
both capacitive and conductive effects.

As long as the membrane structure is not being consid-
ered, it is safer to express such things as attenuation along
the axon in terms of the directly measured parameters: length
and time constants. Nonetheless, a preliminary formulation
in terms of a homogeneous membrane model can be useful
to start thinking about the problem.

6.18 Rhythmic Electrical Activity

Many cells exhibit rhythmic electrical activity. Various nerve
transducers produce impulses with a rate of firing that de-
pends on the input to which the transducer is sensitive. The
beating of the heart is controlled by the sinoatrial node (SA
node) that produces periodic pulses that travel throughout the
heart muscle.

The mechanism for such repetitive activity is similar to
what we have seen in the Hodgkin–Huxley model, though
the details of the ionic conductance variations differ. The
computer program of Fig. 6.38 can easily be modified to
model rhythmic activity. Figure 6.48 shows a plot of the out-
put of a modified program. The only modification was to
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Fig. 6.48 By changing the leakage current, it is possible to make the
Hodgkin–Huxley model display periodic electrical activity

make jStim be a constant leakage current of 0.2 A m−2

(0.2 × 10−4 A cm−2). This provides the essential feature: a
small inward current between beats that causes the potential
inside the cell to increase slowly. When the voltage exceeds
a certain threshold, the membrane channels open and the cell
produces another impulse.

While this simple change produces repetitive firing, and
in fact the shape of the curve in Fig. 6.48 is very simi-
lar to that measured in the SA node, the details of ionic
conduction are actually very different. The SA node con-
tains no sodium channels. The rapid depolarization is due
to an inward calcium current. There are a number of con-
tributions to the current in the SA node, and detailed ionic
models of them have been described (Demir et al. 1994; No-
ble 1989, 1995; Wilders et al. 1991).The slow leakage is a
complicated combination of currents, the details of which are
still not completely understood (Anumonwo and Jalife 1995;
DiFrancesco et al. 1995).

6.19 The Relationship Between Capacitance,
Resistance, and Diffusion

There is a fundamental relationship between the capacitance
and resistance between two conductors in a homogeneous
conducting dielectric. It is also possible to develop an anal-
ogy between capacitance and steady-state diffusion, so that
known expressions for the capacitance of conductors in
different geometries can be used to solve diffusion problems.

6.19.1 Capacitance and Resistance

Consider two conductors carrying equal and opposite charge
and embedded in an insulating medium with dielectric con-
stant κ . The potential difference between the conductors is
�v, and the magnitude of the charge on each is Q = C�v.
The electric field is E(x, y, z). In a vacuum Gauss’s law
applied to a surface surrounding the positively charged con-
ductor gives

�
E · dS = Q/ε0. Polarization in a dielectric

surrounding the conductor reduces the electric field by a fac-
tor of κ . If E refers to the electric field in the dielectric and
Q to the charge on the conductor, Gauss’s law becomes

�
E · dS = Q/κε0. (6.84)

For a given charge on the conductor, the presence of the di-
electric reduces E and �v by 1/κ and, therefore, increases
the capacitance by κ .

Suppose that the dielectric is not a perfect insulator but
obeys Ohm’s law and has conductivity σ (j = σE). If
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some process maintains the magnitude of the charge on each
conductor at Q, the current leaving the positive conductor is

i =
�

j · dS = σ
�

E · dS = σQ/κε0. (6.85)

The resistance between the conductors is

R = �v

i
= Q/C

σQ/κε0
= κε0

σC
. (6.86)

This inverse relationship between the resistance and capac-
itance is independent of the geometry of the conductors, as
long as the dielectric constant and conductivity are uniform
throughout the medium.

If the charge on the conductors is not replenished, it leaks
off with a time constant τ = RC = κε0/σ . We have seen this
result earlier in several special cases; we now understand that
it is quite general.

6.19.2 Capacitance and Diffusion

In Chap. 4, we saw that the transport equations for particles,
heat, and electric charge all have the same form. We now
develop an analogy between these transport equations and
the equations for the electric field. The analogy is useful be-
cause it relates the diffusion of particles between different
regions to the electrical capacitance between conductors with
the same geometry; the electrical capacitance in many cases
is worked out and available in tables.

Fick’s first law of diffusion was developed in Chap. 4,
Eq. 4.20:13

js = −D∇c. (6.87)

The relationship between fluence rate (particle current den-
sity) and particle flux (current) is

�
js · dS = is , (6.88)

where is is the current of particles out of the volume enclosed
by the surface. This equation is very similar to Gauss’s law,

�
surface

E · dS = q

κε0
, (6.89)

where q is the electric charge. The electric potential and the
electric field are related by the three-dimensional version of
Eq. 6.16:

E = −∇v. (6.90)

13 In this section, we will use c for concentration of solute particles and
C for the electrical capacitance.

The similarity between Eqs. 6.90 and 4.20 and between 6.5
and 6.89 suggests that we make the substitutions

is ←→ q

κε0
,

c ←→ v

D
,

js ←→ E.

(6.91)

For any electrostatic configuration in which there are two
equipotential surfaces containing charge +q and −q, there
is an analogous diffusion problem in which there is a flow of
particles from one surface to another, each surface having a
constant concentration on it. In the electrical case, the charge
and potential are related by the capacitance, which is a geo-
metric property of the two equipotential surfaces: q = C�v.

An analogous statement can be made for diffusion between
two surfaces of fixed concentration:

is = −C �v

κε0
= − C

κε0
D �c. (6.92)

We can find the rate of flow of particles if we know the
diffusion constant, the concentration difference, and the ca-
pacitance for the electrical problem with the same geometry.
To see the utility of this method, we will consider some cases
of increasing geometrical complexity.

As a first example, suppose that two concentric spheres
have radii a and b. You can show (from the work in Prob-
lem 16, for example) that the capacitance of this configura-
tion is

C

κε0
= 4π

1/a − 1/b
. (6.93)

As b → ∞, this becomes

C

κε0
= 4πa. (6.94)

This can be applied to diffusion to or from a spherical cell
of radius a. If the diffusion is outward, as of waste products,
imagine that the outward flow rate is is and that the concen-
tration difference between the cell surface and infinity is c0.
Then

is = −4πa D c0. (6.95)

If, on the other hand, the concentration infinitely far away
is greater than that at the cell surface by an amount c0, the
number of particles in the cell will increase at a rate

is = +4πa D c0. (6.96)

These results were obtained directly in Chap. 4.
As another example, consider a circular disk of radius a

with the other electrode infinitely far away. It is more difficult
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to calculate the capacitance in this case, but we can look it
up (Smythe et al. 1957). It is C/κε0 = 8a. But this is the
capacitance for the charge on both sides of the disk; the lines
of E and j go off in both directions. We want only half of this,
since we will use the result to calculate the end correction for
a pore. (If we were concerned with diffusion to a disk-shaped
cell, we would use the whole thing.) For the half-space

is half = −4Da �c (6.97)

is proportional to the radius of the disk, not its area.
Still another geometrical situation that may be of interest

is the diffusion of particles from one sphere of radius a to
another sphere of radius a, when the centers of the spheres
are separated by a distance b.

The capacitance between two such spherical electrodes is
(Smythe et al. 1957, pp. 5–14)

C

κε0
= 2πa sinh β

(
1

sinh β
+ 1

sinh 2β
+ 1

sinh 3β
+ · · ·

)
,

where cosh β = b/2a. This formula is written in terms of the
hyperbolic functions

sinh β = 1
2

(
eβ − e−β

)
,

cosh β = 1
2

(
eβ + e−β

)
.

(6.98)

When the spheres are far apart b/2a → ∞, and cosh β ≈
1
2eβ, sinh β ≈ 1

2eβ . In that limit,

C

κε0
= 2πa

(
1
2eβ
)(

1
1
2 eβ

+ 1
1
2 e2β

+ 1
1
2 e3β

+ · · ·
)

= 2πaeβ
(
e−β + e−2β + e−3β + · · ·

)

= 2πa
[
1 + (a/b) + (a/b)2 + · · ·

]
. (6.99)

The diffusive flow between two spheres is therefore

is = −2πa D �c (6.100)

if they are sufficiently far apart. Note that this is just one-half
of the flow from a sphere of radius a to a concentric sphere
infinitely far away. The earlier results in this section show
that the electrical resistance between two spherical electrodes
sufficiently far apart is 1/2πσa.

Symbols Used in Chap. 6
Symbol Use Units First

used
page

a Distance m 145
a Axon inner radius m 157
a Radius of spherical ion or cell m 173
a Radius of disk m 173
b, c Distance m 145
b Membrane thickness m 142
b Myelin thickness m 167
b′ Membrane thickness at node of

Ranvier
m 168

b Sphere radius m 173
c Concentration m−3 142
ci , co Ion concentrations m−3;

mol l−1
155

cm Membrane capacitance per unit
area

F m−2 157

e Electronic charge C 155
gNa, gK, gm, Membrane S m−2 157
gL conductance per unit area
gNa∞, gK∞ Asymptotic membrane

conductance per unit area
S m−2 163

h, h∞ Parameters used to describe
sodium conductance

164

i Electric current A 151
ii Currents along inside of axon A 158
im Current through a section of

membrane
A 156

is Solute current or flux s−1 173
j, j Current per unit area A m−2 151
jm Membrane current per unit area A m−2 157
jNa, jK, jL Membrane current per unit area

for that species
A m−2 161

kB Boltzmann’s constant J K−1 155
m,m∞ Parameters used to describe

sodium conductance
164

n, n∞ Parameters used to describe
potassium conductance

163

p, p Dipole moment C m 175
q Electric charge C 143
qbound , qf ree Bound and free charge C 150
r, r Distance m 143
ri Resistance per unit length along

inside of axon
Ω m−1 157

t Time s 142
u Propagation velocity of a wave or

signal
m s−1 167

v Potential difference V 142
v vi − vo V 158
vK, vNa Equilibrium (Nernst) potential for

potassium, sodium
V 162

vr Resting membrane potential V 159
x, y, z Distance m 146
z Valence of ion 155
C Capacitance F 149
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Cm Membrane capacitance F 156
D Length of myelinated segment m 167
D Diffusion constant m2 s−1 173
E, Ex,Ey,Ez Electric field and components V m−1 144
Ep Electric field due to polarization

charge
V m−1 149

Ee,Eext External electric field V m−1 149
Etot Total electric field V m−1 149
F Force N 143
Fext External force N 147
G Conductance Ω−1 or

S
151

Gm Conductance of a section of axon
membrane

Ω−1 or
S

157

L Length of cylinder or axon
segment

m 145

[Nai ], [Nao] Sodium concentrations inside and
outside an axon

m−3 161

P Power W 153
Q Electric charge C 149
Q10 Factor by which the rate of a

chemical reaction increases with a
temperature rise of 10 K

164

R Resistance Ω 151
Ri Internal resistance along a

segment of axon
Ω 157

Rm Resistance across a segment of
membrane

Ω 156

S,�S, dS Surface area m2 144
T Temperature K 155
U Potential energy J 147
W Work J 151
αm, βm, αn, Rate parameters s−1 163
βn, αh, βh for Hodgkin–Huxley model
β Dimensionless variable 174
ε0 Electrical permittivity of free

space
N−1 m−2

C2
143

κ Dielectric constant 150
λ Charge per unit length C m−1 145
λ Electrotonus spatial decay

constant
m 159

ρ Resistivity Ω m 152
ρi Resistivity of axoplasm Ω m 157
ρm Resistivity of membrane Ω m 156
θ Angle 146
σ Charge per unit area C m−2 145
σ Conductivity S m−1 152
χ Electrical susceptibility 149
τ Time constant s 156
τ Electrotonus time constant s 160
τh, τm, τn Time constants in

Hodgkin-Huxley model
s 164

Problems

Section 6.1

Problem 1. Suppose that an action potential in a 1-μm diam-
eter unmyelinated fiber has a speed of 1.3 m s−1. Estimate
how long it takes a signal to propagate from the brain to a

finger. Repeat the calculation for a 10-μm diameter myeli-
nated axon that has a conduction speed of 85 m s−1. Spec-
ulate on the significance of these results for playing the
piano.
Problem 2. The median nerve in your arm has a diameter of
about 3 mm . If the nerve consists only of 1 μm-diameter un-
myelinated axons, how many axons are in the nerve? (Ignore
the volume occupied by extracellular space.) Repeat the cal-
culation for 20 μm outer diameter myelinated axons. Repeat
the calculation for 0.5 mm diameter unmyelinated axons
(about the size of a squid axon). Speculate on why higher an-
imals have myelinated axons instead of larger unmyelinated
axons.

Section 6.2

Problem 3. Two equal and opposite charges ±q separated
by a distance a form a dipole. The dipole moment p is a
vector pointing in the direction from the negative charge
to the positive charge of magnitude p = qa. In electro-
chemistry the dipole moment is often expressed in debyes:
1 debye (D) = 10−18 electrostatic units (statcoulomb cm) (1
statcoulomb = 3.3356 × 10−10 C).
(a) Find the relationship between the debye and the SI unit

for the dipole moment.
(b) Express the dipole moment of charges ±1.6 × 10−19

C separated by 2 × 10−10 m in debyes and in the
appropriate SI unit.

Problem 4. The electric field of a dipole can be calculated
by assuming the positive charge q is at z = a/2 and the neg-
ative charge −q is at z = −a/2 (x = y = 0). The electric
field along the z axis is found by vector addition of the elec-
tric field from the individual charges using Eq. 6.3. Find an
expression for the electric field. (Hint: 1/(1+x)2 is approxi-
mately equal to 1−2x for small x.) By what power of z does
the electric field fall off?

Section 6.3

Problem 5. Use the principle of superposition to calculate
the electric field in regions A, B, C, D, and E in the figure.
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Problem 6. An infinite sheet of charge has a thickness 2a as
shown. The charge density is ρ C m−3. Find the electric field
for all values of x.

-a a x0

 ρ

Problem 7. Derive Eq. 6.10 from Eq. 6.9. At some point in
your derivation you may need to use the substitution u =
y/
√

c2 + y2 + z2 and the integrals

∫
dx

(x2 + a2)3/2
= x

a2
√

x2 + a2

∫
dx

x2 + a2
= 1

a
tan−1

(x

a

)
.

Problem 8. Show that Eq. 6.10 reduces to Eq. 6.8 when z 	
b, c. Show that Eq. 6.10 is consistent with Coulomb’s law
when z � b, c.

Section 6.4

Problem 9. Show that N C−1 is equivalent to V m−1.
Problem 10. Use Coulomb’s law and v = −∫ x

∞Exdx to
determine the potential along the x axis due to a point charge.
Assume that v(x = ∞) = 0. Because there is no preferred
direction in space, the potential in any radial direction from
the charge has the same form.
Problem 11. Try to apply the equation v(r) = − ∫ r

∞ Erdr

to the equation for the electric field of a line of charge, Eq.
6.7. Why does it not work?

Section 6.5

Problem 12. A person stands near a high-voltage power line.
Assume for this problem that its voltage is not changing with
time. Since much of a person’s body is an ionic solution,
treat the body as a conductor and the surrounding air as an
insulator. In a static situation, what is the electric field inside
the person’s body caused by the power line? (Hint: Think
before you calculate.)

Section 6.6

Problem 13. Two plane parallel conducting plates each have
area S and are separated by a distance b. One carries a charge
+Q; the other carries a charge −Q. Neglect edge effects.
(a) What is the charge per unit area on each plate? Where

does it reside?
(b) What is the electric field between the plates?
(c) What is the capacitance?
(d) As the plate separation is increased what happens to E,

v, and C?
(e) If a dielectric is inserted between the plates, what hap-

pens to E, v, and C? (See Sect. 6.7.)
Problem 14. It was shown in the text that the electric field
from an infinitely long line of charge, of charge density
λ C m−1, is E = λ/2πε0r at a distance r from the line.
(a) Show that if positive charge is distributed with density

σ C m−2 on the surface of a cylinder of radius a, the
electric field is

0, r < a

σa/ε0r, r > a.

(b) Find the potential difference between a point a distance
a from the center of the cylinder and a point a distance
d from the center of the cylinder (d > a).

(c) Is a or d at the higher potential?
(d) Suppose that another hollow cylinder of radius d > a

is placed concentric with the first. It has a charge −σ ′
per unit area. How will its presence affect the potential
difference calculated in part (b)?

(e) Calculate the capacitance between the two cylinders and
show that it is 2πε0L/ ln(d/a), where L is the length of
the cylinder.

Problem 15. Problem 14 showed that the capacitance of a
pair of concentric cylinders, of radius a and d (d > a) is
2πε0L/ ln(d/a). Suppose now that d = a + b, where b

is the thickness of the region separating the two cylinders.
(It might, for example, be the thickness of the axon mem-
brane.) Use the fact that ln(1 + x) = x − x2/2 + x3/3 + · · ·
to show that, for small b (that is, b 	 a), the formula for
the capacitance becomes the same as that for a parallel-plate
capacitor.
Problem 16. Find the capacitance of two concentric spheri-
cal conducting shells. The inner sphere has radius a and the
outer sphere has radius b.

Section 6.7

Problem 17. A parallel-plate capacitor has area S and plate
separation b. The region between the plates is filled with
dielectric of dielectric constant κ . The potential difference
between the plates is v.
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(a) What is the total electric field in the dielectric?
(b) What is the magnitude of the charge per unit area on the

inner surface of the capacitor plates?
(c) What is the magnitude of the polarization charge on the

surface of the dielectric?
Problem 18. For the unmyelinated axon of Table 6.1 and
Fig. 6.3,
(a) How many sodium, potassium, and miscellaneous an-

ions are there in a 1-mm segment?
(b) How many water molecules are there in a 1-mm seg-

ment?
(c) What is the charge per unit area on the inside of the

membrane?
(d) What fraction of all the atoms and ions inside the seg-

ment are charged and not neutralized by neighboring
ions of the opposite charge?

Problem 19. A nerve-cell membrane has a layer of posi-
tive charge on the outside and negative charge on the inside.
These charged layers attract each other. The potential differ-
ence between them is v = 70 mV. Assuming a dielectric
constant κ = 5.7 for the membrane, an axon radius of 5 μm,
and a membrane thickness b = 5 nm, what is the force per
unit area that the charges on one side of the membrane ex-
ert on the other? Express the answer in terms of b, v, and κ .
(Hint: The force is calculated by multiplying the charge in a
given layer by the electric field due to the charge in the other
layer. Think carefully about factors of 2.)
Problem 20. The drawing represents two infinite plane
sheets of charge with an infinite slab of dielectric filling
part of the space between them. The dashed lines represent
cross sections of two Gaussian surfaces. The sides are paral-
lel to the electric field, and the ends are perpendicular to the
electric field. Apply the second form of Gauss’s law,
Eq. 6.21b, to find the electric field within the dielectric using
the upper Gaussian surface. Repeat using the lower Gaussian
surface.

σ −σκ+ −
+ −
+ −
+ −
+ −
+ −
+ −
+ −
+ −
+ −
+ −
+ −
+ −
+ −
+ −
+ −

Section 6.8

Problem 21. This problem will give you some insight
into the resistance of electrodes used in neurophysiology.
Consider two concentric spherical electrodes. The region

between them is filled with material of conductivity σ . The
inner radius is a, the outer radius is b.
(a) Imagine that there is a total charge Q on the inner

sphere. Find the electric field between the spheres in
terms of the potential difference between them and their
radii.

(b) The current density in the conducting material is given
by j = σE. Find the total current.

(c) Find the effective resistance, R = v/i. What is the re-
sistance as b → ∞? This is the resistance of a small
spherical electrode in an infinite medium; infinite means
the other electrode is “far away.”

Problem 22. Patients undergoing electrosurgery sometimes
suffer burns around the perimeter of the electrode. Wiley and
Webster (1982) analyzed the potential produced by a circular
disk electrode of radius a and potential v0 in contact with a
medium of conductivity σ . They found that the normal com-
ponent of current density at the surface of the electrode is
given by

jn = 2σv0

π

1

(a2 − r2)1/2
, 0 < r < a.

(a) Calculate the total current I coming out of the electrode.
(b) Determine the resistance of the electrode.
(c) Plot jn vs. r. Use the plot to explain why the patients

suffer burns near the edge of the electrode.
Problem 23. The Coulter counter or resistive pulse tech-
nique is used to count and size particles in a wide variety
of applications (Kubitschek 1969; DeBlois and Bean 1970),
including the automated counting of blood cells. The cells
being counted are assumed to be nonconducting and im-
mersed in a conducting fluid. The fluid is made to flow
through a narrow channel. When a suspended particle enters
the channel there is a change in resistance. Assume a long
channel of radius b with no end effects.
(a) What is the resistance of pure fluid of resistivity ρ =

1/σ in a segment of channel of length 2a?
(b) A cylindrical non-conducting cell of radius a and length

2a is in the channel. Its axis and the axis of the channel
coincide. What is the resistance of a segment of channel
of length 2a? Ignore end effects.

(c) Show that the resistance change (the difference between
these two reults) is proportional to the volume of the cell,
V = 2πa3, and inversely proportional to b4.

Section 6.9

Problem 24. Derive the equation for the resistance of a set
of resistors connected (a) in series and (b) in parallel.
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Section 6.10

Problem 25. The resting concentration of calcium ions,
[Ca++], is about 1 mmol l−1 in the extracellular space but
is very low (10−4 mmol l−1) inside muscle cells. Determine
the Nernst potential for calcium. Is calcium in equilibrium at
a resting potential of −70 mV?
Problem 26. In our analysis of the electric field in the cell
membrane, we assume the charge on the membrane can be
represented as a continuous distribution of surface charge.
For a 6-nm thick membrane this will be a good approxima-
tion if the number of discrete charges in a 6-nm square patch
of membrane is large.
(a) Estimate how many discrete charged ions are present

on a 6-nm square patch of membrane in a resting cell.
Does the charge distribution appear to be continuous or
discrete?

(b) Assume the ion has a diffusion constant in water of
10−9 m2 s−1 and calculate the time required for the ion
to diffuse 6 nm. If averaged over 1 ms, a time charac-
teristic of neural activity, does the charge distribution
appear continuous or discrete?

Section 6.11

Problem 27. The resistivity of the fluid within an axon is
0.5 Ω m. Calculate the resistance along an axon 5 mm long
with a radius of 5 μm. Repeat for a radius of 500 μm.
Problem 28. The voltage along an axon is as shown at some
instant of time. The axon radius is 10 μm; the resistivity of
the axoplasm is 0.5 Ω m. What is the longitudinal current in
the axon as a function of position?

Problem 29. This problem is designed to show you how
a capacitance, such as the cell membrane, charges and dis-
charges. To begin, the switch has been in position B for a
long time, so that there is no charge on the capacitor. At t = 0
the switch is put in position A. It is kept there for 20 s, then
thrown back to position B.
(a) Write a differential equation for the voltage on the ca-

pacitor as a function of time when the switch is in
position A and solve it.

(b) Repeat when the switch is in position B.
(c) Plot your results.

Problem 30. Sometimes an organ is lined with a single layer
of flat cells. (One example is the lining of the jejunum, the
upper portion of the small intestine.) Experimenters can then
apply a time-varying voltage across the sheet of cells and
measure the resulting current. The cells are packed so tightly
together that one model for them is two layers of insulat-
ing membrane of dielectric constant κ and thickness b that
behave like a capacitor, separated by intracellular fluid of
thickness a and resistivity ρ. Find a differential equation
or integral equation that relates the total voltage difference
across the layer of cells v(t) to the current per unit area
through the layer, j (t), in terms of κ , ρ, b, a.
Problem 31. The current that appears to go “into” a section
of membrane is made up of two parts: that which charges the
membrane capacitance and that which is a leakage current
through the membrane: i = v/R + C(dv/dt). Suppose that
the total current is sinusoidal: i = I0 cos ωt .
(a) Show that the voltage must be of the form v =

I0R
′ cos ωt + I0X sin ωt and that the differential equa-

tion is satisfied only if

R′ = R

1 + ω2(RC)2
,

X = R
ω(RC)

1 + ω2(RC)2
.

(b) What happens to R′ and X as ω → 0? ω → ∞?
For what value of ω is X a maximum? What is the
corresponding value of R′? Plot these points.

(c) Your plot in part b should suggest that the locus of X vs
R′ is a semicircle, centered at X = 0, R′ = R/2. Prove
that this is so. [Remember that the equation of a circle is
(x − a)2 + (y − b)2 = r2.]

Section 6.12

Problem 32. Consider the myelinated and unmyelinated ax-
ons of Tables 6.1 and 6.2. Compare the decay distance for
electrotonus in both cases. Neglect attenuation due to the
leakage at the node of Ranvier.
Problem 33. Show by direct substitution that v(x) =
v0e

−x/λ + vr satisfies the equation

d2v

dx2
= 2πa gmri(v − vr )

if vr is constant.
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Problem 34. In an electrotonus experiment a microelectrode
is inserted in an axon at x = 0, and a constant current i0 is
injected. After the membrane capacitance has charged, the
voltage outside is zero everywhere and the voltage inside is
given by Eq. 6.58:

v − vr =
{
v0e

−x/λ, x > 0
v0e

x/λ, x < 0.

(a) Find ii(x) in terms of v0, λ, and ri .
(b) Find jm(x) in terms of gm, v0, and λ.
(c) Find the current i0 injected at x = 0 in terms of v0, λ,

and ri .
(d) Find the input resistance v0/i0.
Problem 35. The cable equation is λ2(∂2v/∂x2) − v −
τ(∂v/∂t) = 0. Let v(x, t) = w(x, t) exp(−t/τ ). Substitute
this expression into the cable equation and determine a new
differential equation for w(x, t). You should find that w(x, t)

obeys the diffusion equation (Chap. 4). Find the diffusion
constant in terms of the axon parameters and evaluate it for a
typical case.
Problem 36. The voltage along an axon when a constant
current is injected at x = 0 for all times t > 0 is given by
Hodgkin and Rushton (1946)

v(x, t) − vr =
v0
2

{
e−|x|/λ

[
1 − erf

( |x|
2λ

√
τ
t

−
√

t
τ

)]

−e|x|/λ
[
1 − erf

( |x|
2λ

√
τ
t

+
√

t
τ

)]}

where the error function erf(y) and its derivatives are

erf(y) = 2√
π

∫ y

0
e−z2

dz

d

dy
erf(y) = 2√

π
e−y2

.

(a) Show that the expression for v(x, t) obeys the cable
equation, Eq. 6.55.

(b) Use erf(0) = 0, erf(−∞) = −1, and erf(∞) = 1
to show that as t → ∞, the expression for v(x, t)

approaches the solution in Eq. 6.58 and Fig. 6.30.
(c) Find a simple expression for v(x, t) when x = 0. Use

erf(1) = 0.843 and erf(0.5) = 0.520 to check that this
expression is consistent with the plots in Fig. 6.31.

Problem 37. Consider a space-clamped axon with a mem-
brane time constant τ . Initially (t ≤ 0), v′ = 0. From
t = 0 until a time t = d a stimulus is applied to the mem-
brane. Assume that when v′ < V ′ the membrane behaves
passively (V ′ is called the threshold potential), and when
v′ > V ′, an action potential will fire. v′ obeys the equation
dv′/dt = −v′/τ + s.

(a) Find v′ for 0 < t < d and for t > d. Note that v′ is
maximum for t = d.

(b) Find an expression for v(t = d), and then solve it for s.
(c) Plot s as a function of the pulse duration d. This plot is

called the strength–duration curve.
(d) Find the value of s that corresponds to threshold stimu-

lation for very long durations, in terms of V ′ and τ . This
value of s is called the rheobase stimulus.

(e) Find the value of d corresponding to threshold stimu-
lation using a stimulus strength of twice rheobase. This
duration is called chronaxie.

(f) Find an expression for τ in terms of chronaxie. Measur-
ing the strength–duration curve is one way to determine
the membrane time constant.

Problem 38. An alternative model to the cable equation is an
attenuating network of resistors and capacitors. This problem
is designed to show you how a “ladder” of resistances can
attenuate a signal.
(a) Show that the resistance between points B and G in the

circuit on the left is 10 Ω.
(b) Show that the resistance between points A and G in the

circuit on the right is also 10 Ω. What will be the result
if an infinite number of ladder elements are added to the
left of AG?

(c) Assume that vC (measured with respect to point G) is
6 V. Calculate vB and vA. Note that the ratios are the
same: vB/vA = vC/vB .

Problem 39. This is a more general version of the previous
problem, which can be applied directly to electrotonus when
capacitance is neglected. Consider the ladder shown, which
represents an axon. R0 is the effective resistance between the
inside and outside of the axon to the right of the section under
consideration. The axon has been divided into small slices;
Ri is the resistance along the inside of the axon in the small
slice, and Rm is the resistance across the membrane in the
slice. The resistance outside the axon is neglected. Note that
the resistance looking into the axon to the right of points XX

is also R0.
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(a) Show that R0 is given by a quadratic equation: R2
0 −

RiR0 − RiRm = 0 and that the solution is

R0 = 1

2

[
Ri + (R2

i + 4RiRm)1/2
]
.

(b) Show that the ratio of the voltage across one ladder rung
to the voltage across the immediately preceding rung is

RmR0

RmR0 + RmRi + RiR0
.

(c) Now assume that Ri = ridx and Rm = 1/(2πagmdx).
Calculate R0 and the voltage ratio. Show that the voltage
ratio (as dx → 0) is

1

1 + (2πarigm)1/2dx
.

(d) The preceding expression is of the form 1/(1 + x). For
sufficiently small x, this is approximately 1 − x. There-
fore, show that the voltage change from one rung to the
next is dv = − [(2πa rigm)1/2dx

]
v so that v obeys the

differential equation

dv

dx
= −(2πarigm)1/2v.

Section 6.13

Problem 40. Use the Hodgkin–Huxley parameters to answer
the following questions.
(a) When v = vr , what are αn and βn?
(b) Show that dn/dt = 0 when n = 0.318. What is the

resting value of gK?
(c) At t = 0 the voltage is changed to −25 mV and held

constant. Find the new values of αn, βn, n∞, τn and the
asymptotic value of gK .

(d) Find an analytic solution for n(t). Plot n and n4 for 0 <

t < 10 ms.
Problem 41. Calculate the values of the gates m, n, and h for
the resting membrane (v = −65 mV), using the Hodgkin and
Huxley model. Recall that at rest, m = m∞(v = −65 mV),
etc.
Problem 42. If αn and βn depend on temperature according
to Eq. 6.67, how do n∞ and τn depend on temperature?
Problem 43. Calculate the resting membrane conductance
per unit area for the resting membrane, using the Hodgkin
and Huxley model. Hint: jm = 0 at rest. Let v = vr + dv,
where dv is small. Determine the steady-state jm as a func-
tion of dv. To keep things simple, ignore any changes to m,
n, and h resulting from dv.
Problem 44. In a voltage-clamp experiment, a wire of radius
b is threaded along the interior of an axon of radius a. As-
sume the axoplasm displaced by the wire is pushed out the

end so that the cross-sectional area of the axon containing
the wire remains πa2. The resistivities of wire and axoplasm
are ρw and ρa . Find the wire radius needed so that voltage
changes along the axon are reduced by a factor of 100 from
what they would be without the wire. Ignore the electrode
surface impedance.
Problem 45. A wire of resistivity ρw = 1.6×10−8 Ω m and
radius w = 0.1 mm is threaded along the exact center of an
axon segment of radius a = 1 mm, length L = 1 cm, and re-
sistivity ρi = 0.5 Ω m. The axon membrane has conductance
gm = 10 S m−2. Find numerical values for
(a) the resistance along the wire,
(b) the resistance of the axoplasm from the wire to the

membrane, and
(c) the resistance of the membrane.
Problem 46. If the voltage across an axon membrane is
changed by 25 mV as in Fig. 6.34, how long will it take for all
the potassium to leak out if it continues to move at the con-
stant rate at which it first leaks out? Use the asymptotic value
for the potassium conductance from Fig. 6.34. Use Table 6.1,
and Fig. 6.3 for any other values you need.

Section 6.14

Problem 47. Use the data of Fig. 6.40 to answer the follow-
ing questions about a nerve impulse in a squid axon of radius
a = 0.1 mm.
(a) Estimate the peak sodium ion flux (ions m−2 s−1) and

the total number of sodium ions per unit area that pass
through the membrane in one pulse.

(b) By what fraction does the sodium concentration in the
cell increase during one nerve pulse?

(c) Estimate the peak potassium flux and total potassium
transport.

Problem 48. Show by direct substitution that Eq. 6.64c sat-
isfies the equation dn/dt = αn(1 − n) − βnn if αn and βn

are functions of v, but not of time.
Problem 49. The Hodgkin–Huxley equation for the potas-
sium parameter n is dn/dt = αn(1 − n) − βnn. What is the
asymptotic value of n when t → ∞?
Problem 50. For t < 0 a squid axon has a resting mem-
brane potential of −65 mV. The sodium Nernst potential is
+50 mV. The Hodgkin–Huxley parameters are m = 0.05,
h = 0.60, and gNa = 1200 S m−2.
(a) What is jNa?
(b) For t > 0 a voltage clamp is applied so that v =

−30 mV. Suppose that m = 0.72 − 0.67e−2.2t and h =
0.6e−0.63t (where t is in milliseconds). What is the total
charge transported across unit area of the membrane by
sodium ions?

Problem 51. Consider a 1-mm long segment of a squid
nerve axon, with a diameter of 1 mm.
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(a) Let the intracellular sodium ion concentration be 15
mmol l−1. Calculate the number of sodium ions in this
segment of the axon.

(b) Use the plot of jNa versus time in Fig. 6.41 to estimate
the total number of sodium ions that enter the axon dur-
ing the action potential (if you have to determine the area
under the jNa curve, just estimate it).

(c) Find the ratio of the number of sodium ions entering the
axon in one action potential to the number present in the
resting axon. Does a single action potential change the
intracellular concentration of sodium ions significantly?

(d) What diameter axon is needed in order for the intracellu-
lar sodium ion concentration to change by 10 % during
one action potential?

Problem 52. A stimulating current of 1 A m−2 is applied
for 100 μs. How much does it change the potential across the
membrane?
Problem 53. Using the resting value of jK from Fig. 6.39,
calculate how long it would take for the concentration of
potassium inside an axon of radius 100 μm to decrease by
1 %.
Problem 54. Modify the program in Fig. 6.38 to calculate
the values of m, h, and n as functions of time during an action
potential. Plot m(t), h(t), n(t), and v(t).
Problem 55. Modify the program in Fig. 6.38 so it uses dif-
ferent stimulus strengths other than jstim = 1 A m−2. Find
the minimum value of jstim that results in an action potential.
This value is known as the threshold stimulus strength.
Problem 56. Modify the program in Fig. 6.38 so it applies
two stimulus pulses. The first is of strength j1 = 1 A m−2,
duration 0.5 ms, and starts at t1 = 0. The second is of
strength j2, duration 0.5 ms, and starts at time t2. For a given
t2 value, determine the threshold stimulus strength j2. Plot
the threshold j2 as a function of the interval t2 − t1, for 1
ms < t2 − t1 <10 ms. This plot is called a strength–interval
curve. The increase of threshold j2 for small intervals reflects
the refractoriness of the membrane.
Problem 57. When a squid nerve axon is hyperpolarized
by a stimulus (the transmembrane potential is more negative
than resting potential) for a long time and then released, the
transmembrane potential drifts back towards resting poten-
tial, overshoots vr and becomes more positive than vr , and
eventually reaches threshold and fires an action potential.
This process is called anode-break excitation: anode because
the membrane is hyperpolarized, and break because the exci-
tation does not occur until after the stimulus ends. Modify the
program in Figure 6.38, so that the stimulus lasts 3 ms, and
the stimulus strength is −0.15 A m−2. Show that the program
predicts anode break stimulation. Determine the mechanism
responsible for anode break stimulation. Hint: pay particular
attention of the sodium inactivation gate (the h gate). You
may want to plot h versus time to see how it behaves.

Problem 58. Consider a space-clamped axon for which the
resting potential is vr . Assume that the membrane current
density follows a very strange behavior:

jm =
{

B(v − vr )
2, v > vr

0, v < vr .
.

(a) Write a differential equation for v(t).
(b) What are the units of B?
(c) What sign would B have for depolarization to take place

after a small positive change of v?
(d) Integrate the equation obtained in (a).
Problem 59. A comment was made in the text that the potas-
sium current is not required to generate an action potential.
Modify the program of Fig. 6.38 to eliminate the potassium
current. (First make sure that you have an unmodified pro-
gram that reproduces Fig. 6.39 correctly.) Comment on the
shape of the resulting pulse. After the pulse there is a new
value of the resting potential. Why? Is it significant?

Section 6.15

Problem 60. A pulse which propagates along the axon with
speed u is of the form v(x, t) = f (x − ut).
(a) Use the chain rule to show that this means

∂v

∂t
= −u

∂v

∂x
,

∂2v

∂t2
= u2 ∂2v

∂x2
.

(b) Find an expression for the membrane current per unit
area in terms of cm, ρi , ρm, a, and the various partial
derivatives of f with respect to x.

Problem 61. Consider an action potential propagating along
an axon. The “foot” of the action potential is that part of the
initial rise of the transmembrane potential that occurs before
the sodium channels open. Starting from Eq. 6.72, set the jm

equal to zero and assume that the action potential propagates
with a uniform speed u. As in Problem 60, replace the spatial
derivatives with temporal derivatives and show that the trans-
membrane potential during the foot of the action potential
rises exponentially. Find an expression for the time constant
of this exponential rise in terms of ri , cm, a, and u.
Problem 62. An unmyelinated axon has the following
properties: radius of 0.25 mm, membrane capacitance of
0.01 F m−2, resistance per unit length along the axon of
2 × 106 Ω m−1, and propagation velocity of 20 m s−1. The
propagating pulse passes an observer at x = 0. The peak
of the pulse can be approximated by a parabola, v(t) =
20(1−10t2), where v is in millivolts and t is in milliseconds.
(a) Find the current along the axon at x = 0, t = 0.
(b) Find the membrane current per unit area jm at x = 0,

t = 0.
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Problem 63. A space-clamped axon (v independent of
distance along axon) has a pulse of the form

v(t) − vr =
⎧
⎨

⎩

0, t < −t1
v0
[
1 − (t/t1)

2
]
, −t1 < t < t1

0, t > t1,

as shown in Problem 62. The axon has radius a, length L,
resistivity ρi , and membrane capacitance cm per unit area.
(a) What is the total change in charge on the membrane

from t = −t1 to t = 0?
(b) What is the total change in charge on the membrane

from t = −t1 to t = +t1?
(c) What is jm(t)?
(d) If jm is given by gm(v − vr ), what is gm(t)? Comment

on its behavior.
Problem 64. Modify the program in Fig. 6.38 to include
x-dependence as outlined in the text. Reproduce Fig. 6.42
and determine the propagation speed. Use ri = 19.89 ×
105 Ω m−1 and a = 0.238 mm.

Section 6.16

Problem 65. Saltatory conduction is often described as the
action potential jumping from node to node. In one sense this
is correct: the nodes of Ranvier are active patches connected
by passive myelinated segments. However, one should re-
alize that the upstroke of the action potential is spread out
over many nodes. Use Table 6.2, an action potential upstroke
lasting 0.5 ms, and an outer diameter of 20 μm to estimate
the number of nodes over which the action potential extends.
If many nodes contribute simultaneously to the excitation,
should propagation be considered continuous or discrete?
Problem 66. Consider a myelinated fiber in which the nodes
of Ranvier are spaced every 2 mm. The resistance of the ax-
oplasm per unit length is ri = 1.4 × 1010 Ω m−1. The nodal
capacitance is about 1.5 × 10−12 F.
(a) If the voltage difference between nodes is 10 mV, what

is the current along the axon? Assume that the voltages
are not changing with time, so that the membrane charge
does not change. Also neglect leakage current through
the membrane.

(b) If the nerve impulse rises from −70 mV to +30 mV in
0.5 ms, what is the average current required to charge
the nodal capacitance?

Problem 67. A myelinated cylindrical axon has inner radius
a and outer radius b. The potential inside is v. Outside it is
0. The myelin is too thick to be treated as a plane sheet of
dielectric. Express all answers in terms of a, b, and v.
(a) Give an expression for E for r < a.
(b) Give an expression for E for a < r < b.
(c) Give an expression for E for r > b.
(d) Assuming κ = 1, what is the charge density on the inner

surface? The outer surface?

Problem 68. Develop equations for the resistance and ca-
pacitance of a cylindrical membrane whose thickness is
appreciable compared to its inner radius. Use Gauss’s law
for cylindrical symmetry to determine the electric field. Con-
sider total charge Q distributed uniformly over the inner
surface of a section of the membrane of length D and inner
radius a. The membrane has dielectric constant κ.

(a) Any charge on the outer surface of the membrane has
no effect on the calculation of the electric field between
r = a and r = a + b as long as the charge is distributed
uniformly on the outer cylindrical surface at r = a + b.
Show that the electric field within the membrane is E =(

1
4πε0κ

)
2Q/Dr .

(b) Show that the potential difference is v = v(a) − v(a +
b) = Q

2πε0κD
ln(1 + b/a), and that the capacitance is

C = 2πκε0D

ln(1 + b/a)
(cylinder).

(c) Now place a conducting medium with resistivity ρ =
1/σ in the region of the membrane. Charge will move.
It will be necessary to provide a battery to replenish it.
Show that the resistance of the membrane segment of
length D is given by R = ρ

2πD
ln(1 + b/a), so that

ρ = 2πRD

ln(1 + b/a)
(cylinder).

(d) Show that the resistivity of a plane resistor of cross
sectional area 2πaD and thickness b is

ρ = 2πRD

b/a
(plane),

and that the capacitance of this plane section of mem-
brane is

C = 2πκε0D

b/a
(plane).

(e) How large is this correction for a myelinated axon in
which b/a = 0.4?

Problem 69. Suppose that the outer radius of a myelinated
axon, d = a + b, is fixed. Determine the value of a that
maximizes the length constant of the axon (Eq. 6.75b). Ig-
nore the Nodes of Ranvier. Your result should be expressed
as a = γ d, where γ is a dimensionless constant.
Problem 70. Use the empirical relationships between axon
radius and conduction speed in Table 6.2 to determine the
radius and speed at which the speed along a myelinated and
unmyelinated fiber is equal. For radii less than this radius,
is propagation faster in myelinated or unmyelinated fibers?
For speeds greater than this speed, in what type of fibers is
propagation fastest?

Section 6.18

Problem 71. Modify the computer program of Fig. 6.38 to
have a constant value of jStim and run it.
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7The Exterior Potential and the Electrocardiogram

In Chap. 6 we assumed that the potential outside a nerve cell
is zero. This is only approximately true. There is a small
potential that can be measured and has clinical relevance.
Before a muscle cell contracts, a wave of depolarization
sweeps along the cell. This wave is quite similar to the
wave along the axon. Measurement of these exterior signals
gives us the electrocardiogram, the electromyogram, and the
electroencephalogram.

In Sect. 7.1 we calculate the potential outside a long cylin-
drical axon bathed in a uniform conducting medium. Section
7.2 shows that the exterior potential is small compared to the
potential inside the cell if there is enough extracellular fluid
so that the outside resistance is low. Section 7.3 uses a model
in which the action potential is approximated by a triangular
pulse to calculate the potential far from the cell. Section 7.4
generalizes this calculation to the case of a pulse of arbitrary
shape.

An unusual feature of heart muscle is that the myocardial
cells remain depolarized for 100 ms or so, as described in
Sects. 7.5 and 7.6. This means that the potential difference
outside the cell is much larger than for other cells, giving
rise to the electrocardiogram described in Sects. 7.7 and 7.8.
These two sections discuss electrocardiography and some
factors that contribute to the signal. They make no attempt
to consider advanced techniques such as orthogonal leads
that are used to reconstruct the electrical activity of the heart
from potential difference measurements on the surface of the
body. Rather, they are much closer to the way clinicians think
about the electrocardiogram, and they can provide a basis
from which to learn more complicated techniques.

Section 7.9 talks about improved models that take into
account the interaction between the inside and outside of
cells and the anisotropies that exist in tissue resistance. Sec-
tion 7.10 discusses the problem of stimulation: for measure-
ment of evoked responses, for pacing, and for defibrillation.

Section 7.11 discusses the electroencephalogram.

7.1 The Potential Outside a Long Cylindrical
Axon

When studying the action potential in Chap. 6 we assumed
that the potential outside the axon is zero. Now we calculate
the exterior potential distribution if the axon is in an infinite
uniform conducting medium.1 We will discover that for the
case studied here the exterior potential changes are less than
0.1 % of those inside. If the exterior medium is not infinite,
the exterior potential changes are larger, as is discussed in
Sect. 7.9. This model also applies to a muscle cell that is de-
polarizing before contraction. We will adapt these results to
a group of heart (myocardial) cells that depolarize together,
leading to a wave of depolarization propagating through the
tissue.

Consider a single axon stretched along the x axis. Divide
space into three regions as shown on the left in Fig. 7.1: the
interior of the axon (the axoplasm), the axon membrane, and
the surrounding medium. Imagine that the current inside the
axon is constant to the left of a certain point and zero to
the right of that point, as shown on the right in Fig. 7.1b
Since the axoplasm obeys Ohm’s Law, the interior poten-
tial decreases linearly with x as shown in Fig. 7.1a. Where
the current is zero, the interior potential does not change. At
the point where the interior current falls to zero, conserva-
tion of charge requires that the current passes through the
membrane and flows in the exterior conducting medium, as
stated in Eq. 6.47b. Figure 7.1c shows the axon with current
flowing in the left part of the axon and then flowing into the
surrounding medium.

Now consider how the current flows in the surrounding
three-dimensional medium. Suppose that the surrounding or
“outside” medium is infinite, homogeneous and isotropic and
has conductivity σo. Suppose also that the axon stretched

1 Other textbooks examine this problem in greater detail (Gulrajani
1998; Malmivuo and Plonsey 1995).
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DOI 10.1007/978-3-319-12682-1_7, c© Springer International Publishing Switzerland 2015
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Axon Membrane

Surrounding medium

Axon Interior

x

ii

(b)

x

v
i

(a)

(c)

Fig. 7.1 An axon is stretched along the x axis. a A plot of a portion of
the interior action potential at one instant of time. b A plot of the interior
current, proportional to the slope of the interior potential because of
Ohm’s law. c Schematic representation of the axon, showing current
flowing along the axon and into the exterior conducting medium at the
point where the interior current falls to zero

Fig. 7.2 A point current source is at the center of a sphere. The path of
integration to calculate the potential difference between points A and B

goes first from A to B ′ and then from B ′ to B

along the x axis is very thin and does not appreciably change
the homogeneous and isotropic nature of the extracellular
medium, except very close to the x axis. If a current io
enters the surrounding medium at the origin, the current
density j is directed radially outward and has spherical sym-
metry. The current density at distance r has magnitude j =
io/4πr2. The magnitude of the electric field is E = j/σo =
io/4πσor

2. This has the same form as the electric field from
a point charge, for which the electric field is E = q/4πε0r

2.
We speak of io as a point current source.

We can use the expression for the electric field to calculate
the exterior potential. The point current source is shown as
the dot in the center of the sphere in Fig. 7.2. To calculate the
potential difference between points A and B, it is easier to
integrate Eq. 6.16 along a path from A to B ′ parallel to the
direction of E, and then along B ′B where the displacement is

Fig. 7.3 The potential of Fig. 7.1 is extended to the left in a region of
constant (depolarized) potential. The interior current is plotted below
the potential. The electric field or current-density lines are plotted at the
bottom. The current to the right on the axis is current within the axon;
the other lines represent current in the exterior conducting medium

always perpendicular to E. The potential change along B ′B
is zero. Therefore,

v(B) − v(A) = −
∫ rB

rA

Er dr = −
∫ rB

rA

io

4πσor2
dr

= io

4πσo

(
1

rB
− 1

rA

)
.

Only a difference of potential between two points has mean-
ing. However, it is customary to define the potential to be 0 at
rA = ∞ and speak of the potential as a function of position.
Then the potential at distance r from a point current source
io is

v(r) = io

4πσor
. (7.1)

The analogous expression for the potential due to a point
charge q is v(r) = q/4πε0r .

We do not yet have a useful model, because the potential
cannot rise forever as we go along the axon to the left. Let us
assume that the potential levels off at some point on the left,
as shown in Fig. 7.3. (This will turn out to be a very good
model for the electrocardiogram, because the repolarization
of myocardial cells does not take place for about 100 ms,
so the cells are completely depolarized before repolarization
begins.) Define the location of the origin so that the depolar-
ization takes place between x = 0 and x = x2. The potential
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x

v
i

x

ii

(a)
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0− x1 x2

Δvi

i2 =
Δviσ i πa2

x2

i1 = − Δvi σ iπa2

x1

Fig. 7.4 The action potential is approximated by a triangular wave
form. In this piecewise-linear approximation, the depolarization and
repolarization are both linear. a The interior potential. b The interior
current

change is shown at the top, and the current along the inside of
the axon in the middle. The current exists only where there
is a voltage gradient between x = 0 and x = x2. Its mag-
nitude is ii = �vi/R = �viσiπa2/x2. This current flows
out into the surrounding medium at x = x2 and back into
the axon at x = 0. Such a combination of source and sink of
equal magnitude is called a current dipole. (A pair of equal
and opposite electric charges is called an electric dipole.) The
lowest part of the figure shows lines of j or E. The current is
to the right inside the axon (along the axis) and returns out-
side the axon. The potential at any exterior point is due to
two terms: one from the source ii at x = x2 and the other
from the sink −ii at x = 0. If r2 is the distance from the
observation point to x2 and r0 is the distance to the origin,
then

v = �viσi πa2

4π σox2

(
1

r2
− 1

r0

)
= �viσia

2

4σox2

(
1

r2
− 1

r0

)
.

(7.2)
To estimate the exterior potential from a nerve impulse,

we can approximate the action potential by a triangular po-
tential as shown in Fig. 7.4a. The potential is zero far to the
left. It rises by an amount �vi between x = −x1 and x = 0.
It falls linearly to zero at x = x2. The current is plotted in
Fig. 7.4b. In the region just to the left of the origin it is

i1 = −�viσi πa2

x1
. (7.3a)

(It is negative because it flows to the left.) To the right of the
origin it is

i2 = �viσi πa2

x2
. (7.3b)

x

r1

P

+ 2i1 –(   +   )21

r0 r2

+ i i i

Fig. 7.5 The axon of Fig. 7.4 is stretched along the x axis. There are
current sources at x = −x1 and x = x2, and a current sink at the origin.
The distances from each source or sink to the observation point P are
shown

Figure 7.5 shows the surrounding medium. There is a
source of current i1 at x = −x1, a source i2 at x = x2, and
a sink −(i1 + i2) at the origin. The potential at observation
point P is calculated by repeated application of Eq. 7.1:

v = 1

4πσo

(
i1

r1
− i1 + i2

r0
+ i2

r2

)
. (7.3c)

Equations 7.3a–7.3c can be combined to give

v = �viσia
2

4σo

(
1/x1

r1
− 1/x1 + 1/x2

r0
+ 1/x2

r2

)
. (7.4)

Equations 7.3 and 7.4 are valid at any distance from the axon,
as long as we can make the piecewise approximation of the
action potential shown in Fig. 7.4.

7.2 The Exterior Potential is Small

Let us use Eq. 7.2 for the rising edge of the action potential
to estimate the potential outside the axon when it is in an
infinite conducting medium. We evaluate Eq. 7.2 close to the
surface of the axon where the potential will be largest, say
at x = 0. In that case r2 is approximately x2. However, r0

is not zero. It can never become smaller than r0 = a, the
radius of the axon. (The potential would diverge if the model
were extended to r = 0.) We will use an approximate value,
r0 = a, and call the height of the action potential �vi . Then

v(0) = �viσia
2

4σox2

(
1

x2
− 1

a

)
. (7.5)

Since 1/x2 	 1/a, this becomes

v(0) ≈ −�viσia

4σox2
. (7.6)

Close to x = x2 the potential is

v(x2) = �viσia
2

4σox2

(
1

a
− 1

x2

)
≈ �viσia

4σox2
. (7.7)
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The potential difference between these two exterior points is

�vo = v(x2) − v(0) = σi

σo

a

2x2
�vi . (7.8)

If the conductivities were the same inside and outside, the
ratio would be �vo/�vi = a/2x2.

The ratio of exterior to interior potential change is pro-
portional to the ratio of the axon radius to the distance along
the axon over which the potential changes. From Fig. 6.42
we see that the rising part of the squid action potential has a
length x2 ≈ 1 cm. If a = 0.5 mm (a quite large axon), then
the ratio is 1/40. For a smaller axon, the ratio is even less.

The same result can be obtained by another argument. The
resistance between two points is the ratio of the potential dif-
ference between the points to the current flowing between
them. Inside the axon, j and E are large because the current
is confined to a small region of area πa2. The resistance in-
side is Ri = x2/πa2σi . The same current flows outside, but
it is spread out so that j and E are much less. The resistance
between two electrodes in a conducting medium is related to
their capacitance (Sect. 6.19). Equations 6.86 and 6.99 can be
used to show that two spherical electrodes of radius a spaced
distance x2 apart (x2 � a) have a resistance Ro = 1/2πσoa.
The voltage ratio is

�vo

�vi

= Ro

Ri

= 1

2πσoa

πa2σi

x2
= σi

σo

a

2x2
,

the same result as Eq. 7.8.

7.3 The Potential Far from the Axon

In most cases measurements of the potential are made far
from the axon—far compared to the distance the action po-
tential spreads out along the axon. If point P is moved far
away, Fig. 7.5 looks like Fig. 7.6. The lines r1, r0, and r2 are

x0

To P

θ

r1 r0 2r

1x

cosθ1x

2x

cosθ2x

−

Fig. 7.6 The observation point P is far away compared to distances x1
or x2. The lines to P are nearly parallel

nearly parallel. If point P is located at distance r0 from the
origin at angle θ with the x axis, then

r2 ≈ r0 − x2 cos θ, r1 ≈ r0 + x1 cos θ. (7.9)

Consider the potential in Eq. 7.2 due to the leading edge of
the action potential. (We will argue later that this is a useful
model for the electrocardiogram.) Substituting Eqs. 7.9 in
Eq. 7.2 gives

v = �viσia
2

4σox2

(
1

r0[1 − (x2/r0) cos θ ] − 1

r0

)
.

You can verify by a Taylor’s-series expansion or long divi-
sion that

1

1 − x
= 1 + x + · · · , (7.10)

so that

v = �viσia
2

4σor
2
0

cos θ. (7.11)

This is a very important result that will form the basis for our
model of the electrocardiogram:
1. The exterior potential v depends on �vi but not on x2,

the length of the depolarization region. This is because
increasing x2 decreases the strength of the current at the
same time that it increases v because the source and sink
are further apart.

2. The potential falls off as 1/r2 instead of 1/r as it would
from a point source.

3. The potential varies with angle, being positive to the right
of the transition region and negative to the left.
It is convenient to define a vector p that points along the

axon in the direction of the advancing depolarization wave
front (the region along the axon where the potential rises).
It is called the activity vector or current-dipole moment for
reasons discussed shortly. Its magnitude is

p = πa2σi �vi . (7.12)

The exterior potential is then (dropping the subscript on r)

v = p · r
4πσor3

. (7.13)

Vector p has units of A m. Its magnitude (apart from the
conductivity) is the product of the cross-sectional area of
the axon and the difference in potential along the axon be-
tween the resting and completely depolarized regions. It is
called the current-dipole moment because it is the product
of the current and the separation of the source and sink. (The
electric-dipole moment is the product of the magnitude of the
charges and their separation, with units C m.)

Equation 7.11 can also be written in the form

v(r) = πa2 cos θ

r2

1

4π

σi

σo

�vi . (7.14)
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r1 r2r0

2x1x−

Fig. 7.7 When the observation point is not so far away, or when a com-
plete nerve impulse is being considered, the law of cosines must be used
to relate r1 and r2 to r0

The quantity πa2 cos θ/r2 is �Ω , the solid angle2 sub-
tended at the observation point by a cross section of the
axon where the potential changes. The quantity 4π is the
maximum possible solid angle. In terms of the solid angle

v = �Ω

4π

σi

σo

�vi . (7.15)

Now consider an entire pulse, one where the potential
rises and then returns to the resting value. If the approxi-
mation of Eq. 7.10 is applied to Eq. 7.4, the result vanishes.
It is necessary to make a more accurate approximation, one
that takes into account the fact that the vectors r1, r0, and r2

are not exactly parallel. Figure 7.7 shows the geometry. We
use the law of cosines to write [remember that cos(π − θ) =
− cos θ ]

r1 = r0

[
1 + (2x1/r0) cos θ + x2

1/r2
0

]1/2
,

r2 = r0

[
1 − (2x2/r0) cos θ + x2

2/r2
0

]1/2
.

When these are inserted in Eq. 7.4 and a Taylor’s-series ex-
pansion is done to second order in both x1/r0 and x2/r0, the
result is

v = 2πa2

4πr3

σi

σo

�vi (x1 + x2)

2

3 cos2 θ − 1

2
. (7.16)

The constants have been arranged to show that the term
�vi (x1 + x2)/2 is the area under the impulse when v is plot-
ted as a function of x. The angular factor as written with its
factor of 2 in the denominator is tabulated in many places as
the Legendre polynomial P2(cos θ).3 The exterior potential

2 The solid angle is defined in Appendix A.
3 You can learn more about Legendre polynomials in texts on differen-
tial equations or, for example, in Harris and Stocker (1998). See also
Eq. 7.29.
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Fig. 7.9 The potential far from the axon as a function of time as an
impulse travels from left to right along the axis. The potential from the
complete pulse has been multiplied by a factor of 10 in order to show it

now falls off more rapidly with distance, as 1/r3. The angu-
lar dependence, shown in Fig. 7.8, is symmetric about π/2.
This shows the angular dependence as one moves around the
impulse at a constant distance from it.

This is a very different situation and a very different curve
from the potential measured at a fixed point outside the axon
as an impulse travels past. In the latter case r as well as θ is
changing. This behavior is discussed in Problems 8 and 9.
The results are shown in Fig. 7.9. The potential from the
depolarization is biphasic; that from the complete pulse is
triphasic, being positive, then negative, then positive again.

For a single axon in an ionic solution the exterior con-
ductivity is usually higher than in the axon, so σi/σo = 0.2.
The conductivity of tissue is considerably less than the con-
ductivity of an ionic solution, and the ratio becomes greater
than one. For the electrocardiogram it will be more appropri-
ate to use σo = 0.33 S m−1 (muscle) or 0.08 S m−1 (lung),
in which case σi/σo is 6 or 25. We will use an approximate
value of 10.

7.4 The Exterior Potential for an Arbitrary
Pulse

We have derived the results of the previous sections for an
action potential that varies linearly during depolarization and
repolarization, a piecewise-linear approximation. In general
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the action potential does not have sharp changes in slope. We
will now consider the general case and find that the results
are very similar. For depolarization alone, we will again have
a potential depending on the dipole moment. For a complete
pulse the potential will depend on the area under the pulse
curve.

Again, the axon is stretched along the x axis in an in-
finite, homogeneous conducting medium. Consider a small
segment of axon between x and x + dx. If the current en-
tering this segment at x is greater than the current leaving at
x + dx, the difference must flow into the exterior medium.
From Eq. 6.47b,

dio = −dii = −∂ii(x, t)

∂x
dx.

We can write Ohm’s law for the axoplasm as

ii(x, t) = −πa2σi

∂vi

∂x
. (7.17)

The current into the exterior medium from length dx of the
axon is

dio = πa2σi

∂2vi

∂x2
dx. (7.18)

It is proportional to the derivative of the current along the
axon with respect to x and therefore to the second derivative
of the interior potential with respect to x. A small current
source dio generates a potential dv at some point in the
exterior medium given by

dv = dio

4πσor
. (7.19)

If the radius of the axon stretched along the x axis is very
small, the axon’s influence can be replaced by a current dis-
tribution dio(x) along the x axis. The potential at any point
R is obtained by integrating Eq. 7.19:

v(R) =
∫

dio

4πσor
. (7.20)

Vector R specifies the point at which the potential is mea-
sured, and r is the distance from the measuring point to
the point on the x axis where dio is injected, as shown in
Fig. 7.10. Combining this with Eq. 7.18 gives

v(R) =
∫

πa2σi

4πσo

∂2vi

∂x2

1

r
dx. (7.21)

Although it is difficult to integrate Eq. 7.21 analytically,
the integration can be done numerically. Figure 7.11 shows a
computer program to carry out this integration for a crayfish
lateral giant axon immersed in sea water. The axon radius is
60 μm. The conductivity ratio is σi/σo = 0.2. The action
potential was measured by Watanabe and Grundfest (1961).
Clark and Plonsey (1968) showed that it could be well repre-
sented by a sum of three Gaussians, with vi = 0 taken to be

θ

dx

v(R)

r

x

R

Fig. 7.10 The potential v(R) is obtained by integrating the potential
due to current dio from each element dx of the cell

the resting value. Since only ∂2vi/∂x2 enters into Eq. 7.21,
the reference level does not matter. The representation (with
v in mV and x in mm) is

vi (x) = 51e−[(x−5.4)/1.25]2
(7.22)

+ 72e−[(x−6.6)/1.876]2 + 18e−[(x−8.6)/3.003]2
.

This function corresponds to an impulse traveling to the
left. It can be differentiated to obtain an analytic expression
for ∂2vi/∂x2. If the potential is being measured at exterior
point (x0, y0), the value of r which is used in Eq. 7.21 is

r = [(x − x0)
2 + y2

0

]1/2
. The program allows four values of

y0 to be used. The smallest is taken to be a, the radius of the
axon.

The results of calculating the exterior potential at y0 = a

are shown in Fig. 7.12. The interior potential, shown in (a),
has a peak value of 114 mV. The potential on the surface of
the axon (b) ranges from + 0.04 to − 0.07 mV. In general the
exterior potential is less than 0.1 % of the interior potential.
(This would be different if the extracellular fluid were not
infinite.) The original calculation by Clark and Plonsey used
much different mathematical techniques (see Problem 30);
however, the results are very similar. The results of their
more accurate calculation are plotted in Fig. 7.13.

The approximation that the observer is far from the axon
can also be applied to the general case. The physics is ex-
actly the same as in the previous section for the triangular
pulse, except that now the pulse has an arbitrary shape so
current passes through the membrane at all points along the
axon where the second derivative is nonzero. The calculation
requires making the same type of approximations in order to
evaluate the integral (Eq. 7.21). Referring to Fig. 7.10, we
again use the law of cosines to write

r(x) = R
[
1 − 2(x/R) cos θ + x2/R2

]1/2
.

We need to use this in Eq. 7.21. As in the previous section,
we make a Taylor’s-series expansion of 1/r . To second order
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Fig. 7.11 The computer program used to calculate the exterior potential by integrating Eq. 7.21 for the problem first solved by Clark and Plonsey
(1968). The program uses Romberg integration procedure qromb from Press et al. (1992)

the result is

1

r
≈ 1

R

(
1 + x

R
cos θ + 1

2

x2

R2
(3 cos2 θ − 1)

)
. (7.23)

The expression for v(R) becomes

v(R) = πa2σi

4πσo

[
1

R

∫ x2

x1

∂2vi

∂x2
dx + cos θ

R2

∫ x2

x1

∂2vi

∂x2
x dx

+3 cos2 θ − 1

2R3

∫ x2

x1

∂2vi

∂x2
x2 dx

]
. (7.24)

There are three integrals that we must evaluate. Take lim-
its of integration x1 and x2 to be points where ∂vi/∂x = 0.
The first integral is ∂vi/∂x which vanishes at the end
points. The second integral can be integrated by parts. Since
∂vi/∂x = 0 at the end points the second integral is vi (x1) −
vi (x2). The third integral is integrated by parts twice and is
∫ x2

x1

∂2vi

∂x2
x2 dx =

[
x2 ∂vi

∂x

]x2

x1

−2 [xv(x)]x2
x1

+2
∫ x2

x1

vi (x) dx.

(7.25)

The first term of this vanishes because of the way the end
points were chosen.

We now apply these results to Eq. 7.24 in two cases. The
first is the case of depolarization only, which is useful in con-
sidering the electrocardiogram. Set up the coordinate system
so the origin is someplace in the impulse where ∂vi/∂x = 0.
The total change in vi is �vi . Then x1 = 0, vi (x1) = �vi ,
vi (x2) = 0. The first nonvanishing term of Eq. 7.24 requires
only the second integral:

v(R) = πa2σi

4πσo

cos θ

R2
�vi . (7.26)

We obtained this result in a special case as Eq. 7.11.
In the second case we consider the complete pulse, and we

take x1 to the left of the pulse and x2 to the right. The first
integral in Eq. 7.24 still vanishes. Now the second integral
also vanishes because vi (x1) = vi (x2) = vrest and �vi = 0.
It is necessary to use the third integral, Eq. 7.25. The first
term in Eq. 7.25 vanishes. The second and third terms must
be considered together. Rewrite the potential in terms of de-
partures from the resting potential: vi (x) = vrest + vdepol(x).
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Fig. 7.12 a The transmembrane potential used for the calculation in
the program of Fig. 7.11. The impulse is traveling to the left. b The
exterior potential along the axon calculated by the program for y0 = a

Fig. 7.13 The exterior potential for the same problem calculated using
the more accurate method of Clark and Plonsey (1968). The smallest
distance from the axon is y = 0.5 mm

The second term in Eq. 7.25 is −2vrest(x2 − x1). The third
term of Eq. 7.25 is

2
∫ x2

x1

vdepol(x) dx + 2(x2 − x1)vrest.

Adding these gives

v(R) = 2πa2σi

4πσo

1

R3

3 cos2 θ − 1

2

∫ x2

x1

[vi (x) − vrest] dx.

(7.27)
Again, we saw a special case of this as Eq. 7.16.

Note the progression in these results. When we are look-
ing at one corner of a depolarization pulse, we have a current
source or sink, and the potential is proportional to 1/R

(Eq. 7.1). We do not find this situation in physiology because
the potential would have to keep rising forever. When we
consider the entire depolarization portion of the wave form,
the potential is proportional to 1/R2, as in Eqs. 7.11 or 7.26
(We will find that this is a good model for the electrocardio-
gram because the repolarization does not commence until the
entire heart is depolarized4). When the entire pulse is con-
sidered, the potential is proportional to 1/R3 as in Eq. 7.16
or 7.27. This is a good model for nerve conduction. The po-
tential is considerably less in this case because of the 1/R3

dependence.
This is an example of a technique called a multipole ex-

pansion. Generally, defining ξ = x/R, one can make the
expansion

1

(1 − 2ξ cos θ + ξ2)1/2
= P0 + ξP1 + ξ2P2 + ξ3P3 + · · · ,

(7.28)
where the Pn are functions of cos θ and are called Legendre
polynomials. The first few Legendre polynomials are

P0 = 1,

P1 = cos θ,

P2 = 1
2 (3 cos2 θ − 1),

P3 = 1
2 (5 cos3 θ − 3 cos θ).

(7.29)

All of these calculations are based on a model in which the
current flows parallel to the axis of the axon, passes through
the membrane, and then returns in the extracellular conduct-
ing medium. This model is called the line approximation. It
is, of course, impossible for current inside the axon to pass
out through the membrane if it always flows parallel to the
axis of the axon. It is possible to do an exact calculation in
which j has a radial component as well as one parallel to the
axis of the axon. (See Sect. 7.9 for a description of how this
is done.) Trayanova et al. (1990) have compared the exact
solution with two approximations, one of which is the line
approximation. The line approximation is quite good if the
radius of the axon is much smaller than the distance along
the axon over which the depolarization takes place.

4 This is not strictly true. Atrial repolarization begins before the
ventricular depolarization is complete.
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Fig. 7.14 Depolarization and repolarization of cardiac cells based on a model by Luo and Rudy (1994). Panels on the left show the depolarization.
Panels on the right show the entire action potential. Note the factor of 100 change in scale of the current density on the lower two panels.
Electrotonus (the dashed line) is important during depolarization but is almost nonexistent during repolarization. Compare this with Fig. 6.42. The
calculations were performed by Sunil Kandel

7.5 Electrical Properties of the Heart

We saw in Chap. 1 that the heart is divided into a right side
and a left side (see Fig. 1.34). Each side consists of an atrium
and a ventricle. The ventricles are primarily responsible for
pumping the blood. They are relatively large chambers with
thick walls. The smaller atria contract first. The atria fill the
ventricles with blood before the ventricles contract. The two
chambers on each side are connected by one-way valves: the
tricuspid valve on the right and the mitral valve on the left,
so that blood cannot regurgitate back into the atrium when a
ventricle contracts.

The right and left atria are electrically connected: if the
right atrium contracts, so does the left atrium. The right and
left ventricles are similarly connected. The electrical connec-
tion between the atria and the ventricles occurs only at the
AV node, as discussed below.

There are many similarities between myocardial cells and
nerve cells: a membrane separates extracellular and intra-
cellular fluids; the concentrations of the principal ions are
about the same; except for a small amount of charge on the
membrane, the extracellular and intracellular fluids are elec-
trically neutral; and selective ion channels are responsible for
the initiation and propagation of the action potentials. There

are also major differences: myocardial cells in mammals are
about 100 μm long and 10 μm in diameter. The interiors of
neighboring cells are connected through gap junctions, so
current and ions flow directly from one cell to another (Del-
mar and Sorgen 2009). This continuum of cells is called a
syncytium. There are also important differences in the details
of the ion currents. We continue for now to use the simple
model of long, one-dimensional cells. Refinements to this
model are discussed in Sect. 7.9.

In the resting state, the potential inside an atrial cell
is about −70 mV, while that in a ventricular cell is about
−85 mV. When a cell depolarizes, the action potential lasts
for 100–300 ms, depending on the species. A “typical” ac-
tion potential is shown in Fig. 7.14. There are variations in
pulse shape between species and also in different parts of
the heart. The initial rapid depolarization is caused by an in-
ward sodium current (phase 0 on the curve) and takes about
1 ms. This is sometimes followed by a rapid fall (phase 1) not
prominent in Fig. 7.14, caused by a transient outward potas-
sium current. This current is small in endocardium (near
the inside of the heart) but is prominent enough in the epi-
cardium (outer layers of the heart) so that there can be a
“spike and dome” shape to the potential (George 2009). This
is followed by a Ca2+ influx that maintains the plateau (phase
2) of the action potential. The “slow” potassium channels
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finally open (Oudit and Backx 2004), and potassium efflux
causes repolarization (phase 3). During phase 4 the original
ion concentrations are restored.

The heart can beat in isolation. If it is removed from
an animal and bathed in nutrient solution, it continues to
beat spontaneously. With each beat, a wave of depolar-
ization sweeps over the heart, and it contracts. The wave
is initiated by some specialized fibers located in the right
atrium called the sinoatrial node (SA node). As was men-
tioned in Sect. 6.18, the SA node does not have the usual
sodium channels, and the depolarization is due to calcium.
The shape of the SA node potential is much more like
Fig. 6.48 than Fig. 7.14. In humans the SA node fires about
60–100 times per minute; this rate is increased by the sym-
pathetic nerves to the heart (which release norepinephrine)
and decreased by the parasympathetic nerves (which release
acetylcholine). Devices that produce such periodic firing
are common in physics and engineering. They are called
free-running relaxation oscillators.

Figure 7.15 shows how the depolarization progresses
through the heart. Once the SA node has fired, the depolar-
ization sweeps across both atria (a, b). When the atria are
completely depolarized (c) there is no depolarization wave-
front. The atria are separated from the ventricles by fibrous
connective tissue that does not transmit the impulse. The only
electrical connection between the atria and the ventricles is
some conduction tissue called the atrioventricular node (AV
node). After passing through the AV node, the depolarization
spreads rapidly over the ventricles through the conduction
system—a set of specialized muscle cells on the inner walls
of the ventricles—(d, e), and finally through the myocardium
of each ventricle to the outer wall (e, f, g). The conduction
system consists of the common bundle (or bundle of His),
the left and right bundles, and the fine network of Purkinje
fibers. The AV node will spontaneously depolarize at a rate
of about 50 beats per minute; it usually does not because it
is triggered by the more rapid beating of the atria. In well-
trained athletes, the resting pulse rate can be so low that the
AV node fires spontaneously, giving rise to what are called
nodal escape beats. These are physiologic and no cause for
concern.

There is a difference between depolarization, which prop-
agates as a wave, and repolarization, which is a local phe-
nomenon. Sodium conductance increases as the transmem-
brane potential rises during depolarization. As the potential
rises at some point on the advancing wave front, electro-
tonus increases the potential further along the cell, as can
be seen in the left panels of Fig. 7.14, where the contribution
from electrotonus is shown by the dashed line. This causes
the sodium conductance to rise at that point, resulting in the
propagation of the signal at speeds of about 0.2 − 0.5 m s−1.
During repolarization electrotonus contributes almost noth-
ing to the repolarization, as can be seen in the panels on the
right (note the factor of 100 difference in the current density).

Fig. 7.15 The wave of depolarization sweeping over the heart. Atrial
and ventricular muscle are not connected except through the AV node.
a Depolarization beginning at the SA node. b Atria nearly depolarized.
c The AV node is conducting. d Beginning of depolarization of the left
ventricle. e, f Continuing ventricular depolarization. g Ventricular de-
polarization nearly complete. (Reprinted with permission from Hobbie
1973, Copyright c© 1973, American Association of Physics Teachers)

Normally, depolarization progresses through the my-
ocardium in an orderly fashion (Fig. 7.15). It is followed by
repolarization, and after a brief refractory period the heart is
ready to beat again. During the refractory period the cells do
not respond to a stimulus. It is possible in abnormal situations
for a wave of depolarization to travel in a closed path through
the myocardium. This closed path, called a reentrant circuit,
can surround an obstacle such as scar tissue, the aorta, or the
pulmonary artery. It can also surround an area that simply has
different conduction properties. If the time to travel around
the reentrant circuit is greater than the refractory period, the
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wave can continue to travel on the closed path. Reentrant
excitation is thought to be responsible for several kinds
of heart disease, including most life-threatening ventricular
tachycardias (rapid heart rate). Another type of reentrant ex-
citation is spiral waves that occur because of the nonlinear
nature of the myocardium (Gray 2009; Such nonlinear be-
havior will be discussed in Chap. 10). It is also possible for a
reentrant wave to leave behind a refractory state that blocks
normal conduction.

7.6 The Current-Dipole Vector of the Heart as
a Function of Time

Each myocardial cell depolarizes and repolarizes during
the cardiac cycle. These cells are short—about 100 μm in
length—but are interconnected. We apply our axon model
by noting that a current ii flows within each cell during de-
polarization and a return current, which could be ignored in
our axon model, flows in the surrounding tissue. We assume
that each cell as it depolarizes has a current dipole moment,
and that these can be summed.

The total current-dipole vector at any instant is then the
sum of the vectors for all the cells in the heart. This sec-
tion considers how the total current-dipole vector changes
with time as the myocardium depolarizes and then repolar-
izes. Initially, all the cells are completely polarized (resting)
and there is no net dipole moment. The cells begin to depo-
larize near the SA node, and a wave of depolarization sweeps
across the atria. For each myocardial cell, the dipole vector
points in the direction that the wave of depolarization is trav-
eling5 and moves along the cell with the depolarization wave.
These vectors for all the cells that are depolarizing constitute
an advancing wave that moves across the heart.

The potential at the point of observation can be calculated
by applying Eq. 7.13 for each cell. Vector r is the vector
from the cell to the point of observation and is different for
each cell. However, we will assume for now that the obser-
vation point is so far from the heart that all points in the
myocardium are nearly equidistant from it. This is a terri-
ble assumption; later we will be more realistic. It allows us
to speak of the instantaneous total current dipole moment,
which is the sum of the dipole moments of all depolarizing
cells at that instant.

The locus of the tip of the total dipole moment during the
cardiac cycle is shown in Fig. 7.16 for a typical case. The x

axis points to the patient’s feet, the y axis to the patient’s left,
and the z axis from back to front. The small loop labeled P

occurs during atrial depolarization. The loop labeled QRS

5 If one takes into account the anisotropies in the conductivities of my-
ocardial tissue discussed in Sect. 7.9, the depolarization does not travel
in the direction that p points. We ignore this for now.

Fig. 7.16 The locus of the tip of the total current-dipole vector during
the cardiac cycle. The z axis is perpendicular to the x and y axes and
the subject’s chest and comes out of the page

Fig. 7.17 The three components of the total current dipole vector p as
a function of time

is the result of ventricular depolarization. Ventricular repo-
larization gives rise to the “T wave.” Atrial repolarization
is masked by ventricular depolarization. A plot of the x, y,
and z components of p is shown in Fig. 7.17. These compo-
nents are typical; there can be considerable variation in the
directions of the loops in Fig. 7.16.

7.7 The Electrocardiographic Leads

We turn next to how the electrocardiographic measurements
are made. We model the torso as an infinite homogeneous
conductor and continue to assume that every myocardial cell
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Fig. 7.18 Geometry for calculating the potential difference due to p
between points A and B

is the same distance from each electrode. Both assumptions
are wrong, of course, and later we will improve upon them.

The potential at r from a current dipole p is given by
Eq. 7.13. The potential difference between two points at po-
sitions r1 and r2, each at a distance r from the dipole, is
therefore (see Fig. 7.18)

v(r2, r1) = p · (r2 − r1)

4πσor3
.

Denoting r2 − r1 by R, we have

v = p · R
4πσor3

. (7.30)

The potential difference between two electrodes separated
by a displacement R and equidistant from the current-dipole
vector p measures the instantaneous projection of vector p
on R.

If the depolarization can be described by a single current-
dipole vector, only three measurements are needed in princi-
ple, corresponding to the projections on three perpendicular
axes. The standard electrocardiogram (ECG) records 12 po-
tential differences using nine electrodes. There are many
reasons for this. The body is not an infinite, homogeneous
conductor, and the relationship between cellular dipole mo-
ments and the potential is more complicated than our model;
to convert the three perpendicular components to the instan-
taneous values of p would require a mathematical reconstruc-
tion; and the electrodes are not far away compared to the
size of the heart. With 12 recorded potential differences, it is
fairly easy to interpret the electrocardiogram by inspection.

The first three electrodes are placed on each wrist and
the left leg. The limbs serve as extensions of the wires, so
that the potential is measured where the limbs join the body.

Fig. 7.19 Vectors connecting the three electrodes for a typical patient.
The limbs are extensions of the leads of the electrocardiograph machine

This is a major correction to our crude model that the heart
is in an infinite conducting medium. If the subject were im-
mersed in a conducting medium such as sea water, movement
of the arms would change the size of the ECG signal be-
cause it would change R. In air, however, movement of the
arms does not change the size of the signal. The simplest
correction to explain this is to say that R for the two arm
electrodes goes from shoulder to shoulder. These three elec-
trodes measure potential differences between three points
located approximately as shown in Fig. 7.19. The dimen-
sions are for a typical adult. The three potential differences
are called limb leads I, II, and III:

I = vB − vA,

II = vC − vA, (7.31)

III = vC − vB.

In the approximation used here, the voltage difference I is
proportional to the projection of p on RI, and so forth. These
leads measure the projections of p on the three vectors RI,
RII, and RIII of Fig. 7.19.

It is customary also to combine these three potentials in
a slightly different way to obtain projections of p on three
other directions. These combinations are called the aug-
mented limb leads. They contain no information that was not
already present in the limb leads, but the six signals are easier
to interpret by inspection. The combinations are

aV R = vA − 1

2
(vB + vC) = −1

2
(I + II),
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Fig. 7.20 The six directions in the frontal plane defined by the limb
leads and the augmented limb leads. The angles are for the same subject
as in Fig. 7.19

aV L = vB − 1

2
(vA + vC) = 1

2
(I − III), and (7.32)

aV F = vC − 1

2
(vA + vB) = 1

2
(II + III).

These are proportional to the projections of p on vectors RL,
RR , and RF of Fig. 7.20. The subscripts refer to the fact that
the vectors point toward the left shoulder, right shoulder, and
foot, respectively.

The six lines in Fig. 7.20 are spaced approximately every
30 ◦ in the frontal plane. Many texts argue that the leads are
spaced exactly every 30 ◦ and that the triangle of Fig. 7.19
is an equilateral triangle (Einthoven’s triangle). While the
directions are not far from 30 ◦, this assumption is not re-
ally necessary. Physicians often want to know the direction
of p at some point during the cardiac cycle, or the average
direction of p during the QRS wave (ventricular depolariza-
tion). With six directions measured, this can be determined
by inspection.

These six leads measure projections in the frontal plane.
It is also necessary to have at least one projection in a plane
perpendicular to the frontal plane. It is customary to place
six leads across the chest wall in front of the heart; they
are called the precordial leads. Their locations are shown in
Fig. 7.21. The potential difference is measured between each
precordial electrode and the average of vA, vB , and vC . A
lead therefore measures the projection of p on a vector from
the center of triangle ABC to the electrode for that lead. This
fact is not obvious, and in fact is true only if differences in
1/r2 are neglected. To see that it is true with the appropriate
approximation, pick an arbitrary point O and from it con-
struct vectors RA, RB , RC , and RD to the points A, B, and C

Fig. 7.21 The location of the precordial leads and the directions of
the components of p which they measure. Reprinted with permission
from Hobbie 1973. Copyright 1973, American Association of Physics
Teachers

Fig. 7.22 A perspective drawing of the vectors used to calculate the
potential in a precordial lead. Reprinted with permission from Hobbie
1973. Copyright 1973, American Association of Physics Teachers

of Fig. 7.22 and to the precordial electrode at D. The desired
potential is

v = vD − vA + vB + vC

3
.

It can be calculated using Eq. 7.30 for each term:

v = 1

4πσo

[
p · RD

R3
D

− 1

3

(
p · RA

R3
A

+ p · RB

R3
B

+ p · RC

R3
C

)]

.

So far, the location of O is arbitrary. If it is picked to be at
the center of the triangle, then RA + RB + RC = 0. (This is
the definition of center.) Since RA ≈ RB ≈ RC , the term in
large parentheses vanishes. The desired potential difference
is then

v = 1

4πσo

p · RD

R3
D

.

In this approximation, each precordial lead measures the pro-
jection of p on a vector from the center of the triangle ABC

to the electrode. The amplitude of the signal will be larger
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Fig. 7.23 A normal electrocardiogram. The large divisions are 0.5 mV
vertically and 0.2 s horizontally. Reprinted with permission from Hob-
bie 1973. Copyright 1973, American Association of Physics Teachers.
The electrocardiogram was supplied by Prof. James H. Moller, MD

than for the limb leads, because RD < RA. Some of the pre-
cordial leads are quite close to the heart. The assumption that
r is the same for all parts of the myocardium is not valid.
Because of the factor 1/r2, the greatest contribution to the
potential comes from the closest regions of myocardium. A
lead is said to “look at” the myocardium closest to it.

7.8 Some Electrocardiograms

A normal electrocardiogram is shown in Fig. 7.23. When p
has its greatest magnitude during the QRS wave, it is nearly
parallel to RII. There is almost no signal in aV L, which is
perpendicular to RII.

Compare this to Fig. 7.24, which shows the electrocar-
diogram for a patient with right ventricular hypertrophy, an
enlargement and thickening of the right ventricle. Because
of the greater right ventricular muscle volume, p points to
the right during the QRS wave, so that the QRS signal is
negative in lead I. Lead aV F shows that there is very little
vertical component of p during the QRS wave. The precor-
dial leads V1 and V2 show the strongest signals, because the
right ventricle faces the front of the body. In this case an ex-
tra lead V4R has been used, which is symmetrical with V4

but on the right side of the body.
The electrocardiogram in Fig. 7.25 is from a patient with

left ventricular hypertrophy. The thicker left ventricular wall
causes the QRS dipole to point to the left. As a result, lead
I has an abnormally high peak, aV L is large and positive,

Fig. 7.24 The electrocardiogram of a patient with right ventricular hy-
pertrophy. Reprinted with permission from Hobbie 1973. Copyright
1973, American Association of Physics Teachers. The electrocardio-
gram was supplied by Prof. James H. Moller, MD

Fig. 7.25 The electrocardiogram for a patient with left ventricular hy-
pertrophy. Reprinted with permission from Hobbie 1973. Copyright
1973, American Association of Physics Teachers. The electrocardio-
gram was supplied by Prof. James H. Moller, MD

V2 is negative, and V4, V5, and V6 have very large positive
peaks. These last four leads are shown at half scale.

A fault in the conduction system known as a bun-
dle branch block causes the depolarization wave to travel
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Fig. 7.26 The electrocardiogram for a patient with right bundle branch
block. The electrocardiogram was supplied by Prof. James H. Moller,
MD

through the myocardium rather than over the conduction sys-
tem. Since the speed of propagation in myocardium is slower
than that in the conduction system, the depolarization takes
longer than usual. An electrocardiogram for a patient with
right bundle branch block (a block in the bundle for the right
ventricle) is shown in Fig. 7.26. The effect is most striking
in leads that are most sensitive to the right ventricle: precor-
dial leads 1 and 2. In V1 the early part of the QRS wave has
the usual biphasic, up–down pattern as the left ventricle de-
polarizes. This is followed by a large and prolonged vector
pointing to the right, as the right ventricle slowly depolarizes.
Lead V2 shows a strong and prolonged bipolar signal as the
right ventricle depolarizes.

7.9 Refinements to theModel

Our model for the potential outside a nerve or muscle
cell has been a long single conducting fiber in an infinite,
homogeneous medium. We will consider four ways to extend

and improve the model. The first is to recognize that current
must also flow radially inside the cell. If it did not, it could
never leave the cell. At the same time we will abandon the
assumption that the presence of the cell along the x axis
does not perturb the current outside the cell. The third im-
provement is to recognize that the conductivity may depend
on position. This is particularly important outside the cell,
where there are muscle, fat, lungs, etc. Finally, the conduc-
tivity at a given point may depend on which direction the
current flows–for example, parallel or perpendicular to the
cells.

In order to make these refinements to the model, we must
develop a different formulation of the problem. Consider
some region of space containing a conducting material de-
scribed by Ohm’s law. The electric field is related to the
potential by Eq. 6.16b: E = −grad v = −∇v. If the material
is isotropic and obeys Ohm’s law, then from Eq. 6.26

j = σE = −σ∇v. (7.33)

We now apply the equation of continuity or conservation of
charge, casting Eq. 4.8 in terms of the electric current density
j and the electric charge per unit volume, ρ:

∂ρ

∂t
= −∇ · j. (7.34)

Combining these two equations gives

∂ρ

∂t
= div(σ grad v) = ∇ · (σ∇v). (7.35)

Leaving the conductivity inside the divergence term allows
the conductivity to depend on position. If the conductivity is
the same everywhere it can be taken outside the divergence
operator to give

∂ρ

∂t
= σ∇2v = σ

(
∂2v

∂x2
+ ∂2v

∂y2
+ ∂2v

∂z2

)
. (7.36a)

We can write this in cylindrical coordinates, which are more
useful for modeling a cylindrical cell stretched along the z

axis. From Appendix L, assuming that the potential does not
depend on the angle φ, we have

∂ρ

∂t
= σ∇2v = σ

[
1

r

∂

∂r

(
r
∂v

∂r

)
+ ∂2v

∂z2

]
. (7.36b)

These are very general equations, applicable to any volume
of space where the material is homogeneous and isotropic
and obeys Ohm’s law. They were derived using Ohm’s law
and the conservation of charge. Equation 7.36a is actually
the same result we had in Eq. 6.51. This is demonstrated in
Problem 29.
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7.9.1 The Fiber Has a Finite Radius

Now we can make the first two improvements: we relax the
assumption that the fiber radius is very small. Except at the
cell membrane, where charge on the membrane capacitance
is changing as the membrane potential changes, ∂ρ/∂t = 0.
If we assume that the transmembrane potential vm is known,
then Eq. 7.36b can be applied separately to the extracellular
and the intracellular fluid for a long straight fiber to deter-
mine the potential everywhere outside (or inside). This was
first done by Clark and Plonsey (1968). In the extracellular
and intracellular fluids, Eq. 7.36b becomes

1

r

∂

∂r

(
r
∂vo(r, z)

∂r

)
+ ∂2vo(r, z)

∂z2
= 0, r > a

1

r

∂

∂r

(
r
∂vi (r, z)

∂r

)
+ ∂2vi (r, z)

∂z2
= 0, r < a

vm(z) = vi (a, z) − vo(a, z).

(7.37)

With vm known, these equations were solved for the potential
distribution inside and outside the cell. This is the calculation
that was done to obtain Fig. 7.13. The result of this type of
calculation has been compared to the line-source model by
Trayanova et al. (1990).

7.9.2 Nonuniform Exterior Conductivity

To make the next improvement, consider an extracellular re-
gion in which the conductivity is not uniform. In a region
without sources, the potential obeys

∇ · (σo∇vo) = 0. (7.38)

Often, the conductivity is assumed to be “piecewise” ho-
mogenous, with a different value assigned to each kind of
tissue. Within each tissue the potential then obeys Laplace’s
equation, ∇2vo = 0. At the boundary between tissues,
the potential and the normal component of the current are
continuous.

When the different tissues have realistic and irregu-
lar boundaries, special techniques are needed to solve
Laplace’s equation. One important technique is the finite-
element method (Miller and Henriquez 1990); another is the
boundary-element method (Gulrajani 1998).

A typical application, which serves as the basis for non-
invasive electrocardiographic imaging, is to measure the
potential at the body surface and then calculate the poten-
tial on the epicardium (the outer surface of the heart; Rudy
and Burnes 1999; Stanley et al. 1986). One cannot calculate
the potential inside the heart unless the sources are known,
but finding the potential on the epicardial surface is possible.

7.9.3 Anisotropic Conductivity: The Bidomain
Model

The final improvement recognizes that the cardiac tissue is
generally not isotropic. If it is still described by Ohm’s law,
then we can write j = σ̃ · E where σ̃ is a matrix or tensor. In
Cartesian coordinates

⎛

⎝
jx

jy

jz

⎞

⎠ =
⎛

⎝
σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

⎞

⎠

⎛

⎝
Ex

Ey

Ez

⎞

⎠ . (7.39)

This is a compact notation for

jx = σxxEx + σxyEy + σxzEz,

with similar equations for jy and jz. It can be shown that the
conductivity matrix must be symmetric, so there are actually
six conductivity coefficients, not nine. It is often possible to
make some of the matrix elements zero by suitable choice of
a coordinate system and suitable orientation of the axes.

Problem 29 shows that for a small cylindrical region of
isotropic axoplasm of length h and radius a, the cylindrical
surface of which is surrounded by cell membrane, the total
charge Q within the axoplasm changes according to

∂Q

∂t
= πa2h

∂ρi

∂t
= C

∂vm

∂t
+ im = 2πah

(
cm

∂vm

∂t
+ jm

)
,

or

cm

∂vm

∂t
+ jm = πa2h

2πah
σi

∂2vi

∂x2
= σia

2

∂2vi

∂x2
.

This can also be written as

β

(
cm

∂vm

∂t
+ jm

)
= σi

∂2vi

∂x2
,

where β = 2πah/πa2h = 2/a is the ratio of surface area
to volume of the cell. Our cell was cylindrical. With other
geometrical configurations, such as a cubic or a spherical
cell, β would have a different value, but it always has the
dimensions of (length)−1. In the general three-dimensional
anisotropic case, the equivalent equation is

β

(
cm

∂vm

∂t
+ jm

)

zero, except at the cell membrane

(7.40)

= div(̃σi grad vi ) = ∇ · (̃σi∇ vi ) .

Both σi and vi are functions of position. The left-hand side
is zero except at the cell membrane. The main theme of this
chapter has been that current that stops flowing inside the
cell must flow outside the cell. We can write an analogous
equation for the region outside the cell:

−β

(
cm

∂vm

∂t
+ jm

)

zero, except at the cell membrane

= ∇ · (̃σo∇ vo) . (7.41)
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v  (r,t )i

v  (r,t )o

Fig. 7.27 The interior of myocardial cells (shaded) is connected to
adjoining cells by gap junctions. The bidomain model assumes that in a
small region of space (large compared to a cell) there are two potentials:
the interior potential and outside potential that are functions of position
and time

Myocardial cells are typically about 10 μm in diame-
ter and 100 μm long. They have the added complication
that they are connected to one another by gap junctions, as
shown schematically in Fig. 7.27. This allows currents to
flow directly from one cell to another without flowing in the
extracellular medium. The bidomain (two-domain) model is
often used to model this situation (Henriquez 1993; Hen-
riquez and Ying 2009). It considers a region, small compared
to the size of the heart, that contains many cells and their
surrounding extracellular fluid. It simplifies the problem by
assuming that each small volume element contains two do-
mains, intracellular and extracellular. Think of the volume
element as the entire region shown in Fig. 7.27. There are
two potentials in each small volume element: vi (r, t) and
vo(r, t). These potentials are averages over the intracellular
and extracellular domains contained in the volume element.
The transmembrane potential is the difference between these
two potentials: vm(r, t) = vi (r, t)−vo(r, t). Charge can pass
between the two domains, but the total charge within a vol-
ume element is conserved. If the current densities in each
domain are ji and jo, then the divergence of the sum is zero:
∇ · (ji + jo) = 0. The divergence of each current individually
passes through the membrane or charges the membrane ca-
pacitance. The anisotropic analogs of Eqs. 7.40 and 7.41 are
now

β

(
cm

∂vm

∂t
+ jm

)
= div(̃σi · grad vi ) = ∇ · (̃σi · ∇vi ),

−β

(
cm

∂vm

∂t
+ jm

)
= div(̃σo · grad vo)

= ∇ · (̃σo · ∇vo).

(7.42)
The quantity β is the membrane surface area per unit volume
of the entire bidomain—both intracellular and extracellular
volumes. For example, if we consider that the cells are all

cylindrical of length h and radius a, then the surface area of
a cell is 2πah. If the fraction of the total volume occupied
by cells is f , then the total volume associated with this cell
is πa2h/f , so

β = 2f

a
. (7.43)

The membrane current jm can be modeled by either a pas-
sive membrane (Ohm’s law—electrotonus) or with one of the
models for an active membrane.

Anisotropy plays an important role in the bidomain
model. To see why, consider a solution to Laplace’s equation
in a monodomain—a two-dimensional sheet of homoge-
neous, anisotropic tissue with straight fibers. If the x direc-
tion is chosen to be along the fiber direction (the direction of
greatest conductivity), then Laplace’s equation becomes

σox

∂2vo

∂x2
+ σoy

∂2vo

∂y2
= 0.

Now define a new set of coordinates x′ = x and y′ =√
σox/σoyy. You can show that in these new coordinates

Laplace’s equation becomes

∂2vo

∂x′2 + ∂2vo

∂y′2 = 0.

We have removed the effect of anisotropy by rescaling dis-
tance in the direction perpendicular to the fibers. If you try a
similar trick with the bidomain model

σix

∂2vi

∂x2
+ σiy

∂2vi

∂y2
= β

(
cm

∂vm

∂t
+ jm

)
(7.44a)

σox

∂2vo

∂x2
+ σoy

∂2vo

∂y2
= −β

(
cm

∂vm

∂t
+ jm

)
, (7.44b)

you can find a new coordinate system that removes the effect
of anisotropy in either the intracellular space or the extra-
cellular space, but in general you cannot find a coordinate
system that removes the anisotropy in both spaces simul-
taneously (Roth 1992). Only in the special case of equal
anisotropy ratios (σix/σiy = σox/σoy) will the equations
simplify dramatically. But the anisotropy ratios in the heart
are not equal. In the intracellular space the ratio of conduc-
tivities parallel and perpendicular to the fibers is about 10:1,
while in the extracellular space this ratio is about 4:1 (Roth
1997). Anisotropy plays an essential role in the electrical
behavior of the heart, especially during electrical stimulation.

7.10 Electrical Stimulation

The information that has been developed in this chapter can
also be used to understand some of the features of stimu-
lating electrodes. These may be used for electromyographic
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studies; for stimulating muscles to contract called functional
electrical stimulation (Peckham and Knutson 2005); for a
cochlear implant to partially restore hearing (Zeng et al.
2008); deep brain stimulation for Parkinson’s disease (Perl-
mutter and Mink 2006); for cardiac pacing (Moses and
Mullin 2007); and even for defibrillation (Dosdall et al.
2009). The electrodes may be inserted in cells, placed in or
on a muscle, or placed on the skin.

A pulse of current is sent to the stimulating electrode.
The current required to produce a response depends on the
shape and size of the electrode, its placement, the kind of
cell being stimulated, and the duration of the pulse. For a
given electrode geometry the shorter the pulse, the larger the
current required for a tissue response. For very long pulses
there is a minimum current required to stimulate that is called
rheobase. The strength-duration curve was first discovered
by Weiss in 1901. He expressed it in terms of total charge in
the stimulating pulse. A description of the strength-duration
curve and its history has been given by Geddes and Bourland
(1985). They also describe some techniques for making accu-
rate measurements. The strength-duration curve for current
was first described by Lapicque (1909) as

i = iR

(
1 + tC

t

)
, (7.45)

where i is the current required for stimulation, iR is the
rheobase, t is the duration of the pulse, and tC is chronaxie,
the duration of the pulse that requires twice the rheobase
current.

Equation 7.45 provides an empirical fit to the experi-
mental data. We can develop a model to explain it using
information from Chap. 6. A nerve fires after a certain depar-
ture from the resting potential. Subthreshold behavior can be
modeled by electrotonus. Suppose that we inject a stimulat-
ing current into a cell at the origin. Equation 6.58 gave the
voltage along the axon for a current injected in the cell at the
origin after an infinitely long time: v − vr = v0e

−|x|/λ. The
solution to Problem 6.34 shows that the current injected is

i0 = 2v0/λri . (7.46)

The quantities λ and ri are defined in Chap. 6. The factor of
2 arises because current flows both ways along the cell. The
rheobase current is

iR = 2
vthreshold

λri
. (7.47)

If we assume that the threshold voltage is independent of
pulse duration, we can use the curve for x = 0 in Fig. 6.31c
to relate the minimum current to the pulse duration. As long
as the pulse is applied, the voltage will rise along this curve.
When the current is turned off, the voltage will start to
fall. If the voltage reaches threshold, the cell will fire. This

4
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i/i
R

1.41.21.00.80.60.40.20.0
t/τ

i/iR = 1 + 0.228 τ/t

i/iR = erf (t/τ)1/2

Fig. 7.28 The stimulus strength-duration curve plotted for the
chronaxie–rheobase model, Eq. 7.45 and for electrotonus, Eq. 7.49

curve is the solution of Eq. 6.55. The solution is (Chap. 6,
Problem 36; Plonsey 1969, p. 132))

v(0, t) − vr = v0 erf

(√
t

τ

)

, (7.48)

where τ is the membrane time constant, κε0ρm. The error
function is defined in Eq. 4.74 and is plotted in Fig. 4.21.
The current required for stimulation with an intracellular
electrode at the origin is therefore

i = 2vthreshold

λri erf(
√

t/τ )
= iR

erf(
√

t/τ )
. (7.49)

Chronaxie can be related to the time constant τ by setting
i = 2iR:

2iR = iR

erf
(√

tC/τ
) . (7.50)

From a table of values of the error function, we find

tC = 0.228τ. (7.51)

Figure 7.28 compares the standard empirical curve, Eq. 7.45,
with this model. The curves are experimentally indistin-
guishable.

Equation 7.45 is also used for surface electrodes. Ta-
ble 7.1 shows some experimental values for rheobase and
chronaxie. The further the electrode from the tissue being
stimulated, the greater the rheobase current that is required.

An electrode that is transferring positive charge to the
medium is called an anode. One that is collecting positive
charge is called a cathode. If the stimulating electrode is



7.10 Electrical Stimulation 203

Table 7.1 Comparison of values for rheobase and chronaxie for
different stimulations

Stimulation Rheobase
(mA)

Chronaxie
(ms)

Intracellular, from Table 6.1,
vthreshold = 15 mV

6.7×10−6 0.23

Myocardium, from good pacing electrodes 0.1
Motor nerves for inspiration, from

stimulation of chest wall (Voorhees et al.
1992)

49 0.17

Myocardium, from stimulation of chest
wall (Voorhees et al. 1992)

204 1.82

+ Extracellular

Intracellular

Anode

Region of hyperpolarization

Region of depolarization

Fig. 7.29 A schematic drawing showing why there is a region of hy-
perpolarization near a stimulating anode (positive electrode) with a
region of weaker depolarization further away

inside the cell, a positive current leaving the electrode will
increase the positive charge within the cell and depolarize it.
Another way to say it is that current from the electrode flows
out through the membrane, so the inside of the membrane
will be made more positive than the outside. On the other
hand, an anodic electrode just outside the cell will send pos-
itive current in through the membrane near the electrode, as
shown in Fig. 7.29. This lowers the potential inside and hy-
perpolarizes the membrane near the electrode. Further away
from the stimulation point will be a region where current
flows out through the membrane, thus depolarizing the cell.
However, the outward current is in general spread out over
more membrane, so the current density and hence the depo-
larization is less than the hyperpolarization near the anode.
The situation is, of course, reversed for a cathodic electrode.
Figure 7.29 is conceptual; to draw the field lines accurately
would require taking into account the conductivities of the
extracellular and intracellular fluid as well as the membrane.

The electrotonus model also helps us understand another
effect that is observed: the virtual cathode. The point of
origin for a stimulus can be measured by placing sensing
electrodes in or on the heart at different distances from the
stimulating electrode and plotting the time required for the
depolarization wave front to reach the electrode vs. its po-
sition. Extrapolation to the time of stimulus gives the size
of the region of initial depolarization. Imagine a stimulating
electrode inside a one-dimensional cell. When the stimulus
current is just above rheobase, the region of depolarization

is very small and surrounds the electrode. As the stimulating
current is increased, the size of the initial depolarized region
grows. From Eqs. 6.58 and 7.50 we obtain

vthreshold = i0λri

2
e−xvc/λ

or

xvc = λ ln

(
i0λri

2vthreshold

)
= λ ln

(
i0

iR

)
, (7.52)

where xvc is the size of the virtual cathode.
Cardiac pacemakers are a useful treatment for certain

heart diseases (Jeffrey 2001; Moses and Mullin 2007; Barold
1985). The most frequent are an abnormally slow pulse rate
(bradycardia) associated with symptoms such as dizziness,
fainting (syncope), or heart failure. These may arise from
a problem with the SA node (sick sinus syndrome) or with
the conduction system (heart block). One of the first uses
of pacemakers was to treat complete or third degree heart
block. The SA node and the atria fire at a normal rate but the
wave front cannot pass through the conduction system. The
AV node or some other part of the conduction system then
begins firing and driving the ventricles at its own, patholog-
ically slower rate. Such behavior is evident in the ECG in
Fig. 7.30, in which the timing of the QRS complex from
the ventricles is unrelated to the P wave from the atria. A
pacemaker stimulating the ventricles can be used to restore a
normal ventricular rate.

A pacemaker can be used temporarily or permanently.
The pacing electrode can be threaded through a vein from the
shoulder to the right ventricle (transvenous pacing, Fig. 7.31)
or placed directly in the myocardium during heart surgery.
Sometimes two pacing electrodes are used, one in the atrium
and one in the ventricle. The pacing electrode can be unipolar
or bipolar. With a unipolar electrode, the stimulation cur-
rent flows into the myocardium and returns to the case of
the pacemaker, which is often placed in a pocket in the mus-
cle of the chest wall near the shoulder. The return current in
a bipolar electrode goes to a ring electrode a few centimeters
back along the pacing lead from the electrode at the tip. The
surface area of a typical tip is about 10 mm2 (10−5 m2). The
current density required to initiate depolarization depends on
the spatial distribution of the current and is approximately
100 A m−2. Thus, in this model the current is about 1 mA.6

The resistance of the tissue is typically 500 Ω, so the voltage
is 0.5 V. After the pacing electrode is implanted, the size of
the voltage pulse required to initiate ventricular activity rises
because inflammatory tissue grows around the electrode. It
is conducting, but the myocardium is further away, and the

6 Acute implants of smaller electrodes where the electrode resistance
is low, as well as computer simulations, have shown stimulation with
currents as small as 18 μA (Lindemans and Denier van der Gon 1978).
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Fig. 7.30 A patient with 3rd degree AV heart block. (From Rardon et al. 2000. Used by permission)

Fig. 7.31 An implanted pacemaker or defibrillator. The battery and
electronics are in a sealed container (the “can”) placed under the skin
near the left shoulder. The electrode or “lead” is threaded through the
subclavian vein and right atrium into the right ventricle. (Image c©
Copyright by medmovie.com. Used by permission of medmovie.com)

inflammatory tissue effectively increases the size of the elec-
trode, thereby reducing the current density. After 6 months
or so, the inflammation has been replaced by a small fibrous
capsule, resulting in an effective electrode size larger than
the bare electrode but smaller than the region of inflamma-
tion. Electrodes that elute steroids have been used to reduce
the inflammation.

Pacemakers can also be designed to detect an abnor-
mal rhythm and apply an electrical stimulus to reverse it.
Fig. 7.32 shows a patient with ventricular tachycardia due
to a reentrant circuit (p. 194, 290) which has been corrected
by pacing very rapidly so that the refractory period prevents

Fig. 7.32 The top strip shows the onset of ventricular tachycardia,
which persists in the next two strips. Very rapid pacing in the fourth
strip restores a normal sinus rhythm. (Source: Mitrani et al. 1995. Used
by permission)

the propagation of the reentrant wave.Ventricular fibrillation
occurs when the ventricles contain many interacting reen-
trant wavefronts that propagate chaotically. Fibrillation is
discussed in greater detail in Chap. 10. During fibrillation
the ventricles no longer contract properly, blood is no longer
pumped through the body, and the patient dies in a few min-
utes. Implantable defibrillators are similar to pacemakers,
but are slightly larger. An implanted defibrillator continually
measures the ECG. When a signal indicating fibrillation is
sensed, it delivers a much stronger shock that can eliminate
the reentrant wavefronts and restore normal heart rhythm
(Fig. 7.33).
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Fig. 7.33 Ventricular fibrillation has been induced in the electrophys-
iology laboratory. A pacemaker cardioverter-defibrillator detects the
ventricular fibrillation. A capacitor is then charged and applies a 24-
joule defibrillation pulse that restores normal rhythm. (Source: Mitrani
et al. 1995)

The bidomain model has been used to understand the
response of cardiac tissue to stimulation (Janks and Roth
2009; Trayanova and Plank 2009). This model explains a re-
markable experimental observation. Although the speed of
the wave front is greater along the fibers than perpendicu-
lar to them, if the stimulation is well above threshold, the
wavefront originates farther from the cathode in the direction
perpendicular to the fibers—the direction in which the speed
of propagation is slower. The simulations show that this is
due to the anisotropy in conductivity. This is called the dog-
bone shape of the virtual cathode. It can rotate with depth in
the myocardium because the myocardial fibers change orien-
tation. The difference in anisotropy accentuates the effect of
a region of hyperpolarization (a virtual anode) adjacent to the
depolarization region produced by a cathodic electrode. This
hyperpolarization can shorten the refractory period of the
tissue, thereby creating new excitable paths through which
reentrant wave fronts can propagate (Wikswo and Roth 2009;
Ripplinger and Efimov 2009).

One of the fundamental problems with research in this
area can be seen in equations like Eq. 7.41. The variable
on the left is the transmembrane potential vm. The vari-
able on the right is the potential inside or outside the cell.
Measurement of vm requires measurement or calculation
of the difference vi − vo. Experimental measurements of
the transmembrane potential often rely on the use of a

Fig. 7.34 The standard “10–20” arrangement of electrodes on the scalp
for the EEG. (Courtesy of Natus Neurology Grass brand products)

voltage-sensitive dye whose fluorescence changes with the
transmembrane potential (optical mapping) (Rosenbaum and
Jalife 2001).

7.11 The Electroencephalogram

Much can be learned about the brain by measuring the elec-
tric potential on the scalp surface. Such data are called the
electroencephalogram (EEG). Nunez and Srinivasan (2005)
have written an excellent book about the physics of the EEG.
We briefly examine the topic here. The EEG is used to di-
agnose brain disorders, to localize the source of electrical
activity in the brain in patients who have epilepsy (Lopes da
Silva 2008), and as a research tool to learn more about how
the brain responds to stimuli (evoked responses) and how it
changes with time (plasticity). Typically, the EEG is mea-
sured from 21 electrodes attached to the scalp according to
the 10–20 system (Fig. 7.34). A typical signal from an elec-
troencephalographic electrode is shown in the top panel of
Fig. 11.39. One difficulty in interpreting the EEG is the lack
of a suitable reference electrode. None of the 21 electrodes
in Fig. 7.34 qualifies as a distant ground against which all
other potential recordings can be measured. One way around
this difficulty is to subtract from each measured potential
the average of all the measured potentials. In the problems,
you are asked to prove that this average reference recording
does not depend on the choice of reference electrode; it is a
reference-independent method.
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Symbols Used in Chapter 7
Symbol Use Units First

used
page

a Axon radius m 187
cm Membrane capacitance per unit

area
F m−2 200

f Intracellular volume fraction 201
h Length of segment m 200
i Current A 186
ii , io Current inside, outside axon A 186
iR Rheobase current A 202
j, j Current density A m−2 186
jm Current density through

membrane
A m−2 200

p, p Activity vector or current
dipole moment

A m 188

q Charge C 186
ri Resistance per unit length

inside axon
Ω m−1 202

r, r Distance m 186
t Time s 199
tC Chronaxie s 202
v Potential V 186
vi , vo Potential inside, outside axon V 200
vm Potential across membrane V 200
x, y, z, x0, x1, Distance or position m 187

x2, y0
xvc Size of virtual cathode m 203
C Capacitance F 200
E, E Electric field V m−1 186
Pn Legendre Polynomial 189
Q Electric charge C 200
R Resistance Ω 187
R, R Distance or position m 190
β Ratio of surface area to volume m−1 200
ε0 Permittivity of free space N−1

m−2 C2
186

λ Space constant m 202
σ, σi , σo Electrical conductivity S m−1 186
ρ Charge density C m−3 199
τ Time constant s 202
θ Angle 188
ξ Ratio of x to R 192
Ω Solid angle 189

Problems

Section 7.1

Problem 1. A single nerve or muscle cell is stretched along
the x axis and embedded in an infinite homogeneous medium
of conductivity σo. Current i0 leaves the cell at x = b and
enters the cell again at x = −b. Find the current density j at
distance r from the axis in the x = 0 plane.
Problem 2. An axon is stretched along the x axis. At one
instant of time an impulse traveling along the axon has the
form shown in the graph. The electrical conductivity inside

the axon of radius a is σi . In the infinite external medium it
is σo. Find an expression for the potential at point (x0, y0).

x

-2b 0 b

v0

Problem 3. The interior potential of a cylindrical cell is
plotted at one instant of time. Distances along the cell are
given in terms of length b. The cell has radius a and elec-
trical conductivity σi . The resting potential is 0 and the
depolarized potential is v0. The conductivity of the external
medium is σo.
(a) Find expressions for, and plot, the current along the cell

in the four regions (x < 0, 0 < x < 2b, 2b < x <

3b, 3b < x).
(b) Find the potential at a point (x, y) outside the cell in

terms of the parameters given in the problem. The point
is not necessarily far from the cell.

Section 7.2

Problem 4. Modify the closing argument of Sect. 7.2 by
considering electrodes that are disks rather than spheres.
(Hint: The capacitance you will need is given in Sect. 6.19.)
Problem 5. Suppose an axon is surrounded by a thin layer
of extracellular fluid of thickness d. Use arguments based on
the intracellular and extracellular resistances to estimate the
ratio �vo/�vi in this case.

Section 7.3

Problem 6. Starting with Eq. 7.4, make the Taylor’s se-
ries expansions described in the text, and use them to derive
Eq. 7.16.
Problem 7. What would be the current-dipole moment of a
nerve cell of radius 2μm when it depolarizes? Would myeli-
nation make any difference? Does the result depend on the
rise time of the depolarization? If the impulse lasts 1 ms and
the conduction speed is 5 m s−1, how far apart are the rising
and falling edges of the pulse?
Problem 8. An axon or muscle cell is stretched along the x

axis on either side of the origin. As it depolarizes, a constant
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current dipole p pointing to the right sweeps along the axis
with velocity u. An electrode at (x = 0, y = a) measures the
potential with respect to v = 0 at infinity. Ignore repolariza-
tion. Find an expression for v at the electrode as a function of
time and sketch it. Assume that at t = 0, p is directly under
the electrode at x = 0.

 x

p

Observation Point

a

Problem 9. An electrode at (x = 0, y = a) measures the
potential outside an axon with respect to v = 0 at infinity.
A nerve impulse is at point x along the axon, measured from
the perpendicular from the electrode to the axon. At x + b

a current dipole points to the right, representing the depolar-
ization wave front. At x − b a vector of the same magnitude
points to the left, representing repolarization. Obtain an ex-
pression for v as a function of x, b, p, and a. Plot it in the
case a = 1, b = 0.05.

a

ELECTRODE

p-p

 x+b
 x-b 

Problem 10. A dipole p located at the origin (0, 0, 0) is ori-
ented in the x direction. The potential vo(x) produced by this
dipole is measured along the line y = 0, z = d.
(a) Find an equation for vo(x) in terms of x, d, σo (the

conductivity of the medium) and the dipole strength, p.
(b) Find an expression for the depth d of the dipole in terms

of the distance �x, defined as the distance between the
minimum and maximum of vo(x, y). This is an exam-
ple of an “inverse problem,” in which you try to learn
about the source (in this case, the depth of p) from
measurements of vo.

Problem 11. The solid angle theorem is often used to
interpret electrocardiograms. The relationship between the
exterior potential and the solid angle in Eq. 7.15 is a general
result: the potential is proportional to the solid angle sub-
tended by the wave front. Use this result to explain (a) why
a closed wave front produces no exterior potential, and (b)
why an open wave front produces a potential that depends
only on the geometry of its opening or rim.

Section 7.4

Problem 12. Run the program of Fig. 7.11 and plot the
potential for different distances from the axon.
Problem 13. Modify the program of Fig. 7.11 to calculate
the potential from a single Gaussian action potential and plot
the potential.
Problem 14. Let the intracellular potential be zero except in
the range −a < x < a, where it is given by

vi =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

2

(
a + x

a

)2

, −a < x < −a/2

1 − 2
(x

a

)2
, −a/2 < x < a/2

2

(
a − x

a

)2

, a/2 < x < a.

Plot vi vs x. Use Eq. 7.21 to calculate the exterior potential
at (x0, y0). You may need the integral

∫
dx√

x2 + b2
= sinh−1

(x

b

)
.

Section 7.5

Problem 15. Suppose a wave front propagates at a speed of
0.25 m s−1 and its refractory period lasts 250 ms. Calculate
the minimum path length of its reentrant circuit. Most reen-
trant wave fronts are somewhat slower and briefer than this,
so their paths may be shorter.

Section 7.7

Problem 16. Two electrodes are placed in a uniform con-
ducting medium 10 cm from a cell of radius 5 μm and
10 cm from each other, so that the two electrodes and the
cell form an equilateral triangle. When the cell depolarizes
the potential rises 90 mV. What will be the potential differ-
ence between the two electrodes when the cell orientation is
optimum? How many cells would be needed to give a po-
tential difference of 1 mV between the electrodes? Assume
σi/σo = 10.
Problem 17. Guess whatever parameters you need to predict
the voltage at the peak of the QRS wave in lead II. Compare
your results to the electrocardiogram of Fig. 7.23.
Problem 18. At a particular instant of the cardiac cycle,
p is located at the midpoint of a line connecting two elec-
trodes that are 50 cm apart, and p is parallel to that line. At
that instant the magnitude of the potential difference between
the electrodes is 1.5 mV. Upon depolarization, the potential
change within the cells has magnitude 90 mV.
(a) What is the magnitude of p?
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(b) If σi/σo = 10, what is the cross-sectional area of the
advancing region of depolarization?

Problem 19. A semi-infinite slab of myocardium occupies
the region z > 0. A hemispherical wave of depolarization
moves radially away from the origin through the slab. At
some instant of time the radius of the hemispherical depo-
larizing wavefront is R. Assume that p = ∫

dp, that dp is
everywhere perpendicular to the advancing wavefront, and
that the magnitude of dp is proportional to the local area of
the wavefront. Find p. Assume that the observation point is
very far away compared to R.
Problem 20. Make measurements on yourself and construct
Fig. 7.19.
Problem 21. Experiments have been done in which a dog
heart was stimulated by an electrode deep within the my-
ocardium. No exterior potential difference was detected until
the spherical wave of depolarization grew large enough so
that part of it intercepted one wall of the heart. Why?
Problem 22. Prove directly from Eq. 7.32 that I − II +
III = 0. (It is sometimes said that the equilateral nature of
Einthoven’s triangle is necessary to prove this.)
Problem 23. Derive Eqs. 7.32.

Section 7.8

Problem 24. Estimate the lower limit for the duration of the
QRS complex by calculating the time required for a wave
front to propagate across the heart wall. Assume the wall
thickness is 10 mm and the propagation speed is 0.2 m s−1.

Problem 25. In an ECG recording, the width of one large
square corresponds to 200 ms. A normal heart rate is between
60 and 100 beats min−1. The heart rate is usually measured
by counting the number of large squares between adjacent
QRS complexes.
(a) How many large squares are there for a normal heart

rate?
(b) In Fig. 7.30 determine the rate of the atria and of the

ventricles.
Problem 26. Consider Lead II of the normal ECG in
Fig. 7.23. The QRS wave and the T wave are both posi-
tive. Use a 1-dimensional model to convince yourself that
the QRS complex and the T wave should have opposite po-
larities. Why then is the T wave inverted? Find a way to
explain the inverted T wave by letting the action potential du-
ration vary between epicardium (outside) and endocardium
(inside). On which surface should the duration be longest?

Section 7.9

Problem 27. Ohm’s law says that j = σE. Draw what
j and E look like (a) in a circuit consisting of a battery

and a resistor; (b) for the current flowing when a nerve cell
depolarizes.
Problem 28. Obtain the values for β for a cube of length a

on a side, for a cylinder of radius a and length h, and for a
sphere of radius a.
Problem 29. Show that Eq. 7.36a is the same as Eq. 6.51 by
considering the interior of a single cell stretched along the x

axis as in Fig. 6.28. Consider the charge in a small cylindrical
region of axoplasm of length h and radius a, the cylindrical
surface of which is surrounded by cell membrane. Show that
the total charge Q within the axoplasm changes according to

∂Q

∂t
= πa2h

∂ρi

∂t
= C

∂vm

∂t
+ im

= 2πah

(
cm

∂vm

∂t
+ jm

)
,

and that this can be combined with Eq. 7.36a to give

cm

∂vm

∂t
+ jm = πa2h

2πah
σi

∂2vi

∂x2

= σia

2

∂2vi

∂x2
,

which is the same as Eq. 6.51, except that it is written in
terms of σi , a, and h instead of a and ri .
Problem 30. Clark and Plonsey (1968) solved Eq. 7.34 for
a cylindrical axon of radius a using the following method.
Assume that the potentials all vary in the z direction si-
nusoidally, for instance vm(z) = V sin(kz), where V is a
constant.
(a) Show that the intracellular and extracellular potentials

can be written as

vi = AI0(kr) sin(kz)

vo = BK0(kr) sin(kz), (7.53)

where In and Kn are modified Bessel functions obeying
the equation

1

r

∂

∂r

(
r
∂v

∂r

)
−
(

k2 + n2

r2

)
v = 0.

(b) Determine the constants A and B in terms of V , using
the following two boundary conditions: vm = vi − vo,

and σi(∂vi/∂r) = σo(∂vo/∂r), both evaluated at r =
a. You will need to use the Bessel function identities
dI0(kr)/dr = kI1(kr) and dK0(kr)/dr = −kK1(kr).
Clark and Plonsey used this result and Fourier analysis
(Chap. 11) to determine vi and vo when they are not
sinusoidal in z.

Problem 31. Starting with the bidomain equations, divide
Eq. 7.44a by σix and Eq. 7.44b by σox . Now subtract one
equation from the other. Under what conditions do the equa-
tions contain vm = vi − vo but not vi and vo individually?
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Section 7.10

Problem 32. Verify Eq. 7.47.
Problem 33. Verify the values given for rheobase and
chronaxie in Table 7.1 that are based on Table 6.1.
Problem 34. An approximation to the error function is given
by Abramowitz and Stegun (1972)

erf(x) ≈ 1 −
(

1 + 0.278393x + 0.230389x2

+0.000972x3 + 0.078108x4
)−4

, x > 0.

Calculate erf(x) using this approximation for x = 0, 0.5,

1.0, 2.0 and ∞. Using trial and error, determine the value of
x for which erf(x) = 0.5. (See Eq. 7.50.)
Problem 35. Find the equivalent of Eq. 7.45 in terms of the
charge required for the stimulation.
Problem 36. If the medium has a constant resistance, find
the energy required for stimulation as a function of pulse
duration.
Problem 37. A typical pacemaker electrode has a surface
area of 10 mm2. What is its resistance into an infinite
medium if it is modeled as a sphere? If it is modeled as a
disk? (You will have to use results from Chap. 6 and assign
a value for σo.)
Problem 38. Equation 6.51 is the cable equation for a nerve
axon. Assume that the axon membrane is passive (jm =
gm(vi − vo), where gm is a constant).
(a) Express the equation in terms of vm and vo instead of vi

and vo, where vm = vi − vo.
(b) Divide the resulting equation by gm, and then write the

cable equation in terms of the time constant cm/gm and
the length constant 1/

√
2πarigm.

(c) Put all the terms containing vm on the left side, and terms
containing vo on the right side. The resulting equation
should look like Eq. 6.55, except for a new source term
on the right side equal to −λ2∂2vo/∂x2. (Measure vm

with respect to resting potential so vr = 0 in Eq. 6.55).
The negative of this new term has been called the acti-
vating function (Rattay 1987). It is useful when studying
electrical stimulation of nerves.

Problem 39. For this problem, use the activating function
derived in Problem 38. Assume that λ and τ are negligi-
bly small, so that vm simply equals the activating function.
Consider a point electrode in an infinite, homogeneous vol-
ume conductor at distance d from the axon. The extracellular
potential is vo = (1/4πσo) I/r.

(a) Calculate vm as a function of position x along the axon
(x = 0 is the closest position to the electrode).

(b) Assume that the axon will fire an action potential if vm

somewhere along the axon is greater than Vthreshold. Cal-
culate the ratio of the stimulation current I needed to

excite the axon for a cathode (negative electrode) and an
anode (positive electrode).

Problem 40. For this problem, use the activating function
derived in Problem 38. An action potential can be excited
if a stimulus depolarizes an axon to a value greater than
Vthreshold, and a propagating action potential can be blocked
if a stimulus hyperpolarizes to a value of vm less than −Vblock

(Vblock > Vthreshold).
(a) For a cathodal electrode [vo = (1/4πσo) I/r] calculate

the ratio of the threshold current to the current needed to
block propagation.

(b) Use two electrodes (one cathodal and one anodal) to de-
sign a stimulator that will result in one-way propagation
along the axon (say, propagation only in the positive
x direction, but blocked in the negative x direction).
For an application of such electrodes during functional
electrical stimulation, see Ungar et al. (1986).

Problem 41. For this problem, use the activating function
derived in Problem 38, and block by hyperpolarization de-
rived in Problem 40. The factor of λ2 in the activating
function implies that larger diameter axons are easier to stim-
ulate than smaller diameter axons. Sometimes you want to
excite the smaller fibers without the larger fibers (physio-
logical recruitment). Describe qualitatively how you can use
a single electrode and block in the hyperpolarized region
to obtain physiological recruitment. For a more complete
discussion, see Tai and Jiang (1994).
Problem 42. In second degree heart block, the wave front
sometimes passes through the conduction system and some-
times does not. Qualitatively sketch the ECG for a heart with
second degree block for at least five beats. Specifically in-
clude the case where every third wave is blocked. Include
the P wave, the QRS wave, and the T wave.
Problem 43. During sinus exit block the SA node functions
normally but the wave front fails to propagate from the SA
node to the atria. Sketch five beats of an ECG with all beats
normal except the third, which undergoes sinus exit block.
Problem 44. In sick sinus syndrome the SA node has a slow
and erratic rate. The AV node and conduction system func-
tion properly. You plan to implant a pacemaker in the patient.
Should it stimulate the atria or the ventricles? Why?
Problem 45. A patient with intermittent heart block has
an AV node that functions normally most of the time with
occasional episodes of block, lasting perhaps several hours.
Design a pacemaker to treat the patient. Ideally, your design
will not stimulate the heart when it is functioning normally.
Describe
(a) whether you will stimulate the atria or ventricles
(b) which chambers you will monitor with a recording

electrode
(c) what logic your pacemaker will use to determine when

to stimulate. Your design may be similar to a demand
pacemaker described in Jeffrey (2001, p. 132).
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Problem 46. The Lapicque strength-duration (SD) curve is

i

iR
= 1 + tC

t
,

the SD curve in terms of the error function is

i

iR
= 1

erf
(√

0.228t/tC
) ,

and the SD curve derived in Chap. 6 Problem 37 is

i

iR
= 1

1 − e−0.693t/tC
.

(a) Plot all three curves for 0 < t/tC < 5. Use the equation
in Problem 34 to evaluate the error function.

(b) Find approximations for each curve for t/tC 	 1. You
may need the Taylor’s series expansions ex ≈ 1 + x and
erf(x) ≈ 2x/

√
π.

(c) Discuss the physical assumptions that were used to
derive each curve.

Problem 47. Consider a pacemaker delivering a 2 − mA,
1 − V, 1 − ms pulse every second. Pacemakers are often
powered by a lithium-iodide battery that can deliver a total
charge of 2 ampere hours.
(a) What is the energy per pulse?
(b) What is the average power?
(c) How long will the battery last?
(d) Your answer to (c) is an overestimate of battery lifetime,

in part because the battery voltage begins to decline be-
fore all its charge has been delivered, and in part because
the pacemaker circuitry requires a small, constant cur-
rent. For this pacemaker, add a constant current drain of
5μA and assume that the useful lifetime of the battery is
over when 75 % of the total charge has been delivered.
How long will the battery last in this case?

Problem 48. During stimulation of cardiac tissue through a
small anode, the tissue under the electrode and in the direc-
tion perpendicular to the myocardial fibers is hyperpolarized,
and adjacent tissue on each side of the anode parallel to the
fiber direction is depolarized. Imagine that just before this
stimulus pulse is turned on the tissue is refractory. The hyper-
polarization during the stimulus causes the tissue to become
excitable. Following the end of the stimulus pulse, the depo-
larization along the fiber direction interacts electrotonically
with the excitable tissue, initiating an action potential (break
excitation). (This type of break excitation is very different
than the break excitation analyzed on page 181.)
(a) Sketch pictures of the transmembrane potential distribu-

tion during the stimulus. Be sure to indicate the fiber
direction, the location of the anode, the regions that are
depolarized and hyperpolarized by the stimulus, and the
direction of propagation of the resulting action potential.

(b) Repeat the analysis for break excitation caused by a
cathode instead of an anode. For a hint, see Wikswo and
Roth (2009).

Problem 49. The signal measured during optical mapping,
V , is a weighted average of the transmembrane potential,
Vm(z), as a function of depth,

V =
∫ ∞

0
Vm(z)w(z)dz,

where w(z) is a normalized weighting function. Suppose
the incident light that produces the fluorescence decays with
depth exponentially, with an optical length constant δ. Then
w(z) = exp(−z/δ)/δ. Often a shock will cause Vm(z) to fall
off exponentially with depth, Vm(z) = V0 exp(−z/λ), where
V0 is the transmembrane potential at the tissue surface and λ

is the electrical length constant (see Sect. 6.6.12).
(a) Perform the required integration to find an analytical ex-

pression for the optical signal, V , as a function of V0, δ

and λ.
(b) What is V in the case δ 	 λ? Explain this result

physically.
(c) What is V in the case δ � λ? Explain this result

physically.
(d) For which limit do you obtain an accurate measurement

of the transmembrane potential at the surface, V = V0?
For additional analysis, see Janks and Roth (2002).

Problem 50. Consider a two-dimensional sheet of cardiac
tissue represented as a bidomain having unequal anisotropy
ratios: σix = σex = 0.2, σiy = 0.02, and σey = 0.08 S m−1.
Assume an insulated obstacle that current must go around is
at the center of the sheet. At any point in the tissue, current
will divide between the intracellular and extracellular spaces
according to their conductivities, with a larger fraction of the
current in the space with greater conductivity.
(a) If current is passed through the tissue in the x-direction,

determine qualitatively where the tissue is depolarized
and where it is hyperpolarized in the region surrounding
the insulator. Recall, depolarization occurs where cur-
rent passes from the intracellular into the extracellular
space, and hyperpolarization where current passes from
the extracellular into the intracellular space.

(b) Repeat this analysis if current is passed in the y-
direction.

(c) What would be the transmembrane potential if the tissue
had equal anisotropy ratios?
For additional analysis, see Langrill and Roth (2001).

Section 7.11

Problem 51. When measuring the EEG with electrodes dis-
tributed according to the 10–20 system, you obtain measure-
ments of the potential difference between the ith electrode
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(i = 1, . . . , 20) and the reference electrode (i = 21). Show
that by computing the average reference v∗

i = (vi − v21) −
(1/20)

∑20
j=1

(
vj − v21

)
, the resulting values of v∗

i are inde-
pendent of the reference potential v21.
Problem 52. Consider a very simple model of the EEG: a
dipole p pointing in the z direction at the center of a spherical
conductor of radius R and conductivity σo. The potential vo

can be written as the sum of two terms: the potential of a
dipole in an unbounded medium plus a potential that obeys
Laplace’s equation

vo = p cos θ

4πσor2
+ Ar cos θ

where r and θ are in spherical coordinates, and A is an
unknown constant.
(a) Use Appendix L to show that the second term in the

expression for vo obeys Laplace’s equation.
(b) If the region outside the spherical conductor is air (an

insulator), determine the value of A by using the bound-
ary condition that the radial current at the surface of the
sphere is zero.

(c) Calculate vo as measured at the sphere surface (r = R),
and determine by what factor vo differs from what it
would be in the case of an unbounded volume conductor.

Problem 53. Suppose you measure the EEG potential vj at
N locations rj = (xj , yj , zj ), j = 1,· · ·, N . Assume vj is
produced by a dipole p = (px, py, pz) located at the origin.
Define

R =
N∑

j=1

⎡

⎢
⎣

pxxj + pyyj + pzzj

4πσ
(
x2
j + y2

j + z2
j

)3/2
− vj

⎤

⎥
⎦

2

,

which measures the least-squares difference between the
data and the potential predicted by a single-dipole model.
(Chap. 11 explores the least-squares method in greater de-
tail.) The goal is to find the dipole components px, py, pz

that fit the data best (minimize R).
(a) Minimize R with respect to px (set dR/dpx = 0) and

find an equation relating px, py, and pz.

(b) Repeat for py and pz.

(c) Write the three equations in the form Ap = b, where A
is a 3×3 matrix and b is a 3×1 vector. Find expressions
for the components of A and b.

(d) If we had not assumed that we knew the location of the
dipole, the problem would be much more difficult. As-
sume the dipole is at location rp = (xp, yp, zp). Modify
R and then try to minimize it with respect to rp. Carry
the calculation far enough to convince yourself that you
must now solve nonlinear equations to determine rp.

Press et al. (1992) discuss methods for making nonlinear
least squares fits.
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8Biomagnetism

The field of biomagnetism has exploded in recent decades.
Magnetic signals have been detected from the heart, brain,
skeletal muscles, and isolated nerve and muscle prepara-
tions. Measurements of the magnetic susceptibility of the
lung show the effect of dust inhalation. Susceptibility mea-
surements of the heart can determine blood volume, while
the susceptibility of the liver can measure iron stores in the
body. Bacteria and some animals contain aggregates of mag-
netic particles, often attached to neural tissue. Bacteria use
these magnetic particles to determine which way is down.
Magnetism is used for orientation by birds and other animals.

Sections 8.1 and 8.2 review the basics of magnetism. Sec-
tion 8.3 calculates the magnetic field of an axon in an infinite
conducting medium. This result, which shows that the field is
due primarily to the current dipole in the interior of the axon,
is approximately true for the magnetocardiogram and evoked
responses from the brain, described in Sects. 8.4 and 8.5.

Section 8.6 reviews electromagnetic induction. Sec-
tion 8.7 describes the use of varying magnetic fields to
stimulate nerves or muscles. Section 8.8 introduces dia-
magnetic, paramagnetic, and ferromagnetic materials and
describes biomagnetic effects that depend on magnetic ma-
terials. Section 8.9 reviews instrumentation for measuring
these weak magnetic signals.

8.1 TheMagnetic Force on aMoving Charge

Lodestone, compass needles, and other forms of magnetism
have been known for centuries, but it was not until 1820
that Hans Christen Oersted showed that an electric current
could deflect a compass needle. We now know that mag-
netism results from electric forces that moving charges exert
on other moving charges and that the appearance of the mag-
netic force is a consequence of special relativity. An excellent
development of magnetism from this perspective is found
in Purcell and Morin (2013). The development here is more
traditional (Griffiths 2013) and is incomplete.

Suppose that a beam of electrons is accelerated in a
cathode-ray tube (as in an oscilloscope, computer display, or
television receiver) and causes a spot of light to be emitted
where it strikes a fluorescent screen. The electron source is
cathode C in Fig. 8.1. The accelerating electrode is E. The
fact that the beam is accelerated toward a positively charged
electrode confirms that the electrons are negatively charged.
The beam normally strikes the screen at point X. Placing a
battery between plates A and B creates an electric field that
deflects the beam as it passes between the plates. If plate A

is positively charged, the beam is deflected upward to point
Y . If the battery is removed and the north pole of a bar mag-
net is brought to the position shown, the beam is deflected to
point Z.

We say that a magnetic field exists in the space surround-
ing the bar magnet and that the direction of the magnetic
field at any point is the direction a small compass needle lo-
cated there would point. Experiments show that the force is
at right angles to both the direction of the magnetic field and
the velocity of the charged particle, and that the magnitude
of the force F is proportional to the charge, the magnitude
of the velocity v, and the strength of magnetic field B. (In
fact, modern definitions of the magnetic field are based on
this proportionality.) The magnitude of the force is greatest
when v and B are perpendicular. We have seen a relationship
like this between three vectors before: the vector product or
cross product, which was associated with torque and defined
in Sect. 1.5. We write

F = q(v × B). (8.1)

The SI unit of B is the tesla, T. An earlier name was the weber
per square meter. Another unit is the gauss, G: 1 T = 104 G.

8.1.1 The Lorentz Force

If a coordinate system is set up so that v is along the x

axis and B is along the y axis, then v × B and the force

R. K. Hobbie, B. J. Roth, Intermediate Physics for Medicine and Biology, 213
DOI 10.1007/978-3-319-12682-1_8, c© Springer International Publishing Switzerland 2015
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Fig. 8.1 An electron beam generated at cathode C and accelerated
through electrode E strikes the fluorescent screen on the right. a A pos-
itive charge on plate A and negative charge on plate B deflects the beam
from X to Y . b A bar magnet brought close as shown deflects the beam
to point Z

on a positive charge are along the +z axis. For negatively
charged electrons F is in the opposite direction. Combining
Eq ref8.01 with the electric force gives the full expression for
the electromagnetic force, often called the Lorentz force:

F = q(E + v × B). (8.2)

Since current in a wire is the result of moving charges,
there is a force on a segment of wire carrying a current. Sup-
pose that there are C particles per unit volume, each with
charge q, drifting with speed v along a segment of wire of
length ds and cross sectional area S. In time dt the total

Fig. 8.2 A current-carrying loop is in a uniform magnetic field. The
dashed line from the center of the loop to the center of edge FG, vector
B and vector m all lie in the same plane. The sum of angles θ and φ is
π/2. The forces on opposite sides add to zero. There is a torque on
the loop unless its plane is perpendicular to the field (φ = π/2). The
magnetic moment m is perpendicular to the plane of the loop

charge passing a given plane is CvqS dt (see Eq. 4.11) so
that the current is i = CvqS. If there is a magnetic field per-
pendicular to the wire, the magnitude of the force on each
particle is qvB and the total force is CS ds qvB = iB ds.
If vector ds is defined along the wire in the direction of the
positive current, then the contribution to the magnetic force
from this segment of the wire is

dF = i(ds × B). (8.3)

If a small rectangular loop of wire is placed in a uniform
magnetic field and a current is made to flow in the wire, there
is a magnetic force on each arm of the loop. (The current
can be led to and from the rectangle by two parallel closely
spaced wires, in which the forces cancel because the currents
are in opposite directions. Forces not considered here main-
tain the position of the loop.) Figure 8.2 shows the orientation
of the loop in the horizontal magnetic field. The magnetic
moment m is perpendicular to the loop and makes an angle
θ with the direction of B. Sides HE and FG are of length
a and perpendicular to the field. The other two sides have
length b. The force on side EF has magnitude iBb sin φ and
is directed as shown. Side GH has a force of equal mag-
nitude in the opposite direction. On side FG the force is
down and on side HE it is up, both with magnitude iBa. The
vector sum of all the forces is zero. There is a torque, how-
ever. If the torque is taken about the center of the loop, the
FG force and HE force each exert a torque of magnitude
(iBa)(b/2) cos φ. The total torque is therefore iBab cos φ.
The loop is said to have a magnetic moment m of magnitude
iS, where S = ab is the area of the loop. Vector m is de-
fined to point perpendicular to the loop in the direction of the
thumb of the right hand when the fingers curl in the direction
of the current around the loop. The units of m are A m2 or
J T−1. In terms of angle θ between m and B, the torque τ

exerted by the magnetic field on the magnetic moment has
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magnitude iabB sin θ , so

τ = m × B. (8.4)

The torque is zero when m and B are parallel or antiparallel.
When they are parallel the equilibrium is stable: if there is a
small rotation of m the torque acts to return it to equilibrium.
When they are antiparallel, the equilibrium is unstable.

A small current loop can be used to test for the pres-
ence of a magnetic field. At equilibrium m points in the
same direction that a small compass needle would point and
gives the direction of B. Measuring the torque for a known
displacement of m from this direction gives the magnitude
of B.

8.1.2 The Cyclotron

One important application of magnetic forces in medicine
is the cyclotron. Many hospitals have a cyclotron for the
production of radiopharmaceuticals, especially for the gen-
erating positron-emitting nuclei for use in Positron Emission
Tomography (PET) imaging (see Chap. 17).

Consider a particle of charge q and mass m, moving with
speed v in a direction perpendicular to a magnetic field B.
The magnetic force will bend the path of the particle into a
circle. Newton’s second law states that the mass times the
centripetal acceleration, v2/r , is equal to the magnetic force

mv2/r = qvB. (8.5)

The speed is equal to circumference of the circle, 2πr ,
divided by the period of the orbit, T . Substituting this
expression for v into Eq. (8.5) and simplifying, we find

T = 2πm/(qB). (8.6)

In a cyclotron particles orbit at the cyclotron frequency,
f = 1/T . Because the magnetic force is perpendicular to the
motion, it does not increase the particles’ speed or energy. To
do that, the particles are subjected periodically to an electric
field that changes direction with the cyclotron frequency so
that it is always accelerating, not decelerating the particles.
This would be difficult if not for the fortuitous disappearance
of both v and r from Eq. (8.6), so that the cyclotron frequency
only depends on the charge-to-mass ratio of the particles and
the magnetic field, but not on their energy.

Typically, protons are accelerated in a magnetic field of
about 1 T, resulting in a cyclotron frequency of approxi-
mately 15 MHz. Each orbit raises the potential of the proton
by about 100 kV. It must circulate enough times to raise its
total energy to at least 10 MeV so that it can overcome the
electrostatic repulsion of the target nucleus and cause nuclear
reactions. For example, the high-energy protons may be inci-
dent on a target of 18O (a rare but stable isotope of oxygen),

i

B 

Fig. 8.3 The magnetic field around a current-carrying wire is at right
angles to the wire and the perpendicular from the observation point to
the wire. The magnitude is inversely proportional to the distance from
the wire

initiating a nuclear reaction that results in the production of
18F, an important positron emitter used in PET studies.

8.2 TheMagnetic Field of a Moving Charge or
a Current

8.2.1 The Divergence of the Magnetic Field is
Zero

With a compass needle or small sensing coil we can in prin-
ciple map the magnetic field surrounding a bar magnet or a
wire carrying a current. If we examine the field near a long
straight wire carrying current i, we find that B is always at
right angles to the wire and at distance r has magnitude

B = μ0i

2πr
. (8.7)

The constant μ0 is analogous to ε0 in electrostatics and is
4π×10−7 T m A−1 (or Ω s m−1). Figure 8.3 shows the direc-
tion of B at various locations around a wire. The direction of
the force is consistent with Eq. 8.2 if the direction of B is de-
fined to be the direction in which the fingers of the right hand
curl when the thumb points along the wire in the direction of
the (positive) current.

Close to the wire B is always at right angles to the wire,
in contrast to the electric field, which close to a charge al-
ways points toward or away from it. In the electric case,
the flux of E through a closed surface is proportional to the
charge within the volume enclosed by the surface (Gauss’s
law, Sect. 8.3). In contrast, the flux of B through a closed
surface is always zero. In the notation of Sect. 4.1,�

closed surface

Bn dS =
�

closed surface

B · dS = 0. (8.8)

If single magnetic charges (magnetic monopoles) existed, the
flux would be proportional to the magnetic charge within the
volume. Magnetic monopoles have never been observed, in
spite of considerable effort to find them.
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Fig. 8.4 The line integral of B · ds is calculated by multiplying ds by
the component of B parallel to ds, that is B cos θ
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Fig. 8.5 Two paths of integration. In a the path does not encircle the
wire carrying the current, and

∮
B · ds = 0. In b the path encircles the

wire and
∮

B · ds = μ0i

As in the electric case, we can construct lines of B. The
tangent to the line always points in the direction of B. For
the long wire, the lines of B are circles. One can show from
Eq. 8.8 that lines of B always close on themselves.

Equation 8.8 has the form of the continuity equation,
Eq. 4.4, with B substituted for j and with C = 0. The dif-
ferential version of Eq. 8.8 can therefore be obtained from
Eq. 4.8. It is

div B = ∇ · B = 0. (8.9)

8.2.2 Ampere’s Circuital Law

It is also interesting to consider the line integral of B around
a closed path. That is, for any element of the path ds shown
in Fig. 8.4 take the projection of B in the direction of ds,
B cos θ . Sum up all the contributions B cos θ ds along the
entire closed path. For path ABCD in Fig. 8.5a, the result is
zero. The reason is that B cos θ ds is zero on segments AB

and CD. On segment DA it is (μ0i/2πa)(aφ) = μ0iφ/2π ,
while on segment BC it is −(μ0i/2πb)(bφ) = −μ0iφ/2π .
In Fig. 8.5b the path is circular with the wire at the center,
and the line integral is B(2πa) = μ0i. This result is general:

∮
B cos θ ds =

∮
B · ds = μ0i. (8.10)

The circle on the integral sign means that the integral is taken
around a closed path. The line integral of the magnetic field

S

S'

Path

Fig. 8.6 Since the total current or flux of j through any closed surface
is zero, the current through surface S is equal to the current through
surface S′

around a closed path is equal to μ0 times the current through
a circuit enclosed by that path. If two wires carrying equal
and opposite currents are enclosed by the path of the line
integral, the integral is zero. It does not mean that B is zero
everywhere on the path.

A more general statement is that for steady currents the
line integral of B around a closed path is equal to the integral
of the current density j through any surface enclosed by the
path:

∮
B · ds = μ0

�
j · dS. (8.11)

This is known as Ampere’s circuital law. Like Gauss’s law,
it is always true but not always useful. It is true for currents
that do not vary with time, but it can be used to calculate the
magnetic field only if symmetry can be used to argue that B
is always parallel to the path and has the same magnitude at
all points on the path.

The surface used to calculate the right-hand side can be
any surface bounded by the path used on the left. Since we
are dealing with steady currents for which there is no charge
accumulation, the continuity equation, Eq. 4.4, shows that
the flux of j (the total current) through any closed surface
is zero. Two surfaces S and S′, both bounded by the path,
form a closed surface as shown in Fig. 8.6. The total current
through surface S is the same as the total current through S′.

8.2.3 The Biot–Savart Law

In situations where the symmetry of the problem does not
allow the field to be calculated from Ampere’s law, it is pos-
sible to find the field due to a steady current in a closed circuit
using the Biot–Savart law. The contribution dB to the mag-
netic field from current i flowing along a line element ds
is

dB = μ0i

4π

ds × r
r3

. (8.12)
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x = 0

θ r

a P

dx

Fig. 8.7 The Biot–Savart law is used to calculate the magnetic field at
point P due to an infinite wire

Vector r is from the current element to the point where the
field is to be calculated. The field is found by integrating over
the entire circuit.

Figure 8.7 shows how this integration is done for an in-
finitely long straight wire along the x axis. The contribution
at point P is obtained by dropping a perpendicular from P

to the wire to define x = 0. The distance from P to the wire
is a. The contribution from an element dx at point x is

dB = μ0i

4π

dx sin θ

r2
= μ0i

4π

a dx

r3
.

Since r2 = a2 + x2 the total field is

B = μ0i

4π

∫ ∞

−∞
a dx

(a2 + x2)3/2

= μ0ia

4π

[
x

a2(x2 + a2)1/2

]∞

−∞
= μ0i

2πa
.

This agrees with Eq. 8.7 and the result obtained using
Ampere’s circuital law.

A steady current from a point source which spreads uni-
formly in all directions generates no magnetic field. To see
why consider Fig. 8.8. The source of current is at O. The
magnetic field at P can be calculated using the Biot–Savart
law. For any element ds a symmetric element ds′ can be
selected, such that ds × r = −ds′ × r′. Associated with
each element is a small area dA, and the current along ds is
i = jdA. We can set dA = dA′ so i is the same in each case.
Therefore, B = 0. (This can also be shown using Ampere’s
law; see Problem 11.)

8.2.4 The Displacement Current

Derivation of Ampere’s law requires that there be no charge
buildup, so that the total current through a closed surface
is zero. However, we will consider an action potential in
which the membrane capacitance charges and discharges.
To see how this affects Ampere’s law, consider current i

P

r' r

O

i d si d s'

Fig. 8.8 The magnetic field from a spherically symmetric radial distri-
bution of current is zero. The source at O sends current uniformly in all
directions. P is the observation point. For any element ds there is a cor-
responding ds′ such that ds×r = −ds′×r′. The current through a small
area dA around ds is i. The same current flows through a correspond-
ing area around ds′. Can you obtain the same result by a symmetry
argument?

S

A

i iE

b

σ σ

S'

'

Fig. 8.9 A wire and capacitor plates. The integral of the current density
through surface S, which is pierced by the wire, is i. Through surface
S′, which is between the capacitor plates, the integral is zero. If the
displacement current density is included, both surface integrals are the
same. (If surfaces S and S′ are not large enough, there is also a net
displacement current through S, as can be seen from Fig. 8.10)

charging or discharging the two shaded capacitor plates in
Fig. 8.9. The area of each capacitor plate is A. The region
between the plates, of thickness b, is filled with dielectric
of dielectric constant κ . The integral

�
j · dS is i for sur-

face S and zero for surface S′. Because of the current, the
charge density σ on the left-hand plate is increasing at a
rate given by i = Adσ/dt , while on the right-hand plate
the charge is decreasing because i = −Adσ/dt . Since the
electric field between the plates is E = σ/κε0 we can say
that i = Ad(κε0E)/dt . The quantity D = κε0E is called
the electric displacement, and

jd = ∂D

∂t
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Fig. 8.10 The conduction current (white arrows) and displacement
current (black arrows) in a discharging capacitor. The conduction cur-
rent decreases with distance out the capacitor plates. The displacement
current includes the fringing field. (From Purcell and Morin 2013. Used
by permission)

is called the displacement current density. More careful con-
sideration shows that Ampere’s law is valid when the charge
on the plates is changing, if we replace j by j + jd :

∮
B · ds = μ0

�
(j + jd) · dS. (8.13)

With this change, if S and S′ are circles of radius a, Am-
pere’s law gives B = μ0i/2πa for either one. (The radius of
the circle must be very large; see the discussion in the next
paragraph.)

What current should be used in the Biot–Savart law? A
very surprising answer is that as long as the fields are rel-
atively slowly varying (so that the emission of radio waves
is not important), the displacement current contributes noth-
ing. We are free to include it or ignore it. Purcell and Morin
(2013, p. 435) and Shadowitz (1975, p. 416) discuss why this
is so. It is not always easy to calculate the entire displacement
current. For example, Fig. 8.10 shows how the conduction
current and displacement current vary when current charges a
capacitor. Notice that some of the displacement current flows
to and from the back sides of the capacitor plates. This is why
we said in the previous paragraph that the radius of the curve
defining surfaces S and S′ must be very large in order that
one surface has no net flux of displacement current and the
other has all of it. Whatever their size, however, Eq. 8.13 is
valid.

It was mentioned above that a steady current from a point
source that spreads uniformly in all directions generates no
magnetic field according to the Biot–Savart law. Yet any cir-
cular loop has current flowing through it, so Ampere’s law
suggests that there is a field. The discrepancy is resolved by
noting that the current comes from a charge q at the origin

B

r xy

z

θ

px of B

,y0 ,0)(x 0

Fig. 8.11 The geometry for calculation of the magnetic field due to a
current element i dx or current dipole px stretched along the x axis

that is being drained off at a rate i = −dq/dt . This gives rise
to a displacement current jd that cancels j (see Problem 11).

8.3 TheMagnetic Field Around an Axon

We can use the Biot–Savart law to calculate the magnetic
field due to an action potential propagating down an infinitely
long axon stretched along the x axis and embedded in an infi-
nite homogeneous conducting medium. Section 7.1 showed
that there are three components to the current: ii along the
interior of the axon, dio out through the membrane (includ-
ing both displacement current and conduction current), and
current in the surrounding medium.

The principle of superposition allows us to calculate the
field due to the exterior current by finding the magnetic field
dB from current dio into the surrounding medium from axon
element dx, and then integrating along the axon. We saw in
Chap. 7 that the current in the external medium from a small
element dx flows uniformly in all directions, as if from a
point source. We learned in the preceding section that the
magnetic field generated by a spherically symmetric radial
current is zero. Therefore, in the approximation that the axon
is very thin, we can ignore the external current from each
element dx. We can do this only because the medium is
infinite, homogeneous, and isotropic. When the exterior con-
ductor has boundaries or structure, the symmetry is broken
and the external currents contribute to the magnetic field. Our
calculation breaks down very close to the axon. Distortions
from the field due to the external current because the axon is
not infinitely thin are about 1 % near the axon. The current
through the cell membrane gives a very small contribution to
the magnetic field—roughly 1 part in 106.

The major contribution is therefore from ii . We use the
law of Biot–Savart, Eq. 8.12. The observation point is in the
xy plane at (x0, y0, 0) and the axon lies along the x axis so
that ds = x̂ dx, as shown in Fig. 8.11. The product ds × r
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can be evaluated using Eq. 1.8 or 1.9:

ds × r =
∣∣
∣∣∣∣

x̂ ŷ ẑ
dx 0 0

x0 − x y0 0

∣∣
∣∣∣∣
= dx y0 ẑ.

The term in the denominator is r3 = [
(x0 − x)2 + y2

0

]3/2
.

The magnetic field in the xy plane is in the z direction and
has magnitude

Bz = μ0y0

4π

∫
ii(x) dx

[
(x0 − x)2 + y2

0

]3/2
.

It was shown in Eqs. 7.17 that ii = −πa2σi(dvi/dx). The
final expression for Bz is

Bz = −μ0a
2σiy0

4

∫ [
dvi (x)/dx

]
dx

[
(x0 − x)2 + y2

0

]3/2
. (8.14)

The computer program in Fig. 8.12 evaluates the field for the
same crayfish axon whose external potential was studied in
Sect. 7.4. The field at a distance 2a from the axon is plotted in
Fig. 8.13. The results agree well with more sophisticated cal-
culations (Swinney and Wikswo 1980; Woosley et al. 1985).
The latter reference is particularly clear and should be acces-
sible to those who have studied the convolution integral in
Chap. 12. A three-dimensional plot of their results is shown
in Fig. 8.14.

It is worth repeating that a calculation this simple suc-
ceeds only because the axon and the exterior medium are
infinite. If there are boundaries, or if there are regions in the
external medium where the conductivity changes, then cur-
rent in the external medium does contribute to the magnetic
field. For example, an isolated nerve preparation in air would
have the external current flowing in a thin layer of ionic so-
lution along the outside of the axon, where it would generate
a field that almost completely cancels that from ii .

An approximation valid at large distances can be obtained
from Eq. 8.14 by expanding the denominator in much the
same way we did to obtain Eqs. 7.26 and 7.27. The observa-
tion point is (R, θ) in the xy plane. In this case we need the
expansion of

1

r3
= 1

R3

(
1 − 2

x

R
cos θ + x2

R2

)−3/2

≈ 1

R3

(
1 + 3x cos θ

R
+ · · ·

)
.

The final result is

Bz = μ0 πa2 σi sin θ

4πR2 (vi (x1) − vi (x2))

+ μ0 πa2 σi3 sin θ cos θ

4πR3

[
−xvi (x)|x2

x1
+
∫ x2

x1

vi (x) dx

]
.

(8.15)

The first term is proportional to the current dipole, p, defined
for the depolarization in the previous chapter. For a complete
pulse the first term vanishes and the second term is used.

8.4 TheMagnetocardiogram

It is now feasible to measure magnetic fields arising from
the electrical activity of the heart (the magnetocardiogram or
MCG) and the brain (the magnetoencephalogram or MEG).
The models developed in Sect. 8.3 and in Chap. 7 can be
used to compare the electric and magnetic signals from a cur-
rent dipole p. The instrumentation for these measurements is
described in Sect. 8.9.

For a single cell at the origin in a homogeneous conduct-
ing medium, the exterior potential at observation point r is
given by Eq. 7.13:

v = p · r
4πσor3

.

The current dipole p points along the cell in the direction
of the advancing depolarization wave and has magnitude
(Eq. 7.12) p = πa2σi�vi . An expression analogous to
Eq. 7.13 describes the magnetic field of a depolarizing cell.
We consider the field due to current along the x axis and then
generalize the result. The derivation begins with Eq. 8.15 and
uses the geometry of Fig. 8.11. The region of depolariza-
tion occupies only a millimeter or so along the cell. Since
the measurements are made much farther away, the denom-
inator can be removed from the integral, which is then just∫
(dv/dx) dx. If the depolarization is at the origin, then the

expression for Bz for z = 0 is

Bz = −μ0a
2σiy0 [v(x2) − v(x1)]

4(x2
0 + y2

0)3/2
= μ0

4π

py0

(x2
0 + y2

0)3/2
.

(8.16)
Figure 8.11 shows that y0 = r sin θ , so that py0 =
p r sin θ = |p × r|. The direction of B is also consistent with
the cross product. Generalizing, we have for a single cell,

B = μ0
p × r
4πr3

. (8.17)

Note the remarkable similarity between Eqs. 7.13 and 8.17.
One involves the dot product, and the other the cross product.
For both, the field falls as 1/r2. If we are considering the car-
diogram, either field from the entire heart is the superposition
of the field from many cells. As with the electrocardiogram,
the first approximation for the magnetocardiogram is to ig-
nore changes in 1/r2 and speak of the total current-dipole
vector.

Measurements of either the potential or the magnetic field
can be used to determine the location of p. We will adopt the
coordinate system usually used for the magnetocardiogram.
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Fig. 8.12 The program used to calculate the magnetic field outside an axon in an infinite homogeneous conductor using Eq. 8.14. It uses the
Romberg integration routine qromb from Press et al. (1992)
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Fig. 8.13 The magnetic field Bz 0.12 mm from a crayfish axon in an
infinite homogeneous conducting medium is shown. The field was cal-
culated using the program of Fig. 8.12. The exterior potential for this
configuration was calculated in Sect. 7.4

Fig. 8.14 A three-dimensional plot of the magnetic field around the
crayfish axon. The minimum distance from the axon is 0.5 mm

The x axis points to the patient’s left, the y axis points up,
and the z axis points toward the front of the patient, roughly
perpendicular to the chest wall. Assume that p is at the origin
and the anterior chest surface is the xy plane at some fixed
value of z. We ignore distortions to the field which arise be-
cause no current can flow in the region beyond the body, and
we assume that the conductivity of the body is homogeneous
and isotropic. From Eq. 8.17, we obtain the three components

(c)

(b)

(a)

pz

x

y

z

(x 2 , 0, z)

(x1, 0, z )
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y

z

(x1, 0, z )
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Fig. 8.15 The magnetic field produced by the three components of a
current dipole at the origin. The coordinate system is that customarily
used for magnetocardiography. The x axis points toward the subject’s
left, the y axis is vertical, and the z axis points forward through the
subject’s chest. The coordinate system is viewed over the subject’s right
shoulder

of B along the line (x, 0, z):

Bx = μ0pyz

4πr3
,

By = μ0 (pzx − zpx)

4πr3
,

Bz = −μ0pyx

4πr3
.

(8.18)

Compare these results to the lines of B in Fig. 8.15, which
were drawn for the three components of p using the right-
hand rule. Along the line being considered (y = 0, z =
const), px contributes only to By , and By is always nega-
tive. Component py contributes to both Bx and Bz; the latter
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Fig. 8.16 Contour plots in the xy plane for a the potential and b the z

component of the magnetic field from a current dipole p pointing along
the y axis, calculated for an infinite, isotropic conducting medium

changes sign while the former does not, as we change the
value of x. Component pz gives only a y component of B
that changes sign as x changes sign. The component normal
to the body surface, Bz is given by

Bz(x, 0, z) = −μ0

4π

pyx

(x2 + z2)3/2
.

Figure 8.16 plots contours for the potential and the mag-
netic field component Bz perpendicular to the body surface
when p points along the y axis. Again, distortions because
of changes in conductivity are ignored. The similarity of the
two sets of contours is clear. The contours of constant poten-
tial are proportional to pyy/r3, while the contours for Bz are
proportional to −pyx/r3. Either contour map can be used to
determine the location and depth of p. To be specific, con-
sider the contours for Bz. The field is proportional to the
function x/(x2 + z2)3/2, which changes sign right over the
source and has a maximum and a minimum at x = ±z/

√
2.

The depth of the source z is related to the spacing �x along
the x axis between the maximum and minimum by

z = �x√
2
. (8.19)

The source is located directly beneath the point on the axis
where Bz = 0, and its strength is related to the maximum
value of Bz by

Bz(max) = μ0py

6π
√

3z2
. (8.20)

Figure 8.17 shows real maps of the potential and the
magnetic field on the surface of the chest. While the basic
features are described by the simple current dipole model,
the exact shape of the contours in Fig. 8.17 differs from the
shape in Fig. 8.16. This is due to variations in conductivity
of the body. The surface potential is distorted by conductiv-
ity differences throughout the thorax; the magnetic field is
particularly susceptible to return currents flowing just below
the surface of the body. Hosaka et al. (1976) did an early cal-
culation of the effect of currents at the surface of the torso

Fig. 8.17 The 56-lead magnetic field map of Bz (left) and the 117-lead
potential map (right) during the R-wave maximum for a normal subject
(top row) and a patient with an anterior myocardial infarction (bottom
row). The maximum and minimum values of each map are indicated on
each map. Bz oriented into the page is defined as positive (solid lines)
The dashed rectangle in the potential map corresponds to the area for
which the magnetic field was measured. The dot in the upper row shows
where the midline intersects the level of the fourth intercostal space.
Note how the constant contours for the magnetic field are oriented at
right angles to the isopotential lines, as in the previous figure. Modified
from Stroink (1992) Used by permission

on the magnetocardiogram. They found that the return cur-
rent modifies the component of B perpendicular to the body
surface by about 30 %. Tangential components of B are influ-
enced more; this is why the normal component Bz is usually
measured. Tan et al. (1992) show that using a model of the
conductivities that matches the geometry of the patient’s tho-
rax allows accurate localization of the current dipole source
from the surface measurements. The magnetocardiogram is
now being used to record fetal heart arrhythmias (Strasburger
et al. 2008).

The magnetic field close to the heart is affected by the
anisotropy of the tissue conductivity. Figure 8.18 shows mea-
surements made 1.5 mm from a 1-mm-thick slice of canine
myocardium by Staton et al. (1993). Panel A shows the time
course of simultaneous recordings from three pickup coils
3 mm in diameter and separated by 4 mm. There are striking
differences over 4 mm. Panel B shows a magnetic field con-
tour map during stimulus from another experiment. Instead
of having one peak and one valley as in Figs. 8.16 and 8.17,
it shows a cloverleaf or quatrefoil pattern. Panels C and D
show the field contours and the current flow in a third exper-
iment, 6 ms after stimulation. This field and current pattern
is predicted by bidomain calculations (Wikswo 1995b).
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Fig. 8.18 The results of magnetic field measurements very close to a slice of canine myocardium. The panels are described in the text. Part of the
figure is reproduced from Wikswo 1995b c©1995 Elsevier, Inc, with permission of Elsevier. The rest is from Staton et al. (1993), c©1993 IEEE

8.5 TheMagnetoencephalogram

The magnetic signals from a nerve action potential are
weaker than those from the heart for two reasons. First, the
current-dipole vector associated with the repolarization fol-
lows close behind the depolarization and reduces the field.
(The largest unmyelinated axons in the body have a conduc-
tion speed of about 1 m s−1 and the pulse is about 1 mm
long. Myelinated fibers have a pulse length up to 80–100
times longer.) Second, the cross-sectional area of the advanc-
ing wavefront is much smaller. However, the magnetic fields
accompanying action potentials have been measured in nerve
(Barach et al. 1985; Roth and Wikswo 1985) and in muscle
(Gielen et al. 1991). They have also been measured in green
algae (Trontelj et al. 1994).

We saw in Sect. 6.1 that nerve cells have an input end
(dendrites), a cell body, and an axon. The signal that propa-
gates from a synapse through the dendrites to the cell body
and axon is much smaller (about 10 mV) and longer (10 ms)

than an action potential that travels along the axon. The cells
at the surface of the cerebral cortex have dendrites that are
like the trunk of a tree perpendicular to the surface of the
cortex, with branches from several directions coming to the
trunk. The signal from the trunk is the primary contributor
to the magnetoencephalogram (MEG) and electroencephalo-
gram (EEG). The problems show that the magnetic field
associated with the rise of the postsynaptic potential is more
easily observed outside the brain than is the action potential.

One can see from the symmetry argument in the cap-
tion of Fig. 8.19 that in a spherically symmetric conducting
medium the radial component of p and its return currents do
not generate any magnetic field outside the sphere. Therefore
the MEG is most sensitive to detecting activity in the fissures
of the cortex, where the trunk of the postsynaptic dendrite
is perpendicular to the surface of the fissure. A tangential
component of p does produce a magnetic field outside a
spherically symmetric conductor. The extracellular current
does not contribute to the radial component of the mag-
netic field (Hämäläinen et al. 1993), so Eq. 8.17 gives Br
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p
B

Fig. 8.19 A current dipole p is oriented radially inside a homogeneous
conducting sphere. The return current is independent of the azimuthal
angle, φ. By symmetry the magnetic field, if any, must be in the φ di-
rection; the current in Ampere’s circuital law, which is the sum of the
current in p and the return current, is zero

correctly. Extracellular current does influence the tangential
components of the magnetic field. Since the skull is not a per-
fect sphere, there is some effect of the radial component of
p on the MEG. The EEG is sensitive to both radial and tan-
gential components of p. The information available from the
EEG and MEG has been reviewed by Wikswo et al. (1993).

In the last decade, the use of the MEG has grown dramat-
ically for conditions such as epilepsy, stroke, chronic pain,
and dyslexia (Hari and Salmelin 2012).

Measurements of the magnetoencephalogram are often
based on evoked responses. A repetitive stimulus—audible,
visual, or tactile—is presented to the subject or the subject
is asked to perform a repetitive task such as flexing a finger.
Signal-averaging techniques are used to identify the associ-
ated changes in magnetic field (see Chap. 11). Figure 8.20
shows averaged magnetic field contours measured over the
scalp of a subject who heard a string of words presented in
random order every 2.3 s. Sometimes the subject was asked
to read something else and ignore the words. At other times
the subject was asked to pay attention and count how many of
the words were on a list. The first peak, 100 ms after presen-
tation of the word, was the same in both cases. The sustained
field peak, SF, was considerably stronger when the subject
was paying attention to the list. Magnetic contours and the
equivalent current dipole source are also shown.

8.6 Electromagnetic Induction

In 1831 Michael Faraday discovered that a changing mag-
netic field causes an electric current to flow in a circuit. It
does not matter whether the magnetic field is from a per-
manent magnet moving with respect to the circuit or from
the changing current in another circuit. The results of many
experiments can be summarized in the Faraday induction

Fig. 8.20 Magnetic field maps recorded over the scalp of a subject who
heard a series of words and either ignored them by reading something
else or listened carefully and counted how many of the words were in
a predetermined list. The features are discussed in the text. Reprinted
with permission from Hämäläinen et al. 1993. Copyright c© 1993 by
the American Physical Society

law:
∮

E · ds = − d

dt

�
B · dS = −dΦ

dt
. (8.21)

It states that the line integral of E around a closed path
is equal to minus the rate of change of the magnetic flux
through any surface bounded by the path. The relationship
between the direction of S and ds is given by a right-hand
rule: if the fingers of the right hand curl around the circuit
in the direction of ds, the thumb of the right hand points in
the direction of a positive normal to S. The units of mag-
netic flux Φ = �

B · dS are T m2 or weber (Wb). Rapidly
changing magnetic fields can induce currents large enough to
trigger nerve impulses. This is discussed in Sect. 8.7.

The differential form of the Faraday induction law is (see
Problem 22)

curl E = ∇ × E = −∂B
∂t

. (8.22)

The result of the vector operation curl is another vector. In
Cartesian coordinates the components of ∇ × E are

(∇ × E)x = ∂Ez

∂y
− ∂Ey

∂z
,

(∇ × E)y = ∂Ex

∂z
− ∂Ez

∂x
,

(∇ × E)z = ∂Ey

∂x
− ∂Ex

∂y
.
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i

Fig. 8.21 A magnetic field increasing in the direction shown induces
a current in the loop. This current generates a magnetic field in the
opposite direction, opposing the change in the magnetic field

These can be abbreviated by using determinant notation as

(∇ × E) =

∣
∣∣∣∣∣∣
∣

x̂ ŷ ẑ
∂

∂x

∂

∂y

∂

∂z
Ex Ey Ez

∣
∣∣∣∣∣∣
∣

. (8.23)

Similarly (Problem 23) the differential form of Ampere’s law
is

curl B = ∇ × B = μ0

(
j + ∂D

∂t

)
. (8.24)

The integral form of the Faraday induction law can be
used to determine E only if the symmetry is such that E is
always parallel to ds and has the same magnitude all along
the path. One situation where it can be used is a circular loop
of wire in the xy plane centered at the origin. The radius
of the loop is a and its normal is along the +z axis. Sup-
pose that everywhere in the xy plane within the boundary of
the circle the field points along z and depends only on time:
B(x, y, z, t) = B(t )̂z. Symmetry shows that E has the same
magnitude everywhere in the wire and is always tangent to
the loop. Equation 8.21 gives

E = −a

2

dB

dt
. (8.25)

If the loop is made of material that obeys Ohm’s law, there
is a current of density j = σE = −(σa/2)(dB/dt).
If the radius of the wire is b (b 	 a), then i =
−(σπab2/2)(dB/dt). Figure 8.21 shows the direction of the
induced current if dB/dt is positive. The induced current sets
up its own magnetic field which points in the −z direction
within the loop, opposing the primary field increase within
the loop. The induced current always opposes the change
of magnetic field that produces it. This is called Lenz’s law.
If it were not true, the induced current, once started, would
increase indefinitely.

This result does not require that the ring be hollow; it can
be part of a much larger conductor. The larger the conductor,

the greater the radius of the path along which the induced
current can flow. The currents that changing magnetic fields
induce in conductors are called eddy currents and cause heat-
ing losses in the conductor. Iron, which is a conductor, is
often used as a core in transformer windings to increase the
intensity of the magnetic field. To reduce the eddy-current
losses, the cores are made of thin layers of iron insulated
from one another by varnish. This limits the radius of the path
in which the eddy currents can flow. Some coils and trans-
formers are wound on cores of powdered iron dispersed in an
insulating binder. Rooms with thick conducting walls (alu-
minum, about 2-cm thick) have been used to shield against
60-Hz magnetic fields from power wiring. The eddy currents
induced in the aluminum attenuate the field by about a factor
of 200 (Stroink et al. (1981)).

The quantity
∫ b

a
E · ds is the work done per unit charge

in moving from a to b and is called the electromotive force
along the path from a to b. Terminology is not always consis-
tent; see the discussion by Page (1977). The details of how a
changing magnetic field causes a current to flow were shown
above for a circular conductor. The force on a moving charge
due to the induced electric field is balanced by the drag force
as the charge drifts through the conductor. Energy supplied
by the changing magnetic field is dissipated as heat. If a volt-
meter is attached to two points on the circle, the voltmeter
reading may seem paradoxical, until one realizes that there
may be changing flux in the voltmeter leads as well. An addi-
tional complication is that when there is any region of space
in which ∇×E �= 0, then it is possible for

∫ b

a
E · ds to depend

on the path (rather than just the end points), even if the mag-
netic field is zero at all points on the path. This is described
clearly and in detail by Romer (1982).

8.7 Magnetic Stimulation

Since a changing magnetic field generates an induced elec-
tric field, it is possible to stimulate nerve or muscle cells
without using electrodes. The advantage is that for a given
induced current deep within the brain, the currents in the
scalp that are induced by the magnetic field are far less than
the currents that would be required for electrical stimula-
tion. Therefore transcranial magnetic stimulation (TMS) is
relatively painless. It is also safe (Rossi et al. 2009).

Magnetic stimulation can be used to diagnose central ner-
vous system diseases that slow the conduction velocity in
motor nerves without changing the conduction velocity in
sensory nerves (Hallett and Cohen 1989). It could be used
to monitor motor nerves during spinal cord surgery, and to
map motor brain function. Because TMS is noninvasive and
nearly painless, it can be used to study learning and plas-
ticity (changes in brain organization over time; Wassermann
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et al. 2008). Recently, researchers have suggested that repet-
itive TMS might be useful for treating disorders such as
depression (O’Reardon et al. 2007) and Alzheimer’s disease
(Freitas et al. 2011).

One of the earliest investigations was reported by Barker,
Jalinous and Freeston (1985). They used a solenoid in which
the magnetic field changed by 2 T in 110 μs to apply a stim-
ulus to different points on a subject’s arm and skull. The
stimulus made a subject’s finger twitch after the delay re-
quired for the nerve impulse to travel to the muscle. For
a region of radius a = 10 mm in material of conductivity
1 S m−1, the induced current density for the field change
in Barker’s solenoid was 90 A m−2. (This is for conduct-
ing material inside the solenoid; the field falls off outside the
solenoid, so the induced current is less.) This current density
is large compared to current densities in nerves (Chap. 6).

Magnetic stimulators are relatively high-power devices,
requiring thousands of amps passed through coils for a
few hundred microseconds. Most magnetic stimulators are
capacitor discharge devices, in which a large capacitor is
charged to a high voltage (several kV) and then discharged
through the coil. Different coil geometries have been ex-
amined; the most common one is a figure-of-eight shape.
Magnetic stimulation is included in the review by Roth
(1994) and is compared to other brain imaging methods by
Ilmoniemi et al. (1999).

8.8 Magnetic Materials and Biological
Systems

Just as the electric field can be altered by the polarization of
a dielectric, the magnetic field can be altered by matter. Bio-
logical measurements can be based on alterations of the field
by an organ in the body. Some cells exhibit permanent mag-
netism, which is important for measuring direction in some
bacteria, birds, and other organisms.

8.8.1 Magnetic Materials

The effects of magnetic fields on material are more compli-
cated than those of electric fields. Since there are no known
magnetic charges (monopoles), we must consider the ef-
fect of magnetic fields on current loops or magnetic dipoles.
Figure 8.22 shows a current loop in a magnetic field that de-
creases as z increases. As a result the lines of B spread apart.
The loop has radius a, carries current i, and has magnetic
moment1 m. For the orientation shown, there is a force on

1 Be careful. We are talking about two different kinds of dipoles in
this chapter. The current dipole p is a source and sink of current and
has units A m. The magnetic dipole m, equivalent to a small magnet

m
B B

 a 

i i

FdFd

z

Fig. 8.22 A current loop in an inhomogeneous magnetic field experi-
ences a force toward the region of stronger magnetic field. The circular
loop lies in a plane perpendicular to the z axis. Current flows into the
page on the right and out of the page on the left

  a 

B (   +     )z z dz

B (   )zz

B (   )r adz

Fig. 8.23 Gauss’s law for B is applied to a pillbox of radius a and
thickness dz

the loop in the −z direction that is toward the region where
the field is stronger. If the magnetic moment of the loop were
not parallel to B, there would also be a torque on the loop.
For ease in calculation, imagine that the loop has been placed
in the field in such a way that along the axis of the loop, B
points in the z direction. Then the spreading of the lines of
B means that B has a component radially outward all around
the loop. Because of the symmetry Br has a constant magni-
tude everywhere around the loop, and the force on the loop
is −2πa i Br(a).

Field Br(a) is found by considering the fact that the total
magnetic flux through all surfaces of the pillbox in Fig. 8.23
is zero (Eq. 8.8). The net outward flux is

[
Bz(z + dz) − Bz(z)

]
πa2 + Br(a)2πa dz = 0.

This can be rearranged to give
[
∂Bz

∂z
+ 2

a
Br(a)

]
πa2 dz = 0,

from which

Br(a) = −a

2

∂Bz

∂z
.

with north and south poles, has units A m2. The magnetic field from a
magnetic dipole falls off as 1/r3.
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The force on the loop is therefore

Fz = πa2i
∂Bz

∂z
= mz

∂Bz

∂z
. (8.26)

If m is parallel to B the force is toward the region of stronger
field; if m is antiparallel to B the force is toward the region
of weaker field.

An atom can have a magnetic moment because of two ef-
fects.2 The motion of the electrons in orbit about the nucleus
constitutes a current, as a result of which there may be an
orbital magnetic moment. The intrinsic spin of each electron
gives rise to a spin magnetic moment, independent of any or-
bital motion. In most atoms, the orbital magnetic moments
average to zero, and most of the electrons are arranged in
pairs whose spins cancel. The atom therefore usually has no
net magnetic moment.

Most substances placed in an inhomogeneous field expe-
rience a weak force away from the region of strong field,
and the force is roughly proportional to the square of the
field strength, an effect called diamagnetism. It can be under-
stood with a simple classical model. As the atom is moved
into the magnetic field, the Faraday induction effect dis-
torts the orbits of the electrons to induce a magnetic dipole
moment proportional to B and in the opposite direction, con-
sistent with Lenz’s law. The force is therefore proportional to
Bz(∂Bz/∂z).

A few substances are attracted to the region of stronger
field, again with a force that is often proportional to the
square of the field. Each atom of these paramagnetic sub-
stances has a permanent magnetic moment associated with
the spin of an unpaired electron. Thermal motion normally
keeps the magnetic moments of different atoms oriented ran-
domly. As the substance is brought into the magnetic field
the spin magnetic moments of different atoms begin to align
with the magnetic field. A magnetic dipole moment is in-
duced in the substance, but this time it is in the direction of
B, and the substance is attracted to the magnet.

Some substances placed in an inhomogeneous magnetic
field experience much stronger attraction than do paramag-
netic substances. In these substances some of the atomic
moments are aligned even in the absence of an external
field. They are permanent magnets. Further alignment of the
atomic moments may take place in an external field, but com-
plete alignment often takes place in relatively weak external
fields. These substances are called ferromagnets. The indi-
vidual atoms have magnetic moments, and there are forces
between atoms that cause the spins to align. Section 14-4
of Eisberg and Resnick (1985) provides a relatively simple
explanation of the quantum-mechanical effects underlying

2 Much weaker magnetic moments of the atomic nucleus are considered
in Chap. 18.

this spin alignment and the formation of microscopic regions
of aligned spins called domains. Ferrimagnets are similar to
ferromagnets, but the crystals contain two different kinds of
ions with different magnetic moments.

The magnetization M is the average magnetic moment per
unit volume. It is defined by considering volume �V that has
total magnetic moment �m = ∑

mi , where the summation
is taken over all atoms in the volume, and taking the ratio

M = �m
�V

. (8.27)

We have seen that a current loop possesses a magnetic
moment of magnitude m = iS. One can imagine a current
giving rise to any magnetic moment, even one associated
with electron spin. Such currents are called bound currents
and must be included in Ampere’s law. The currents that
flow due to conduction—that we can control by changing the
conductivity of the material or throwing a switch—are called
free currents. One can show that if we define the new vector

H = B/μ0 − M, (8.28)

it depends only on the free currents:
∮

H · ds =
�

jfree · dS. (8.29)

Vector H is called the magnetic field intensity. It has units
A m−1. It does not have the physical significance of B (it
does not appear in the Lorentz force or the Faraday induction
law). However, it often simplifies computations, because we
control free current in the laboratory.

In a vacuum, B = μ0H. It has been traditional to define
the magnetic permeability of a medium in which B, M, and
H are all proportional to one another by the equation

B = μH, (8.30)

in which case

μ

μ0
= 1 + M

H
= 1 + χm. (8.31)

In diamagnetic materials the magnetic susceptibility χm is
negative and μ < μ0. A typical diamagnetic susceptibility is
≈ −1 × 10−5. In paramagnetic materials χm is positive and
μ > μ0. A typical paramagnetic susceptibility is ≈ 1×10−4.

The relationship between B and H in ferromagnetic sub-
stances is nonlinear and is characterized by a BH curve.
A typical curve is shown in Fig. 8.24. The fact that the
curves for increasing and decreasing H do not coincide is
called hysteresis. The arrows show the direction in which
H changes on each branch of the curve. Saturation takes
place beyond points W and Y . The value of M saturates and
B = μ0 (Msaturated + H) . When H = 0 there is a remanent
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Fig. 8.24 A typical curve of B vs H for a ferromagnetic material.
The curve shows hysteresis, and the arrows show the direction of travel
around the curve WXYZ. Points W and Y show where M saturates.
Points X and Z show the remanent magnetic field when H = 0

magnetic field (points X and Z). If the temperature of the
sample is raised above a critical temperature called the Curie
temperature, the magnetism is destroyed.

8.8.2 Measuring Magnetic Properties in
People

Several kinds of measurements can be based on magnetic ef-
fects in materials. A common component of dust inhaled by
miners and industrial workers is magnetite, Fe3O4, which is
ferrimagnetic. By placing the thorax in a fixed magnetic field
for a few seconds, the particles can be aligned. The field is
turned off and the remanent field measured. The use of mag-
netopneumography in occupational health is described by
Stroink (1985). Cohen et al. (1984) have modeled the process
by which the particles are magnetized, as well as the relax-
ation process by which the magnetization disappears after the
external field is removed. Relaxation curves are used to esti-
mate intracellular viscosity and the motility of macrophages
(scavenger white cells) in the alveoli (Stahlhofen and Moller
1993).

The magnetic susceptibility of blood and myocardium
is different from the susceptibility of surrounding lung tis-
sue. An externally applied magnetic field induces a field
that changes as the volume of the heart changes. It can be
measured externally. The theory and experiments have been
described by Wikswo (1980).

Susceptibility measurements can also be used to measure
the total iron stores in the body. Normally the body con-
tains 3–4 g of iron. About a quarter of it is stored in the
liver. The amount of iron can be elevated from a large num-
ber of blood transfusions or in certain rare diseases such as
hemochromatosis and hemosiderosis. The liver is an organ
whose susceptibility can easily be measured. The suscep-
tibility varies linearly with the amount of iron deposited.
Magnetic susceptometry has been used to estimate body iron
stores (Nielsen et al. 1995).

Fig. 8.25 The small black dots are magnetosomes, small particles
of magnetite in the magnetotactic bacterium Aquaspirillum magneto-
tacticum. The vertical bar is 1μm long. The photograph was taken by Y.
Gorby and was supplied by N. Blakemore and R. Blakemore, University
of New Hampshire.

8.8.3 Magnetic Orientation

Magnetism is used for orientation by several organisms. A
history of studies in this area is provided in a very readable
book by Mielczarek and McGrayne (2000). Finegold (2012)
reviews sensing of static fields. Several species of bacte-
ria contain linear strings of up to 20 particles of magnetite,
each about 50 nm on a side encased in a membrane (Frankel
et al. 1979; Moskowitz 1995). Over a dozen different bac-
teria have been identified that synthesize these intracellular,
membrane-bound particles or magnetosomes (Fig. 8.25). In
the laboratory the bacteria align themselves with the local
magnetic field. In the problems you will learn that there is
sufficient magnetic material in each bacterium to align it
with the earth’s field just like a compass needle. Because of
the tilt of the earth’s field, bacteria in the wild can thereby
distinguish up from down.

Other bacteria that live in oxygen-poor, sulfide-rich en-
vironments contain magnetosomes composed of greigite
(Fe3S4), rather than magnetite (Fe3O4). In aquatic habitats,
high concentrations of both kinds of magnetotactic bacte-
ria are usually found near the oxic–anoxic transition zone
(OATZ). In freshwater environments the OATZ is usually at
the sediment–water interface. In marine environments it is
displaced up into the water column. Since some bacteria pre-
fer more oxygen and others prefer less, and they both have
the same kind of propulsion and orientation mechanism, one
wonders why one kind of bacterium is not swimming out
of the environment favorable to it. Frankel and Bazylinski
(1994) proposed that the magnetic field and the magneto-
somes keep the organism aligned with the field, and that
they change the direction in which their flagellum rotates to
move in the direction that leads them to a more favorable
concentration of some desired chemical.
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Magnetosomes are found in other species and are likely
also to be used for orientation. One species of algae con-
tains about 3000 magnetic particles, each of which is about
40×40×140 nm (de Araujo et al. 1986). Bees, pigeons, and
fish contain magnetic particles. It is more difficult to demon-
strate their function, because of the variety of other sensory
information available to these animals. For example, homing
pigeons with magnets attached to their heads could orient
well on sunny days but not on cloudy ones (Walcott et al.
1979). There is evidence that bees orient in a magnetic field
(Frankel 1984). The net magnetic moment in the bees is ori-
ented transversely in the body (Gould et al. 1978). In pigeons
the magnetic material is located in the dura (the outer cover-
ing of the brain) or skull. In all of these cases, the material
has been identified as magnetite. In the yellowfin tuna, data
are compatible with about 8.5×107 magnetic particles, each
of which is a single domain of magnetite in the shape of an
approximately 50-nm cube (Walker et al. 1984). Recently,
Eder et al. (2012) isolated cells from the trout nose and used
a rotating magnetic filed to identify cells that are potential
magnetite-based magnetoreceptor cells.

Birds may actually have three compasses. Since the mag-
netic and geographic poles are fairly far apart, migratory
birds must correct their magnetic compasses as they fly. The
Savannah sparrow is known to have a magnetic compass and
a star compass and to take visual cues from the sky at sun-
set. Able and Able (1995) have shown that adult Savannah
sparrows that are subjected to a field pointing in a different
direction than the earth’s field will at first trust their mag-
netic compasses, but over a few days they recalibrate their
magnetic compasses with their star compasses. An accom-
panying editorial (Gould 1995) places their work in context.
More recently, Cochran et al. (2004) have shown that if mi-
grating thrushes are placed in an eastward-pointing magnetic
field at twilight and then released, they fly west instead of
south. This strongly suggests that the birds recalibrate their
magnetic compass at twilight each day.

The fact that the magnetite particles seem to be about
50 nm on a side is physically significant. Frankel (1984) sum-
marizes arguments that if the particles are smaller than about
35 nm on a side, thermal effects can destroy the alignment of
the individual particles. If they are larger than about 76 nm,
multiple domains can form within a particle, decreasing the
magnetic moment.

8.8.4 Magnetic Nanoparticles

Small single-domain nanoparticles (10–70 nm in diameter)
are used to treat cancer (Jordan et al. 1999; Pankhurst et al.
2009). The particles are injected into the body intravenously.
Then an oscillating magnetic field is applied. It causes the
particles to rotate, heating the surrounding tissue. Cancer
cells are particularly sensitive to damage by hyperthermia.

Winding

Axon

Toroid

Fig. 8.26 A nerve cell preparation is threaded through the magnetic
toroid to measure the magnetic field. The changing magnetic flux in
the toroid induces an electromotive force in the winding. Any external
current that flows through the hole in the toroid diminishes the magnetic
field

Often the surface of the nanoparticle can be coated with anti-
bodies that cause the nanoparticle to be selectively taken up
by the tumor, providing more localized heating of the cancer.

8.9 Detection of WeakMagnetic Fields

The detection of weak fields from the body is a technolog-
ical triumph. The field strength from lung particles is about
10−9 T; from the heart it is about 10−10 T; from the brain it
is 10−12 T for spontaneous (α-wave) activity and 10−13 T
for evoked responses. These signals must be compared to
10−4 T for the earth’s magnetic field. Noise due to sponta-
neous changes in the earth’s field can be as high as 10−7 T.
Noise due to power lines, machinery, and the like can be
10−5–10−4 T.

If the signal is strong enough, it can be detected with con-
ventional coils and signal-averaging techniques that are de-
scribed in Chap. 11. Barach et al. (1985) used a small detec-
tor through which a single axon was threaded. The detector
consisted of a toroidal magnetic core wound with many turns
of fine wire (Fig. 8.26). Current passing through the hole in
the toroid generated a magnetic field that was concentrated
in the ferromagnetic material of the toroid. When the field
changed, a measurable voltage was induced in the surround-
ing coil. This neuromagnetic current probe has been used to
study many nerve and muscle fibers (Wijesinghe 2010).

The signals from the body are weaker, and their measure-
ment requires higher sensitivity and often special techniques
to reduce noise. Hämäläinen et al. (1993) present a de-
tailed discussion of the instrumentation problems. Sensitive
detectors are constructed from superconducting materials.
Some compounds, when cooled below a certain critical tem-
perature, undergo a sudden transition and their electrical
resistance falls to zero. A current in a loop of supercon-
ducting wire persists for as long as the wire is maintained
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i

Φ

Fig. 8.27 A dc SQUID is shown. The solid lines represent supercon-
ducting wires, broken by Josephson junctions at the top and bottom.
The total current through both wires depends on Φ, the magnetic flux
through the circle

in the superconducting state. The reason there is a super-
conducting state is a well-understood quantum-mechanical
effect that we cannot go into here. It is due to the coopera-
tive motion of many electrons in the superconductor (Eisberg
and Resnick 1985, Sect. 14.1; Clarke 1994). The integral∮

E · ds around a superconducting ring is zero, which means
that dΦ/dt is zero, and the magnetic flux through a super-
conducting loop cannot change. If one tries to change the
magnetic field with some external source, the current in the
superconducting circuit changes so that the flux remains the
same.

The detector is called a superconducting quantum inter-
ference device (SQUID). The operation of a SQUID and
biological applications are described in the Scientific Amer-
ican article by Clarke (1994). Wikswo (1995a) surveys the
use of SQUIDs for applications in biomagnetism and non-
destructive testing. A technical discussion is also available
(Hämäläinen et al. 1993). The dc SQUID requires a su-
perconducting circuit with two branches, each of which
contains a very thin nonsuperconducting “weak link” known
as a Josephson junction (Fig. 8.27). As the magnetic field
is changed, these weak links allow the flux in the loop to
change. The phase of the quantum mechanical wave func-
tion of the collectively moving electrons differs in the two
branches by an amount depending on the magnetic flux
linked by the circuit. The total current depends on the in-
terference of these two wave functions and is of the form
I = 2I0 cos(πΦ/Φ0), where Φ is the flux through the cir-
cuit. The quantity Φ0 = h/2e, where h is Planck’s constant
(see Chap. 14) and e is the electron charge, is the magnetic
flux quantum and has a value equal to 2.068 × 10−15 T m2.
Because interference changes corresponding to a small frac-
tion of this can be measured, the SQUID is very sensitive.
The SQUID must be operated at temperatures where it is su-
perconducting. It used to be necessary to keep a SQUID in a
liquid-helium bath, which is expensive to operate because of
the high evaporation rate of liquid helium. With the advent
of high-temperature superconductors, SQUIDS have the po-
tential to operate at liquid-nitrogen temperatures, where the
cooling problems are much less severe.

d o

Fig. 8.28 A superconducting loop shaped as shown becomes a flux
transporter. Because the total flux in the loop is constant, a change of
flux in the detecting loop d is accompanied by an equal and opposite
flux change in the output loop o. The diameter of the output loop is
matched to the size of the SQUID. Sensitivity is increased because the
detecting loop has a larger area

To SQUID

(a) (b)

To SQUID

Fig. 8.29 Gradiometers are sensitive to nearby sources of the mag-
netic field but are much less sensitive to distant sources. a A first-order
gradiometer. b A second-order gradiometer

A typical magnetometer for biomagnetic research con-
tains a flux transporter, a superconducting detector coil d a
centimeter or so in radius, coupled to a very small multi-
turn output coil o that matches the size of the SQUID and
is placed right next to it. This is shown schematically in
Fig. 8.28. The wires between the two loops are close together
and have negligible area between them. The total flux, which
is constant because the entire circuit is superconducting, is
Φ = Φd + Φo. The large area of the detecting coil increases
its sensitivity. Any change in the magnetic field at the detec-
tor causes an opposite change in the flux and magnetic field
at the output coil.

Because ambient natural and artificial background mag-
netic fields are so high, measurements are often made in
special shielded rooms. These can be built of ferromagnetic
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materials, or of conductors to take advantage of eddy cur-
rent attenuation, or they may have active circuits to cancel
the background fields. It has proven possible in some cases
to eliminate the need for these expensive rooms by using
specially designed flux transporters that are less sensitive to
distant sources but measure the nearby source with almost
the same sensitivity as a single loop. If a distant background
source can be represented by a magnetic dipole, the field falls
as 1/r3. The signal in a magnetometer (Fig. 8.28) would be
proportional to this.

Problem 41 shows that the signal from a distant dipole
detected by a first-order gradiometer (Fig. 8.29a) is pro-
portional to 1/r4 and that the signal in a second order
gradiometer (Fig. 8.29b) is proportional to 1/r5. Both gra-
diometers are insensitive to background that does not vary
with position. Yet the loop closest to the nearby signal source
detects a much stronger signal than the loops that are fur-
ther away. With modern multi-channel detector systems, one
need not use gradiometer coils. Hundreds of coils are used at
different locations, and the signals from them are combined
to give the same suppression of background from distant
sources.

Symbols Used in Chapter 8
Symbol Use Units First

used
page

a, b Distance m 214
e Elementary charge C 230
f Frequency Hz 215
h Planck’s constant J s 230
i Current A 214
j, j Current density A m−2 216
jd Displacement current density A m−2 217
m, m Magnetic moment A m2 214
m Mass kg 215
p Current dipole moment A m 219
q Charge C 213
r, r Distance m 215
s, s Linear displacement m 213
t Time s 217
v, v Velocity m s−1 213
v Electrical potential V 219
x, y, z Coordinates m 217
x̂, ŷ, ẑ Unit vectors 219
A Area m2 217
B, B Magnetic field T 213
C Particle concentration m−3 214
D, D Electric displacement C m−2 217
E, E Electric field V m−1 214
F, F Force N 213
H, H Magnetic field intensity A m−1 227
I Current A 230
M, M Magnetization A m−1 227
M Mutual inductance V s A−1 236

R Position m 219
S, S Surface area m2 214
T Period s 215
V Volume m3 227
ε0 Electrical permittivity of free space N−1

m−2 C2
215

θ Angle 214
κ Dielectric constant 217
μ Magnetic permeability Ω s m−1 227
μ0 Magnetic permeability of free space Ω s m−1 215
σ Charge per unit area C m−2 217
σi, σo Electrical conductivity S m−1 219
τ, τ Torque N m 214
φ Angle 214
χm Magnetic susceptibility 227
Φ Magnetic flux T m2 or

Wb
224

Φ0 Quantum of magnetic flux T m2 or
Wb

230

Problems

Section 8.1

Problem 1. An electric dipole consists of charges ±q sep-
arated a distance b. Show that the torque τ on an electric
dipole p in a steady electric field E is given by τ = p × E,
where p has magnitude qb, pointing in the direction from −q

to +q.
Problem 2. Show that the units of m, A m2 or J T−1, are
equivalent.
Problem 3. Show that the units of μ0, T m A−1, are
equivalent to Ω s m−1.
Problem 4. It is possible that the Lorentz force law allows
marine sharks, skates, and rays to orient in a magnetic field
(Frankel 1984). If a shark can detect an electric field strength
of 0.5μV m−1, how fast would it have to swim through the
earth’s magnetic field to experience an equivalent force on a
charged particle? The earth’s field is about 5 × 10−5 T.
Problem 5. The introduction to this section says that mag-
netism is a consequence of special relativity. Consider the
following thought experiment. (a) A line of positive charge
lies along the x axis and moves in the positive x direction.
Is there a magnetic field present? (b) Change to a frame of
reference moving with the charge. In this frame, where the
charge is stationary, is there a magnetic field present? So is
there really a magnetic field present, or not?
Problem 6. The speed of blood in an artery or vein can
be measured using an electromagnetic blood flow meter. A
blood vessel of radius R is oriented perpendicular to a mag-
netic field B. Ions in the blood, which is moving with speed
U , experience a Lorentz force. Positive ions move to one side
of the vessel and negative ions move to the other side, es-
tablishing an electric field E whose force just balances the
magnetic force.
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(a) Draw a diagram showing the vessel and the directions of
U, E, and B.

(b) Find an expression for U in terms of E and B.
(c) The electric field can be approximated as a voltage v

across the vessel divided by the width of the vessel. Find
an expression for v in terms of U , B and R.

(d) If B = 0.1 T, U = 0.01 m s−1and R = 1 mm, what is
v?

Section 8.2

Problem 7. A very long solenoid of radius a has current i in
the windings. The windings are closely spaced and there are
N turns per meter. What is the magnetic field in the solenoid?
(Hint: if the solenoid is very long, the field inside is uniform
and the field outside is zero. Use Ampere’s law.)
Problem 8. Figure 8.8 uses the Biot Savart law to show that
the magnetic field from a spherically symmetric radial distri-
bution of current is zero. Use a simple symmetry argument
to obtain the same result.
Problem 9. Show that dD/dt has the dimensions of current
density.
Problem 10. A circular loop of radius a and area S carries
current i. The loop is at the origin and lies in the xy plane.
Calculate the magnetic field at any point on the z axis using
the Biot–Savart law. Show that it is proportional to the mag-
netic moment of the loop, |m| = iS, and falls off as z−3 if
z � a.
Problem 11. Show that a point source of current in an in-
finite, homogeneous conducting medium discharges at such
a rate that the displacement current density everywhere can-
cels the current density, so that Ampere’s law also predicts
that the magnetic field is zero.

Section 8.3

Problem 12. Derive Eq. 8.15 from Eq. 8.14.
Problem 13. The current along an axon is ii(x) = i0, 0 <

x < x1 and is zero everywhere else. The axon is in an infinite
homogeneous conducting medium.
(a) What is vi (x)?
(b) Find B at a point (x0, y0).
Problem 14. One can obtain a very different physical pic-
ture of the source of a magnetic field using the Biot–Savart
law than one gets using Ampere’s law, even though the field
is the same. A ring of radius a is perpendicular to the x

axis and centered at x0. Current flows along the x axis from
x = 0 to x = x1. There is a spherically symmetric cur-
rent in at x = 0 and a spherically symmetric current out
from x1. Calculate the magnetic field at a point on the ring

using Ampere’s law and using the Biot–Savart law. Dis-
cuss the difference in interpretation. Your expression for
the field should be the same as Problem 13. A more ex-
tensive discussion of three different ways the source of the
magnetic field can be viewed is given by Barach (1987).

Problem 15. Suppose that ii(t) is determined by mea-
surement of the magnetic field around an axon. Numerical
differentiation of the data gives derivatives of ii also. Use the
arguments of Sect. 6.11 and Problem 6.60 to show that for
an action potential traveling without change of shape, one
can determine the membrane current density from

jm = 1

2πau

∂ii

∂t
− cmuriii .

For an application of this technique, see Barach et al. (1985).
Problem 16. Use Ampere’s law to calculate the magnetic
field produced by a nerve axon.
(a) First, solve Problem 30 of Chap. 7 to obtain the electri-

cal potential inside (Vi) and outside (Vo) an axon. The
solution will be in terms of the modified Bessel func-
tions I0(kr) and K0(kr), where k is a spatial frequency
and r is the radial distance from the center of the axon.
Assume the axon has a radius a.

(b) Find the axial component of the current density both
inside and outside the axon, Jiz = −σi∂Vi/∂z and
Joz = −σo∂Vo/∂z, where σi and σo are the intracellular
and extracellular conductivities (Eqs. 6.16b and 6.26).

(c) Integrate Jiz over the axon cross-section to get the total
intracellular current. Then integrate Joz over an annulus
from a to radius r , to get the return current. You will
need the following integrals:

∫
xI0(x)dx = xI1(x)

and
∫

xK0(x)dx = −xK1(x).

(d) Use Ampere’s law (Eq. 8.11) to calculate the magnetic
field. Take the line integral of Ampere’s law as a closed
loop of radius r concentric with the axon (r > a). The
current enclosed by this loop is simply the sum of the
intracellular and return currents calculated in (c).
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Section 8.4

Problem 17. Use the same technique as in Chap. 7 to
estimate the magnitude of the magnetocardiogram signal.
Problem 18.
(a) Derive Eqs. 8.19 and 8.20.
(b) What effect will y and z components of p have for

measurements taken along an axis with y = 0?
Problem 19. Consider a two-dimensional sheet of cardiac
tissue represented using the bidomain model (Sect. 7.9.3).
The intracellular and extracellular conductivity tensors are
given by

σ̃i =
(

σixx σixy

σixy σiyy

)

=
(

σiL cos2 θ + σiT sin2 θ (σiL − σiT ) sin θ cos θ

(σiL − σiT ) sin θ cos θ σiL sin2 θ + σiT cos2 θ

)

σ̃o =
(

σoxx σoxy

σoxy σoyy

)

=
(

σoL cos2 θ + σoT sin2 θ (σoL − σoT ) sin θ cos θ

(σoL − σoT ) sin θ cos θ σoL sin2 θ + σoT cos2 θ

)

where “L” means parallel to the fibers, “T” means perpen-
dicular to the fibers, and θ is the angle between the fiber
direction and the x axis. The intracellular and extracellu-
lar current densities are given by ji = σ̃i · E = −σ̃i · ∇vi

and jo = −σ̃o · ∇vo. Assume that the intracellular and ex-
tracellular potentials are given by vi = σoxxvm(x)/(σixx +
σoxx) and vo = −σixxvm(x)/(σixx + σoxx), where vm(x)

is the transmembrane potential and is a function only of x,
corresponding to a plane wave front propagating in the x

direction.
(a) Draw a picture showing the 2-D sheet of tissue, the

x and y axes, the fiber direction, and the direction of
propagation.

(b) Show that jx = jix + jox is identically zero.
(c) Derive an expression for jy = jiy + joy in terms of σiL,

σiT , σoL, σoT , θ , and vm.
(d) Under what conditions is jy identically zero?
(e) Describe qualitatively the magnetic field produced by a

wave front in a sheet of cardiac tissue. For additional
features of this model, see Roth and Woods (1999).

Section 8.5

Problem 20. Consider two cylindrical cells of radius 1 μm.
One is an axon with an action potential lasting 1 ms and trav-
eling at 1 m s−1 with a depolarization amplitude of 100 mV.
The other is a dendrite with a postsynaptic potential depo-
larization of 10 mV. The conductivity within both cells is
1 S m−1.

(a) Compare the magnetic field 5 cm away from the dendrite
with depolarization only and the axon with a complete
pulse.

(b) If the minimum magnetic field that can be detected is
100 × 10−15 T, how many dendrites must be simultane-
ously excited to detect the signal?

(c) Pyramidal cells in the cortex are aligned properly to gen-
erate this kind of signal. Assume the dendrite is 2 mm
long. There are about 50,000 neurons per mm3 in the
cortex, of which 70 % are pyramidal cells. Find the vol-
ume of the smallest excited region that could be detected
if all the pyramidal cells in the volume simultaneously
had a postsynaptic depolarization of 10 mV.

Problem 21. The magnetic field B(r) produced by a current
dipole p located at r0 in a spherical conductor is given by
Sarvas (1987)

B(r) = μ0

4πF 2

[
F (p × r0) − (p × r0 · r)∇F

]
,

where a = r−r0, a = |a| , r = |r| , F = a(ra+r2 −r0 · r),

∇F =
(

a2

r
+ a · r

a
+ 2a + 2r

)
r −

(
a + 2r + a · r

a

)
r0,

and both r and r0 are measured from the center of the sphere.
(a) Show that if p is radial, B = 0.

(b) Show that the equation for the radial component of B
reduces to Eq. 8.17. Note that the radius of the sphere
does not enter into these equations.

Section 8.6

Problem 22. Consider a rectangular current loop with one
corner at (0, 0, 0) and the diagonally opposite corner at
(dx, dy, 0), in a changing magnetic field that has compo-
nents (0, 0, dB/dt). Show that for this configuration the
differential form of the Faraday induction law, Eq. 8.22,
follows from Eq. 8.21.
Problem 23. Obtain the differential form of Ampere’s cir-
cuital law, Eq. 8.24, from Eq. 8.13.
Problem 24. The differential form of Ampere’s law,
Eq. 8.24, provides a relationship between the current den-
sity j and the magnetic field B that allows you to measure
biological current with magnetic resonance imaging (see, for
example, Scott et al. (1991)). Suppose you use MRI and find
the distribution of magnetic field to be

Bx = C(yz2 − yx2)

By = C(xz2 − xy2)

Bz = C4xyz
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where C is a constant with the units of T m−3. Determine
the current density. Assume the current varies slowly enough
that the displacement current can be neglected.
Problem 25. Write down in differential form (a) the Faraday
induction law, (b) Ampere’s law including the displacement
current term, (c) Gauss’s law, and (d) Eq. 8.9. (Ignore the
effects of dielectrics or magnetic materials. That is, assume
D = ε0E and B = μ0H.) These four equations together
constitute Maxwell’s equations. Together with the Lorentz
force law (Eq. 8.2), Maxwell’s equations summarize all of
electricity and magnetism.
Problem 26. Consider a square loop of wire in the xy plane
that is moving in the positive x direction. There is a static
magnetic field with a z component that increases linearly
with x. Special relativity implies that the physics should
be the same in any inertial frame of reference: that is, the
physics should be the same in a reference frame moving with
a constant velocity as it is in a frame at rest.
(a) Consider the frame described above, in which the loop

moves and the magnetic field is static. Show qualita-
tively that the Lorentz force on the electrons in the wire
induces a current.

(b) Now consider the situation from a frame of reference
moving with the loop. Show qualitatively that Faraday
induction will induce a current in the wire.

Which “really” caused the current: the Lorentz force or
Faraday induction?
Problem 27. Suppose one is measuring the EEG when a
time-dependent magnetic field is present (such as during
magnetic stimulation). The EEG is measured using a disk
electrode of radius a = 5 mm and thickness d = 1 mm,
made of silver with conductivity σ = 63 × 106 S m−1. The
magnetic field is uniform in space, is in a direction perpen-
dicular to the plane of the electrode, and changes from zero
to 1 T in 200μs.
(a) Calculate the electric field and current density in the

electrode due to Faraday induction.
(b) The rate of conversion of electrical energy to thermal

energy per unit volume (Joule heating) is the product of
the current density times the electric field. Calculate the
rate of thermal energy production during the time the
magnetic field is changing.

(c) Determine the total thermal energy change caused by the
change of magnetic field.

(d) The specific heat of silver is 240 J kg−1 ◦C−1, and the
density of silver is 10,500 kg m−3. Determine the tem-
perature increase of the electrode due to Joule heating.

The heating of metal electrodes can be a safety hazard during
rapid (20 Hz) magnetic stimulation (Roth et al. 1992).
Problem 28. Suppose that during rapid-rate magnetic stimu-
lation, each stimulus pulse causes the temperature of a metal
EEG electrode to increase by �T (see Problem 27). The
hot electrode then cools exponentially with a time constant

τ (typically about 45 s). If N stimulation pulses are deliv-
ered starting at t = 0 with successive pulses separated by a
time �t , then the temperature at the end of the pulse train
is T (N,�t) = �T

∑N−1
i=0 e−i�t/τ . Find a closed form ex-

pression for T (N,�t) using the summation formula for the
geometric series: 1+x+x2 +· · ·+xn−1 = (1−xn)/(1−x).

Determine the limiting values of T (N,�t)for N�t 	 τ and
N�t � τ . (See Roth et al. 1992.)
Problem 29. The concept of skin depth plays a role in some
biomagnetic applications.
(a) Write Ampere’s law (Eq. 8.24) for the case when the

displacement current is negligible.
(b) Use Ohm’s law (Eq. 6.26) to write the result from (a) in

terms of the electric field.
(c) Take the curl of both sides of the equation you found

in (b) (Assume the conductivity σ is homogeneous and
isotropic).

(d) Use Faraday’s law (Eq. 8.22), ∇ · B = 0 (Eq. 8.9), and
the vector identity ∇ × (∇ × B) = ∇(∇ · B) − ∇2B to
simplify the result from (c).

(e) Your answer to (d) should be the familiar diffusion equa-
tion (Eq. 4.24). Express the diffusion constant D in
terms of electric and magnetic parameters.

(f) In Chap. 4, we found that diffusion over a distance L

takes a time T = L2/2D. During transcranial magnetic
stimulation, L = 0.1 m, σ = 0.1 S m−1and μ0 = 4π ×
10−7 T m A−1. How long does the magnetic field take
to diffuse into the head? Is this time much longer than or
much shorter than the rise time of the magnetic field for
the stimulator designed by Barker et al. (1985)?

(g) Solve T = L2/2D for L, using the expression for
D found in (e). Calculate L for T = 0.1 ms. Is L

much larger than or much smaller than the size of your
head? L is closely related to the skin depth defined in
electromagnetic theory.

(h) During magnetic resonance imaging (see Chap. 18), an
85-MHz radio-frequency magnetic field is applied to the
body. Calculate L using half a period for T . How does L

compare to the size of the head? The frequency of the RF
field is proportional to the strength of the static magnetic
field in an MRI device, and 85 MHz corresponds to 2 T.
If the static field is 7 T (common in modern high-field
MRI), calculate L. Is it safe to ignore skin depth during
high-field MRI?

Section 8.7

Problem 30. Suppose that a magnetic stimulator consists of
a single-turn coil of radius a = 2 cm. It is desired to have
a magnetic field of 2 T on the axis of the coil at a distance
b = 2 cm away.
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(a) Calculate the current required, using symmetry and the
Biot–Savart law. (Hint: Use the results of Problem 10.)

(b) Assume that the magnetic field rises from 0 to 2 T in
100 μs. Assume also that the flux through the coil is
equal to the field at the center of the coil multiplied by
the area of the coil. Calculate the emf induced in the coil.

Problem 31. Assume a sheet of tissue having conductivity σ

is placed perpendicular to a uniform, strong, static magnetic
field B0. A weaker but temporally oscillating magnetic field
B1(t) is parallel to B0 and is uniform in the region r < a,
where r is the distance from a line along the direction of B0.
(a) Derive an expression for the electric field E induced

by the oscillating magnetic field. It will depend on the
distance r from the center of the sheet and the rate of
change of the magnetic field.

(b) Determine an expression for the current density j by
multiplying the electric field by the conductivity.

(c) The force per unit volume, F, is given by the Lorentz
force, j × B0 (ignore the weak B1). Find an expression
for F.

(d) The source of the ultrasonic pressure waves can be ex-
pressed as the divergence of the Lorentz Force. Derive
an expression for ∇ · F.

(e) Draw a picture showing the directions of j, B0, and F.
This technique of measuring the ultrasonic signal and de-
termining the conductivity is called Magnetoacoustic To-
mography with Magnetic Induction (MAT-MI) (Xu and He
2005).
Problem 32.
(a) Rederive the cable equation for the transmembrane po-

tential v, (Eq. 6.55) using one crucial modification:
generalize Eq. 6.26 to account for part of the intracellu-
lar electric field that arises from Faraday induction and
therefore cannot be written as the gradient of a potential,

ii(x) = − 1

ri

(
dvi

dx
+ Eix

)
.

Assume you measure v relative to the resting potential
so Eq. 6.53 becomes jm = gmv, and let the extracellular
potential be small so vi = v. Identify the new source
term in the cable equation (the activating function for
magnetic stimulation), analogous to vr in Eq. 6.55.

(b) Let

Ei = E0
a2

x2 + a2
.

Calculate the activating function and plot both the elec-
tric field and the activating function versus x.

(c) Suppose you stimulate a nerve using this activating func-
tion, first with one polarity of the current pulse and then
the other. What additional delay in the response of the
nerve (as measured by the arrival time of the action
potential at the far end) will changing polarity cause

because of the extra distance the action potential must
travel? Assume a = 4 cm and the conduction speed is
60 m s−1.

Section 8.8

Problem 33. Magnetite, Fe3O4, has a density of 5.24 g cm−3

and a magnetic moment of 3.75 × 10−23 A m2 per molecule.
If a cubic sample 50 nm on a side is completely magnetized,
what is the total magnetic moment? What is the magnitude
of M?
Problem 34. The magnetic moment of a magnetosome, one
of the small particles of magnetite in a bacterium, is about
6.40 × 10−17 A m2. Assume that the magnetic activity in all
the species listed is due to a collection of magnetosomes of
this size. The table shows values given in the references cited
in the text. The earth’s magnetic field is about 5 × 10−5 T.
Fill in the remaining entries in the table.

Organism Number
of magne-
tosomes

Total
magnetic
moment
(A m2)

mBearth/kBT

Bacterium 20
Bee 1.2×10−9

Pigeon 5.0×10−9

Tuna 8.5 × 107

Problem 35. In this problem you will work out the orienta-
tion of a bacterium if the entire organism simply aligns like
a compass needle in the earth’s field of 5 × 10−5 T.
(a) Show that τ = m × B implies an orientation energy

U = −mB cos θ .
(b) The bacterium has a single flagellum that causes it to

swim in the direction of its long axis with speed v0. The
component of its velocity in the direction of the earth’s
field is vx = v0 cos θ . In the absence of the magnetic
torque, the probability that a bacterium is at an angle be-
tween θ and θ + dθ with the earth’s field is proportional
to dΩ = 2π sin θ dθ . With the torque, the probability
that a bacterium is at angle with the earth’s field is mod-
ified by a Boltzmann factor exp(−U/kBT ). Find the
average velocity in the direction of the earth’s field. Use
m = 1.28 × 10−15 A m2.

Problem 36. Suppose that the bacterium of Problem 35 is
swimming in a tank aligned with the earth’s field. An external
coil suddenly reverses the direction of the field but leaves
the magnitude unchanged. Assume that the bacterium is a
sphere of radius a. A torque on a small sphere of radius a in
a medium of viscosity η causes the sphere to rotate at a rate
dθ/dt , such that τ = 8πa3η(dθ/dt). For simplicity, assume
that all motion takes place in a plane.
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(a) Show that dθ/dt = sin θ/t0, where t0 = 8πa3η/mB.
(b) Evaluate t0 for a bacterium of radius 2μm in the earth’s

magnetic field. Use m = 1.28 × 10−15 A m2

(c) The velocity component perpendicular to the field is
vy = v0 sin θ . Show that when the bacterium rotates
from angle θ1 to θ2 it has moved a distance y =
v0t0(θ2 − θ1).

(d) Show that the time required to change from angle ε to
π − ε is t0 ln

[
(1 + cos ε)/(1 − cos ε)

]
.

Problem 37. Magnetic cell sorting is a way to isolate cells of
a particular type. Small superparamagnetic particles (about
50 nm diameter) are bound to an antibody that attaches
specifically to the cell type of interest. (Superparamagnetic
means that they behave linearly but have a magnetic suscep-
tibility χm � 1.) These cells are then placed in a magnetic
field gradient, and the resulting force is used to manipulate
the cell. What is the force if 100 spherical 50-nm diameter
particles are attached to a cell that is in a magnetic field of
1 T with a magnetic field gradient of 10 T m−1?

Section 8.9

Problem 38. The spatial gradient in the earth’s field is about
10−11 T m−1. How much lateral movement can be tolerated
in measuring a magnetoencephalogram of about 10−13 T?
Problem 39. Show that the units of h/2e are V s, and that
this is also a unit of magnetic flux.
Problem 40. Suppose that a SQUID of area 0.1 cm2 can
resolve a magnetic flux change �Φ = 10−3Φ0. What is the
corresponding change in B?
Problem 41. The first difference of B is B(x + a) − B(x).
What is the second difference? Compare the first and second
differences to what is detected by a first-order and second-
order gradiometer. Assume that B is constant over the area
of each gradiometer loop. Use these results to determine the
signal resulting from a distant but unwanted dipole source
with a magnetic field that falls as 1/r3.
Problem 42. A first-order gradiometer is used to measure
the magnetic field at a point (x0, 0, z0) from a current dipole
described by Eq. 8.18. The gradient is measured at position
z = x0/

√
2. The coils are at x0 and x0 + a and are perpen-

dicular to the z axis. Find the net flux in the gradiometer in
terms of x0 and a and the radius b of the coils. Assume B is
uniform across each coil.
Problem 43. Figure 8.29a shows a gradiometer for measur-
ing ∂Bz/∂z. Sketch a gradient coil for measuring ∂Bz/∂x.

Problem 44. Consider a nerve threaded through the center
of a toroid of magnetic permeability μ, wound with N turns
of wire, as shown in Fig. 8.26. The inner radius of the toroid
is c, the outer radius is d, and the width is e. Assume a current
I flows inside the axon and is uniform along its length.

(a) Calculate the magnetic flux Φ = ∫
B · dS through the

toroid winding caused by the current in the axon.
(b) The magnetic flux divided by the current is called the

mutual inductance, M , of the axon and coil. Show that
the mutual inductance is M = μNe ln(d/c)/2π .

(c) By the Faraday Induction Law, the electromotive
force (EMF ) induced in the windings is EMF =
−M(dI/dt). Calculate the EMF when μ = 10 000μ0,
N = 100, c = 1 mm, d = 2 mm, e = 1 mm, and I

changes from zero to 1 μA in 1 ms. For additional infor-
mation about using a toroid to detect currents along an
axon, see Gielen et al. (1986).

Problem 45. A coil on a magnetic toroid as in Problem 44
is being used to measure the magnetic field of a nerve axon.
(a) If the axon is suspended in air, with only a thin layer of

extracellular fluid clinging to its surface, use Ampere’s
law to determine the magnetic field, B, recorded by the
toroid.

(b) If the axon is immersed in a large conductor such as a
saline bath, B is proportional to the sum of the intracel-
lular current plus that fraction of the extracellular current
that passes through the toroid (see Problem 14). Suppose
that during an experiment an air bubble is trapped be-
tween the axon and the inner radius of the toroid. How
is the magnetic signal affected by the bubble? See Roth
et al. (1985).

Problem 46. When comparing calculated and measured
magnetic fields, the calculated field should be integrated over
the area of the detector coil to give the magnetic flux through
the coil. Assume the detector coil is circular with radius a.
The flux can be approximated by

�
B · dS ≈ πa2

3

3∑

i=1

Bn

(
r = a√

2
, θ = i

2π

3

)
,

where Bn is the component of B normal to the coil, and r

and θ are polar coordinates with the origin at the coil center.
Show that this equation is exact up to second order. In other
words, show that this equation is exact for magnetic fields
given by

Bn = c + dx + ey + f x2 + gxy + hy2,

where c, d, e, f, g, and h are constants, x = r cos θ,

and y = r sin θ . Higher order formulas for averaging the
magnetic field can be found in Roth and Sato (1992).
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9Electricity andMagnetism at the Cellular Level

This chapter describes a number of topics related to charged
membranes and the movement of ions through them. Top-
ics range from the basics of how the presence of impermeant
ions alters the concentration ratios of permeant ions, to the
movement of ions under the combined influence of an elec-
tric field and diffusion, and to simple models for gating in ion
channels in cell membranes. It also discusses mechanisms
for the detection of weak electric and magnetic fields and the
possible effects of weak low-frequency electric and magnetic
fields on cells.

Section 9.1 discusses Donnan equilibrium, in which the
presence of an impermeant ion on one side of a membrane,
along with other ions that can pass through, causes a potential
difference to build up across the membrane. This potential
difference exists even though the bulk solution on each side
of the membrane is electrically neutral. Section 9.2 exam-
ines the Gouy–Chapman model for the charge buildup at
each surface of the membrane that gives rise to this potential
difference. This same model is extended in three dimen-
sions to the cloud of counterions surrounding each ion in
solution—the Debye–Hückel model of Sect. 9.3.

Since water molecules have a net dipole moment, they
align themselves so as to nearly cancel the electric field of
each ion. Very close to the ion, the electric field is so strong
that even complete alignment is insufficient to cancel the
ion’s field. This saturation of the dielectric is described in
Sect. 9.4.

Ions move in solution by diffusion if there is a concen-
tration gradient and by drift if there is an applied electric
field. The Nernst–Planck equation (Sect. 9.5) describes this
motion. When several ion species are moving through a
membrane, there can be zero total electric current, even
though there is a flow of each species. A constant-field model
for this situation leads to the Goldman equations of Sect. 9.6.

The next two sections discuss channels in active cell
membranes. Section 9.7 describes a simple model for
gating—the opening and closing of channels—as well as

limitations to the conductance of each channel imposed by
diffusion to the mouth of the channel. Section 9.8 introduces
noise—the fluctuations in channel current that limit measure-
ment accuracy but also can be used to determine properties
of the channels.

Section 9.9 shows how channels can detect very small
mechanical motions, as in the ear, and how certain fish can
detect very small electric fields in sea water. Both of these
processes are working near the limit of sensitivity set by
random thermal motion.

Section 9.10 introduces an area of great interest and con-
troversy: whether weak, low-frequency electric and magnetic
fields can have any effect on cells. We discuss some of
the physical aspects of the problem and conclude that such
effects are highly unlikely.

There are many similarities between the models for bio-
logical physics presented in this chapter and the models used
in plasma physics (Uehara et al. 2000).

9.1 Donnan Equilibrium

There is usually an electrical potential difference across
the wall of a capillary. There is also a potential difference
across the cell membrane (or plasma membrane or cytoplas-
mic membrane), and the concentration of certain ion species
is different in the intracellular and extracellular fluid. In
Chap. 3, we saw that if the potential difference across the
membrane is v′ − v, an ion of valence z is in equilibrium
when C′/C = e−ze(v′−v)/kBT . For this concentration ratio,
there is no current, even if the membrane is permeable to
the species. This result is a special case of the Boltzmann
factor, more familiar in physiology as the Nernst equation
(Eq. 3.34):

v′ − v = −kBT

ze
ln

(
C′

C

)
= −RT

zF
ln

(
C′

C

)
.
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v = 0 v'

[K] [K']

[Cl] [Cl']

[M  ]+ +[M  ']

[M  ]- [M  ']-

Fig. 9.1 Ion concentrations on either side of a membrane. Species that
can pass through the membrane are indicated by double-headed arrows

It is often said—incorrectly—that the Nernst equation
shows how the concentration of an ion species causes the po-
tential difference across the membrane. We saw in Chap. 6
that the potential difference across the membrane is caused
by layers of charge on each side of the membrane that cre-
ate an electric field in the membrane. The solutions on each
side of the membrane are electrically neutral except at the
boundary with the membrane. (If there was an electric field
in the solution, ions would move until the field was zero; then
Gauss’s law could be used to show that any volume contains
zero charge.) We will learn in Sect. 9.2 the typical distance
from the membrane occupied by the charged layer, and in
Sect. 9.3, we will find the distance scale over which there
are microscopic departures from neutrality in a bulk ionic
solution.

The concentration differences do not directly cause the
potential difference. However, if the concentration of an ion
species on one side of the membrane is varied, the poten-
tial often changes in a manner that is approximated by the
Nernst equation over a wide range of concentrations. We will
now explore one mechanism by which this can happen. This
is particularly important for the walls of capillaries, where
charged proteins in the blood are too large to pass through
the gaps between cells in the capillary walls, but it is also
applicable to the cell membrane.

In Donnan equilibrium, the potential difference arises be-
cause one ion species cannot pass through the membrane
at all. Consider the hypothetical case of Fig. 9.1. Permeant
potassium ions exist on either side of the membrane in con-
centrations [K] and

[
K′]. In this case, potassium is the only

permeant cation; in a real situation, there might be several
permeant ions. The membrane is also permeable to chloride
ions, which exist in concentrations [Cl] and

[
Cl′
]
. Chloride is

the only permeant anion. In addition, there are large charged
molecules

[
M+] and

[
M−] that cannot pass through the

membrane. Their concentrations are
[
M+],

[
M+′],

[
M−],

and
[
M−′]. For simplicity, we assume they are monovalent.

The potential on the left is 0; on the right, it is v′. Assume

that the concentrations of the large molecules are fixed. The
potassium concentration on the left side of the membrane
will be assumed known, and we must solve for four vari-
ables:

[
K′], [Cl],

[
Cl′
]
, and v′. Therefore, four equations are

needed.
The first two equations state that the solutions on either

side are electrically neutral:

[
M+]+ [K] = [Cl] + [M−] , (9.1)

[
M+′]+ [K′] = [Cl′

]+ [M−′] . (9.2)

Equation 9.1 can be solved for [Cl]. It will be convenient to
define [M] = [M+]− [M−] and

[
M′] = [M+′]− [M−′]:

[Cl] = [K] + (
[
M+]− [M−]) = [K] + [M] . (9.3)

Note that adding any amount of KCl to the solution on the
left automatically satisfies this equation, since any increase
in [K] is accompanied by the same increase in [Cl].

The other two equations state that the concentrations of
potassium and chloride on the two sides of the membrane
are related by a Boltzmann factor. Since the valence z = +1
for [K] and −1 for [Cl], we have

[
K′]

[K]
= [Cl]
[
Cl′
] = e−ev′/kBT . (9.4)

The chloride concentration on the right is
[
Cl′
] =

[Cl]
([

Cl′
]
/ [Cl]

) = [Cl]
(
[K] /

[
K′]), so that from Eq. 9.2[

K′] + [M′] = [Cl]
(
[K] /

[
K′]). This can be rewritten as a

quadratic equation in
[
K′], since [K] and

[
M′] are known and

[Cl] is calculated from Eq. 9.3:

[
K′]2 + [M′] [K′]− [K] [Cl] = 0.

The solution is

[
K′] = − [M′]+

√[
M′]2 + 4 [K] [Cl]

2
. (9.5)

(The negative square root is discarded because it would give
a negative potassium concentration.) Once we have solved
for
[
K′],

[
Cl′
]

and v′ are determined from Eq. 9.4. Solu-
tions for different values of [K] are shown in Table 9.1 and
Figs. 9.2 and 9.3 for the conditions

[
M+] = 145 mmol l−1,

[
M+′] = 15 mmol l−1,

[
M−] = 30 mmol l−1,

[
M−′] = 156 mmol l−1,

[M] = 115 mmol l−1,
[
M′] = −141 mmol l−1.

The temperature T = 310 K, for which kBT /e = 26.75 mV.
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Table 9.1 Variation of concentrations (mmol l−1) and voltage (mV) as
[K] is varied

[K] [Cl] [K′] [Cl′] [Cl]/[Cl′]
= [K′]/[K]

v′

0.01 115.01 141.01 0.00816 14101 −255.57
0.10 115.10 141.08 0.08 1410.8 −193.99
0.20 115.20 141.16 0.16 705.8 −175.46
0.50 115.50 141.41 0.41 282.8 −151.00
1.00 116.00 141.82 0.82 141.8 −132.53
2.00 117.00 142.64 1.64 71.32 −114.15
5.00 120.00 145.13 4.13 29.03 −90.10
10.00 125.00 149.37 8.37 14.94 −72.33
20.00 135.00 158.08 17.08 7.904 −55.30
50.00 165.00 185.48 44.48 3.710 −35.07
100.00 215.00 233.20 92.20 2.332 −22.65
200.00 315.00 331.21 190.21 1.656 −13.49
500.00 615.00 629.49 488.49 1.259 −6.16
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Fig. 9.2 Variation of [K′] and [Cl′] with [K] in the example of Donnan
equilibrium
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Fig. 9.3 Membrane potential v′ vs. [K] for the example of Donnan
equilibrium. For [K] < 10 mM the curve is like the Nernst equation
because [K′] has a nearly constant value of 141 mM. The dashed line
shows the relationship if [K′] were constant

Several features of this solution are worth noting. First,
changing [K] does change the potential, but the mechanism
is indirect. The Boltzmann factor still applies; minuscule
changes in concentration are sufficient to provide layers of
charge on the membrane surface that generate a potential

difference such that these concentrations are at equilib-
rium. Table 9.1 shows that [K] can vary by three orders of
magnitude—from 0.01 to 10, and

[
K′] changes very little.

Therefore, the curve of v′ vs. ln [K] in Fig. 9.3 is nearly a
straight line. The dashed line in Fig. 9.3 shows v′ vs. ln [K]
if
[
K′] is held constant. We could equally well have regarded

[Cl] as the independent variable.
The impermeable ions enter the equation only as their net

charge, [M] = [
M+] − [M−] and

[
M′] = [

M+′] − [M−′].
As the concentrations [K] and [Cl] get larger, the impermeant
ions become less important, the potential approaches zero,
and the ratios

[
K′] / [K] and

[
Cl′
]
/ [Cl] approach unity.

Donnan equilibrium may well explain the potential that
exists across the capillary wall, which is impermeable to
negatively charged proteins but is permeable to other ions.
There is evidence that it does not adequately explain the po-
tential across a cell membrane. For example, the membrane
is known to be slightly permeable to sodium, although the
sodium concentration is nowhere near what it would be if
the sodium were in equilibrium.

9.2 Potential Change at an Interface: The
Gouy–ChapmanModel

In this section, we study one model for how ions are dis-
tributed at the interface in Donnan equilibrium. The model
was used independently by Gouy and Chapman to study the
interface between a metal electrode and an ionic solution.
They investigated the potential changes along the x-axis per-
pendicular to a large plane electrode. The same model is used
to study the charge distribution in a semiconductor. Biologi-
cal applications are described by Mauro (1962). We show the
features of the model by examining the transition region for
the Donnan equilibrium example described in the preceding
section.

An infinitely thin membrane at x = 0 is assumed to be
permeable to potassium and chloride ions. Their concentra-
tions are K(x) and Cl(x). An impermeant positive cation has
concentration M(x) for x > 0. For negative x, M(x) = 0.
There are no impermeant anions. Far to the left, the poten-
tial is zero and the concentrations are [K] and [Cl]. Far to the
right, they are v′,

[
K′],

[
Cl′
]
, and

[
M′].

The first step is to relate the charge distribution to the
potential. If v and E change only in the x direction, then
Gauss’s law can be applied to a slab of cross-sectional area
S between x and x + dx as shown in Fig. 9.4. The net flux
out through the surface at x + dx is Ex(x + dx)S. The net
outward flux at x is −Ex(x)S. There is no contribution to
the flux through the other surfaces. The total ionic charge in
the volume is ρext(x)Sdx. We include the effect of water po-
larization by using the dielectric constant for water, which
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x x + dx

E (x + dx )E (x )x x

ρ (x)ext

Fig. 9.4 Gauss’s law is applied to the shaded volume to derive
Poisson’s equation in one dimension

is about κ = 80. Applying Gauss’s law in the form of Eq.
6.21b, we obtain1

Ex(x + dx) − Ex(x) = 4πρext(x) dx

4πε0κ
,

dEx

dx
= 4πρext(x)

4πε0κ
.

Finally, since Ex = −∂v/∂x, we have the one-dimensional
Poisson equation,

d2v

dx2
= −4πρext(x)

4πε0κ
. (9.6)

This equation was derived in much the same way that the
equation of continuity was combined with Fick’s first law
to derive Fick’s second law (Sect. 4.8). The same procedure
can be used in three dimensions to derive the general form of
Poisson’s equation:

∇2v = −4πρext(r)
4πε0κ

. (9.7)

For the model being considered the ions are all uni-
valent, so the ionic charge density at x is related to the
concentrations by

ρext(x) = e [K(x) + M(x) − Cl(x)] . (9.8a)

More generally, for a series of ion species each with concen-
tration Ci and valence zi ,

ρext(r) = e
∑

i

ziCi(r). (9.8b)

1 Throughout this section, we keep 4π in both numerator and denom-
inator that could be canceled. We do this for two reasons. First, the
quantity 1/4πε0 has a numerical value of about 9×109, which is easy to
remember; second, for those who do not use SI units, the factor 1/4πε0
does not appear, but the other factor of 4π remains.

The next step is to assume that the concentrations of all
ions are given by Boltzmann factors and are therefore related
to the potential by

K(x) = [K] e−ev(x)/kBT for all x,

Cl(x) = [Cl] eev(x)/kBT for all x, (9.9a)

M(x) = [M′] e−e(v(x)−v′)/kBT , x > 0.

(Remember that M(x) = 0 to the left of the origin.) An
equivalent general expression is

ρext(r) = e
∑

i

zi [Ci] exp

[−ziev(r)
kBT

]
, (9.9b)

where Ci is the concentration in the region where v = 0.
Combining Eqs. 9.7 and 9.9b gives the Poisson–

Boltzmann equation for a dielectric:

∇2v = − 4πe

4πε0κ

∑

i

zi [Ci] exp

(−ziev(r)
kBT

)
. (9.10)

For the specific problem at hand, the Poisson–Boltzmann
equation takes the form

d2v

dx2
= −4πe

4πε0κ

(
[K] e−ev(x)/kBT − [Cl] eev(x)/kBT

)
.

This applies for x < 0 only. While it is possible to solve this
using numerical techniques (Mauro 1962), we will confine
ourselves to the case in which ξ = ev/kBT 	 1, and we
can make the approximation eξ ≈ 1 + ξ. (This is accurate
to 0.5 % for ξ = 0.1, to 10 % for ξ = 0.5, and to 25 % for
ξ = 0.8.) With this approximation

ρext = e
∑

[Ci] zi

(
1 − ziev

kBT

)
= (9.11)

e
∑

[Ci] zi − e2

kBT

∑
[Ci] z2

i v.

Far from the membrane the solution is electrically neutral, so
the first term vanishes. We are left with the linear Poisson–
Boltzmann equation:

∇2v(r) = 4πe2∑ [Ci] z2
i

4πε0κ kBT
v(r). (9.12)

The coefficient of v(r) on the right has the dimensions of
1/(length)2. This length will also appear in other contexts. It
is known as the Debye length, λD:

1

λ2
D

= 4πe2∑ [Ci] z2
i

4πε0κ kBT
. (9.13)
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The linearized Poisson–Boltzmann equation is

∇2v = v

λ2
D

. (9.14)

For the one-dimensional problem and x < 0, it is

d2v

dx2
= v

λ2
D

, (9.15)

where

1

λ2
D

= 4πe2 ([K] + [Cl])

4πε0κkBT
. (9.16)

The methods of Appendix F can be applied to solve this
equation.2 The characteristic equation is s2 = 1/λ2

D , so the
solution for x < 0 is v(x) = Ae−x/λD + Bex/λD . The poten-
tial is zero far to the left, so A = 0. Therefore, the solution
is

v(x) = Bex/λD , x < 0. (9.17)

It is most convenient to write the concentrations for x >

0 in terms of the concentrations far to the right. It is now
necessary to include the impermeant ions.

K(x) = [K′] e−e[v(x)−v′]/kBT ,

Cl(x) = [Cl′
]
ee[v(x)−v′]/kBT ,

M(x) = [M′] e−e[v(x)−v′]/kBT .

(9.18)

The linearized Poisson–Boltzmann equation for x > 0 is
then

d2v

dx2
= − 4πe

4πε0κ

(
[
K′]−

[
K′] ev(x)

kBT
+
[
K′] ev′

kBT
(9.19)

− [Cl′
]−

[
Cl′
]
ev(x)

kBT
+
[
Cl′
]
ev′

kBT

+ [M′]−
[
M′] ev(x)

kBT
+
[
M′] ev′

kBT

)

.

Neutrality requires that
[
K′] + [M′] − [Cl′

] = 0. With the
definition

1

λ′2
D

= 4πe2(
[
K′]+ [Cl′

]+ [M′])
4πε0κkBT

, (9.20)

Eq. 9.19 can be written as

d2v

dx2
− v(x)

λ′2
D

= − v′

λ′2
D

. (9.21)

2 We have seen this equation before in electrotonus when the membrane
capacitance is fully charged (Sect. 6.12).
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Fig. 9.5 The potential and charge density in the vicinity of the Donnan
membrane. There is a layer of negative charge on the left of the mem-
brane and of positive charge on the right. Each decays with the Debye
length given by the ion concentrations far from the membrane

This is an inhomogeneous linear differential equation with
constant coefficients. As pointed out in Appendix F, the most
general solution is the sum of the solution to the homoge-
neous equation (i.e., with the right hand side equal to 0) and
any solution of the inhomogeneous equation, with the con-
stants adjusted to satisfy whatever boundary conditions exist.
In this case, v(x) = v′ satisfies the inhomogeneous equation,
so the most general solution is v(x) = A′e−x/λ′

D +B ′ex/λ′
D +

v′. Far to the right, v = v′ so B ′ = 0. Therefore, the solution
we need is

v(x) = A′e−x/λ′
D + v′ x > 0. (9.22)

This solution for x > 0 must be combined with the so-
lution for x < 0, Eq. 9.17. At x = 0 the potential must be
continuous. Therefore B = A′ + v′. Also at x = 0 the elec-
tric field, and therefore dv/dx, is continuous. (If dv/dx were
not continuous, the second derivative and ρext would be infi-
nite.) This requirement gives the equation B/λD = −A′/λ′

D .
Solving these two equations, we obtain

A′ = −v′λ′
D

λ′
D + λD

, B = v′λD

λ′
D + λD

. (9.23)

Figures 9.5 and 9.6 show the potential, concentration, and
charge density for the case [K] = 100 and

[
M′] =

50 mmol l−1. The other parameters are given in Table 9.2.
The value of ev′/kBT is 0.23.

Since the radii of ions are about 0.2 nm, the Debye length
is several ionic diameters, and the continuous model we have
used is reasonable.

The Poisson–Boltzmann equation is widely used to study
charged molecules in solution (Honig and Nicholls 1995)
and has implications for how proteins bind to DNA (Rohs
et al. 2009). However, in small-scale systems such as ion
channels, which have a size similar to or smaller than the De-
bye length, continuous models may not be entirely reliable
(Moy et al. 2000).
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Fig. 9.6 Concentration profiles across the Donnan membrane. The
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Table 9.2 Parameters for the Donnan interface when [K] = 100,
[M] = 0, and

[
M′] = 50 mmol l−1 at T = 310 K

[Cl] 100 mmol l−1

[K] 100 mmol l−1

[M] 0 mmol l−1

[K′] 78.1 mmol l−1

[Cl′] 128.1 mmol l−1

[M′] 50 mmol l−1

v′ 6.617 mV
λD 0.991 nm
λ′

D 0.875 nm

The Gouy–Chapman model has been compared to de-
tailed molecular dynamics simulations (in which every
molecule is individually accounted for) for the case of salt
water surrounding a lipid bilayer. The two computations are
consistent as long as the adsorption of ions on the bilayer
surface is accounted for (Yi et al. 2008).

9.3 Ions in Solution: The Debye–HückelModel

In an ionic solution, ions of opposite charge attract one
another. A model of this neutralization was developed by
Debye and Hückel a few years after Gouy and Chapman
developed the model in the previous section. The Debye–
Hückel model singles out a particular ion and assumes that
the average concentration of the counterions surrounding it is
given by the Boltzmann factor. Screening by the counterions
causes the potential to fall much more rapidly than 1/r . One
major difficulty with this assumption is that each counterion
is also a central ion; therefore, the notion of a continuous
cloud of counterions represents some sort of average.

We consider a situation in which the electric field, poten-
tial, and charge distribution are spherically symmetric. We
could begin with Eq. 9.7 and look up the Laplacian operator
in spherical coordinates. However, it is instructive to derive
Poisson’s equation for the spherically symmetric case. Con-
sider two concentric spheres of radius r and radius r + dr .
Apply Gauss’s law to the volume contained between the two

surfaces. If E is spherically symmetric, the flux through the
inner sphere is 4πr2E(r). It points into the sphere and is
therefore negative. The outward flux at r + dr is

4π(r + dr)2E(r + dr)

= 4π
[
r2 + 2rdr + (dr)2

] [
E(r) + dE

dr
dr

]
.

If we keep only terms of order dr or less, the outward flux
through the outer sphere is

4πr2E(r) + 8πrE(r)dr + 4πr2 dE

dr
dr.

The net flux out of the volume is 8πrE(r)dr +
4πr2(dE/dr)dr . The total charge in the shell is ρext(r) times
the volume of the shell, 4πr2dr . Therefore, Gauss’s law is

8πrE(r)dr + 4πr2 dE

dr
dr = ρext(r)

4πr2

κε0
dr

or
1

r2

d

dr

(
r2E(r)

)
= 4πρext(r)

4πε0κ
. (9.24)

Since E(r) = −dv/dr , the final equation for the potential
is

1

r2

d

dr

(
r2 dv

dr

)
= −4πρext(r)

4πε0κ
. (9.25)

The Poisson–Boltzmann equation in spherical coordinates,
the analog of Eq. 9.10, is

1

r2

d

dr

(
r2 dv

dr

)
= − 4πe

4πε0κ

∑
zi [Ci] exp

(−ziev(r)

kBT

)
.

(9.26)
We again make a linear approximation to the Boltzmann
factor to obtain the linear Poisson–Boltzmann equation for
spherical symmetry:

1

r2

d

dr

(
r2 dv

dr

)
= 1

λ2
D

v(r). (9.27)

The Debye length λD is defined in Eq. 9.13. With the
substitution v(r) = u(r)/r , the equation becomes

d2u

dr2
= 1

λ2
D

u(r), (9.28)

which is the same as Eq. 9.15. Therefore, the solution is

v(r) = u(r)

r
= Ae−r/λD + Ber/λD

r
.

Requiring that v(r) approaches 0 as r → ∞ means that
B = 0. For small r , the electric field (dv/dr) is that of an
unshielded ion of charge ze. Therefore A = ze/4πε0κ , and
the final solution is

v(r) =
(

ze

4πε0κ

)(
e−r/λD

r

)
. (9.29)
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Table 9.3 The Debye–Hückel potential for a monovalent ion in a so-
lution of ions at the concentration given in Fig. 6.2 for the interior of an
axon. Also shown are the unscreened potential, the parameter zev/kBT ,
and the charge inside a sphere of radius r

r (nm) v(r)
(mV)

e/(4πε0κr)

(mV)
ev/kBT q(r)/e

0.3 40.6 59.9 1.52 0.94
0.4 26.8 44.9 1.00 0.90
0.5 18.8 36.0 0.70 0.86
0.6 13.8 30.0 0.51 0.82
0.7 10.4 25.7 0.39 0.77
0.8 8.0 22.5 0.30 0.72
0.9 6.2 20.0 0.23 0.67
1.0 4.9 18.0 0.18 0.63
1.2 3.2 15.0 0.12 0.54
1.4 2.1 12.8 0.08 0.46
1.6 1.4 11.2 0.05 0.39
1.8 1.0 10.0 0.04 0.32
2.0 0.7 8.99 0.03 0.27
2.2 0.5 8.17 0.02 0.22
2.4 0.3 7.49 0.01 0.18
2.6 0.2 6.91 0.01 0.15
2.8 0.2 6.42 0.01 0.12
3.0 0.1 5.99 0.00 0.10

This is the potential of a point charge ze in a dielectric,
modified by an exponential decay over the Debye length.
From Eq. 9.13, one sees that the greater the concentration
of counterions, the shorter the Debye length.

Table 9.3 shows the values of v(r), ξ = ev/kBT , and
the potential from an unscreened point charge in water of
dielectric constant 80, when the ion concentrations are those
given in Fig. 6.3. A typical ion radius is about 0.2 nm. We
will discover in the next section that the dielectric constant
saturates for r < 0.25 nm. Therefore, values are given in
Table 9.3 only for r > 0.3 nm. The table shows that the
assumption eξ ≈ 1 + ξ is reasonable only for r > 0.5 nm.
The Debye length is λD = 0.77 nm.

The charge density of the ion cloud can be obtained from
Eqs. 9.25 and 9.29. The result is

ρext(r) = −ze

4πλ2
Dr

e−r/λD . (9.30)

The total charge in the counterion cloud inside a sphere of
radius a is

∫ a

0
4πr2ρext(r) dr.

Adding to this a point charge ze at the origin gives the total
charge due to both the ion and the counterion cloud inside
radius a:

q(a) = ze

(
1 + a

λD

)
e−a/λD . (9.31)

This function approaches ze, the charge of the point ion, as
a → 0, and it approaches 0 as a → ∞. Table 9.3 also shows
the values of q(a)/e. Ninety percent of the counterion charge
resides within 3 nm of the central ion. The charge on the cen-
tral ion is half neutralized by charge in a sphere of radius

Fig. 9.7 Schematic picture of the regions surrounding an ion. The solid
circle in the center represents the ion of radius 0.2 nm. The shaded circle
shows the region in which the polarization of the water is saturated.
The outer circle of radius 1.3 nm represents the region within which
the cloud of counterions has neutralized half of the charge on the ion,
which means that on the average a counterion will be in this region half
of the time. This radius depends on the ion concentrations that are those
for the interior of a squid axon. A scale drawing of a water molecule is
also shown

1.3 nm, about six ionic radii. Figure 9.7 shows schematically
an ion of radius 0.2 nm. Since a monovalent ion will be neu-
tralized by a single counterion, it is clear that the assumption
of a continuous charge distribution equal to the average is
a bit strained. The shaded circle of radius 0.25 nm repre-
sents the region in which the water molecules are completely
polarized and the dielectric constant is less than 80; this is
discussed in the next section. (We have ignored the fact that
close to the central ion the linear approximation is not valid.)

When a highly charged molecule (for example, a strand
of DNA) is surrounded by multivalent counterions, the
counterions may interact so strongly that they are correlated
with each other. Such effects are not included in the Debye–
Hückel model. In some cases, these counterions cause
charge inversion: so many correlated positive counterions
form around a central negatively charged molecule that from
a distance the molecule appears to have a net positive charge
(Grosberg et al. 2002).

9.4 Saturation of the Dielectric

The electric field in vacuum at distance r from a point charge
q is E = q/(4πε0r

2). If the charge is in a dielectric, the field
is reduced by a factor 1/κ , except at very small distances,
where the electric field is so strong that the polarization of
the dielectric is saturated.

A molecule of water appears schematically as shown
in Fig. 6.18. The radius of each hydrogen atom is about
0.12 nm; the radius of the oxygen is about 0.14 nm. Each
hydrogen nucleus is 96.5 pm from the oxygen; the angle
between them is 104 ◦. The hydrogen atoms share their elec-
trons with the oxygen in such a way that each hydrogen atom
has a net positive charge and the oxygen has a net nega-
tive charge. A pair of charges ±q separated by distance b

has an electric dipole moment pe of magnitude pe = qb.
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Fig. 9.8 A dielectric is placed in a parallel-plate capacitor that has
charge density ±σ on each plate. A dipole moment of magnitude ptot is
induced in each volume element of the dielectric. The total effect is the
same as a charge density ±σ ′ induced on the surfaces of the dielectric

The vector points from the negative to the positive charge.
The magnitude of the dipole moment of a water molecule is
6.237 × 10−30 C m.

Each molecule of a dielectric in an applied electric field
has an induced dipole moment that reduces the field. This
dipole moment can be caused by a displacement of the elec-
tron cloud with respect to the nucleus, or it can represent (as
for a polar molecule like water) an average molecular align-
ment against the tendency of thermal motion to orient the
water molecules randomly.

The average induced dipole moment gives rise to the
polarization field Epol (Eqs. 6.19–6.20). To see the rela-
tionship, consider a small volume in the dielectric with N

molecules per unit volume. Each molecule has an electric
dipole moment pe = qb. Far from this volume, the potential
is primarily due to the dipole moment of each molecule. This
can be shown by arguments like those in Sects. 7.3 and 7.4.
The potential depends on the total dipole moment of the vol-
ume. The total number of dipoles in the volume is NSdx, so
ptot = peNSdx. This is equivalent to a charge q ′ = peNS

on the ends of the volume element, or a surface of charge
density

σ ′
q = q ′

S
= peN. (9.32)

Now consider a parallel-plate capacitor as shown in
Fig. 9.8. Imagine a series of small volume elements in the
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Fig. 9.9 The electric field around a monovalent point charge and
the polarization electric field due to the water. The polarization field
saturates for r < 0.23 nm

dielectric. The induced charges ±σ ′
q on adjacent surfaces of

each row of volume elements cancel except at the end of
each row. The polarization field is therefore entirely due to
the induced charge of surface density ±σ ′

q at each end of the
dielectric. The magnitude of the field is

Epol = σ ′
q

ε0
= Npe

ε0
. (9.33)

The quantity Npe is the dipole moment per unit volume and
is called the polarization P .

As the external electric field is increased, Epol, which
points in the opposite direction, also increases. This corre-
sponds to the water molecules becoming more and more
aligned. From the definition of susceptibility and the di-
electric constant in Sect. 6.7, the magnitudes are related
by

∣∣Epol
∣∣ = χ

1 + χ
|Eext| =

(
1 − 1

κ

)
|Eext| .

For a monovalent ion in water, Epol = (79/80)Eext =
(79/80)e/(4πε0r

2). When the dipoles are completely
aligned, Epol saturates at its maximum value, given by
Eq. 9.33 with the molecular dipole moment substituted for
pe. The number of water molecules per unit volume is ob-
tained from the fact that 1 mol has a mass of 18 g, occupies
1 cm3 g−1, and contains NA molecules:

Epol(max)

=
[

(NA molecule mol−1)(1 g cm−3)(106 cm3 m−3)

(18 g mol−1 )ε0 C V−1 m−1

]

×
[
6.237 × 10−30 C m molecule−1

]

= 2.36 × 1010 V m−1.

Figure 9.9 shows the fields Eext and Epol around a mono-
valent ion. As Epol saturates, Etot rises toward the value it
would have without a dielectric. The dielectric constant falls
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from 80 to 1 at about 0.23 nm. A more accurate model pre-
dicts similar behavior, but with a more gradual transition of
the dielectric constant from 80 to 1.3

Close to an ion the potential is larger than q/(4πε0κ r).
This changes the Born charging energy (Eq. 6.22), and the
free energy change as an ion dissolves in a solvent (Bock-
ris and Reddy 1970, Chap. 2). Also, close to an ion, the
continuum approximation breaks down.

9.5 Ion Movement in Solution: The
Nernst–Planck Equation

Solute particles can move by diffusion. They can also move
if they have an average velocity Vsolute. There are two ways
they can acquire an average velocity. The first is if they are
at rest on average with respect to a moving solution. This
is called solvent drag. The second is for the solute particles
to be dragged through the solution by an external force that
acts on them, such as gravity or an electric force, balanced
by the viscous force on the particles. In both cases, number
per unit area per unit time crossing a plane is CVsolute. The
solute particle fluence rate (particle current density) due to
both diffusion and the solute velocity in the x direction is4

(Sect. 4.12)

js = −D
dC

dx
+ CVsolute. (9.34)

Suppose that an external force F = zeE acts on the so-
lute particles in the x direction. They will be accelerated
until the viscous drag on them is equal to the magnitude
of F . But we saw in Chap. 4 that the viscous drag is f =
−β(Vsolute − Vsolvent) where Vsolute − Vsolvent is the relative
velocity of the solute through the solvent. Coefficient β is
related to the diffusion constant by β = kBT /D. Therefore,
the particles are no longer accelerated when

Vsolute − Vsolvent = zeE/β. (9.35)

Equation 9.34 can be rewritten as

js = −D
dC

dx
+ C [Vsolvent + (Vsolute − Vsolvent)] .

Now Vsolvent is the volume of solvent that flows per unit area
per unit time and is just jv . With this substitution and using
Eq. 9.35, the particle current density is

js = −D
dC

dx
+ Cjv + CzeE

D

kBT
. (9.36)

3 A more sophisticated model for the alignment of the electric dipoles in
the electric field is analogous to that for magnetic moments in Sect. 8.3.
4 We use x for the distance in the direction parallel to E because z is
used for valence.

Table 9.4 Conductivities of ions at various concentrations at 25◦C,
calculated using Eq. 9.39. Diffusion constants for each ion are from
Hille (2001, p. 317). Concentrations are typical of mammalian nerve
and are from Hille (2001, p. 17). The conductivities of each species add,
and ρ = 1/σ . Larger ions with very small diffusion constants make the
solutions electrically neutral

D C σ ρ

(m2s−1) (mmol l−1) (S m−1) (Ω m)
Extracellular squid axon

Na 1.33 × 10−9 145 0.723
K 1.96 × 10−9 4 0.029
Cl 2.03 × 10−9 123 0.936

1.688 0.592
Intracellular squid axon

Na 1.33 × 10−9 12 0.060
K 1.96 × 10−9 155 1.139
Cl 2.03 × 10−9 4.2 0.032

1.231 0.812

The first term represents solute motion due to diffusion, the
second represents solute dragged along with the bulk flow of
the solution (solvent drag), and the third represents drift due
to the applied electric field.

We will consider only the case in which there is no bulk
flow of solution, so jv = 0. The equation then reduces to the
Nernst–Planck equation:

js = −D
dC

dx
+ zeE

kBT
DC. (9.37)

Diffusion is always toward the region of lower concentration,
while for positive charge the Vsolute term is in the direction
of E. For negative charges, it is in the opposite direction.

Consider the current density in bulk solution between
planes at x = 0 where v(x) = 0 and x = L where
v(x) = v. If there is no concentration gradient and the poten-
tial changes uniformly, then E = −dv/dx = −v/L points
in the negative x direction, and the particle current density
is js = −zeDCv/kBT L. The electrical current density j is
obtained by multiplying js by the charge on each particle, ze:

j = −z2e2DCS

kBT L

v

S
= −G(C)

S
v. (9.38)

If v(L) > v(0), the current is to the left and is negative.
Recalling that G = σS/L = 1/R = S/ρL, we obtain the
conductivity in the bulk solution

σ = 1

ρ
= z2e2DC

kBT
. (9.39)

If several ion species carry current and can be assumed to
move independently, then the total conductivity is the sum
of the conductivities for each ion. Table 9.4 shows con-
tributions to the conductivity for various species at typical
concentrations.
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This model is satisfactory for material such as the inside
of an axon where the concentrations are constant and the ma-
terial is electrically neutral, so that the ions themselves do not
on average contribute to the electric field. We have assumed
that the ions move independently, which will happen only if
the electric field of other ions can be ignored.

We can model ions flowing from a region of one concen-
tration to another (such as crossing the axon membrane) with
the Nernst–Planck equation. Writing it for the electric current
density and using the fact that E(x) = −dv/dx, we have

j = −zeD
dC

dx
− z2e2D

kBT

dv

dx
C. (9.40)

It is simpler to use the dimensionless variable u(x) =
zev(x)/kBT , which is the ratio of an ion’s energy to thermal
energy:

j = −zeD

(
dC

dx
+ C

du

dx

)
. (9.41)

If we assume that dv/dx is constant throughout the region,
v(0) = 0 and v(L) = v, then the gradient is dv/dx = v/L,
and Equation 9.40 becomes

dC

dx
− 1

λ
C = − j

zeD
, (9.42)

where the characteristic length for this model (not the Debye
length) is

λ = −L

u
= −kBT L

zev
. (9.43)

Equation 9.42 is the same as Eq. 4.58, except for the denom-
inator of the term involving j . Here the denominator is zeD

because j is the electric current density instead of the particle
current density. The solution analogous to Eq. 4.62 is

j = zeD

λ

C0e
L/λ − C′

0

eL/λ − 1
= zeD

λ

C0e
−u − C′

0

e−u − 1
, (9.44)

where C0 is the ion concentration at x = 0 and C′
0 is the

concentration at x = L.
The current vanishes if C0e

L/λ − C′
0 = 0, or C′

0/C0 =
eL/λ = e−zev/kBT = e−u. This is the Boltzmann factor.

Equation 9.44 can be written in terms of the original
variables:

j = −z2e2Dv

kBT L

C0e
−zev/kBT − C′

0

e−zev/kBT − 1
= −zeDu

L

C0e
−u − C′

0

e−u − 1
.

(9.45)
It is interesting to compare this to Eq. 9.38. Since G depends
on concentration, it is useful to factor out C0 and write

j = −z2e2DC0

kBT L

e−zev/kBT − C′
0/C0

e−zev/kBT − 1
v

= −G(C0)

S

e−zev/kBT − C′
0/C0

e−zev/kBT − 1
v. (9.46)
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Fig. 9.10 Sodium current versus applied potential for the constant field
Nernst–Planck model when the sodium concentration is 145 mM on the
left and 15 mM on the right. The calculation was done using Eq. 9.45 for
T = 293 K. The tangent line was calculated using Eq. 9.47. The nonlin-
earity or rectification occurs because of the different ion concentrations
on each side

If C0 = C′
0, we recover Eq. 9.38. Figure 9.10 shows the

current density in A m−2 for a situation where C0 = 145 and
C′

0 = 15 mmol l−1. The diffusion constant for sodium from
Table 9.4 has been used. As C0 > C′

0, equilibrium occurs
when v = +57.3 mV at 20◦C.

Note the nonlinearity of the current–voltage relationship
that arises because C0 �= C′

0. For very negative potentials,
the flow is almost entirely from left to right and the current
density approaches G(C0)v/S while for very positive poten-
tials, the flow is from right to left and the current density
approaches G(C′

0)v/S. This asymmetry is fundamental. It
occurs because there are different numbers of charge car-
riers on the left and right. When this behavior is seen in
channels in cell membranes, they are often called rectifier
channels. This same asymmetry in differences in the con-
centration of charge carriers is responsible for rectification
in semiconductors.

Near the Nernst potential, the current density has the form
j = −(G/S)(v − vNernst) if

G

S
= G(C0)(zevNernst/kBT )

S
(
ezevNernst/kBT − 1

) . (9.47)

This equation was used to derive the tangent line shown in
Fig. 9.10.

The constant-field model is an oversimplification. The
field can be distorted by fixed charges near the channel
through which the ions are flowing. Moreover, the model is
internally inconsistent. There are electric fields generated by
the flowing ions, which become important at high concen-
trations. The fact that j = 0 when the potential is equal to
the Nernst potential is fundamental and holds for any ion or
model for conduction. It can be derived in the general case
from Eq. 9.42 (Problem 15). A self-consistent analytic solu-
tion for the case of a single ion species has been known for
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50 years. The solution has been extended by many workers
and has been generalized by Leuchtag and Swihart (1977) to
the case in which all the ions have the same charge.

9.6 Zero Total Current in a Constant-Field
Membrane: The Goldman Equations

The Nernst–Planck equation can be used to calculate the cur-
rent due to movement of ions through a membrane in which
there is a constant electric field. We assume a constant field
because it leads to an analytic solution and because we have
no knowledge of internal structure or the behavior of coun-
terions which could change the field. The resulting equa-
tions are called the Goldman or the Goldman–Hodgkin–Katz
(GHK) equations.

The GHK equations can be derived by assuming either a
homogeneous membrane, in which case the Nernst–Planck
equation is simply applied to each species, or cylindrical
pores of constant cross section. Since we know that the pores
do not have a constant electric field (Sect. 9.7) and it is quite
unlikely that they have constant cross section, the GHK equa-
tions are an approximation. Nevertheless, they have been
used widely in the study of excitable membranes.

We will show the derivation for a cylindrical pore that has
a constant circular cross section. We use cylindrical coordi-
nates (r, φ, x), where x is the axis of the cylinder. (Again, z

denotes the valence of the ions.) Let the outside of the mem-
brane be at x = 0 and the inside at x = L, where the potential
is v and u = zev/kBT . The arguments of Sect. 5.9 about the
r and x dependence can be applied to Eq. 9.41. The analog
of Eq. 5.37 is

j (r) = −zeD(r, a, Rp)

(
∂C(r, x)

∂x
+ u

L
C(r, x)

)
. (9.48)

Again the concentration can be written as C(r, x) =
C(x)Γ (r). Equation 9.48 becomes

j (r) = −zeΓ (r)D(r, a, Rp)

(
∂C(x)

∂x
+ u

L
C(x)

)
. (9.49)

This can be multiplied by 2πr dr and integrated over the pore
area. There are two integrals to consider. The first defines the
average current density for a particular species:

∫ Rp

0
j (r)2πr dr = πR2

p j . (9.50)

The second defines an effective diffusion constant:
∫ Rp

0
Γ (r)D(r, a, Rp)2πr dr = πR2

pDeff. (9.51)

The integrated current density equation is

j = −zeDeff

(
dC(x)

dx
+ u

L
C(x)

)
. (9.52)

Consideration of the r dependence in the pore has given
an equation exactly like Eq. 9.41, but with Deff instead of
D. Equations 9.42 and 9.43 are still valid. The form of λ

is unchanged: λ = −kBT L/zev. Conversion from a single
pore to unit area of the membrane requires multiplying j by
nπR2

p. As in Eq. 5.49 we define ωsRT = nπR2
pDeff/L and

call the concentration outside C1 and the concentration inside
C2. The electric current density per unit area of membrane is

J ′ = z2e2ωsRT v

kBT

C1e
−zev/kBT − C2

1 − e−zev/kBT

= z2e2vωsNA

C1e
−zev/kBT − C2

1 − e−zev/kBT
. (9.53)

Suppose that three species can pass through the mem-
brane: sodium, potassium, and chloride. Equation 9.53 can
be applied separately to each species to obtain the GHK
current equation for each ion species:

J ′
Na = e2vωNaNA

[Na1] e−ev/kBT − [Na2]

1 − e−ev/kBT
, (9.54a)

J ′
K = e2vωKNA

[K1] e−ev/kBT − [K2]

1 − e−ev/kBT
, (9.54b)

J ′
Cl = e2vωClNA

[Cl1] e+ev/kBT − [Cl2]

1 − e+ev/kBT
. (9.54c)

The reversal potential, vrev, is the potential for which the
total membrane current or fluence rate, that is the sum of the
three fluence rates, is zero. The amount of charge within the
cell does not change with time, but the concentration of each
species within the cell changes with time. This less stringent
requirement becomes J ′

Na + J ′
K + J ′

Cl = 0. Adding Eqs. 9.54
together and factoring out NAe2v/(1 − e−ev/kBT ) gives

(ωNa [Na1] + ωK [K1] + ωCl [Cl2]) e−ev/kBT

= ωNa [Na2] + ωK [K2] + ωCl [Cl1] ,

or the GHK voltage equation

vrev = kBT

e
ln

(
ωNa [Na1] + ωK [K1] + ωCl [Cl2]

ωNa [Na2] + ωK [K2] + ωCl [Cl1]

)
.

(9.55)
As an example of the use of the GHK voltage equation,

consider how the reversal potential depends on the concen-
tration of some external ion. We will use the concentrations
of Fig. 6.2, except for the ion whose concentration is being
changed. The particle concentrations are in mmol l−1 (any
units can be used since ratios are taken):

[Na1] = 145, [Na2] = 15,

[K1] = 5, [K2] = 150,

[Cl1] = [Na1] + [K1] − 25, [Cl2] = [Na2] + [K2] − 156.
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Fig. 9.11 The potential difference across a cell membrane as a func-
tion of changes in the exterior concentration of KCl or NaCl, calculated
using the Goldman equation

The permeabilities are not known. However, only the ratio
to ωK matters. If we take the ratio ωK : ωNa : ωCl to be
1.0 : 0.04 : 0.45 and use T = 300 K, then Eq. 9.55 is (in
mV)

v =

25.88 ln

(
[K1] + 0.04 [Na1] + 0.45([Na2] + [K2] − 156)

[K2] + 0.04 [Na2] + 0.45([Na1] + [K1] − 25)

)
.

This has been plotted in Fig. 9.11 for variations of [K1]
and [Na1]. In each case, Cl ions are also added to the ex-
ternal solution in an equal amount. There is a region of
potassium concentration over which the behavior is nearly
exponential, and one could be misled into thinking that
the potential–concentration relation was given either by the
Nernst equation alone or by Donnan equilibrium. The poten-
tial change with sodium concentration is much less because
of the low permeability of the membrane to sodium.

The assumption that the total current through the mem-
brane is zero guarantees that there will be no charge buildup
inside the cell; however, the individual currents are not zero,
so there may be concentration changes with time. We will
next investigate the magnitude of this effect. Equation 9.53
can be converted to particle flux instead of charge flux by
dividing by ze. The result for ion s is

Js = zevωs

C1e
−zev/kBT − C2

1 − e−zev/kBT
.

The concentrations are converted from mmol l−1 to
particles m−3 by multiplying by Avogadro’s number. (The
factors of 103 in the conversion happen to cancel out.) Con-
sider the previous example at T = 300 K, [K1] = 5, [Na1] =
145, and v = −68.17 mV. The exponential factor for the
positive ions is e−ev/kBT = 13.929, while for the chloride

ion it is the reciprocal, 0.0718. If we write ωNa = 0.04ωK

and ωCl = 0.45ωK, then the fluxes for the three ions are

JK = +(6.55 × 103)ωK(6.215),

JNa = −(6.55 × 103)ωK(6.202),

JCl = −(6.55 × 103)ωK(0.013),

and the total current is zero.
Although the GHK equations are widely used because of

their simplicity, some cautions are in order. Their derivation
assumed independence of the moving ions. We know that
this is an oversimplification for several reasons. Experiments
show that the currents saturate for high concentrations. The
distortion of the electric field by other ions was ignored. The
permeability (diffusion constant) was assumed to be con-
stant. The pore was assumed to have a constant cross-section
and constant electric field. A somewhat less restrictive model
for the reversal potential (the potential at which the current
density becomes zero and changes sign) can be derived for
a pair of ions with the same valence if we assume that any
variations in D(x) for the two ions are similar (Problem 20).
With that assumption, the reversal potential is

vrev = kBT

ze
ln

(
ωaCa1 + ωbCb1

ωaCa2 + ωbCb2

)
. (9.56)

When ions have different valences, the GHK equation
becomes more complicated. Lewis (1979) has derived an
analogous equation for transport of sodium, potassium, and
calcium.

9.7 Membrane Channels

In Chap. 6, we described some of the properties of the
sodium and potassium channels in a squid axon. There are
many other kinds of channels. Variations exist not only from
one organism to another, but in different kinds of cells in the
same organism. The classic monograph on ion channels is
the book by Hille (2001). Genetic mutations of these chan-
nel proteins can cause diseases known as channelopathies
(Ashcroft 2012).

There are several different kinds of potassium channels.
Most open after depolarization; a few open after hyperpo-
larization. Potassium channels in axons (like the ones we
encountered in Chap. 6) are called delayed rectifiers because
of their delay in opening after a voltage step.

The properties of sodium channels are more uniform from
one cell type to another.

Calcium channels pass much smaller currents than
sodium or potassium channels because calcium concen-
trations are much smaller; the calcium current density is
usually about one tenth the current density for sodium or
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Fig. 9.12 Steady-state potassium current and peak sodium current for a squid axon subject to a voltage clamp vs. the transmembrane potential
during the clamp. These are not real data, but were generated using the Hodgkin–Huxley model. a Current density. b Current density divided by
the difference between the potential and the Nernst potential, to give the conductance per unit area. (see Eq. 6.61)

potassium. Calcium channels typically activate with depo-
larization. Since the concentration of calcium inside cells is
usually very small, the interior calcium concentration can in-
crease 20-fold in response to depolarization. This increase in
concentration can initiate a chemical reaction, for example,
to cause contraction of a muscle cell.

Chloride channels often have a large conductivity. The
chloride concentration ratio in some muscle cells is such that
the resting potential is close to the chloride Nernst potential.
As a result, small changes in the potential cause relatively
large chloride currents, which tend to stabilize the resting
potential.

The earliest voltage-clamp measurements were difficult to
sort out. Hodgkin and Huxley changed the concentration of
extracellular sodium, substituting impermeant choline ions,
to determine what part of the current was due to sodium
and what was due to potassium. Figure 9.12(a) shows typical
currents.

In the mid-1960s, various drugs were found that at very
small concentrations selectively block conduction of a par-
ticular ion species. We now know that these drugs bind to the
channels that conduct the ions. An example is tetrodotoxin
(TTX), which binds to sodium channels and blocks them,
making it a deadly poison.

The next big advance was patch-clamp recording (Ne-
her and Sakmann 1976). Micropipettes were sealed against
a cell membrane that had been cleaned of connective tis-
sue by treatment with enzymes. A very-high-resistance seal

Fig. 9.13 Opening of single K(Ca) channels. (From Pallotta et al.
(1981). Reprinted with permission from Nature (London))

resulted [(2–3)×107 Ω] that allowed one to see the open-
ing and closing of individual channels. For this work, Erwin
Neher and Bert Sakmann received the Nobel Prize in Phys-
iology or Medicine in 1991. Around 1980, Neher’s group
found a way to make even higher resistance (1010–1011 Ω)
seals that reduced the noise even further and allowed patches
of membrane to be torn from the cell while adhering to the
pipette (Hamill et al. 1981). The relationship of noise to
resistance will be discussed below.

The patch-clamp studies revealed that the pores open and
close randomly, as shown in Fig. 9.13. Thus, the Hodgkin–
Huxley model describes the average behavior of many pores,
not the kinetics of single pores. Note how the current through
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Pore

Fig. 9.14 The structure of a Shaker potassium channel. There are four
subunits that traverse the membrane and create a pore at their center

an open pore changes as a function of the applied potential.
A single open pore can pass at least 1 pA of current or 6 ×
106 monovalent ions per second. Most can pass much more.
While no perfectly selective channel is known, most channels
are quite selective; for example, some potassium channels
show a 100:1 preference for potassium over sodium.

Gene splicing combined with patch-clamp recording pro-
vided a wealth of information. Regions of the DNA re-
sponsible for synthesizing the membrane channel have been
identified. One example that has been extensively stud-
ied is a potassium channel from the fruit fly, Drosophila
melanogaster. The Shaker fruit fly mutant shakes its legs
under anesthesia. It was possible to identify exactly the por-
tion of the fly’s DNA responsible for the mutation. When
Shaker DNA was placed in other cells that do not nor-
mally have potassium channels, they immediately made
functioning channels.

The current view is that the Shaker potassium chan-
nel consists of four subunits that span the membrane. The
pore presumably runs along the four fold-symmetry axis, as
shown in end view in Fig. 9.14. Sodium and calcium chan-
nels are very similar. Voltage-gated channels are reviewed by
Sigworth (1993) and by Keynes (1994).

Roderick MacKinnon and his colleagues determined the
three-dimensional structure of a potassium channel using
X-ray diffraction (Doyle et al. 1998; Jiang et al. 2003).
MacKinnon received the 2003 Nobel Prize in Chemistry for
his work on the potassium channel.

The channel protein contains four identical subunits,
arranged with four-fold symmetry around a central pore
(Fig. 9.14). Each subunit has two alpha helices that cross
the membrane and an inner pore region. One of the remark-
able features of this channel is that potassium ions are 10,000
times more likely to pass through than sodium ions. Yet,
potassium and sodium have similar chemistry (they are in the
same column of the periodic table), and their ions are identi-
cal except for size (0.133 nm radius for potassium, 0.095 nm

for sodium). The channel structure suggests that a narrow,
1.2 nm long region of the pore is responsible for selectivity.
As the ion enters this region, there is not enough room for the
polar water molecules that normally surround it and shield its
charge. Instead, carbonyl oxygen atoms on the channel pro-
tein come in close contact with the potassium ion and provide
the shielding. The size of the pore is such that potassium ions
fit snugly with the surrounding carbonyl oxygen atoms, but
sodium does not fit as well.

X-ray diffraction studies have also clarified the mecha-
nism of voltage dependence in potassium channels. The pore
is surrounded by the charged structures on the channel’s
perimeter that sense the transmembrane voltage. These struc-
tures act somewhat like levers, opening and closing the pore
in response to the voltage. The movement of these structures
is responsible for gating currents in these channels.

The structure of the sodium channel has recently been
determined (Payandeh et al. 2011).

Let us now explore some of the physics of ion channels.
Combining the macroscopic current density with the current
in a single channel shows that there are not many channels
per unit area of the membrane (see Problems 21 and 22). It is
illuminating to consider what effect currents of this magni-
tude and duration have on the transmembrane potential. The
capacitance per unit area of biological membranes is about
0.01 F m−2 (1 μF cm−2). A channel conducting 1 pA for
1 ms allows 10−15 C to pass. This is enough charge to change
the potential 100 mV on an area of 10−12 m2 or 1 μm2. This
charge transfer corresponds to about 6000 monovalent ions
per μm2.

Figure 9.12a shows the steady-state potassium and peak
sodium current densities for a squid axon. The ion concen-
trations are known, and we saw in Chap. 6 that the Nernst
potentials at 6.3 ◦C were +50 mV for sodium and −77 mV
for potassium. Figure 9.12(b) shows the conductance per unit
area, obtained by dividing the current by v − vNernst. Fig-
ure 9.15 shows a semilogarithmic plot of the conductance
per unit area.

The sodium current density changes sign at the sodium
Nernst potential. While a measured zero crossing is an ac-
curate way to determine the Nernst potential, extrapolation
to find the zero-crossing can be quite misleading. The potas-
sium current density appears to be linear over a large region,
and it is tempting to extrapolate to find vK. The extrapolation
shows zero current at about −40 mV, which is far from vK.
The reason can be seen in Fig. 9.12(b), which shows that gK

is varying considerably over the region where jK appears to
be linear; this distorts the slope and changes the extrapolated
intersection.

A simple two-state model can explain the general shape
of the curves in Fig. 9.15. The conductance per unit area of a
membrane is the product of the conductance of an open pore
and the average number of pores per unit area that are open.
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Fig. 9.15 Semilog plot of sodium and potassium conductivities from
Fig. 9.12(b) with fits by Eq. 9.57. For sodium uo = −10.5 and z = −7;
for potassium uo = −19 and z = −10

The model assumes that each channel has a gate that is either
open or closed. When the gate is open, the channel has a con-
ductance determined by the passive properties of the rest of
the channel. The rapid increase of conductance between −60
and −30 mV corresponds to a rapidly increasing probability
that the gate is open.

Suppose that each channel has a gate with two states:
open and closed. When there is no average electric field
in the membrane (v = 0), the energy of the open state is
w = uokBT greater than the closed state. Suppose also that
as the gate opens and closes, a charge q associated with the
gate moves a small distance parallel to the axis of the pore.
When there is a potential v across the membrane, the charge
moves through a potential difference αv, where α < 1. The
total energy change when the gate opens with potential v
across the membrane is then w + qαv. The quantity qα is
often written as ze and called the equivalent gating charge.
In terms of kBT , the energy change when the pore opens is
u = uo + zev/kBT .

Let po be the probability that a pore is open and pc be
the probability that it is closed. The probabilities are related
by a Boltzmann factor: po = pce

−u. Since po + pc = 1,
po = e−u/(1 + e−u) = 1/(1 + eu),

po = 1

1 + euo+zev/kBT
. (9.57)

For very large values of u (small values of po),

po ≈ e−(uo+zev/kBT ). (9.58)

The conductance per unit area of the membrane is the con-
ductance of an open pore times the number of pores per unit
area (that is g∞), times po. Figure 9.15 shows plots of the
“data” and lines generated from Eq. 9.57. The multiplica-
tive constant has been adjusted to fit the flat region of the
“data” at high v. Parameters uo and z have been adjusted
to provide good fits at the lowest conductances. For sodium
uo = −10.5 and z = −7; for potassium uo = −19 and
z = −10. The fact that uo is very negative means that when
v = 0 the energy of an open gate is much less than the
energy of a closed gate. Nearly all of the pores are open,
as can be seen from the v = 0 point in Fig. 9.15. The
fact that z = −7 or −10 means that when the pore opens
or closes the equivalent of 7 (or 10) electron charges must
move through the full transmembrane potential difference.
Many more charges could be displaced a much smaller dis-
tance and experience a much smaller potential change. More
sophisticated multilevel models are discussed by Sigworth
(1993).

This charge movement constitutes a very small current
called the gating current. It is different from the current to
charge the membrane capacitance. We saw above that during
a 1-pA pulse lasting 1 ms, about 6000 monovalent ions flow
through the membrane. The gating charge is about 10 mono-
valent charges, a ratio of about 600. The gating current is so
small that it has not yet been measured in a single channel,
but it can be measured by manipulating the ions bathing the
membrane in a patch-clamp experiment. Figure 9.16 shows
the results of a set of experiments with Shaker potassium
channels. Panel A shows the macroscopic depolarizations to
+20 and +80 mV for a patch with about 400 channels. The
peak current at +80 mV is 1.25 pA per channel. Panel B
shows the gating current recorded from another patch con-
taining about 8000 channels. Potassium was removed from
the solution bathing the interior surface of the membrane.
The gating current lasts slightly less than 1 ms and peaks at
about 4.5 × 10−15 A per channel, about 300 times less than
the channel current. The agreement with our first estimate
of 600 times less is satisfactory, given the accuracy of the
data. Panels C and D show recordings similar to panel A, but
with only a few channels in the patch. The results from three
successive depolalrizing pulses are shown in each case. The
channel openings are similar to those in Fig. 9.13, but are
recorded at a much shorter time scale. The increased current
through an open channel and the higher probability of being
open for a clamp of +80 mV are both apparent. The smooth
macroscopic current shown in Fig. 9.16a is the sum of many
discrete channel currents like those shown in Fig. 9.16c.

A very simple approximate calculation shows that there
is not much ion–ion interaction in a channel. A current of
1 pA is 6.25 × 106 monovalent ions per second, so that the
average time between the passage of successive ions through
the channel is 1.6 × 10−7 s. In a uniform electric field giving
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Fig. 9.16 The results of a set of experiments with Shaker potassium channels. Panel A shows the macroscopic depolarizations to +20 and +80 mV
for a patch with about 400 channels. Panel B shows the gating current recorded from another patch containing about 8000 channels. Potassium
was removed from the solution bathing the interior surface of the membrane. Panels C and D show recordings similar to panel A, but with many
fewer channels in the patch. The results from three successive depolarizing pulses are shown in each case. (From F. J. Sigworth (1993). Reprinted
with permission of Cambridge University Press)

80 mV across the membrane, a monovalent ion would have
a drift velocity of 0.6 m s−1 based on the bulk diffusion con-
stant. (See the discussion surrounding Eq. 4.22.) As ions in
the pore are confined, let us use 1

10 of this, or 0.06 m s−1.
(The diffusion constant is proportional to the solute perme-
ability; see Sect. 5.9. Ignoring electric forces, we see from
Fig. 5.16 that ω/ω0 = 0.1 corresponds to a/Rp = 0.4. So
this is probably still a high drift velocity.) Then the time it
takes the ion to pass through the channel is its length (assume
6 nm) divided by the average speed, or 10−7 s. The fraction
of the time there is an ion in the channel is f = 0.625.

We can make some other estimates of channel param-
eters. Over some part of its length, the channel must be
narrow enough so the wall can interact directly with the ion
that is passing through, not shielded by water molecules.
The pore must therefore be narrowed to a radius of 0.3 to
0.7 nm in some region. Let us assume a cylindrical pore
of radius a = 0.7 nm and length h = 6 nm. The average
number of water molecules in the channel is 308; the average
concentration of ions is f/(πa2h) = 113 mmol l−1, which
is about right. The resistance of a channel while it is open is
R = v/i = 80 mV/1 pA = 8 × 107 Ω. (We should actually
use v− vNernst, but this is a rough estimate. If we were going
to be more accurate, we should also use the Nernst–Planck

equation, recognizing that the ions move by diffusion as
well as drift.)

9.8 Noise

The current fluctuates while a channel is open, as can be
seen in Figs. 9.13 and 9.16. Some of the fluctuation is due
to noise in the measurement apparatus. However, there are
some fundamental physical lower limits to the fluctuations
resulting from noise in the membrane patch itself. We dis-
cuss these briefly here, with a more extensive discussion in
Chap. 11. DeFelice (1981) wrote an excellent book on noise
in membranes.

9.8.1 Shot Noise

The first (and smallest) limitation is called shot noise. It is
due to the fact that the charge is transported by ions that move
randomly and independently through the channels. Imagine a
single open conducting channel with an average current i of
monovalent ions. During time �t (which can be any interval
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shorter than the time the channel is open), the average charge
flow is i�t and the average number of ions is n = i�t/e.
Since there are a very large number of ions that might flow
through the channel (occurrences) and the probability that
any one ion moves through the channel during �t is very
small, we have the Poisson limit of the binomial distribution
(Appendix J). The variance in the number of ions is σ 2

n =
n = i�t/e. Since the average charge transported is q = ne,
the variance in the charge is σ 2

q = e2σ 2
n = ei�t . When

many samples of length �t are measured, the variance in the
current is σ 2

i = σ 2
q /(�t)2. The standard deviations are

σn =
(

i�t

e

)1/2

,

σq = (ei�t
)1/2

,

σi =
(

ei

�t

)1/2

,

(9.59)

and the fractional standard deviations are

σn

n
= σq

q
= σi

i
=
(

e

i�t

)1/2

. (9.60)

For a current of 1 pA, the fractional standard deviation is
0.013 when the sampling time is 1 ms and 0.04 when the
sampling time is 0.1 ms. These are much smaller than what
is observed in the figures.

9.8.2 Johnson Noise

The next source of noise is called Johnson noise. It arises
from thermal fluctuations or Brownian movement of the ions.
It can be derived from a microscopic model of conduction
(either in an ionic solution or a metal), but we will do it using
the equipartition of energy.

First, we need an expression for the energy U contained in
a charged capacitor. To obtain it, imagine that an amount of
charge +dq is transferred from the negative to the positive
conductor. This increases the amount of positive charge on
the positive conductor and also increases the amount of neg-
ative charge on the negative conductor. The work required to
transfer the charge when the potential difference between the
conductors is v is vdq. The energy stored in the capacitor is
the total work required to charge the conductor from 0 to q.
Remembering that q = Cv, we have

U =
∫ q

0
v dq = 1

C

∫ q

0
q dq = q2

2C
= Cv2

2
. (9.61)

If the capacitor is completely isolated, there can be a con-
stant charge on each conductor with no fluctuations. If the

capacitor is in thermal contact with its surroundings and is
in equilibrium, then the equipartition theorem applies. The
capacitor can be brought into thermal equilibrium with its
surroundings by connecting a resistance R between the con-
ductors. This will discharge the capacitor so q = v = 0.
There will be fluctuations around these zero values. As the
expression for the energy depends on the square of the vari-
ables, the mean square value is given by the equipartition
of energy theorem, Eq. 3.38. We will assume that when
the capacitor is charged, thermal fluctuations give the same
variances as when it is discharged:

σ 2
v =

(
v2 − v2

)
= v2 = kBT /C, (9.62a)

σ 2
q =

(
q2 − q2

)
= q2 = CkBT . (9.62b)

In a simple RC circuit, i = v/R, so

σ 2
i = σ 2

v /R2 = kBT /R2C. (9.62c)

Since changes in current or voltage in an RC circuit occur
with time constant τ = RC, we can also write these as

σ 2
v = RkBT/τ, σ 2

i = kBT /Rτ. (9.63)

These are special cases of a more general relationship that
will be discussed in Chap. 11.

We can use these to determine some of the requirements
for patch-clamp recording. In order to see the current from
a single channel with some accuracy, let us require that the
standard deviation of the current fluctuation be less than 1

8
of the signal we want to measure. (This signal-to-noise ratio,
SNR = 8, is arbitrary.) First, consider the limitation due to

Johnson noise. We want σi < i/8 or σ 2
i <

(
i
)2

/64. From
this, we obtain

R >

(
kBT

C

)1/2 8

i
. (9.64)

The capacitance of a patch of membrane of 1 μm radius is
3.1 × 10−14 F. At a temperature of 300 K and for an average
current of 1 pA, this gives R > 3 × 109 Ω. Larger values of
R will give an even higher SNR. There are several sources
of thermal noise in a recording electrode, all discussed in the
paper by Hamill et al. (1981). These are order-of-magnitude
results; one must determine carefully which capacitances and
resistances provide the dominant effects.

We can also see when shot noise is important. The ratio
of Johnson noise to shot noise is

σ 2
i (Johnson)

σ 2
i (shot)

= kBT /Rτ

ei/�t
= kBT

Rei
. (9.65)

This ratio is less than 1 and shot noise is important when
R > kBT/ei = 2.6 × 1010 Ω. Shot noise has been detected
in channel gating currents and subjected to very sophisticated
analysis. See the paper by Crouzy and Sigworth (1993) and
the references therein.
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Fig. 9.17 A schematic diagram of two stereocilia linked by a filament
that opens a channel as the cillia move back and forth

9.9 Sensory Transducers

Animals have very acute senses. We will see (Problem 13.19)
that the ear can hear sounds at 1000 Hz that are just
greater than the pressure fluctuations due to molecular col-
lisions on the ear drum. An eye that is adapted to the dark
can detect flashes of light corresponding to a few photons
(Chap. 14). Many animals can smell chemicals when only
a few molecules strike their sensory organs. The electric
skate can detect extremely small electric fields. In each case
a transducer converts the sensory stimulus into a series of
nerve impulses. The transducer must have sufficient sensi-
tivity to respond to the stimulus, and it must also absorb
an amount of energy from the stimulus that is greater than
what it receives from random thermal bombardment (Brow-
nian movement).5 We describe here two transducers: the
mechanoreceptors (hair cells) of the inner ear and the electric
organ of the skate.

Various transduction mechanisms are reviewed in Chap. 8
of Hille (2001). The mechanoreceptors of the bullfrog inner
ear have been studied for many years. The hair-cell current
rises from 0 to 100 pA with a 0.5-μm displacement. Each
hair cell is cylindrical. On its end face are found about 60
very small stereocilia, each 1–50 μm long and with a 100–
500-nm radius. The tips of these stereocilia are linked by thin
filaments. The hair cells and stereocilia that detect sound in
the ear are attached to the basilar membrane in the cochlea of
the ear and move in a very viscous fluid as the basilar mem-
brane vibrates. Hair cells detecting accelerations of the entire
animal are attached to a suspended dense body. It is believed
that as the stereocilia move, these filaments pull open flaps
at the end of ion channels, allowing ions to enter the cell and
initiate the conduction process. This is shown schematically
in Fig. 9.17. Denk and Webb (1989) have used a laser inter-
ferometer to measure the motion of the hair cells. They found

5 For the detection of light, the amount of energy per photon is so much
greater than kBT that shot noise dominates.

that the spontaneous motion consists primarily of thermal ex-
citation (Brownian motion). Fluctuations in the intracellular
voltage were also measured. They often correlated with the
motion of the hair cells.

Freshwater catfish respond to electric fields as low as
10−4 V m−1. Saltwater sharks and rays can detect fields of
5 × 10−7 V m−1. A brief review has been given by Bastian
(1994); Kalmijn (1988) provides a very complete review. The
saltwater fish have a more complicated sensory apparatus
than the freshwater fish, known as the ampullae of Lorenzini.
Kalmijn et al. discovered that the ocean flounder generates a
current dipole of 3 × 10−7 A m. Sea water with resistivity of
0.23 Ω m gives an electric field of 2 × 10−5 V m−1 at a dis-
tance 10 cm in front of the flounder. They were able to show
in a beautiful series of behavioral experiments that dogfish
(a small shark) could detect the electric field 0.4 m from a
current dipole of 4 × 10−7 A m, corresponding to an electric
field of 5×10−7 V m−1. The fish would bite at the electrodes,
ignoring a nearby odor source. A field of 10−4 V m−1 would
elicit the startle response. A field 1

10 as large caused a phys-
iologic response. The animals responded to a constant field
or a sinusoidally alternating field up to 4 Hz. At 8 Hz the
threshold increased by a factor of 2.

In a series of experiments Lu and Fishman (1994) dis-
sected out the ampulla of Lorenzini and measured its re-
sponse in the laboratory. They found that the resting rate of
firing of the organ is about 35 Hz (impulses per second) and
that an applied electric potential increases or decreases the
firing rate by about 1 Hz μV−1, depending on its sign. The
firing rate saturated for potential differences of 100μV.

The behavioral experiments showed sensitivity to an elec-
tric field of 0.5μV m−1. The anatomy of the ampulla is such
that the organ senses the potential difference between the sur-
face of the fish and deep in its interior. Pickard (1988) shows
that for a spherical fish of radius a, this gives a potential of
3aE/2, where E is the external electric field. The amplitude
of the potential difference oscillation of a fish of length 1

3 m
is therefore 0.25 μV. This is enough to cause a 1 % change
in firing rate, which could be detected by neuronal circuits
(Adair et al. 1998).

The Johnson noise is somewhat smaller than the signal
detected. To estimate it, use Eq. 9.62a with the ampullary
capacitance of 0.15μF measured by Lu and Fishman. The
standard deviation of the noise is 0.17μV.

9.10 Possible Effects of Weak External Electric
andMagnetic Fields

There is a lingering controversy over whether radio-
frequency (cell phone, 450 MHz–2 GHz) and power-line-
frequency (50–60 Hz) electric or magnetic fields can cause
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cancer. While the effect, if any, is quite small, the literature
is extensive, involving both epidemiological and labora-
tory studies. Results are conflicting, and the mechanisms by
which such an effect might occur are not yet understood.
Mechanisms have been proposed, some of which are incon-
sistent with basic physical principles such as the Boltzmann
factor, the mean free path of ions, and thermal fluctuations.
A review in the physics-teaching literature was provided by
Hafemeister (1996).

It is beyond our scope to do more than provide pointers
to the field and discuss some basic underlying physics. We
consider here the power-line frequencies.

We have seen that electric charges give rise to electric
fields, and moving electric charges (currents) generate mag-
netic fields. The electric field lines start and end on charges,
and the magnetic field lines surround the currents. We will
see in Chap. 14 that accelerated charges generate electro-
magnetic radiation, in which the electric and magnetic fields
are interrelated and the field lines close on themselves far
from the source charges. Energy is radiated; it leaves the
source and never returns. This radiated energy is in the form
of discrete packets or photons, whose energy is related to
the frequency of oscillation of the fields. The energy of each
photon is E = hν, where h is Planck’s constant and ν is the
frequency. At room temperature, the energy of random ther-
mal motion is kBT = 4 × 10−21 J. At 60 Hz, the energy in
each photon is much smaller: 4 × 10−32 J. At 100 MHz, it
is 7 × 10−26 J. For electromagnetic radiation in the ultravio-
let and beyond, which certainly can harm cells, the photon
energy is 5 × 10−19 J or greater, quite large compared to
kBT . At the very low frequencies we are considering it is the
strength of the electric or magnetic field that is important, not
the energy of individual photons. A more detailed discussion
of the distinction between these low-frequency “near fields”
and “radiation fields” is found in Polk (1996).

9.10.1 Strong Fields

Electrical burns, cardiac pacing, and nerve and muscle stim-
ulation are produced by electric or rapidly changing mag-
netic fields. Even stronger electric fields increase membrane
permeability. This is believed to be due to the transient for-
mation of pores (electroporation). Pores can be formed, for
example, by microsecond-length pulses with a field strength
in the membrane of about 108 V m−1 (Weaver 2000). Mi-
crowaves are used to heat tissue. Nerve stimulation requires
a few millivolts across the cell membrane, or about 105–
106 V m−1. Both electric and magnetic fields are used to
promote bone healing, with field strengths in tissue in the
fracture region of 10−1 V m−1 (Tenforde 1995), though these
results are controversial (Adair 2000).

9.10.2 Power Frequency (50–60 Hz) Fields

9.10.2.1 Fields in Homes areWeak
Much weaker fields in homes are produced by power lines,
house wiring, and electrical appliances. Barnes (1995) found
average electric fields in air next to the body of about
7 V m−1, with peak values of 200 V m−1. (We will find
that since the body is a conductor, the fields within the body
are much less.) Average residential magnetic fields are about
0.1 μT, with peaks up to four times as large. Within the
body they are about the same. Tenforde (1995) reviews both
power-line and radio-frequency field intensities.

9.10.2.2 Epidemiological Studies
Epidemiological studies have been very valuable in tracing
the cause of infectious outbreaks. They have also indicated
that smoking increases the probability of developing lung
cancer by 3000 %—a factor of 30. However, there are diffi-
culties with epidemiological studies when the effect is small:
there are inescapable statistical fluctuations unless the num-
ber of subjects is huge; associations do not prove causality;
and there may be unrecognized variables that are confusing
the picture. The problem is exacerbated when positive find-
ings receive widespread publicity and negative findings are
ignored by the press.

Epidemiological studies usually report relative risk: the
incidence in an exposed group divided by the incidence in
an unexposed group. A relative risk of one means no effect.
John Moulder, the author of a web site about power lines and
cancer that unfortunately no longer exists, said,

A strong association is one with a relative risk (RR) of 5 or more.
Tobacco smoking, for example, shows a strong association, with
the risk of lung cancer in smokers being 10–30 times that of
non-smokers. A relative risk of less than about 3 indicates a weak as-
sociation. A relative risk below about 1.5 is essentially meaningless
unless it is supported by other data.

Most of the positive power-frequency studies have relative risks
of two or less. The leukemia studies as a group have relative risks
of 0.8-1.9, while the brain cancer studies as a group have relative
risks of 0.8-1.6. This is a weak association. Interestingly, as the so-
phistication of the studies has increased, the relative risks have not
increased.

One would also expect an increased response with in-
creasing dose. Moulder continued,

No published power-frequency exposure study has shown a
statistically-significant dose-response relationship between mea-
sured fields and cancer rates, or between distances from transmis-
sion lines and cancer rates. However, there is some indication of
a dose-response in some of the older childhood leukemia studies
when wire codes or calculations of historic fields are used as expo-
sure metrics. The lack of a clear relationship between exposure and
increased cancer incidence is a major reason why most scientists are
skeptical about the significance of much of the epidemiology.
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9.10.2.3 Laboratory Studies
The many laboratory studies were also reviewed by Moulder.
He concluded:

Power-frequency fields show little evidence of the type of effects
on cells, tissues or animals that point towards their being a cause of
cancer, or to their contributing to cancer. In fact, the existing labo-
ratory data provides strong evidence that power-frequency fields of
the magnitude to which people are exposed are not carcinogenic.6

9.10.2.4 Reviews and Panel Reports
Reviews by Moulder and Foster (1995, 1999) find that the
association between power-frequency fields and cancer is
weak7 for magnetic fields and even weaker for electric
fields. Carstensen (1995) and Bren (1995) reach similar
conclusions.

A report by a committee of the National Research Council
concludes that

the current body of evidence does not show that exposure to these
fields presents a human-health hazard.... The committee reviewed
residential exposure levels to electric and magnetic fields, evaluated
the available epidemiological studies, and examined laboratory in-
vestigations that used cells, isolated tissues, and animals. (National
Research Council (1997), p. 2)

There is no convincing evidence that exposure to 60-Hz elec-
tric and magnetic fields causes cancer in animals. . . . There is no
evidence of any adverse effects on reproduction or development in
animals, particularly mammals, from exposure to power-frequency
50- or 60-Hz electric or magnetic fields. (National Research Council
1997, p. 7).

9.10.2.5 Electric Fields in the Body
We now review some of the basic principles that govern the
interaction of electric and magnetic fields with the body.
One of the important principles is the relationship between
the electric field in air and the field within the body, which
is a conductor. A simple model that shows how this cou-
pling takes place is the one-dimensional problem shown
in Fig. 9.18. An infinite slab of tissue has dielectric con-
stant κ and conductivity σ . In the air perpendicular to the
surface of the slab is an external oscillating electric field
E(t) = E0 cos ωt . We assume that the dielectric constant is
independent of frequency and accounts for the polarization

6 Foster (1996) reviewed many of the laboratory studies and described
cases where subtle cues meant the observers were not making truly
“blind” observations. Though not directly relevant to the issue under
discussion here, a classic study by Tucker and Schmitt (1978) at the
University of Minnesota is worth noting. They were seeking to detect
possible human perception of 60-Hz magnetic fields. There appeared
to be an effect. For 5 years they kept providing better and better isola-
tion of the subject from subtle auditory clues. With their final isolation
chamber, none of the 200 subjects could reliably perceive whether the
field was on or off. Had they been less thorough and persistent, they
would have reported a positive effect that does not exist.
7 That is, the carcinogenic effects are in International Association for
Research on Cancer group 2B (possibly carcinogenic), a group that
includes coffee and pickled vegetables.

E0 cos(ωt ) E0 cos(ωt )

+σ
q (t ) − σ

q (t)

1E (t )

κ = 1
σ = 0

σκ

Fig. 9.18 An infinite slab of tissue is immersed in an oscillating
electric field of amplitude E0 in air

of the tissue. An ionic current flows and causes free charge
per unit area ±σq to accumulate on the surfaces of the slab.
Within the slab, the field is E1(t) and the current density is
j = σE1. Gauss’s law (Eq. 6.21b) applied to either surface
gives

−ε0E0 cos ωt + κε0E1(t) = σq(t). (9.66)

Conservation of free charge at the surface requires that8

σE1 = j = −dσq

dt
. (9.67)

If we differentiate Eq. 9.66 and combine it with Eq. 9.67, we
obtain

dE1

dt
+ σ

κε0
E1 = −ω

κ
E0 sin ωt. (9.68)

The factor κε0/σ is a characteristic of the tissue and has
the dimensions of time. We will call it τt .

9 Typical tissue
conductivity is about 0.1 S m−1. We must be careful about
the value of the dielectric constant. We have used a value of
80 for water. However, tissue is much more complex than
pure water and there are several effects that alter the dielec-
tric constant (Foster and Schwan 1996). It takes time for both
the polarization charges and conducting ions to move. As a
result, both the conductivity and the dielectric constant of tis-
sue depend on the frequency of the applied electric field and
in fact are not independent of one another (see Foster and
Schwan 1996, especially pp. 31–41). Several effects change

8 Readers who are familiar with the concepts of reactance and complex
impedance must be frustrated because we have not used them. The rea-
son is pedagogic. Because many in our intended audience may have had
only one year of calculus, we want to avoid the use of complex num-
bers. In Chap. 11 we introduce them as a parallel notation. They are
widely used in the image reconstruction described in Chap. 12.
9 Recall that the membrane time constant τ was used in Eq. 6.40. The
values of conductivity or resistivity and dielectric constant are different
in this case.
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E1

θ

(far away)

E in membrane (3 / 2)(a /b)E1cosθ

Eintracellular (3 / 2)(a /b)(σmembrane /σ )E1

E just outside (3 / 2)E1sinθ=

=

=

Fig. 9.19 The electric fields in and around a spherical cell. The cell
has radius a and membrane thickness b. The field far from the cell has
an amplitude E1

the conductivity and dielectric constant as a function of fre-
quency. At power-line frequencies, the dominant effect is the
slight movement of the counterions and charge in the double
layer at a cell membrane in response to the applied electric
field. As a result, κ ≈ 106 and τt = 9.1 × 10−5 s.

We try a solution to Eq. 9.68 of the form E1(t) =
A sin ωt + B cos ωt . It satisfies the equation if

A = − ωτt

κ(1 + ω2τ 2
t )

E0 ≈ −ωε0

σ
E0,

B = −ωτtA = − (ωτt )
2

κ(1 + ω2τ 2
t )

E0 ≈ 0.

(9.69)

For 60 Hz and a dielectric constant of 106, A = 33×10−9E0,
B = 1.1 × 10−9E0. The amplitude of the field in tissue is
E1 ≈ A:

E1 ≈ 33 × 10−9E0. (9.70)

The field in air is reduced by a factor of about 3 × 10−8

in tissue because the tissue is a good conductor. The total
reduction is nearly the same for a dielectric constant of 80,
as can be seen from the fact that the approximate form for A

does not depend on κ .

9.10.2.6 Electric Fields in a Spherical Cell
Another important factor is the electric fields that exist in
and near a cell. Consider a spherical cell with inner radius a

and membrane thickness b immersed in an infinite conduct-
ing medium in which there is an electric field E1 far from
the cell. We saw above that a field in air of E0 = 300 V m−1

is reduced to E1 = 10−5 V m−1 in the conducting medium.
The potential can be determined analytically by solving Pois-
son’s equation (with zero charge density) in the three regions

Table 9.5 Comparison of the signal in a cell to thermal noise for an
applied electric field in air E0 = 300 V m−1. From Eq. 9.71, E1 =
10−5 V m−1. T = 300 K. z = 10. d = 10−5 m

Model Outside the
cell

In the cell
membrane

Inside the cell

E (V m−1) 1.0 × 10−5 1.62 × 10−2 5.40 × 10−10

kBT /eE (m) 2.57 × 103 1.59 4.79 × 107

zeEd/kBT 3.9 × 10−8 6.3 × 10−5 2.1 × 10−12

and matching boundary conditions much as we did to ob-
tain Eq. 9.67. The results, valid for slowly varying applied
fields such as a 50 or 60-Hz power line field, are shown in
Fig. 9.19.10 Only the amplitude of the electric field is shown.
Assume the conductivities σ of the extracellular and intracel-
lular fluids are the same, that a = 10 μm and b = 6 nm, and
that σmembrane = 2.4×10−8σ . The important features of this
solution are that the field just outside the cell is roughly the
same as the field far away, the field inside the membrane is
magnified by a large factor (a/b), and the field inside the
cell is multiplied by a very small factor (aσmembrane/bσ).
Thus, the cell membrane shields the intracellular space from
extracellular electric fields, so these fields are not likely to di-
rectly affect cell organelles and important biomolecules such
as DNA. This is reflected in the last line of Table 9.5.

9.10.3 Electrical Interactions and Noise

If an organism is affected in some way by an external field,
then it can be regarded as a detector of that field. The external
field can therefore be thought of as a signal. To be detected,
the signal must be greater than the noise. The noise can be
either thermal (Johnson) noise, shot noise, or noise from the
electric currents that normally flow in the body due to nerve
conduction and muscle contraction. To have a signal that is
not masked by Johnson noise, we must have an electric field
E such that

zev

kBT
= zeEd

kBT
> 1, (9.71)

where z is the valence of an effective charge that moves a
distance d in the electric field E. Table 9.5 shows the result
of a calculation using a field in air of 300 V m−1. We use a
value z = 10. For d, we use the diameter of the cell, d =
10 μm (though for the membrane perhaps the much smaller
thickness of the cell membrane should be used). The values
of zeEd/kBT are very small.

One proposal to overcome this signal-to-noise problem is
that the biological effect is due to the averaging of the field
over many cells or over time. This was first proposed by
Weaver and Astumian (1990), and a specific model has been

10 Calculated using equations in Polk (1995), p. 62.
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formulated by Astumian et al. (1995). The model applies the
Nernst–Planck equation (Eq. 9.37) and shows that if the con-
centration of some substance outside the cell is much larger
than inside, the response to an oscillating v is “rectification”
or a net inward current. This would allow an accumulation
of the substance within the cell. The averaging times in their
model are 13 h. Weaver and Astumian (1995) review the en-
tire causality problem, including the effects of shot noise.
Adair (2000) reviews many other aspects of the problem.

9.10.4 Magnetic Interactions and Noise

The magnetic field is not attenuated at the body surface
like the electric field is. Kirschvink et al. (1992a) reported
that the human brain contains several million magnetosomes
per gram. Kobayashi et al. (1995) found that contamination
with magnetic particles could affect laboratory experiments
with cell cultures, even if the cells being studied do not
normally contain magnetosomes. Commercial disposable,
presterilized plastic laboratory ware used in tissue culture
experiments was found to contain ferromagnetic particles
smaller than 100 nm that are readily taken up by white blood
cells.

What about the signal-to-noise ratio for magnetic effects?
The situation is somewhat more favorable than for the elec-
tric case. We saw in Chap. 8 that a single magnetosome has
appreciable alignment with the earth’s magnetic field, even
in the presence of thermal bombardment. The earth’s field is
about 5 × 10−5 T. For a single magnetosome

mBearth

kBT
= (6.4 × 10−17)(5 × 10−5)

(1.38 × 10−23)(300)
= 0.77. (9.72)

For a larger magnetosome of radius 100 μm, m = 2 ×
10−15 A m2 and the energy ratio in the earth’s field is 24. The
field due to a typical power line is about 100 times smaller:
about 2 × 10−7 T.

Kirschvink (1992) proposed a model whereby a magne-
tosome in a field of 10−4–10−3 T could rotate to open a
membrane channel. As an example of the debate that con-
tinues in this area, Adair (1991, 1992, 1993, 1994) argued
that a magnetic interaction cannot overcome thermal noise
in a 60-Hz field of 5 × 10−6 T. However, Polk (1994) argued
that more biologically realistic parameters, including a large
number of magnetosomes in a cell, could allow an interaction
at 2 × 10−6 T.

The essential features of all the models are like this. Imag-
ine a particle with magnetic moment m in the earth’s field.
It will tend to align with the field as shown in Fig. 9.20(a).
The direction of the magnetic moment with the earth’s field
is θ . Apply an alternating field B0 cos ωt at right angles to
the earth’s field, as shown in Fig. 9.20(b). There are three

θ
B earth

B0

m

(b)

m
B earth

(a)

Fig. 9.20 A particle with magnetic moment m a aligned with the
earth’s magnetic field and b at an angle θ with the earth’s field because
of an applied field B0

torques on the particle. The first is viscous drag, which is
proportional to the angular velocity of the particle dθ/dt but
in the opposite direction. The second is the torque tending
to align m with the earth’s field, −mBearth sin θ . The third
tends to align m with the alternating field, mB0 cos ωt cos θ .
Assume that the acceleration is so small that the particle is in
rotational equilibrium. (This is not necessary, but it simplifies
the math.) Then, from Eq. 1.4,

−β
dθ

dt
+ mBearth sin θ − mB0 cos ωt cos θ = 0. (9.73)

In order to linearize the equation, assume that θ is small
enough so that sin θ ≈ θ and cos θ ≈ 1. The linearized
equation is

β
dθ

dt
− mBearthθ = −mB0 cos ωt. (9.74)

This is a linear differential equation with constant coeffi-
cients that can be solved by the techniques of Appendix F.
Consider only the particular solution and try a solution of the
form

θ = θ1 cos ωt + θ2 sin ωt. (9.75)

Substitution of this in the equation shows that

θ1 = m2B0Bearth

(ωβ)2 + (mBearth)2
,

θ2 = − ωβmB0

(ωβ)2 + (mBearth)2
,

and

θm = mB0
[
(ωβ)2 + (mBearth)2

]1/2
, (9.76)

where θm is the maximum amplitude: θ2
m = θ2

1 + θ2
2 . We saw

in Chap. 4 (Stokes’ law) that the translational viscous drag on
a spherical particle is 6πηav. Similarly, the viscous torque
on a rotating sphere is 8πηa3(dθ/dt) (Lamb 1932, pp. 588-
589). The measured values for viscosity inside a cell range
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from 0.003 to 0.015 N s m−2 (Polk 1994). Using the average
of these, β = 0.009(8π)a3 = 0.23a3. The magnetic moment
of a single-domain magnetosome is also proportional to vol-
ume: m = 2 × 106a3. This leads to a maximum amplitude
that is independent of a:

θm = 2 × 106a3B0
[
(377)2(0.23)2a6 + (2 × 106)2(5 × 10−5)2a6

]1/2

= 1.5 × 104B0. (9.77)

Kirschvink originally argued from data about hair-cell de-
formation that a deflection of 16◦ or 0.3 rad is needed. This
would require B0 = 2 × 10−5 T. (He had a slightly different
value because he used a different viscosity. He also included
the torque due to the force on the channel gate.)

In the absence of the applied field, the thermal fluctuations
in angle can be estimated as follows. In the linear approxima-
tion, the work required to displace the particle an amount θ

from the direction of the earth’s field is

W =
∫

τ dθ =
∫

mBearthθ dθ = mBearth
θ2

2
. (9.78)

Equipartition of energy again gives us

θ2
thermal = kBT

mBearth
= kBT

(2 × 106)(5 × 10−5)a3
= kBT

100a3
.

(9.79)
For a 50-nm magnetosome, this gives θrms = 0.58 rad.
For a 100-nm magnetosome it is 0.2 rad, comparable to the
maximum angles deduced from the model in the preceding
paragraph.

9.10.5 Microwaves, Mobile Phones, andWi-Fi

Many of the concerns about the effects of power-line fields
on the body also apply to radio-frequency fields. Sources in-
clude radio waves, microwaves, mobile phones, and Wi-Fi
devices. A sample of the controversy surrounding this issue
can be found in Khurana et al. (2008)11

A review by Moulder et al. (2005) concluded that “Over-
all, a weight-of-evidence evaluation shows that the current
evidence for a causal association between cancer and expo-
sure to RF energy is weak and unconvincing.” However, they
pointed out that there have been only a few epidemiological
studies (which overall show no association). Moreover, the

11 Each issue of the journal Medical Physics contains one
Point/Counterpoint article, in which a proposition is stated and
two prominent medical physicists debate it, one for and one
against. You can download all the point/counterpoint articles at
http://www.medphys.org. They are a great resource to use when
teaching medical physics.

energy deposited in a small region of the head by a cell phone
may be only an order of magnitude less than the exposure
guideline (10 W m−2). While the studies they review did not
suggest that RF energy is a primary carcinogen, they could
not rule out the possibility that RF energy could enhance the
carcinogenicity of other agents.

An exhaustive (390 page) report has been prepared by
the International Committee on Non-ionizing Radiation Pro-
tection (Vecchia et al. 2009). They point out that heating
of tissue by RF energy is well understood. The plausibil-
ity of effects by nonthermal mechanisms that have been
proposed is very low. Epidemiological studies at the time
of publication “give no convincing evidence of a causal
relation between RF exposure and any adverse health ef-
fect.” However, “these studies have too many deficiencies
to rule out an association.” As for mobile phone use and
brain tumors, “overall the studies published to date do not
demonstrate a raised risk within approximately 10 years of
use for any tumor of the brain or any other head tumor.”
“For slow-growing tumors. . . the current observation period
is still too short. Currently data are completely lacking on
the potential carcinogenic effects of exposures in childhood
or adolescence.”

Sheppard et al. (2008) evaluated all the proposed mech-
anisms for radio-frequency interactions with biological
molecules and processes They concluded, “an examination
of all generally accepted and proposed mechanisms open to
quantitative analysis shows that in the frequency range from
several megahertz to a few hundred gigahertz, the focus of
this paper, the principal mechanism for biological effects,
and the only well-established mechanism, is the heating of
tissues by dielectric and resistive loss.”

In recent years, the use of Wi-Fi to connect computers and
household appliances to the Internet has become common. It
has become a public concern about possible health effects,
particularly in schools. Foster and Moulder (2013) reviewed
the current state of research. They concluded that the levels
of RF exposure in a house are far below international and
US limits. The engineering aspects are well understood. The
biological studies are difficult to interpret “but provide no
basis to anticipate any biological effects. . . .” They observe

Finally, it is noted that Wi-Fi and WLANs12 can raise immediate
and urgent safety issues apart from possible RF bioeffects [such
as]. . . privacy invasion and hacking. The Internet. . . raises a num-
ber of safety issues (particularly with children) that have nothing to
do with RF exposure. Excessive concern about speculative hazards
from RF exposures to Wi-Fi, without concern for these more im-
mediate potential hazards, is comparable to worry about the health
effects of using mobile phones without concern for the hazards of
texting while driving.

12 Wireless local area networks.
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Symbols Used in Chapter 9

Symbol Use Units First
used
page

a Radius m 245
b Spacing m 245
d Displacement of charge m 259
e Electron charge C 239
f Force N 247
f Fraction of time an ion is in a

channel
254

gK Potassium conductance per
unit area

S m−2 252

h Length of cylindrical channel m 254
h Planck’s constant J s 257
j, j Electric current density A m−2 248
js Particle current density m−2 s−1 247
jv Volume current density m s−1 247
kB Boltzmann constant J K−1 239
m Magnetic moment A m2 260
n Number of ions 254
pe, pe, ptot Electric dipole moment C m 246
p, pc, po Probability 253
q Charge C 245
r, r Position m 241
r Radius in cylindrical

coordinates
m 249

r Radius in spherical coordinates m 244
t Time s 254
u rv(r) V m 244
u, uo Energy (normalized to kBT ) 248
v, v′ Potential V 239
vNernst Nernst potential V 248
w Energy J or eV 253
x Position m 241
x Distance along cylindrical axis m 249
z Valence 239
A,B,A′, B ′ Constants V 243
Bearth Earth’s magnetic field T 260
B0 Amplitude of applied

oscillating magnetic field
T 260

C,C′ Concentration m−3 239
Ci Concentration of species i m−3 242
[Cl] ,

[
Cl′
]

Chloride concentration m−3 240
C Capacitance F 255
D,Deff,D0 Diffusion constant m2 s−1 247
E,Ex, E0, E1 Electric field V m−1 241
Eext External electric field V m−1 246
Epol Polarization electric field V m−1 246
E Photon energy J 257
F Faraday constant C mol−1 239
F, F Force N 247
G Conductance S 247

J Current per unit area of
membrane

A m−2 249

[K] ,
[
K′] Potassium concentration m−3 240

L Separation m 247[
M+] ,

[
M+′] Concentration of impermeant

cations
m−3 240

[
M−] ,

[
M−′] Concentration of impermeant

anions
m−3 240

[M] ,
[
M′] Net concentration of

impermeant ions
m−3 240

N Number per unit volume m−3 246
NA Avogadro’s number mol−1 246
[Na] ,

[
Na′] Sodium concentration m−3 240

P Polarization C m−2 246
R Gas constant J K−1

mol−1
239

R Resistance Ω 247
Rp Pore radius m 249
S Area m2 241
T Temperature K 239
U,W Energy J 255
V Particle velocity m s−1 247
α Proportionality constant 253
β Linear viscous drag coefficient N s m−1 247
β Rotational viscous drag

coefficient
N s m 260

ε0 Electrical permittivity of free
space

C2 N−1 m−2 241

κ Dielectric constant 241
η Coefficient of viscosity Pa s 260
λD Debye length m 242
λ Characteristic length m 248
ν Frequency Hz or s−1 257
ρ, ρext Charge density C m−3 241
ρ Resistivity Ω m 247
σq, σ ′

q Charge per unit area C m−2 246
σ Conductivity S m−1 247
σi Standard deviation of current A 255
σn Standard deviation of number

of ions
255

σq Standard deviation of charge C 255
σq Charge per unit area C m−2 258
σv Standard deviation of voltage V 255
τ Time constant s 247
τ Torque N m 261
τt Tissue time constant s 258
θ Angle 260
φ Angle in cylindrical

coordinates
249

χ Susceptibility 246
ω,ωs, ω0 Solute permeability N−1 s−1 249
ω Angular frequency s−1 258
ωt Characteristic angular

frequency of tissue
s−1

ξ Energy in units of kBT 242
Γ Radial concentration factor 249
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Problems

Section 9.1

Problem 1. The chloride ratio between plasma and inter-
stitial fluid is 0.95. Plasma protein has a valence of about
−18. In the interstitial fluid,

[
Na′] = [Cl′

] = 155 mmol l−1.
Find the sodium, chloride and protein concentrations in the
plasma and the potential difference across the capillary wall,
assuming Donnan equilibrium.
Problem 2. Suppose that there are two compartments with
equal volume V = 1 l, separated by a membrane that is per-
meable to K and Cl ions. Impermeant positive ions have a
concentration 0 on the left and

[
M′] = [M+′] =10 mmol l−1

on the right. The initial concentration of potassium is [K0] =
30 mmol l−1 on the left. T = 310 K.
(a) Find the initial concentrations of potassium and chloride

on both sides and the potential difference.
(b) A fixed amount of potassium chloride (10 mmol) is

added on the left. After things have come to equilibrium,
find the new concentrations and potential difference.

Problem 3. The extracellular space in cartilage contains
large, immobile, negatively charged molecules called gly-
coaminoglycans (GAGs). An early sign of osteoarthritis is
the loss of GAGs. The concentration of the GAGs is difficult
to measure directly, but Shapiro et al. (2002) measured the
sodium ion concentration in cartilage using magnetic reso-
nance imaging (see Chap. 18). Assume the interstitial fluid
of the body consists of 150 mM of sodium ions and 150 mM
of chloride ions, and that both of these ions can move freely
between the body fluid and the extracellular space of carti-
lage. The cartilage sodium ion concentration is measured to
be 250 mM. If Donnan equilibrium holds, what is the con-
centration of the GAGs? For simplicity, assume the GAGs
are monovalent.

Section 9.2

Problem 4. Derive the Poisson equation from Gauss’s law
in Cartesian coordinates in three dimensions.
Problem 5. Consider ions uniformly dispersed in a so-
lution. Find the average linear separation of the ions for
concentrations of 1, 10, 100, and 1000 mmol l−1.
Problem 6. Verify Eq. 9.19.
Problem 7. Verify the parameters presented in Table 9.2.
How accurate is the approximation ex ≈ 1 + x in this case?
Problem 8. Consider a solution consisting of an equal
concentration, C, of monovalent cations and anions.
(a) Show that ρext = −2Ce sinh

(
ev

kBT

)
.

(b) Let ξ = ev/kBT and r′ = r/λD , where λD is given by
Eq. 9.13. Show that the nonlinear Poisson–Boltzmann
equation (Eq. 9.12) becomes ∇′2ξ = sinh ξ .

Problem 9. Analytical solutions to the nonlinear Poisson–
Boltzmann equation are rare but not unknown. Consider
the case when the potential varies in one dimension (x),
the potential goes to zero at large x, and there exist equal
concentrations of monovalent cations and anions. Chandler
et al. (1965) showed that the solution to the 1-D Poisson–
Boltzmann equation, d2ξ/dx′2 = sinh ξ (see Problem 8), is

ξ(x′) = 4 tanh−1
[
tanh (ξ0/4) e−x′]

, where ξ0 is a constant

and 0 < x′ < ∞.
(a) Verify that this expression satisfies d2ξ/dx′2 = sinh ξ .

(You may need a math handbook with a collection of
hyperbolic function identities.)

(b) Linearize the Poisson–Boltzmann equation and show
that its solution is ξ(x′) = ξ0e

−x′
.

(c) Show that both solutions are equal to ξ0 at x′ = 0 and
equal to 0 at x′ = ∞.

(d) Compare the solutions for the linear and nonlinear
Poisson–Boltzmann equation at x′ = 0.5 for the cases
ξ0 = 0.1, 1, and 10.

Section 9.3

Problem 10. The value of A used to obtain Eq. 9.29 was
determined by saying that as r → 0, the electric field must
approach ze/κ4πε0r

2. An elaboration of the model would be
to say that the central ion has radius a and that the electric
field at r = a must be the same as the field at the surface of
the ion, ze/κ4πε0a

2. How does this change the expression
for v(r)?
Problem 11. Using the method in Sect. 9.3, derive
the Poisson–Boltzmann equation in cylindrical coordinates
(r, φ, z; see Appendix L) assuming the electric field is radial
and does not depend on φ or z. Solutions to the linearized
version of this equation are zeroth order modified Bessel
functions (see Abramowitz and Stegun 1972).

Section 9.4

Problem 12. A collection of molecular electric dipoles, each
of moment p, are in thermal equilibrium at temperature T . If
the dipoles experience an electric field of strength E, then
determine the average value of cos θ , where θ is the angle
between the dipole and the electric field. Hint: assume the
dipole orientations follow the Boltzmann distribution, which
in this case is exp (pE cos θ/kBT ), and integrate over all
solid angles dΩ = 2π sin θdθ . Show that if pE 	 kBT

the average of cos θ is proportional to E, but if pE � kBT
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the average of cos θ saturates at a value of one. Interpret this
physically.
Problem 13. If Fig. 9.7 shows the water molecule in its
average orientation, is the central ion an anion or a cation?

Section 9.5

Problem 14. Find an expression for the slope of the Nernst–
Planck constant-field curve in Fig. 9.10 when v is equal to
the Nernst potential, v0. Hint: expand the exponentials in
Eq. 9.45 around v0.
Problem 15. Show that when j = 0, Eq. 9.42 gives
C(x) = C0e

−zev(x)/kBT , as we already know must be true
in equilibrium. Hint: solve for dv/dx.
Problem 16. Calculate the conductivity of saline (9 g of
NaCl in 1 l of water) at 25 ◦C.
Problem 17. The discussion surrounding Eqs. 9.34–9.41
was for a model of ions in a pore with constant electric
field. It is also possible to write an integral version of the
Nernst–Planck equation. Consider a single channel in which
the current is the same for all values of x, the distance along
the channel. If the diffusion constant and cross-sectional
area of the channel are allowed to vary, and with the usual
substitution u(x) = zev(x)/kBT , Eq. 9.41 becomes

i = j (x)S(x) = −zeD(x)S(x)

(
dC

dx
+ C(x)

du

dx

)
.

(a) Show that if each term is multiplied by eu, this can be
written as

ieu(x)

D(x)S(x)
= −ze

(
eu(x) dC

dx
+ C(x)eu(x) du

dx

)
.

(b) Show that if the integration is carried from x1 to x2, then
the current in the channel is

i = −ze
[
C(x2)e

u(x2) − C(x1)e
u(x1)

]

I
,

where the integral

I =
∫ x2

x1

eu(x) dx

S(x)D(x)
,

contains all the information about the channel.
Problem 18. Cardiac cells have a potassium channel, called
“IK1”, which shows inward rectification (larger current for
potentials more negative than the potassium Nernst potential,
vK , than for potentials more positive than vK ). This channel
sometimes is said to show anomalous rectification. Why is
it anomalous? (The mechanism of anomalous rectification is
described by Nichols et al. 1996.)

Section 9.6

Problem 19. Consider a channel that is 100 times more
permeable to potassium than to sodium (ignore all other
ions).
(a) Write an equation for the reversal potential as a func-

tion of the intracellular and extracellular sodium and
potassium ion concentrations.

(b) Assume [Ki] = 150, [Nai] = 50, and [Nae] = 150 mM.
Plot vr versus [Ke] using semilog paper. On the same
plot, draw the potassium Nernst potential as a function
of [Ke].

Problem 20. Calculation of the permeability ratios from
measurement of the reversal potential is difficult because the
concentrations inside the axon are not known. One can over-
come this by measuring how the reversal potential (Eq. 9.55)
changes as outside concentrations are varied. Obtain an equa-
tion for the shift of reversal potential if two measurements are
made: one in which [Na1] = 0, and the other with [K1] = 0
(assume ωCl = 0).

Section 9.7

Problem 21. A patch–clamp experiment shows that the con-
ductance of a single Ca2+ channel is G = 25 pS. The
membrane thickness is b = 6 nm. Use v = 50 mV.
(a) Assuming that the resistivity of the fluid in the channel

is ρ = 0.5 Ω m, find an expression and numerical value
for the channel radius a.

(b) If the conductance per unit area is 1200 S m−2, find the
number of pores per unit area.

(c) The current is i = Gv, where v is the applied volt-
age. Find an expression for n, the number of calcium
ions per second passing through the channel, in terms of
whichever of parameters G, v, b, and a are necessary.

(d) How many calcium ions are in the channel at one time,
if the calcium concentration is C mmol l−1?

Problem 22. A potassium channel might have a radius of
0.2 nm and a length of 6 nm. If it contained potassium at a
concentration of 150 mmol l−1, how many potassium ions on
average would be in the channel?
Problem 23. How long does it take for a sodium ion to drift
in the electric field (assumed constant) through a membrane
of thickness L and applied potential v? How long does it take
to move by pure diffusion? Find numerical values when the
membrane is 6 nm thick and potential difference is 70 mV.
Problem 24. Suppose that a sodium pore when open passes
10 pA and jNa = 0.2 A m−2. Calculate the number of open
pores per unit area and the average linear spacing between
them.
Problem 25. Calculate the current density of sodium ions
in a region of length 6 nm due to (a) pure diffusion when
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there is no potential difference and the concentrations are 145
and 15 mmol l−1, (b) pure drift when the concentration is
145 mmol l−1 and the potential difference is 70 mV, and (c)
both diffusion and drift if the electric field is constant.
Problem 26. Patch-clamp recording is done with a mi-
cropipette of radius 1 μm.
(a) If the pipette encircles a single channel with conduc-

tance 20 pS, what is the channel current when the
channel is open and the voltage across the membrane
is 20 mV away from the Nernst potential for the ion in
question? Make a simple estimate using Ohm’s law.

(b) Assuming a capacitance of 0.01 F m−2, what current
charges the capacitance of the membrane patch under
the micropipette if a 20-mV change occurs linearly in
5 μs?

Problem 27. The following circuit illustrates the effects that
must be considered when an electrode is used to measure the
properties of a patch of membrane. R1 is the resistance of
the electrode. R2 and C are properties of the membrane. The
applied voltage v0(t) is a step at t = 0. The electrode current
is i(t). The voltage across the membrane patch is v(t).

+

−

+

−
Cv 0(t ) v(t )

R1
R2

i(t)

(a) Show that

v0(t) = R1C
dv

dt
+ R1 + R2

R2
v(t).

(b) Show that the time constant is τ = R1R2C/(R1 + R2)

and that τ → R1C if R1 	 R2, τ → R2C if R1 � R2.
(c) If v0(t) is a step of height v0 at t = 0, show that

v(t) = v0
R2

R1 + R2

(
1 − e−t/τ

)

and

i(t) = v0

R1 + R2

(
1 + R2

R1
e−t/τ

)
.

(d) Plot v(t) and i(t).
(e) The case R1 	 R2 is called voltage-clamped. Find ex-

pressions for v(t) and i(t) in that case and plot them.
Where does the transient current flow? For fixed R2,
what is the time constant?

(f) In the current-clamped case, R1 � R2 and i0 = v0/R1.
Find expressions for v(t) and i(t) and plot them. For
fixed R2, what is the time constant?

(g) Make numerical plots of v(t) and i(t) when v0 =
150 mV, R1 = 106 Ω, C = 5 pF, and R2 = 1011 Ω.

Problem 28. A patch-clamp experiment is done with a mi-
cropipette having a resistance of 106 Ω. When 150 mV is

applied across the membrane, the current is 0 when the pores
are closed and 1 pA when one channel is open. The mem-
brane capacitance is 4×10−3 F m−2. The microelectrode tip
has an inner radius of 20 μm. What is the time constant for
voltage changes? Does it depend on whether the channel has
opened or closed?

Section 9.8

Problem 29. Weaver and Astumian (1990) derived Eq. 9.62a
for the thermal noise of the transmembrane potential using
a different method than in Sect. 9.8. A resistor has a voltage
noise spectral density, σ 2

e (f ) (in units of V2 Hz−1), such that
σ 2

e (f ) = 4kBT R, where f is the frequency (Sect. 11.16). It
corresponds to voltage e in the figure. Weaver and Astumian
represented the membrane as a parallel combination of mem-
brane capacitance C and membrane resistance R (which is
always in series with its noise source, e). The voltage across
the capacitor, v, is the transmembrane potential.

C

R

e
+

−

−
v
+

i

(a) For a particular frequency f , derive a relationship be-
tween the spectral density of the voltage fluctuations of
the transmembrane potential, σ 2

v (f ), and σ 2
e (f ). (Hint:

derive an equation governing the voltage in an RC cir-
cuit, and then solve it using the methods described in
Appendix F.)

(b) Integrate σ 2
v (f ) over all frequencies to get the voltage

fluctuations σ 2
v .

(c) Estimate
√

σ 2
v for a spherical cell of radius 10 μm, hav-

ing a membrane capacitance per unit area of 0.01 F m−2.

Section 9.9

Problem 30. In some nerve membranes a region of nega-
tive resistance is found, in which the current decreases as the
voltage is increased.
(a) Where have we seen this behavior before?
(b) To see why it happens, consider two cases. The current

through the membrane is given by j = g(v)(v − v0),
where g(v) is a property of the membrane, and the
Nernst potential v0 depends on the ion concentration
on either side of the membrane. For this problem let
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v0 = +50 mV. Calculate j as a function of v for
two cases: (a) g(v) = 1; (b) the conductance increases
rapidly with voltage: g(v) = (5.6 × 10−7)e0.288v (v in
mV).

(c) Negative resistance increases the sensitivity of the am-
pullae of Lorenzini, as measured by Lu and Fishman
(1994). To see why, calculate the output voltage in a two-
resistance voltage divider network (as in Fig. 6.23) and
discuss what happens if R2 is negative.

Section 9.10

Problem 31. Estimate the transmembrane potential that cor-
responds to the threshold for electroporation. Compare it to
the normal cell resting potential.
Problem 32. Here is one way that signal-to-noise ratio can
be improved. Suppose that there are N receptors, connected
in the nervous system in such a way that an output response
requires a logical AND between all N receptors. The output
is sampled every t seconds to determine whether or not there
is a response. If the signal exists, all N receptors respond. If
the signal does not exist, each receptor responds to thermal
noise with a probability p (which might be p = e−U/kBT ,
where U is an activation energy). Assume that p is the same
for each receptor, and that whether a receptor has responded
to thermal noise is independent of the response of all other
receptors and also independent of its response at any other
time.

(a)What is the signal-to-noise (S/N) ratio as a function
of N? Suppose that N = 8. Plot S/N as a function of p.

(b) Find U/kBT vs. N for S/N = 4.
Problem 33. Here is another way to look at the signal-to-
noise ratio.
(a) Show that the energy of a charged parallel-plate capac-

itor can be written as κε0E
2V/2, where V = Sd is

the volume between the plates. This is a special case of
a general relationship that the energy per unit volume
associated with an electric field is κε0E

2/2.
(b) Use the information about the magnitude of the electric

field in the cell membrane from Fig. 9.19 to calculate the
total electrostatic energy in the membrane.

(c) Compare the ratio of the total electrostatic energy to
kBT when the air field is 300 V m−1. This overesti-
mates the ratio, because the energy is spread over the
entire membrane and is not available to interact in one
place.

Problem 34. Obtain Eq. 9.79 from the expression U =
−mB cos θ that was derived in Problem 8.35, by making a
suitable expansion for small angles.
Problem 35. Electric fields in the body caused by exposure
to power lines are produced by two mechanisms: direct cou-
pling to the power line electric field, and Faraday induction

from the power line magnetic field. Consider a high-voltage
power line that produces an electric field of 10 kV m−1 and a
magnetic field of 50 μT (Barnes 1995). Estimate the electric
field induced in the human body by these two mechanisms.
Which is larger? Compare the strength of these powerline-
induced electric fields to the strength of naturally-occurring
electric field produced in the body by the heart (estimate the
strength of this endogenous field using the data in Fig. 7.23).
Problem 36. Derive the equations for the electric field
shown in Fig. 9.19. Use the following method. Let the po-
tentials be voutside = A cos θ/r2 − E1r cos θ and vinside =
Br cos θ , where A and B are unknown constants. At the cell
surface, the following boundary condition applies when the
cell membrane is thin and obeys Ohm’s law:

σoutside

(
∂voutside

∂r

)∣∣∣∣
r=a

= σinside

(
∂vinside

∂r

)∣∣∣∣
r=a

= (voutside − vinside)
σmembrane

b

∣∣∣
r=a

(a) Verify that the expressions for voutside and vinside obey
Laplace’s equation and behave properly at r = 0 and
r = ∞.

(b) Use the boundary condition to determine A and B.
(c) Use your expressions for the potential to determine the

electric fields given in Fig. 9.19.
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10Feedback and Control

We now turn to the way in which the body regulates such
things as temperature, oxygen concentration in the blood,
cardiac output, number of red or white blood cells, and blood
concentrations of substances like calcium, sodium, potas-
sium and glucose. Each of these is regulated by a feedback
loop. A feedback loop exists if variable x determines the
value of variable y, and variable y in turn determines the
value of variable x.

Suppose that x is the deviation of a bullet from its desired
path. A bullet has no feedback; after it has left the gun, its
deviation from the desired path is determined by the initial
aim of the gun, fall due to gravity, drift caused by the wind,
and air turbulence. An accuracy of one part in 104 (about a
tenth of an inch in 50 ft) is quite good. A car, on the other
hand, is steered by the driver. If deviation from the center
of the lane x becomes appreciable, the driver changes y, the
position of the steering wheel. The value of y determines x

through the steering mechanism and the tires. It is possible
to have a car deviate less than 1 ft from the desired position
within a lane after driving 3000 miles, an accuracy of one
part in 107. This is an example of negative feedback. If x gets
too large, the factors in the feedback loop tend to reduce it.

Negative-feedback systems can generate oscillations of
their variables. We see oscillations in physiological systems
on many different time scales, from the rhythmic activity of
the heart, to changes in the rate of breathing, to daily vari-
ations in body temperature, blood pressure, and hormone
levels, to monthly variations such as the menstrual cycle, to
annual variations such as hibernation, coloring, fur growth,
and reproduction.

It is also possible to have positive feedback. Two bicker-
ing children can goad each other to new heights of anger.
Positive feedback initiates the action potential described
in Chap. 6: depolarization of the axon leads to increased
sodium permeability, which further speeds depolarization.
Blood pressure is regulated in part by sensors in the kidney.
A patient with high blood pressure may suffer damage to the

blood vessels, including those feeding the kidneys, which re-
duces the blood pressure at the sensors. The sensors then ask
for still higher blood pressure, which accelerates the damage,
which leads to still higher blood pressure, and so on.

The simplest feedback loop consists of two processes: one
in which y depends on x and another in which x depends
on y. The loop can have many more variables. Steering the
car, in addition to the variables of lane position and steering-
wheel position, involves vision, neuromuscular processes, all
of the variables in the automobile’s steering mechanism, and
the Newtonian mechanics of the car’s motion—with external
variables such as the behavior of other drivers continually
bombarding the system.

Sections 10.1–10.3 deal with the relationships between
the feedback variables when the system is in equilibrium
or in the steady state, and none of the variables are chang-
ing with time. The techniques for determining the operating
point—the steady-state values of the variables—are graph-
ical and can be applied to any system if the relationship
among the variables is known.

When the system is not at equilibrium, it returns to the
equilibrium point if the system is stable. Although the equa-
tions describing this return to equilibrium are usually not
linear, Sects. 10.4–10.7 discuss how linear systems behave
when they are not at the operating point. A linear system
may “ decay” exponentially to the steady-state values or it
may exhibit oscillations.

Most systems are not linear. Section 10.8 discusses sys-
tems described by nonlinear equations in one or two di-
mensions, introducing some of the vocabulary and graphical
techniques of nonlinear systems analysis. It closes with an
example of resetting the phase of a biological oscillator. Sec-
tion 10.9 introduces the ideas of period doubling and chaotic
behavior through difference equations and the logistic map.
It then describes a linear map that appears to be chaotic but
is not. Section 10.10 shows how a linear differential equa-
tion that depends on a fixed delay in the variable can exhibit
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Fig. 10.1 Schematic curves of the relationship between thyroid hor-
mone (T3) and thyroid stimulating hormone (TSH) in the thyroid gland
and in the pituitary

either damped or continuous oscillations. Section 10.11 sum-
marizes the earlier sections, and Sect. 10.12 gives several
biological examples.

A great deal of work was done on modeling physiological
feedback systems between 1950 and 1975. Books from that
era include Riggs (1970) and Stark (1968). More informa-
tion about mathematical modeling in biology and medicine
can be found in Murray (2007, 2008) and Keener and Sneyd
(2008a, 2008b).

10.1 Steady-State Relationships Among
Variables

Any feedback loop can be broken down, conceptually at
least, into separate processes that relate a dependent variable
to an independent variable and possibly to some other param-
eters. Figure 10.1 shows an example. In the first process the
thyroid gland, in response to thyroid-stimulating hormone
(TSH) from the pituitary, produces the thyroid hormones thy-
roxine (T4) and tri-iodothyronine (T3). An increase of TSH
increases production of T3 and T4. These processes depend
on other parameters, such as the amount of iodine available
in the body to incorporate into the T3 and T4. In the second
process, the pituitary increases the production of TSH if the
concentration of T3 in the blood falls. It may also respond to
T4 and other variables as well. (This is an oversimplification.
The pituitary actually responds to hormones secreted by the
hypothalamus. The hypothalamus is responding to the levels
of T3 and T4.)

For a quantitative example, consider a simple model re-
lating the amount of carbon dioxide in the alveoli (air sacs
of the lung) and the rate of breathing (ventilation rate). If the
body is producing CO2 at a constant rate, a given ventilation
rate corresponds to a definite value of PCO2 , the partial pres-
sure of carbon dioxide in the alveoli. In the steady state the
amount of CO2 exhaled (the volume of gas leaving the lungs
per minute times PCO2 ) is just equal to the amount produced
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Fig. 10.2 The pressure of CO2 in the alveoli of the lungs decreases
as the ventilation rate is increased. The different curves correspond to
different total metabolic rates

in the body. Figure 10.2 shows this relationship when the pH
and PO2 of the blood are fixed. As ventilation rate rises, PCO2

falls. We are ignoring several other feedback loops (Riggs
1970, pp. 401–418). If the metabolic rate rises, PCO2 also
rises. Experiments show that ventilation rate y and alveolar
PCO2 (which we will call x) are related by (Riggs 1970)

x = 15.47p

y − 2.07
. (10.1)

In these equations y (the independent variable) is measured
in l min−1, x (the dependent variable) is in torr, and param-
eter p is the body’s oxygen consumption in mmol min−1. A
typical resting person requires p = 15 mmol min−1.

Equation 10.1 can be derived using a simple model for
respiration. Let the metabolic rate of the body be described
by o, the rate of oxygen consumption in mol s−1. The respi-
ratory quotient F relates o to the rate of CO2 production, so

(rate of CO2 production) = Fo. (10.2)

A typical value of F is 0.8.
Carbon dioxide is removed from the body by breath-

ing. If the rate at which air flows through the alveoli is1

(dV/dt)alveoli in m3 s−1, then the rate of removal is obtained
from the ideal-gas law:

(rate of CO2 removal) = x(dV/dt)alveoli

RT
.

The rate (dV/dt)alveoli is less than the ventilation rate y

because air in the trachea and bronchi does not exchange

1 Strictly speaking, (dV/dt)alveoli is not the derivative of a function V .
(It always has a positive value, and the lungs are not expanding without
limit!) We use the notation to remind ourselves that it is the rate of air
exchange in the alveoli.
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Fig. 10.3 When PCO2 in the blood rises above 40 torr, the breathing
rate increases

oxygen or carbon dioxide with the blood: (dV/dt)alveoli =
y − b. Therefore

(rate of CO2 removal) = x(y − b)

RT
. (10.3)

In equilibrium the rate of production is equal to the rate of
removal, so

Fo = x(y − b)

RT
or

x = RT Fo

y − b
. (10.4)

With the proper conversion of units from p to o, this is
Eq. 10.1.

If the metabolic rate were to change without a change
in breathing rate, x = PCO2 would change drastically.
Suppose that someone exercises moderately so that p =
60 mmol min−1, y = 23 l min−1, and x = 44 torr, point
A in Fig. 10.2. If ventilation rate y remained constant while
p rose to 80 mmol min−1, x = PCO2 would soar to about 60;
if p fell to 40, x would drop to 30. Feedback ensures that this
does not happen. One of the feedback mechanisms consists
of an area of the brain stem that senses the value of x = PCO2

and causes y to change. Figure 10.3 shows a typical curve for
a 70-kg male (Patton 1989, p. 1034). (The concentration of
CO2 in blood is nearly the same as in the alveoli.)

10.2 Determining the Operating Point

We now have two processes relating the steady-state val-
ues of x and y. For alveolar gas exchange, we know x as a
function of y: x = g(y, p). For the regulatory mechanism,

Fig. 10.4 A general feedback loop. Either box may involve some
parameters
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Fig. 10.5 Regulation of the breathing rate. A change of metabolic rate
(parameter p) causes a change in ventilation rate y, so that x = PCO2

does not change as much

we know y = f (x). Together, these constitute a feedback
loop, Fig. 10.4. To find the operating point, these two equa-
tions must be solved simultaneously. The easiest way to do
this is to plot them on the same graph as in Fig. 10.5. When
p = 60 mmol min−1, the operating point is at A. In a plot
like this the horizontal axis represents the independent vari-
able for one process and the dependent variable for the other.

If the feedback loop includes several variables, for
example

x = f (w), y = g(x), z = h(y), w = i(z),

we can combine three of these equations to get x = F(y)

and plot it with y = g(x).

10.3 Regulation of a Variable and Open-Loop
Gain

We can also see from Fig. 10.5 how feedback causes y to
change in response to a change in parameter p to reduce the
change in x. If y does not change, a change of p from 60 to
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Fig. 10.6 The open loop gain is calculated by opening the loop at any
point. a Loop opened in y. b Loop opened in x

80 causes the operating point to go from A to B. In fact, y in-
creases so that the new operating point is at D. The feedback
loop is said to regulate the value of x.

The gain of each box in Fig. 10.4 is the ratio of the change
in the output variable to the change in the input variable. For
the first box

G1 =
(

�x

�y

)

box g, p fixed
=
(

∂x

∂y

)

box g, p fixed
=
(

∂g

∂y

)

p

.

(10.5)
For the second box,

G2 =
(

�y

�x

)

box f

=
(

∂y

∂x

)

box f

= ∂f

∂x
. (10.6)

The product G1G2 is called the open-loop gain (OLG).
Its name comes from the fact that if the feedback loop is
opened at any point and a small change is made in the input
variable at the opening, the change in the output variable is
the open-loop gain times the change in the input variable:

OLG = G1G2 =
(

∂x

∂y

)

box g

(
∂y

∂x

)

box f

= ∂g

∂y

∂f

∂x
. (10.7)

The open-loop gain can be calculated by taking the deriva-
tives in either order, which corresponds to breaking the loop
after either box (Fig. 10.6).

If the relationships between the derivatives have been
plotted as in Fig. 10.5, it may be easiest to evaluate the
derivatives graphically. In that case, it is easiest to work with
∂y/∂x for box g. But ∂y/∂x = 1/(∂x/∂y). Therefore,

OLG = G1G2 = (∂y/∂x)box f

(∂y/∂x)box g

. (10.8)

It is important to calculate the gain in the direction that
causality operates. Going around the loop the wrong way
gives the reciprocal of the open-loop gain.

We can now calculate how much feedback reduces the
change in x, compared to the case in which there is no feed-
back and the value of y going into box g is held fixed. For

box g, where x = g(y, p), we can write for small changes in
p and y

�x =
(

∂x

∂p

)

y, box g

�p +
(

∂x

∂y

)

p, box g

�y

=
(

∂x

∂p

)

y, box g

�p + G1�y. (10.9)

When there is no feedback, �y is zero and

�x =
(

∂x

∂p

)

y, box g

�p.

When there is feedback, there is a value of �y to be included.
If the change in x with feedback is �x′, the change in y can
be calculated from the second box:

�y =
(

∂f

∂x

)
�x′ = G2�x′. (10.10)

This can be combined with Eq. 10.9:

�x′ =
(

∂x

∂p

)

y

�p + G1(G2�x′) = �x + G1G2�x′

and solved for �x′:

�x′ = �x

1 − G1G2
= �x

1 − OLG
. (10.11)

The effect of feedback is to cause a change in y that reduces
the change in x by the factor 1−OLG. When the feedback is
negative, the open-loop gain is negative, 1 − OLG is greater
than one, and there is a reduction in �x. If the feedback is
positive and the open-loop gain is less than one, �x′ is larger
than �x.

For the respiration example, the equations for each box
are

x = g(y, p) = 15.47p

y − 2.07
,

y = f (x) =
{

10, x ≤ 40,

10 + 2.5(x − 40), x > 40.

(10.12)

The derivatives are

(
∂g

∂p

)

y

= 15.47

y − 2.07
,

G1 =
(

∂g

∂y

)

p

= − 15.47p

(y − 2.07)2
,

G2 =
(

∂f

∂x

)
= 2.5.
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At operating point A in Fig. 10.5, the values are

x = 45.07, p = 60, y = 22.67,
(

∂g

∂p

)

y

= 0.757,

G1 = −2.19, G2 = 2.5, OLG = −5.48.

(10.13)

If p changes from 60 to 62, then without feedback �x =
(0.757)(2) = 1.5. With feedback, �x′ = 1.5/(1 + 5.48) =
0.23.

10.4 Approach to Equilibrium without
Feedback

The technique described in the preceding section allows us to
determine the equilibrium state or operating point of a sys-
tem if we can measure the functions f and g. It does not tell
us how the system behaves when it is not at the equilibrium
point, nor does it tell us how the system moves from one
point to another when parameter p is changed. To learn that,
we need an equation of motion for each process or box in the
feedback loop. The equation of motion is usually a differen-
tial equation. In real systems the differential equation is often
nonlinear and difficult to solve. We first consider models de-
scribed by linear differential equations, and then we consider
some of the behaviors of nonlinear systems.

The response of a system cannot be instantaneous. At
equilibrium, the rate of exhaling carbon dioxide is the same
as the rate of production throughout the body. If the rate of
production rises in a certain muscle group, the extra carbon
dioxide enters the blood and is distributed throughout the
body, and the carbon dioxide concentrations in the blood and
alveoli rise gradually.

To develop a quantitative model, assume that all the car-
bon dioxide in the body is stored in a single well-stirred
compartment of volume Vc. This assumption of uniform
concentration is certainly an oversimplification. The total
number of moles is n and the concentration is n/Vc. The
concentration in the blood is related to the partial pressure in
the alveoli by a solubility constant α: n/Vc = αx. Therefore
dn/dt = αVcdx/dt . Moreover, dn/dt is equal to the rate of
production (Eq. 10.2) minus the rate of removal (Eq. 10.3):

dx

dt
= Fo

αVc

− x(y − b)

αVcRT
.

We change the definition of F to take account of the fact that
o and p are both the rate of oxygen consumption in slightly
different units (o is in mol s−1 and p is in mmol min−1):

dx

dt
= Fp

αVc

− x(y − b)

αVcRT
. (10.14)

This differential equation depends on both x and y and in
fact is nonlinear since the variables are multiplied together

in the last term. At equilibrium dx/dt = 0 and Eq. 10.14
gives Eq. 10.4.

If y is constant (a constant breathing rate, which could be
accomplished by placing the subject on a respirator), then
there is no feedback and Eq. 10.14 is a linear differential
equation with constant coefficients:

dx

dt
+ y0 − b

αVcRT
x = Fp

αVc

.

It can be solved using the techniques of Appendix F. Suppose
that for t ≤ 0, p = p0, x = x0, and y = y0. For t > 0 the
subject exercises, so that p = p0 + �p, x = x0 + ξ , and y is
unchanged. The equation then becomes

dξ

dt
+ y0 − b

αVcRT
ξ = F�p

αVc

. (10.15)

The homogeneous equation is

dξ

dt
+ 1

τ1
ξ = 0, (10.16)

where the time constant is

τ1 = RT αVc

y0 − b
. (10.17)

The homogeneous solution is ξ = Ae−t/τ1 . The particular
solution is

ξ = FRT

y0 − b
�p = a �p,

so the complete solution is ξ = a �p + Ae−t/τ1 . We now
use the initial condition to determine A. At t = 0 ξ = 0, so
A = −a �p. The complete solution without feedback that
matches the initial condition is

x − x0 = a �p(1 − e−t/τ1). (10.18)

Figure 10.7 shows how x changes with time on a plot of x

vs. t and a plot of y vs. x. The dots are spaced at equal times.

10.5 Approach to Equilibrium in a Feedback
Loop with One Time Constant

Suppose now that y is allowed to change and that η = y−y0.
We can write the equation for the change in x, Eq. 10.14 as

dξ

dt
= dx

dt
= Fp0

αVc

+ F�p

αVc

− (x0 + ξ)(y0 − b + η)

αVcRT

= Fp0

αVc

− x0(y0 − b)

αVcRT︸ ︷︷ ︸
=0

+ F�p

αVc

− ξ(y0 − b)

αVcRT

− x0η

αVcRT
− ξη

αVcRT
.
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Fig. 10.7 The change in x without feedback in response to a step
change in parameter p. a Plot of x vs. t . b Plot of y vs. x

Multiplying all terms by τ1 as defined in Eq. 10.17, and
identifying

G1 =
(

∂g

∂y

)

p

= − x0

y0 − b
,

we obtain

τ1
dξ

dt
= a �p − ξ + G1η − ξη

y0 − b
. (10.19)

The product ξη in the last term makes the equation nonlinear.
If we assume that the last term can be neglected, we have a
linear differential equation

τ1
dξ

dt
= a �p − ξ + G1η. (10.20)

Now assume that the response of the second box is linear
and instantaneous, so that

η = G2ξ. (10.21)

If this is substituted in the linearized equation, Eq. 10.20, the
result is

τ1
dξ

dt
+ (1 − G1G2)ξ = a �p. (10.22)

The steady-state solution before t = 0 is x0 = a p0/(1 −
G1G2). At t = 0 the oxygen demand is changed to
p0 + �p. The new steady-state (inhomogeneous) solution
is ξ = a �p/(1 − G1G2) and the homogeneous solution is
ξ = Ae−t/τ where the time constant is

τ = τ1

1 − G1G2
. (10.23)

(You can show this by dividing each term in Eq. 10.22 by
τ1 and comparing it to the equation for exponential decay.)
After combining the homogeneous and inhomogeneous so-
lutions and using the initial condition ξ(0) = 0 to determine
A, we obtain the final result:

ξ = x − x0 = a �p

1 − G1G2

(
1 − e−t/τ

)
. (10.24)

This solution has the same form as Eq. 10.18. Both the total
change in x and the time constant have been reduced by the
factor 1/(1 − G1G2). The change in y can be determined
from η = G2ξ . The new solution is plotted along with the
old solution in Fig. 10.8. This plot is for a system in which
the OLG is G1G2 = −1.3. The time constant and the change
in x are both reduced by 1/2.3.

It is important to realize that although the feedback re-
duced the time constant, it has not made x change faster. The
curve of x(t) with feedback has always changed less than
the curve without feedback, and it has always changed more
slowly. The reduction in time constant occurs because x does
not change as much with feedback present, so it reaches its
asymptotic value more quickly.

This result assumes that box f has a negligible time con-
stant. Applied to the respiratory example, it means that the
carbon dioxide-sensing system responds rapidly compared to
the time it takes for carbon dioxide levels within the blood to
change after a change in p. Figure 10.9a repeats Fig. 10.8 and
shows the changes in x and y resulting from a step change in
p. When the second time constant is negligible, y is always
proportional to x and the system moves back and forth along
line AB.

The CO2 sensors actually take a while to respond. To see
what effect this might have, imagine the extreme case where
the sensors are very slow compared to the change of car-
bon dioxide concentration in the blood. In that case, when p

changes, y does not change right away. The system behaves
at first as if there were no feedback, moving from point A to
point C in Fig. 10.9b. As the feedback slowly takes effect,
the system moves from C to B. When the exercise ends, the
system moves to point D because the subject is breathing
too hard. Then it finally moves from D back to A. The actual
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Fig. 10.8 The change in x with feedback in response to a step change
in parameter p. a Plot of x vs. t . The change in x without feedback is
shown for comparison. b Plot of y vs. x

system behaves in a manner somewhere between these two
extremes, as we will see in the next section.

Consider a third possibility, that a regulatory mechanism
anticipates the increased metabolic demand. This might hap-
pen if we took deep breaths before we began to exercise, or if
additional muscle movement signaled the respiratory control
center before the carbon dioxide concentration had a chance
to change. Suppose that such anticipation is the only feed-
back mechanism. With the initiation of exercise, y changes
to its final value. The level of carbon dioxide has not yet built
up, so the increased ventilation reduces x below its normal
value. We can approximate this by point D in Fig. 10.9c.
As the increased activity drives x up, the system moves at
constant y to point B. When the exercise stops, y drops im-
mediately to the resting value, though carbon dioxide is still
coming out of the muscles. The result is that x rises to point
C before finally falling back to point A.

Figure 10.10 shows what actually happens in the con-
trol of respiration. There is a fast neurological control and

Fig. 10.9 Changes in x and y after a step change in parameter p. a The
second time constant is negligible compared to the first; x and y move
exponentially to their new equilibrium values. b The first time constant
is negligible; the slow change in y means that there is no feedback at
first. c The second stage anticipates the change in y that will be required;
there is too much feedback at first

a slower chemical control. The result is a combination of the
processes in Figs. 10.9a–10.9c.

If we had not made the linear approximation we would not
have been able to solve the equation, but the behavior would
have been very similar. The nonlinear equation is obtained
by substituting the equation for the second box, Eq. 10.21, in
Eq. 10.19 instead of Eq. 10.20. The resulting equation is

τ1
dξ

dt
= a �p − (1 − G1G2)ξ − G2ξ

2

y0 − b
. (10.25)

Both this and the linear version are plotted in Fig. 10.11 for
a �p = 0. In each case dξ/dt is positive when ξ < 0 and
negative when ξ > 0, so ξ approaches zero as time goes on.
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Fig. 10.10 Change of arterial PCO2 and alveolar ventilation in re-
sponse to exercise. Note that x = PCO2 is in the upper graph and
the ventilation rate y is in the lower graph, the opposite of Fig. 10.9.
(Reprinted from Guyton (1995) with the permission of Elsevier. Data
are extrapolated to humans from dogs. The dog experiments are
described in C. R. Bainton (1972). J Appl Physiol 33: 778–787)
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Fig. 10.11 Plots of τ1(dξ/dt) vs. ξ . The straight dashed line is the
linear approximation, Eq. 10.22. The parabolas are plots of the nonlin-
ear equation, Eq. 10.25, for two different values of parameter a�p. The
closed circles show stable fixed points

The direction of evolution of ξ is shown by the arrows on
the nonlinear curve. This is often called a one-dimensional
flow. The variable ξ “flows” to the origin, which is called a
stable fixed point of the flow. If we change a �p to 10, the
curve shifts as indicated by the dotted line, and the fixed point
moves to a slightly different value of ξ .
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Fig. 10.12 Graphical analysis of the solution to a more complicated
differential equation dx/dt = f (x). a Plot of dx/dt vs. x. The arrows
show the direction that x changes. The open circles show unstable fixed
points, and the filled circle is a stable fixed point. b The fixed points and
the direction of flow are shown on the x axis

This is a particular case of a differential equation in one
dependent variable of the form dx/dt = f (x). A great deal
about the solution to the general equation can be learned
by graphing it as we have done above. When the derivative
is positive the function increases with time, and when it is
negative it decreases. Figure 10.12a shows a more compli-
cated function, with arrows showing the direction of the flow.
The stable fixed point is indicated by a solid circle. There
are two unstable fixed points, indicated by open circles. If
x has precisely the value of an unstable fixed point, it re-
mains there because dx/dt = 0. However, if it is displaced
even a small amount, it flows away from the unstable point.
Figure 10.12b shows just the x axis with the fixed points
and the arrows. Stable fixed points are often called attrac-
tors or sinks. The unstable fixed points are called repellers or
sources. Chapter 2 of Strogatz (1994) has an excellent and
detailed discussion of one-dimensional flows.

10.6 A Feedback Loop with Two Time
Constants

In the preceding section we considered a feedback loop in
which only one process had a significant time constant. The
other process responded “instantaneously;” its time constant
was much shorter. Here we consider the case in which both
processes have comparable time constants. We will see that it
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is possible for such a (linear) system to exhibit damped sinu-
soidal behavior in response to an abrupt change in one of the
parameters. Whether it does or not depends on the relative
values of the two time constants and the open-loop gain. We
consider both graphical and analytical techniques for solving
this problem.

In earlier sections we discussed control of breathing.
Equation 10.20 was the linear model for the departure of one
variable from equilibrium:

τ1
dξ

dt
= −ξ + G1η + a �p.

For the second process, instead of η = G2ξ we assume that
the behavior is given by an analogous equation

τ2
dη

dt
= −η + G2ξ. (10.26)

For negative feedback either G1 or G2 must be negative.
We have a special case of a pair of first-order differential

equations

dx1

dt
= f1(x1, x2),

dx2

dt
= f2(x1, x2).

(10.27)

(Here x1 and x2 are general variables and have no relation-
ship with the breathing problem considered earlier.)

We first combine the two first-order equations to make
a second-order equation which, because we are using lin-
ear equations, can be solved exactly. To do this, differentiate
Eq. 10.20:

τ1
d2ξ

dt2
+ dξ

dt
= a

dp

dt
+ G1

dη

dt
.

Substitute Eq. 10.26 in this and obtain

τ1
d2ξ

dt2
+ dξ

dt
= −G1

τ2
η + G1G2

τ2
ξ + a

dp

dt
.

To eliminate η, solve Eq. 10.20 for G1η and substitute it in
this equation:

τ1
d2ξ

dt2
+ dξ

dt
= −τ1

τ2

dξ

dt
− 1

τ2
ξ + a

τ2
p + G1G2

τ2
ξ + a

dp

dt
.

After like terms are combined, the result is

d2ξ

dt2
+
(

1

τ1
+ 1

τ2

)
dξ

dt
+ 1 − G1G2

τ1τ2
ξ = a

τ1τ2
p(t)+ a

τ1

dp

dt
.

(10.28)
This is another linear differential equation with constant co-
efficients. The right-hand side is a known function of time,
since p(t) is known. The homogeneous equation is very

common in physics and is called the harmonic oscillator
equation. It is usually written in the form

d2ξ

dt2
+ 2α

dξ

dt
+ ω2

0ξ = 0, (10.29a)

with the identifications

2α = 1

τ1
+ 1

τ2
= τ1 + τ2

τ1τ2
(10.29b)

and

ω2
0 = 1 − G1G2

τ1τ2
. (10.29c)

Appendix F shows that as long as α ≥ ω0, the system
is critically damped or overdamped and there will be no
oscillation or ringing. This will be the case if

(τ1 + τ2)
2

4τ 2
1 τ 2

2

≥ 1 − G1G2

τ1τ2

or
(τ1 + τ2)

2

4τ1τ2
≥ 1 − G1G2. (10.30)

This equation is symmetric in τ1 and τ2. The important
parameter is r = τ1/τ2. There is no ringing when

(1 + r)2

4r
≥ 1 − G1G2.

Since the feedback is negative, G1G2 = − |G1G2|. Then
there is no ringing if

|G1G2| <
r

4
+ 1

4r
− 1

2
, G1G2 < 0. (10.31)

If the two time constants are equal (r = 1), the right-hand
side of Eq. 10.31 is zero. There will be ringing if the open-
loop gain has a magnitude greater than zero. For large values
of r (say r > 10), the equation is approximately |G1G2| <

r/4. If the magnitude of the open-loop gain is larger than this,
there will be ringing.

We can see the general behavior of Eqs. 10.20 and
10.26 by examining the behavior of the derivatives. Both
derivatives are zero and there is a fixed point when

ξ = a �p

1 − G1G2
, η = G2a �p

1 − G1G2
.

For �p = 0 the fixed point is at the origin. Figures 10.13
and 10.14 show plots of ξ and η for different values of the
gain and damping. The plots of η vs. ξ are called state-space
plots or phase-space or phase-plane plots. The plots shown
here are spiral to the fixed point. Depending on the values of
the gains and time constants (try positive feedback) there can
also be exponentially growing solutions. An extensive liter-
ature exists analyzing stability for both Eqs. 10.27 and their
linearized versions. See Chaps. 5 and 6 of Strogatz (1994) or
Chap. 3 of Hilborn (2000). For a visual but nonmathematical
analysis, see Abraham and Shaw (1992).
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Fig. 10.13 A solution to Eq. 10.28 is plotted that has a value 1 and time derivative 0 when t = 0. The variable η is obtained from ξ by using
Eq. 10.26. Plots of ξ and η vs. t are shown on the left. A state-space plot of η vs ξ is shown on the right
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Fig. 10.14 Additional state-space plots for the same initial conditions as in Fig. 10.13, but with different values of the parameters

10.7 Proportional, Derivative, and Integral
Control

We have been looking at a particular example of a control
system. In Sect. 10.4 and 10.5 we considered a system for
which, for t ≤ 0, p = p0, x = x0, and y = y0. For t > 0
the subject exercised, so that p = p0 + �p, x = x0 + ξ , and
y = y0 + η. There were two equations of motion, Eqs. 10.20
and 10.21:

τ1

(
dξ

dt

)
+ ξ = a�p + G1η. (10.32)

η = G2ξ. (10.33)

Combining these we find the steady state solution is

ξ = a�p

1 − G1G2
. (10.34)

The goal of a control system is to make ξ = x − x0 as
small as possible as p is varied. In the language of control
theory x0 is called the set point or reference quantity, x is
called the present value or actual output, and e = x0 − x =
−ξ is called the controller error.

At t = 0 there is a step change �p. Without feedback
(G1 or G2 = 0), this causes a change in the steady-state
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Fig. 10.15 Examples of the different kinds of control: none, pro-
portional, proportional with derivative, and proportional with integral.
Derivative reaches the steady-state value more quickly. Integral control
allows the error, ξ , to become zero

value ξ = a�p. Feedback reduces this to ξ = a�p/(1 −
G1G2). This is called proportional control. The input to the
controller (the second box in Fig. 10.4) is ξ .

In derivative control an additional signal is introduced on
the right hand side of Eq. 10.33, which is proportional to
the derivative of the error signal. Usually a combination of
proportional and derivative control is used:

η = G2ξ + G2τd

dξ

dt
.

Factor τd has the dimensions of time and gives the relative
strength of the derivative control term. Combining this with
Eq. 10.32 gives us

τ1

(
dξ

dt

)
+ ξ = a�p + G1G2ξ + τdG1G2

(
dξ

dt

)
.

Regrouping gives

dξ

dt
+ (1 − G1G2)

(τ1 − τdG1G2)
ξ = a�p

(τ1 − τdG1G2)
.

In integral control a term

G2

τi

∫ t

0
ξ(t)dt

is added to Eq. 10.33. For a combination of proportional and
integral control we have

τ1

(
dξ

dt

)
+ ξ = a�p + G1G2ξ + G1G2

1

τi

∫ t

0
ξ(t)dt.

This can be rearranged as

τ1

(
dξ

dt

)
+ (1 − G1G2)ξ + G1G2

τi

∫ t

0
ξ(t)dt = a�p.

Differentiating gives us the harmonic oscillator equation:

d2ξ

dt2
+ (1 − G1G2)

τ1

dξ

dt
+ G1G2

τ1τi

ξ = 0.

Proportional, proportional plus derivative, and proportional
plus integral control are compared in Fig. 10.15. Derivative
control causes the abrupt jump in ξ at t = 0. However,
the offset or steady-state value remains the same as in pro-
portional control. Integral control can reduce the offset to
zero, but oscillations are likely. El-Samad et al. (2002) and
Khammash and El-Samad (2004) describe proportional and
integral control of calcium regulation in cows that have
just given birth. LeDuc et al. (2011) review control tech-
niques and how they can be used to manipulate cells in the
laboratory.

10.8 Models Using Nonlinear Differential
Equations

We have used many models in this book. In Chap. 2 we
introduced a linear differential equation that leads to ex-
ponential growth or decay, and we used it to model tumor
and bacterial growth and the movement of drugs through the
body. We briefly examined some nonlinear extensions of this
model. In Chap. 4 we modeled diffusion processes with lin-
ear equations—Fick’s first and second laws—and we used a
linear model to describe solvent drag. In Chap. 5 we used the
model of a right-cylindrical pore. In Chap. 6 we used both
a linear model—electrotonus—and a nonlinear model—the
Hodgkin–Huxley equations. In this chapter we introduced a
linear model for feedback, and we saw how two linear pro-
cesses in a feedback loop could lead to oscillations, the linear
harmonic oscillator.

Linear models have one advantage: they can be solved ex-
actly. But most processes in nature are not linear. Jules Henri
Poincaré realized around 1900 that systems described ex-
actly by the completely deterministic equations of Newton’s
laws could exhibit wild behavior. Poincaré was studying
the three-body problem in astronomy (such as Sun–Earth–
Moon). While we are all familiar with the fact that the motion
of the Sun–Earth–Moon system is evolving smoothly with
time and that eclipses can be predicted centuries in advance,
this smooth behavior does not happen for all systems. For
certain ranges of parameters (such as the masses of the ob-
jects and initial positions and velocities) the solutions can
exhibit behavior that is now termed chaotic. If we consider
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the motion that results from two sets of initial conditions that
differ from each other only by an infinitesimal amount in one
of the variables, we find that in chaotic behavior there can be
solutions that diverge exponentially from each other as time
goes on, even though the solutions remain bounded. Poincaré
developed some geometrical techniques for studying the be-
havior of such systems. Thorough study of nonlinear systems
requires the use of a digital computer. As a result, it has only
been since the 1970s that we have realized how often chaotic
behavior can occur in a system governed by deterministic
equations. With computers we have gained more insight into
the properties of chaotic behavior.

Just as the harmonic oscillator provides a model for
behavior seen in many contexts from electric circuits to
shock absorbers in automobiles to the endocrine system, cer-
tain features of nonlinear models have wide applicability.
These include period doubling, the ability to reset the phase
(timing) of a nonlinear oscillator, and deterministic chaos.

Some have said that Newtonian physics has been over-
thrown by chaos. This is not true. The same equations hold;
predictable motions with which we have long been famil-
iar still take place. Much of our current technology is based
on them. We build television sets and send a spacecraft to
explore several planets in succession. With chaos, we have
come to understand a rich set of solutions to these same
equations that we were not equipped to study before.

Many books about nonlinear systems have been written.
A particularly interesting one for this audience is by Kaplan
and Glass (1995). It is written for biologists and has many
clear and relevant examples. Others are by Glass and Mackey
(1988), by Hilborn (2000), and by Strogatz (1994).

Space limitations prevent more than a brief hint at some of
the features of nonlinear dynamics, here and in Chap. 11. In
this section we will discuss some one- and two-dimensional
nonlinear differential equations. These will not lead to chaos,
but will allow us to describe a very simple model for phase
resetting. In Sect. 10.9 we will discuss equations that exhibit
chaotic behavior.

10.8.1 Describing a Nonlinear System

Suppose that a nonlinear system with N variables can be
described by a set of N first-order differential equations:

dx1

dt
= f1(x1, x2, . . . , xN),

dx2

dt
= f2(x1, x2, . . . , xN),

. . . ,
dxN

dt
= fN(x1, x2, . . . , xN).

(10.35)

(These are an extension of the pair of differential equations
we saw as Eqs. 10.27. Our model of breathing had two vari-
ables. It would be more realistic to use a breathing model
with more variables, since alveolar ventilation also depends
on arterial pH, weakly on oxygen partial pressure, and on the
nervous factors that were described earlier.)

If the equations are cast in this form with N variables, then
N initial conditions are required, corresponding to the con-
stant of integration required for each equation. It is custom-
ary to say that there are N degrees of freedom. This is the lan-
guage of system dynamics. This definition of degrees of free-
dom is different from what we used in Chap. 3, where each
degree of freedom was represented by a second-order dif-
ferential equation (d2x/dt2 = Fx/m, for example) and two
initial conditions were required for each degree of freedom.

We can put Newton’s second law in this form by writing
two first-order differential equations instead of one second-
order equation. For motion in one dimension, instead of

m
d2x

dt2
= F(x, v),

we write a pair of first-order equations:

dv

dt
= F(x, v)

m
,

dx

dt
= v.

This system has two degrees of freedom in our new ter-
minology. In either description, two initial conditions are
required.

In many situations the force (or more generally the
functions on the right-hand side of Eqs. 10.35) is time
dependent. In standard form, the functions on the right
do not depend on time. This is remedied by introducing
one more variable, xN+1 = t . The additional differential
equation is dxN+1/dt = 1.

The evolution or “ motion” of the system can be thought
of as a trajectory in N -dimensional space, starting from the
point that represents the initial conditions. Time is a param-
eter. We have seen an example of this for two dimensions in
Figs. 10.13 and 10.14. It is possible to prove that two dis-
tinct trajectories cannot intersect in a finite period of time
and that a single trajectory cannot cross itself at a later time
(see Hilborn 2000, p. 77 or Strogatz 1994, p. 149). This is
true in the full N -dimensional space; if we were to mea-
sure only two variables, we could see apparent intersections
in the state plane that we were observing. This means that
chaotic behavior, in which variables appear to change wildly
and two-dimensional trajectories appear to cross, does not
occur for a pair of differential equations of the form in
Eqs. 10.35. At least three variables are required. A system
with two degrees of freedom that is externally driven2 can

2 That is, one of the functions on the right-hand side of the set of
equations depends on time.
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Fig. 10.16 Plot of dx/dt vs. x for the logistic differential equation

exhibit chaotic behavior because of the additional variable
xN+1 that is introduced.

10.8.2 An Example of Phase Resetting: The
Radial Isochron Clock

In Chap. 2 we studied the logistic differential equation

dy

dt
= by

(
1 − y

y∞

)
.

It is convenient to rewrite the logistic equation in terms of
the dimensionless variable x = y/y∞:

dx

dt
= bx(1 − x). (10.36)

This separates the scale factor y∞ from the dynamic factor b

that tells how rapidly y and x are changing.3 A plot of dx/dt

vs. x is shown in Fig. 10.16. There is an unstable fixed point
at x = 0 and a stable fixed point at x = 1. The logistic
equation is one of a whole class of nonlinear first-order dif-
ferential equations for which dx/dt as a function of x has
a maximum. It has been studied extensively because of its
relative simplicity, and it has been used for population mod-
eling. (Better population models are available.4 The logistic
model assumes that the population is independent of the pop-
ulations of other species, that the growth of the species does
not affect the carrying capacity y∞, and that the population
increases smoothly with time.)

Many of the important features of nonlinear systems do
not occur with one degree of freedom. We can make a very
simple model system that displays the properties of systems
with two degrees of freedom by combining the logistic equa-
tion for variable r with an angle variable θ that increases at a
constant rate:

dr

dt
= ar(1 − r),

dθ

dt
= 2π. (10.37)

3 We could also, if we wish, define a new time scale, t ′ = bt , and deal
with the completely dimensionless equation dx/dt ′ = x(1 − x).
4 See Begon et al. (1996).
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Fig. 10.17 A system with two degrees of freedom. a The limit cycle is
represented by the solid circle. Systems starting elsewhere in the plane
have trajectories that approach the limit cycle as t → ∞, as shown by
the dashed lines. b The value of x = r cos θ is plotted as a function of
time. c A timing pulse is generated every time θ is a multiple of 2π

We can interpret (r, θ) as the polar coordinates of a point in
the xy plane. When t has increased from 0 to 1 the angle
has increased from 0 to 2π, which is equivalent to starting
again with θ = 0. This model system has been used by many
authors. Glass and Mackey (1988) have proposed that it be
called the radial isochron clock. Typical behavior is shown in
Fig. 10.17a. If r = 1, there is a circular orbit corresponding
to the stable fixed point of Eq. 10.36. Such a stable orbit is
called a stable limit cycle.5 There is an unstable limit cycle,
r = 0, corresponding to the unstable fixed point of Eq. 10.36.
Any initial conditions except r = 0 give trajectories that
move toward the stable circular limit cycle as time pro-
gresses. The set of points in the xy plane lying on orbits that
move to the limit cycle as t → ∞ is called the basin of at-
traction for the limit cycle. In this case the basin of attraction

5 A stable limit cycle is an oscillation in the solutions to a set of dif-
ferential equations that is always reestablished following any small
perturbation.
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Fig. 10.18 Resetting the phase of an oscillation. The oscillator fires
regularly with period T0. A stimulus at time Ts after it has fired causes
a period of length T , after which the periods are again T0

includes all points except the origin. If we look at the time
behavior, Fig. 10.17b shows the behavior of x = r cos θ on
the limit cycle. The oscillator might provide timing informa-
tion as the phase moves through some value. Figure 10.17c
shows a series of pulses every time θ is a multiple of 2π.

In many cases the differential equations contain one or
more parameters that can be varied, and the number and
shape of the limit cycles change as the parameters are
changed. A point in parameter space at which the number
of limit cycles changes or their stability changes is called
a bifurcation. We will see examples of bifurcations in the
next section. See the references for a much more extensive
discussion.

One important characteristic of nonlinear oscillators is
that a single pulse can reset their phase. If they are subject to
a series of periodic pulses they can be entrained to oscillate at
the driving frequency. (The nonlinear oscillators that sweep
the electron beam across the screen of a television tube are
entrained by synchronization pulses in the television signal.)
Our simple two-dimensional model exhibits phase resetting
that is very similar to that exhibited by cardiac tissue.6

Suppose that a cardiac pacemaker depolarizes every T0

seconds and that it can be modeled by our radial isochron
clock. Assume that depolarization occurs when θ = 0 or a
multiple of 2π. A stimulus is applied at time Ts after the be-
ginning of the cycle, as shown in Fig. 10.18. As a result,
the time from the previous depolarization to the next one
is changed to T , after which the period reverts to T0. (In a
real experiment, it may be necessary to wait several cycles
before measuring so that any transient behavior has time to
decay, and then extrapolate back to find the value of T .) Of-
ten a stimulus early in the cycle is found to delay the next
depolarization, while a stimulus late in the cycle advances
it. Our model provides a simple geometric interpretation of
this behavior, independent of any knowledge of the detailed
dynamics.

6 This discussion is based on Glass and Mackey (1988), p. 104 ff. See
also the works by Winfree (1987, 2001). Strogatz (2003) discusses
phase resetting and other nonlinear phenomena in an engaging and
nonmathematical manner.

A delayed depolarization is shown in Fig. 10.18. Pulses
are occurring every T0 seconds when the phase is a multiple
of 2π (that is, 0). A stimulus is applied at a time Ts after the
previous pulse, at which time the phase is θs . Since the phase
advances linearly, we have the proportion

Ts

T0
= θs

2π
.

Suppose the stimulus causes the system to move to a new
state with a phase θ ′, which we do not yet know. Since in our
model dθ/dt is constant, the phase advances after the stim-
ulus at the same rate as it would have without the stimulus.
The next pulse occurs when the phase again reaches 2π. This
occurs at a time T after the previous pulse, or a time T − Ts

after the stimulus, when the phase has increased from θ ′ to
2π. Therefore

T − Ts

T0
= 2π − θ ′

2π

and
T

T0
= 2π + θs − θ ′

2π
. (10.38)

We use our limit cycle model to relate θs and θ ′ as shown
in Fig. 10.19. The system has been moving on a circle of
unit radius representing the stable limit cycle. Assume that
the only effect of the stimulus is to shift the value of x by
a distance b along the +x axis. For the angles shown in
Fig. 10.19a this results in a point with θ ′ < θs , a delay in the
phase or T > T0. For an initial angle in the lower half plane
(Fig. 10.19b) it results in θ ′ > θs and T < T0. The relation
between the two angles can be obtained from the triangles:

cos θ ′ = cos θs + b
[
(cos θs + b)2 + sin2 θs

]1/2

= cos θs + b

(1 + b2 + 2b cos θs)1/2
.

The stimulus changed both θ and r . After the stimulus each
evolves independently according to its own differential equa-
tion. The trajectory returns to the limit cycle as r returns to
its attractor, but the phase is forever altered. Figure 10.20a is
a plot of θ ′ vs. θs for two values of b. When b < 1, θ ′ takes
on all values, while for b > 1, θ ′ is restricted to values near 0
and 2π. The first case is called a type-1 phase resetting, and
the second is called a type-0 phase resetting. Figure 10.20b
combines these results with Eq. 10.38 to determine T/T0 as
a function of Ts/T0.

Figure 10.21 shows experimental data for electrotonically
stimulated Purkinje fibers from the conduction system of
a dog. The fibers were undergoing spontaneous oscillation
with T0 = 1.575 s. Stimuli of two different amplitudes were
applied at different parts of the cycle, Ts/T0. Two different
curves were obtained. The one with larger current looks like
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Fig. 10.19 The limit-cycle oscillator model for resetting the phase of
an oscillation. At phase θs a stimulus changes the value of x by an
amount +b. a For angles 0 < θs < π, this places the system on a
trajectory with a smaller phase θ ′, delaying the next pulse. b For angles
π < θs < 2π, the stimulus results in a larger phase and the next pulse
occurs earlier. The system returns to the limit cycle while θ continues
to increase at a constant rate
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Fig. 10.20 Plots of a the new phase vs. the old phase and b the length
of the period vs. the time when the stimulus is applied

the curve with b = 1.05 in Fig. 10.20b, while the one with
smaller current looks like the curve with b = 0.95.

10.8.3 Stopping an Oscillator

It is theoretically possible to apply a stimulus that would put
the system at the point r = 0 in the state space. In that case

Fig. 10.21 Phase resetting of a spontaneously oscillating Purkinje
fiber by stimulation with an electrical impulse. The abscissa is Ts/T0
expressed as a percentage. The ordinate is T/T0 expressed as a percent-
age. Two different stimulus strengths were used. Compare the smaller
stimulus (the open circles) to b = 0.95 and the larger stimulus (solid tri-
angles) to b = 1.05 in Fig. 10.20b. (Reproduced with permission from
Jalife and Moe (1976). Copyright 1976 American Heart Association)

Fig. 10.22 Phase resetting in a Hodgkin–Huxley model. The coupling
interval is the delay from the previous pulse to the stimulation pulse in
fractions of a period. The ordinate shows the size of the stimulus pulse
in mV. The contours show the latency or time from the stimulus to the
next pulse, measured in twentieths of a period. (From Winfree (1987).
Copyright c©1987. Reproduced by permission of Prof. Arthur Winfree)

it would not oscillate, though for this model r = 0 is an un-
stable equilibrium point and any slight perturbation would
lead the system back to the stable limit cycle. In more com-
plicated models it is possible to have a region of state space
corresponding to no oscillation and a basin of attraction that
leads to it. Figure 10.21 shows the results of a calculation by
Winfree (1987) of the effect of stimuli on resetting the phase
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of the Hodgkin–Huxley equations adjusted to oscillate spon-
taneously. The abscissa is the coupling interval or the time
after the previous pulse at which the stimulus is delivered.
The ordinate is the height of the depolarizing pulse in mV.
The contour lines show different values of the latency—the
time in twentieths of a cycle period from the stimulus to the
next pulse. Winfree called the shaded region of state space
where annihilation occurs a “black hole.”7

10.9 Difference Equations and Chaotic
Behavior

We have alluded to the possibility of chaotic behavior, but we
have not yet seen it. Chaotic behavior of nonlinear differen-
tial equations requires three or more degrees of freedom. It is
possible to see chaotic behavior in difference equations with
a single degree of freedom because the restriction that the
trajectory cannot cross itself or another trajectory no longer
applies. It arose from the continuous nature of the trajectories
for a system of differential equations.

10.9.1 The Logistic Map: Period Doubling and
Deterministic Chaos

We considered the logistic differential equation as a model
for population growth. The differential equation assumes that
the population changes continuously. For some species each
generation is distinct, and a difference equation is a bet-
ter model of the population than a differential equation. An
example might be an insect population where one genera-
tion lays eggs and dies, and the next year a new generation
emerges. A model that has been used for this case is the
logistic difference equation or logistic map

yj+1 = ayj

(
1 − yj

y∞

)

with a > 0 and j the generation number. It can again be cast
in dimensionless form by defining xj = yj /y∞:

xj+1 = axj (1 − xj ). (10.39)

While superficially this looks like the logistic differential
equation, it leads to very different behavior. The stable points
are not even the same. A plot of xj+1 vs. xj is a parabola,

7 See Winfree (1987), especially Chaps. 3 and 4, or Glass and Mackey
(1988), pp. 93–97.
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Fig. 10.23 Plot of x
j+1 vs. xj for the logistic difference equation or

logistic map, for two values of parameter a

from which we can immediately see the following properties
of the logistic map:

xj < 0, xj+1 < 0,

xj = 0, xj+1 = 0,

0 < xj < 1, xj+1 > 0,

xj = 1, xj+1 = 0,

xj > 1, xj+1 < 0.

If we are to use this as a population model, we must re-
strict x to values between 0 and 1 so the values do not go to
−∞. In order to keep successive values of the map within
the interval (0, 1) we also make the restriction a < 4.

For the logistic differential equation, x = 1 was a point of
stable equilibrium. However, for the logistic map, if xj = 1
the next value is xj+1 = 0. The equilibrium value x∗ can be
obtained by solving Eq. 10.39 with xj+1 = xj = x∗:

x∗ = ax∗(1 − x∗) = 1 − 1/a. (10.40)

Point x∗ can be interpreted graphically as the intersection
of Eq. 10.39 with the equation xj+1 = xj as shown in
Fig. 10.23. You can see from either the graph or from
Eq. 10.40 that there is no solution for positive x if a < 1.
For a = 1 the solution occurs at x∗ = 0. For a = 3 the equi-
librium solution is x∗ = 2/3. Figure 10.24 shows how, for
a = 2.9 and an initial value x0 = 0.2, the values of xj ap-
proach the equilibrium value x∗ = 0.655. This equilibrium
point is called an attractor.
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Fig. 10.24 Plots of xj vs. j for different values of a, showing how the
sequence of values converges to one, two, or four values of x called the
attractors

Figure 10.24 also shows the remarkable behavior that re-
sults when a is increased to 3.1. The values of xj do not come
to equilibrium. Rather, they oscillate about the former equi-
librium value, taking on first a larger value and then a smaller
value. This is called a period-2 cycle. The behavior of the
map has undergone period doubling. What is different about
this value of a? Nothing looks strange about Fig. 10.23. But
it turns out that if we consider the slope of the graph of xj+1

vs. xj at x∗, we find that for a > 3 the slope of the curve at
the intersection has a magnitude greater than 1. Many books
explore the implications of this.

The period doubling continues with increasing a. For a >

3.449 there is a cycle of period 4. A plot of the period-4 cy-
cle for a = 3.5 is also shown in Fig. 10.24. For a > 3.54409
there is a cycle of period 8. The period doubling continues,
with periods 2N occurring at more and more closely spaced
values of a. When a > 3.569946, for many values of a the
behavior is aperiodic, and the values of xj never form a re-
peating sequence. Remarkably, there are ranges of a in this
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Fig. 10.25 For this value of a the solution is aperiodic. There is no
attractor

region for which a repeating sequence again occurs, but they
are very narrow. The details of this behavior are found in
many texts. In the context of ecology they are reviewed in a
classic paper by May (1976).

For a < 3.569946, starting from different initial values x0

leads after a number of iterations to the same set of values for
the xj . For values of a larger than this, starting from slightly
different values of x0 usually leads to very different values of
xj , and the differences become greater and greater for larger
values of j . This is shown in Fig. 10.25 for a = 3.9. The
sequence is plotted from j = 301 to j = 425. The solid
circles represent the sequence starting with x0 = 0.20; the
open circles represent the sequence for x0 = 0.21.

This is an example of chaotic behavior or deterministic
chaos. Deterministic chaos has four important characteris-
tics:
1. The system is deterministic, governed by a set of equa-

tions that define the evolution of the system.
2. The behavior is bounded. It does not go off to infinity.
3. The behavior of the variables is aperiodic in the chaotic

regime. The values never repeat.
4. The behavior depends very sensitively on the initial

conditions.

10.9.2 The Bifurcation Diagram

Figure 10.26 shows the values of xj that occur after any tran-
sients have died away for different values of parameter a. The
diagram was made by picking a value of a. A value of x0 was
selected and the iterations were made. After 50 iterations, the
next 300 values of xj were plotted. Then a was incremented
slightly and the process was repeated. This is called a bifur-
cation diagram. The figure shows the range 1 < a < 4. The
asymptotic value of xj rises according to x∗ = 1 − 1/a until
period doubling occurs at a = 3. A four-cycle appears for
a > 3.449, and for a > 3.569946 chaos sets in. Within the
chaotic region are very narrow bands of finite periodicity.
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Fig. 10.26 A bifurcation diagram for the logistic map, showing 300
values of xj for values of a between 1 and 4. The plot was made using
the Macintosh software A Dimension of Chaos by Matthew A. Hall.
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Fig. 10.27 An example of self-similarity. The top curve shows 3.4 <

a < 4. The bottom curve shows 3.742 < a < 3.745. Note its similarity
to the top curve. The plot was made using the Macintosh software A
Dimension of Chaos by Matthew A. Hall
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Fig. 10.28 A plot of xj+1 vs xj for the data of Fig. 10.25 recovers the
logistic map

Figure 10.27 shows a feature of many chaotic systems
called self-similarity. The bifurcation diagram is plotted for
two ranges of a: 3.4–4.0 and 3.743–3.745. The x scale is ex-
panded in the second diagram. Note the similarity of the two
bifurcation diagrams.

Even though the plot of xj vs. j in Fig. 10.25 has no obvi-
ous pattern, the values of xj were obtained from the logistic
map. When we plot xj+1 vs. xj the points fall on the map
(Fig. 10.28).

The simplest systems in which chaotic behavior can be
seen are first-order difference equations in which xj+1 is a
function of xj . The function is peaked and “tunable” by some
parameter. Chaotic behavior occurs for some values of the
parameter. In fact, it appears that the ratios of the parameter
values involved in the period doubling and approach to chaos
may be independent of the particular shape of the curve.8

10.9.3 Quasiperiodicity

Some systems exhibit quasiperiodicity. Consider the map
xj+1 = xj + b where b is a fixed parameter. Wrap the func-
tion back on itself so that x remains in the interval (0, 1).
This is done by using the modulo or remainder function.9

The map is

xj+1 = xj + b (mod 1) . (10.41)

8 See Hilborn (1995), Chap. 2, Kaplan and Glass (1995), p. 30, or
Strogatz (1994), p. 370.
9 The function x mod n gives the number that remains after subtracting
n from x enough times so that the result is less than 1. For example,
1.5742 mod 1 = 0.5742; 7.5 mod 1 = 0.5.
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Fig. 10.29 The linear map xj+1 = xj +0.3 (mod 1). a Plot of the map.
b Plot of xj vs. j for 50 points. c The map plotted on a circle for 128
values of j , which lie on only 10 points. d A plot of 128 values of xj+1
vs. xj falls on 10 points on the map

The function is plotted in Fig. 10.29 for b = 0.3. The map
is plotted in (a). The apparent discontinuities are due to the
wrapping. A sequence of 50 points is plotted in Fig. 10.29b.
Because b = 3/10 is a rational fraction, the points re-
peat themselves exactly every 10 steps. This can be seen
in Fig. 10.29c, which plots 128 consecutive points on a cir-
cle. The angle counterclockwise from the horizontal axis is
θj = 2πxj . The 128 values all fall at 10 points on the circle.
The plot of xj+1 vs. xj in Fig. 10.29d has 10 points that fall
on the map.

Compare this with Fig. 10.30, which is a plot of the same
map for an irrational value of the parameter, b = 1/π. The
curve in Fig. 10.30a looks very similar. However, the values
of xj never repeat. This is difficult to see from Fig. 10.30b,
but can be seen in c, where the 128 points are all at different
values of θ . If more points were plotted, the circle would be
completely filled. All of the points plotted in d are also dif-
ferent, but of course they lie on the map function. If we were
to make a bifurcation diagram the values of xj would fill all
points on the graph, unless b were a rational fraction, when
there would be a finite number of points. This appears at first
sight to be chaotic behavior, but it is not. The function is de-
terministic, it is bounded, and the values of x never repeat.
But it does not satisfy the last criterion: sensitive dependence
on initial conditions. In chaotic behavior, two trajectories that
start from initial points that are very close diverge in time. If
a slightly different value of x0 is used for this map, all of
the values in the new sequence are shifted from the original

1

0

x j
+1

10 xj

b = 1/ π

(a)

1

0

x j

10050 j
(b)

1
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x j
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(d)
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x = 0

x = 1

(c)

Fig. 10.30 The linear map xj+1 = xj + 1/π (mod 1). a Plot of the
map. b Plot of xj vs j for 50 points. c The map plotted on a circle for
128 points. d Plot of xj+1 vs. xj gives 128 points on the map

sequence by the same amount. There is no divergence of
the two solutions. In quasiperiodicity, the trajectories for two
points that are initially close remain close.

10.10 A Feedback Loop with a Time Constant
and a Fixed Delay

In Sect. 10.6 we saw that if both processes in a two-stage
feedback system had comparable time constants, there was
the possibility for damped oscillations or “ringing.” Another
possibility is that a portion of the system may respond to
values of a state variable at some earlier time. The fixed time
delay could be the time it takes a signal to travel along a
nerve or the time it takes for a chemical to pass through a
blood vessel.

We will consider a linear model for such a system, as
shown in Fig. 10.31:

τ1
dy

dt
+ y = G1x + p1,

x = G2y(t − td ) + p2.
(10.42)

The first equation is like those in Sect. 10.6, except that the
factor a multiplying p1 is set equal to unity. The second
equation says that x(t) is proportional to the value of y at



288 10 Feedback and Control

Fig. 10.31 A two-stage feedback loop. The upper process is described
by a single time constant; the lower one introduces a fixed time delay

the earlier time t − td , plus some other parameter p2. These
can be combined to give a delay-differential equation:

τ1
dy

dt
= −y + G1G2y(t − td ) + p1 + G1p2

or, defining p = p1 + G1p2 to eliminate clutter,

τ1
dy

dt
= −y + G1G2y(t − td ) + p. (10.43)

This equation can give rise to sustained as well as damped
oscillations. It is not hard to see why. Suppose that y is above
some equilibrium value and that G1G2 < 0. The first term
on the right causes y to decrease toward equilibrium. But
when it is nearly at equilibrium the second term, responding
to an earlier positive value of y, continues to make y decrease
so y goes negative. Now y is below the equilibrium value
and the same arguments can be applied as y increases. This
paragraph could go on for a long time.

Why do we now have oscillations for a system with ap-
parently only one degree of freedom? The reason is the
delay term. In order to specify the initial state of the sys-
tem at t = 0, we must specify the value of y for all times
−td < t < 0. This is effectively an infinite number of values
of y. Delay differential equations have an infinite number of
degrees of freedom.

The mathematics for such a system become quite involved
(even for the linear system we discuss here). The tech-
niques for solving the equation were first described by Hayes
(1950). The equation has been considered for biological
examples by Glass and Mackey (1988).

The derivative is zero and the equation has a fixed point
yf when yf = p/(1 − G1G2). It is convenient to work with
the new variable w = y − yf and rewrite Eq. 10.43 as

τ1
dw

dt
= −w + G1G2w(t − td ).

We make another simplifying assumption; that the magni-
tude of the open-loop gain G1G2 is so much greater than

1 that the −w term can be neglected.10 Then the equation
becomes

dw

dt
= G1G2

τ1
w(t − td ).

Now recall that since G1G2 	 −1, this coefficient is
approximately the negative of the reciprocal of the time
constant with no delay and with feedback (see Eq. 10.23).
Therefore the equation we will solve is

dw

dt
= − 1

τ
w(t − td ). (10.44)

If the delay time is zero, this is the familiar equation for
exponential decay. As we argued above, a delay can allow os-
cillation. One can show by substitution that for certain values
of the parameters one possible solution has the form w(t) =
w0e

−γ t cos ωt . We will find the conditions for a steady os-
cillation of the form w(t) = w0 cos ωt . The left-hand side of
Eq. 10.44 is dw/dt = −ωw0 sin ωt . The right-hand side is

−(1/τ)w0 cos(ωt − ωtd) = −(1/τ)w0 cos ωt cos ωtd

− (1/τ)w0 sin ωt sin ωtd .

Therefore the proposed solution will satisfy Eq. 10.44 only
if

−ωw0 sin ωt = −(1/τ)w0 sin ωtd sin ωt

and

0 = −(1/τ)w0 cos ωtd cos ωt,

from which we get ω = 1/τ and cosωtd = 0 or ωtd =
π/2. Combining these gives td/τ = π/2. From these we see
exactly how the sustained oscillation occurs. The delay time
and frequency are such that the shift is exactly one-quarter
cycle. This is the same shift that would be obtained by taking
the second time derivative of the undelayed function, which
would lead to the undamped harmonic oscillator equation.

10.11 Negative Feedback Loops: A Summary

The last several sections have been mathematically complex.
However, you do not need to memorize a large number of
equations to carry away the heart of what is in them. The
essential features are as follows:
1. If the equations relating the input and output variables

of each process of a negative feedback loop are known,
then their simultaneous solution gives the equilibrium or
steady-state values of the variables. (In a biological sys-
tem it may be very difficult to get these equations.) The

10 If you are considering a problem where this is not a reasonable
assumption, see the Appendix of Glass and Mackey (1988).
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solution is called the operating point or a fixed point of
the system of equations.

2. If a single process in the negative feedback loop de-
termines the time behavior, and the rate of return of a
variable to equilibrium is proportional to the distance of
that variable from equilibrium, then the return to equi-
librium is an exponential decay and the system can be
characterized by a time constant.

3. In a negative feedback system one variable changes to sta-
bilize another variable. The amount of stabilization and
the accompanying decrease in time constant depend on
the open-loop gain.

4. It is possible to have oscillatory behavior with damped or
constant amplitude if the two processes have comparable
time constants and sufficient open-loop gain, or if one of
the processes depends on the value of its input variable at
an earlier time, or if the process has three or more degrees
of freedom.

5. A nonlinear system oscillating on a limit cycle can have
its phase reset by an external stimulus.

6. Nonlinear systems of difference equations with one or
more degrees of freedom or nonlinear systems of differ-
ential equations with three or more degrees of freedom
may exhibit bifurcations and chaotic behavior.

10.12 Additional Examples

This section provides some additional examples of the prin-
ciples we have seen above. The details of the experiments
and modeling are given in the references.

10.12.1 Cheyne–Stokes Respiration

We have seen how the body responds to CO2 levels in the
blood by controlling the rate and amplitude of breathing to
maintain the CO2 concentration within a narrow range. The
frequency and amplitude of breathing can also undergo oscil-
lation. Some patients almost stop breathing for a minute or
so and then breathe with much greater amplitude than nor-
mal. This is called Cheyne–Stokes breathing. Guyton et al.
(1956) showed that diverting carotid artery blood in dogs
through a long length of tubing increased the transit time
between heart and brain and caused Cheyne–Stokes respi-
rations. Cheyne–Stokes respirations have been modeled with
a nonlinear delay-differential equation by Mackey and Glass
(1977). Their results are shown in Fig. 10.32.

Fig. 10.32 Cheyne–Stokes respirations. a The results of the model
calculation y = g(x(t − td )). b Ventilation during Cheyne–Stokes
respiration. (Reprinted with permission from Mackey and Glass 1977.
Copyright 1977 AAAS)

10.12.2 Hot Tubs and Heat Stroke

Problems 10.10 and 10.11 discuss how the body perspires in
order to prevent increases in body temperature. At the same
time blood flows through vessels near the surface of the skin,
giving the flushed appearance of an overheated person. The
cooling comes from the evaporation of the perspiration from
the skin. If the perspiration cannot evaporate or is wiped off,
the feedback loop is broken and the cooling does not occur.
If a subject in a hot tub overheats, the same blood flow pat-
tern and perspiration occur, but now heat flows into the body
from the hot water in the tub. The feedback has become pos-
itive instead of negative, and heat stroke and possibly death
occurs. This has been described in the physics literature by
Bartlett and Braun (1983).

10.12.3 Pupil Size

The pupil changes diameter in response to the amount of
light entering the eye. This is one of the most easily stud-
ied feedback systems in the body, because it is possible to
break the loop and to change the gain of the system. Let the
variables be as follows: x is the amount of light striking the
retina, p is the light intensity, and y the pupil area. In the
normal case, x is proportional to y and p: x = Apy. The
body responds to increasing x by decreasing y so y = f (x).
These processes are shown in Fig. 10.33.

The reason this system can be studied so easily is that
shining a very narrow beam of light into the pupil means that
the change of pupil radius no longer affects x; the loop is



290 10 Feedback and Control

Fig. 10.33 The feedback system for controlling the size of the pupil

Fig. 10.34 The feedback loop for pupil size can be changed by chang-
ing the way in which light strikes the eye. a In the normal situation
x = Apy. b When the spot of light is smaller than the pupil, the feed-
back loop is broken. c When the spot of light strikes the edge of the
pupil, the gain is increased

broken in the upper box of Fig. 10.33. Shining a light into
the eye so that it is on the edge of the pupil increases the gain
in the upper box. These schemes are shown in Fig. 10.34.
Furthermore, it has been discovered experimentally that the
process in the lower box controls the size of both pupils, even
though light is directed at only one eye.

The properties of y = f (x) have been studied extensively
by Stark (see Stark 1957, 1968, 1984). The results are con-
sistent with a feedback loop having several time constants
and also a fixed delay. Increasing the open-loop gain as in
Fig. 10.34c causes the pupil to oscillate at a frequency of
about 1.3 Hz (cycles per second). Stark (1984) reviews this
work, including the use of noise to analyze the system and
nonlinearities.

10.12.4 OscillatingWhite-Blood-Cell Counts

A delay-differential equation has been used to model the pro-
duction of red and white blood cells. Figure 10.35 shows the
actual white count for a patient with chronic granulocytic
leukemia as well as the results of a model calculation. The

Fig. 10.35 A nonlinear model for white-blood-cell production. a
White-blood-cell count from a patient with chronic granulocytic
leukemia. b The results of a nonlinear delay-differential equation model
with a delay time of 6 days are an oscillation with a period of 20 days.
c The results of using the same model with a delay time of 20 days are
aperiodic. (Reprinted with permission from Mackey and Glass 1977.
Copyright 1977 AAAS)

striking feature of the model is the emergence of an aperi-
odic pattern when the delay time is increased from 6 to 20
days.

10.12.5 Waves in Excitable Media

The propagation of an action potential is one example of the
propagation of a wave in excitable media. We saw in Chap. 7
that waves of depolarization sweep through cardiac tissue.
The circulation of a wave of contraction in a ring of car-
diac tissue was demonstrated by Mines in 1914. It was first
thought that such a wave had to circulate around an anatomic
obstacle, but it is now recognized that no obstacle is needed.

Waves in thin slices of cardiac tissue often have the shape
of spirals, very similar to simulations produced by a model
similar to a two-dimensional Hodgkin–Huxley model (Gray
2009). These waves occur in many contexts beside the heart.
They have also been seen in the Belousov–Zhabotinsky
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Fig. 10.36 An aggregate of chick heart cells was periodically stimu-
lated. Follow the bottom of the beginning of each sharp spike. The left
part of the top strip shows phase locking. The right-hand portion of
the top strip shows period doubling. The middle strip shows a period-4
behavior. The bottom strip shows irregular behavior consistent with de-
terministic chaos. (Reprinted with permission from Guevara et al. 1981.
Copyright 1981 AAAS)

chemical reaction,11 in social amoebae, in the retina of
the eye, and as calcium waves in oocytes. Beautiful pho-
tographs of all of these are found in Winfree (1987). A
simple reaction–diffusion model that leads to a propagating
chemical wave is found in Problem 4.28

These spiral waves seem to be another ubiquitous phe-
nomenon (like period doubling) that depends primarily on
the coarse features of the model. They can be generated with
simple computer models called cellular automata. The rules
for such an automaton and photographs of the resulting spiral
waves are shown in Chap. 2 of Kaplan and Glass (1995).

The study of spiral waves in the heart is currently an
active field (Glass et al. 2002; Keener and Sneyd 2008a;
Panfilov 2009; Gray 2009; Luther et al. 2011; Clayton et
al. (2011)). They can lead to ventricular tachycardia, they
can meander, much as a tornado does, and their breakup
into a pattern resembling turbulence is a possible mechanism
for the development of ventricular fibrillation (see the next
example).

10.12.6 Period Doubling and Chaos in Heart
Cells

Guevara et al. (1981) have subjected small aggregates of
chick heart cells to periodic stimulation. The stimulation
frequency was slightly greater than the natural frequency
of oscillation. The behavior of the preparation is shown in
Fig. 10.36 and can best be seen by examining the bottom of
the leading edge of the sharp positive pulse. The top strip on

11 There are many references. See Mielczarek et al. (1983); Epstein et
al. (1983); and Winfree (1987).

Fig. 10.37 The results of experiments on a preparation consisting of
intraventricular septum from a rabbit heart. Plots show the recorded
action potentials and the map of In vs. In−1 where I is the interval
between beats. In A and B there is a constant interbeat interval and one
point on the map. Panels C and D show period doubling. Panels E and
F show a period-4 pattern. Panels G and H are completely aperiodic.
(Reprinted with permission from Garfinkel et al. 1992. Copyright 1992
AAAS)

the left is phase locking. This is followed on the right in the
top strip by an alternation characteristic of period doubling.
The middle strip shows a variation of period 4. The bottom
strip shows irregularity that is consistent with deterministic
chaos.

Garfinkel et al. (1992) have also observed period dou-
bling in a stimulated preparation of rabbit heart. Arrhythmias
were induced by adding drugs to the solution perfusing the
preparation. Figure 10.37 shows plots of the recorded action
potentials and a plot of the map of In vs. In−1, where I is the
interval between beats. In panels A and B there is a constant
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interbeat interval and one point on the map. Panels C and
D show period doubling. Panels E and F show a period-4
pattern. Panels G and H are completely aperiodic.

Ventricular fibrillation is “the rapid, disorganized, and
asynchronous contraction of ventricular muscle. ... it repre-
sents the final common pathway for death in most patients
who experience out-of-hospital cardiac arrest, and its rate of
recurrence is on the order of 30 % in the first year in suc-
cessfully resuscitated patients.” (Epstein and Ideker 1995). It
appears to be due to meandering waves, and it does not oc-
cur unless the heart exceeds some minimum size (Winfree
2001).

Witkowski et al. (1993, 1994) have made electrode arrays
with a spacing of about 200 μm that can be placed directly on
the myocardium. The membrane current im can be estimated
from the spatial derivatives of the extracellular (interstitial)
potential. This technique has provided evidence that ventric-
ular fibrillation has a component with simpler dynamics than
had previously been thought (Witkowski et al. 1995). More
recent studies point toward more complex behavior (Fox et
al. 2002).

Symbols Used in Chapter 10
Symbol Use Units First

used
page

a, b Arbitrary parameter 277
a Parameter in logistic map 284
a, b Constant in logistic equation 281
b Reduction in ventilation rate

because of dead space in lungs
l min−1 271

b Amplitude of stimulus 282
f, g, h, i Functions 271
j Index for successive values in

difference equation
284

m Mass kg 280
n Number of moles of dissolved

carbon dioxide
273

o Rate of oxygen consumption mol s−1 270
p Rate of oxygen consumption mmol min−1 270
p Light intensity 289
r Variable 281
t Time s 273
td Delay time s 288
v Velocity m s−1 280
w, x, y, z General variables 271
x, y General variables in a feedback

system
269

x Partial pressure of carbon
dioxide

torr 270

x Amount of light striking the
retina

289

x∗ Equilibrium value of x 284
y Ventilation rate l min−1 270

y Pupil area m2 289
y∞ Constant (carrying capacity) in

logistic equation
281

A Proportionality constant 273
F Respiratory quotient 270
F General function 271
Fx x component of force N 280
G1,G2 Gain 272
I Interbeat interval s 291
N Number of variables 280
PCO2 Partial pressure of carbon

dioxide
torr 270

R Gas constant J K−1 mol−1 270
T Temperature K 270
T , T0, Ts Time s 282
Vc Compartment in which carbon

dioxide is distributed
throughout the body

m3 or l 273

α Solubility constant mol l−1 torr−1 273
α Damping constant s−1 277
θ, θ ′, θs Angle 281
τ, τ1, τ2 Time constant s 273
ω,ω0 Angular frequency radian s−1 277
ξ, η Variables 273

Problems

Section 10.1

Problem 1. Make the unit conversions to show that Eq. 10.4
is equivalent to Eq. 10.1.

Section 10.2

Problem 2. The level of the thyroid hormone thyroxine (T4)
in the blood is regulated by a feedback system. TSH is re-
leased by the pituitary. The thyroid responds to increased
levels of TSH by producing more T4. The T4 then acts
through the hypothalamus and pituitary to reduce the amount
of TSH.
(a) On a graph of T4 vs. TSH, plot hypothetical curves

showing these two processes and indicate the equilib-
rium or operating point.

(b) T4 contains four iodine atoms. If the body has an in-
sufficient supply of dietary iodine, the thyroid cannot
make enough T4. What changes in the graphs will re-
sult? (This causes iodine deficiency goiter or thyroid
hyperplasia. With the advent of iodized table salt and
the use of iodine by bakers in bread dough to make
their equipment easier to clean, the disease has almost
disappeared.)

Problem 3. For the feedback system x = [
(y − p)/3

]1/2,
y = 4 − x2 assume that the variable on the right in each
equation controls the variable on the left.
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(a) Plot y vs. x for each process.
(b) Find the operating point when p = 0.
(c) Find the operating point when p = 1.

Section 10.3

Problem 4. Find the open-loop gain for the system described
in Problem 10.3.
Problem 5. Find the open-loop gain for the system shown.

y = 9 - x y = x/12
y

x

Problem 6. A feedback loop has the three stages shown.
Find the operating point and the open-loop gain if these
variables are all positive.

Problem 7. Consider how thyroid hormone is removed from
the body by the kidneys. The variables are V , the total plasma
volume (l); C, the plasma concentration of thyroid hormone
(mol l−1); y, the total amount of hormone (mol); and R, the
rate of hormone production (mol s−1). The rate of change is
dy/dt = R − KC. In the steady state R = KC, and y is
not changing with time (see Chap. 2). The clearance K is a
measure of the kidneys’ ability to remove hormone, since the
removal process depends on the concentration.
(a) Plot K vs. C for two different values of R. Show on your

graph what happens if K remains fixed as R changes.
(b) It has been found experimentally (Riggs 1952. Pharma-

col Rev 4: 284–370) that K increases as C increases:
K = aC. Plot this on your graph, too.

(c) Draw a block diagram showing the proper cause and
effect relationship between C and K .

(d) Calculate the open-loop gain. Show how changes in C

are altered by the feedback mechanism.
Problem 8. A substance is produced in the body and re-
moved at rate R. The concentration is C. The clearance is
defined to be K . In the steady state 0 = dy/dt = R − KC,

or K = R/C. It is found experimentally that the clearance
depends on the concentration as K = aCn, where C is the
independent variable. Find the open-loop gain, eliminating
K and a from your answer.
Problem 9. The kidney excretes phosphate in the following
way. The total plasma volume Vp contains phosphate at con-
centration Cp: Qp = CpVp. A volume of plasma (dV/dt)f
is filtered through the renal glomeruli into the nephrons each
second. Within the nephron, phosphate is either reabsorbed
into the plasma or excreted into the urine. Experiments show
that virtually all phosphate is reabsorbed up to some rate
(dQ/dt)max:

(
dQ

dt

)

reabs
=
⎧
⎨

⎩

Cp (dV/dt)f , Cp (dV/dt)f < (dQ/dt)max

(dQ/dt)max , Cp (dV/dt)f ≥ (dQ/dt)max .

As in Problem 7a, at equilibrium the clearance of phos-
phate from the plasma is defined as

K = (dQ/dt)excreted into urine

Cp

.

Suppose that exogenous phosphate is entering the plasma at
a fixed rate R and that steady state has been reached so that
R = (dQ/dt)excreted into urine.

(a) What value for reabsorption does this imply?
(b) Determine two equations relating K and Cp and plot

them.
(c) Calculate the open-loop gain of the feedback loop.

Problem 10. With considerable simplification, consider the
body to have a constant temperature T throughout and a total
heat capacity C. The total amount of thermal energy in the
body is U . The heat capacity is defined so that dU = CdT .
The source of the thermal energy is the body’s metabolism:
(dU/dt)in = M . If sweating is ignored, the rate of loss of
energy by convection and radiation is approximately propor-
tional to the amount by which the body temperature exceeds
the ambient or surrounding temperature: (dU/dt)loss =
K(T − Ta).
(a) What is the steady-state temperature as a function of M

and Ta?
(b) Write a differential equation for T as a function of time.

Suppose that M suddenly jumps by a fixed amount.
What is the time constant?

Problem 11. When the body temperature is above 37 ◦C,
sweating becomes important. The rate of energy loss is
proportional to the amount of water evaporated. If all the per-
spiration evaporates, sweating loss can be approximated by
(dU/dt)sweat = L(T − 37).

(a) Modify the differential equation of the previous prob-
lem to include (dU/dt)sweat as the input variable with T

as the output variable. Combine it with this new equation
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to make a feedback loop. Determine the new equilibrium
temperature and the time constant.

(b) Make numerical comparisons for the previous prob-
lem and this one when M = 71 kcal h−1, C = 70 kcal ◦C−1,
K = 25 kcal h−1 ◦C−1, L = 750 kcal h−1 ◦C−1, Ta = 38 ◦C
(high enough to ensure sweating).
Problem 12. A simplified model of the circulation is shown.
Normally the arterial pressure is the same as that in the
carotid sinus: part = psinus. In experiments on dogs whose
vagus nerves were cut, the carotid arteries were isolated and
perfused by a separate pump. This broke the feedback loop
and allowed the curve on the accompanying graph to be ob-
tained. The empirical equation shown (based on the work
of Scher and Young (1963), summarized in Riggs (1970))
is (with pressures in torr)

part = 90 + 120

1 + exp
[
(psinus − 165)/5

] .

(a) Draw a block diagram of the complete feedback sys-
tem. Label the blocks, show the functional relationship
for each one, and indicate the proper cause-and-effect
relationship.

(b) Find the operating point.
(c) Find the open-loop gain.

Problem 13. Consider the following special case of linear
feedback: �x = G1(�p +�y), �y = G2�x. Find the ratio
�x/�p when G1 	 −1, G2 < 1.
Problem 14. Differentiate Eq. 10.4 and show that the
expression for G1 is the same as in Eq. 10.19.
Problem 15. For the thyroid problem, Problem 10.7, write a
differential equation that can be solved to give C as a func-
tion of time. Suppose that at t = 0, R suddenly becomes 0.
What is the differential equation then? Solve the equation;
note that it is not linear.
Problem 16. The osmolarity of plasma (C, in mosmole)
is regulated by the concentration of antidiuretic hormone
(ADH , in pg ml−1, also known as vasopressin). As antidi-
uretic hormone increases, the kidney reabsorbs more water
and the plasma osmolarity decreases, C = 700/ADH .
When osmoreceptors in the hypothalamus detect an increase
of plasma osmolarity, they stimulate the pituitary gland to
produce more antidiuretic hormone, ADH = C − 280 for C

greater than 280, and zero otherwise.
(a) Draw a block diagram of the feedback loop, including

accurate plots of the two relationships.
(b) Calculate the operating point and the open-loop gain

(you may need to use four to six significant figures to
determine the operating point accurately).

(c) Suppose the behavior of the kidney changed so now C =
750/ADH . First determine the new value of C if the
regulation of ADH is not functioning (ADH is equal to
that found in part (b), and then determine the value of
C taking regulation of ADH by the hypothalamus into
account.

Problem 17. The concentration of potassium ions in plasma
K (in mM) is regulated by the concentration of the hor-
mone aldosterone A (in ng per 100 ml). As aldosterone
increases, the kidney excretes more potassium in the urine
and the plasma concentration of potassium ions decreases:
K = 17.4/A. When the extracellular potassium ion concen-
tration rises, the adrenal gland produces more aldosterone:
A = (1/200) exp(1.6K).
(a) Draw a block diagram of the feedback loop, including

accurate plots of the two relationships.
(b) Calculate the operating point and the open-loop gain.

(Note: you may have to find these numerically or graph-
ically.)

(c) Suppose the behavior of the kidney changed so that K =
20/A. Determine the new value of K if the regulation of
aldosterone is not functioning (A is equal to that found
in part (b)), and then determine the value of K taking
regulation of aldosterone into account.
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Section 10.5

Problem 18. The following is a vastly oversimplified model
of calcium regulation in dogs. Calcium is stored in body
fluids and bones. Experiments show that the calcium con-
centration in the blood of a dog obeys approximately the
equation (Riggs 1970, p. 491)

3.9
dC

dt
+ 1.4C = 81.2 +

(
dQ

dt

)

iv
+
(

dQ

dt

)

r

(t),

where C is the plasma concentration in mg l−1, t is the time
in h, (dQ/dt)iv is the rate of intravenous infusion of cal-
cium in mg h−1, and (dQ/dt)r is the rate of reabsorption of
calcium from bone into the blood in mg h−1. (The numer-
ical constants are consistent with these units.) The rate of
reabsorption depends on the level of parathyroid hormone
(PTH) concentration in the blood, which in turn depends
on the calcium concentration. Instead of measuring the PTH
concentration, experimenters found that (dQ/dt)r and C are
related empirically by (dQ/dt)r = 188−1.34C, where C is
the independent variable.
(a) Draw a block diagram with variables (dQ/dt)r and C.
(b) Write equations to describe the steady state and

find steady-state values of (dQ/dt)r and C when
(dQ/dt)iv = 0.

(c) Find the open-loop gain.
(d) Find the time constant for the change of C when the

parathyroid glands have been removed, in response to a
step change in (dQ/dt)iv.

(e) Find the time constant for the change in C in response to
a step change in calcium infusion when the parathyroid
glands are intact, so that the feedback loop is closed.

Problem 19. This problem is a simplification by the authors
suggested by the data of Chick et al. (1977) . Experimental
data on diabetic rats show that the insulin level is 0 and the
glucose level is 500. When an artificial pancreas is installed,
a new operating point is reached for which i = 40 and g =
100.
(a) Make the simplest assumption possible: glucose level

responds to insulin level according to g = A + G1i,
while insulin responds to glucose as i = G2g. Find the
open-loop gain.

(b) The same series of experiments showed that when the
feedback loop is closed, the time constant for glucose to
fall is 1.67 h. When the artificial pancreas is removed,
the glucose level rises with a time constant of 10.67 h.
Estimate the open-loop gain, assuming that the insulin
level changes instantaneously.

Section 10.6

Problem 20. Multiply Eq. 10.28 by τ2 and show that it
reduces to Eq. 10.22 when τ2 	 τ1.
Problem 21. For the two-stage feedback loop with equal
time constants τ , show that oscillation results with a
frequency ω = (|OLG|)1/2/τ .
Problem 22. Consider two substances in the plasma with
concentrations X and Y . (They might be glucose and in-
sulin.) Assume that experiment has established the following
facts.
(i) The steady-state values of each concentration are X0 and

Y0. Departures from them are x = X − X0 and y =
Y − Y0.

(ii) When y = 0, X is removed from the body at a rate pro-
portional to x. This is true for both positive and negative
values of x: dx/dt = −(1/τ1)x.

(iii) When x = 0, Y influences the rate at which X changes
in an approximately linear fashion. An increase of Y

above Y0 (y > 0) increases the rate of disappearance
of x.

(iv) When x = 0, y is cleared at a rate proportional to y:
dy/dt = −(1/τ2)y.

(v) When y = 0 and x is nonzero, a positive value of x

stimulates the production of Y , while a negative value of
x inhibits the production of Y .

Assume that the rate of production is a linear function of x.
Write down two linear differential equations to model these
observations. That is, add a term to each of the equations
given that describes observations (iii) and (v).
Problem 23. Combine the two equations obtained in the pre-
vious problem into a single differential equation in x. Show
that it has the form

d2x

dt2
+
(

1

τ1
+ 1

τ2

)
dx

dt
+ 1 − OLG

τ1τ2
x = 0.

Use the result of Problem 19 to obtain 1 − OLG and suppose
that τ1 = 50 min. For what value of τ2 will critical damping
occur? (If you find two values of τ2, which seems more rea-
sonable?) If τ2 is greater than the value you select, will the
system be overdamped or underdamped? (Do not take these
results too seriously.)
Problem 24. This problem explores the behavior of a simple
linear system from the point of view of the system’s response
to sinusoidal signals of various frequencies.
(a) The differential equation describing a system with time

constant τ and gain G is

dx

dt
= − 1

τ
x + G

τ
y.
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Show by substitution that if y = Y sin ωt , then x =
X sin(ωt + φ), where tanφ = ωτ and X(ωτ sin φ +
cos φ) = GY .

(b) Use the relation tan φ = ωτ to establish the triangle
shown, and use it to show that X = GY/(1 + ω2τ 2)1/2.
These two relations give the response of the system in
the frequency domain.

Problem 25. The following model for the attrition of troops
in battle was developed by F. W. Lanchester and has been
found to work reasonably well in several battles. The num-
ber of “friendly” troops is F(t) and the number of “enemy”
troops is E(t). The rates of change are given by dF/dt =
−aE, dE/dt = −bF , where a and b are the “effectiveness”
of each side. The initial number of troops on each side is F0

and E0.
(a) What are the initial values of dF/dt and dE/dt?
(b) Obtain a differential equation for F .
(c) Find the most general solution to this differential equa-

tion and determine the coefficients from the initial
conditions.

(d) Plot F and E for a = b = 0.05 and E0 = 2F0.
Problem 26. The equation dF/dt = −aE of Problem 25
could also be thought of as describing a predator–prey situ-
ation if a represents the number of animals that the enemy
eats per unit time. Ignoring latent periods such as gestation
and infancy, what is the simplest way the equation could be
modified to take account of reproduction and other ways of
dying?

Section 10.8

Problem 27. Make a phase-space plot and discuss stability
for dy/dt = by, dy/dt = −by, and dy/dt = a − by.
Problem 28. Make a drawing similar to Fig. 10.16 for the
differential equation dx/dt = x(c − x2) for different values
of c (positive and negative) and describe the stability of the
fixed points as a function of c.
Problem 29. (a) Make drawings of the tip of the vector that

defines θ ′ in Fig. 10.19 to show that when b < 1, θ ′ takes
on all values, while for b > 1, θ ′ is restricted to values
near 0 and 2π.

(b) Redraw Fig. 10.20a in the case that the angles are not
reset to zero when they reach 2π.

Problem 30. Consider the undamped harmonic oscillator in
the form dx/dt = v, dv/dt = −ω2

0x.
(a) Make a phase-plane plot.
(b) Is the closed trajectory a limit cycle? Why or why not?
(c) Add a damping force proportional to −v and redraw the

phase-plane plot.
Problem 31. In Fig. 10.20, the phase behavior changes dra-
matically between b = 0.95 and b = 1.05. This change is
most apparent for θs = π, where θ ′ = 0 for b = 0.95 and
θ ′ = π for b = 1.05. What happens for θs = π and b = 1
exactly?
Problem 32. Reproduce qualitatively plots like Fig. 10.20
for b = −0.95 and b = −1.05. This corresponds to a
hyperpolarizing stimulus.
Problem 33. Write a simple computer program to solve the
two differential equations in Eq. 10.37 for r(t) and θ(t). (See
Sect. 6.14 for some guidance on how to solve differential
equations numerically).
(a) Make plots of x(t) = r(t) cos(θ(t)) as a function of time

for different stimuli.
(b) Reproduce a few points in the plots of Fig. 10.20 using

your program. In particular, examine stimuli given at or
near θs = π with b approximately equal to 1.

(c) Try varying the parameter a, and see how it affects the
solution.

Problem 34. Use the program written in Problem 33 to
examine entrainment. Stimulate the radial isochron clock pe-
riodically, with a frequency near but not exactly equal to
the natural frequency of oscillation. Find examples where
the clock is entrained to the stimulus (the oscillation has the
same frequency as the stimulus).
Problem 35. A simple model for excitation of cardiac tissue
is the FitzHugh–Nagumo model

dv

dt
= 1

ε

(
v − v3

3
− u

)

du

dt
= ε (v + β − γ u) ,

where ε = 0.2, γ = 0.5 and β = 0.8.
(a) Make a plot in phase space (v versus u) of the nullclines

(the curves obtained when dv/dt = 0 and du/dt = 0).
(b) Determine the steady-state solution (fixed point). You

may have to do this numerically or graphically.
(c) Write a simple program to solve these equations on the

computer. (See Sect. 6.14 for some guidance on how to
solve differential equations numerically.) Plot v(t) and
u(t) for the initial conditions v(0) = −0.70, u(0) =
−0.65.

Problem 36. Edward Lorenz (1963) published a simple,
three-variable (x, y, z) model of Rayleigh–Bénard convec-
tion:

dx

dt
= σ(y − x)
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dy

dt
= x(ρ − z) − y

dz

dt
= xy − βz

where σ = 10, ρ = 28, and β = 8/3.
(a) Which terms are nonlinear?
(b) Find the three equilibrium points for this system of

equations.
(c) Write a simple program to solve these equations on the

computer (see Sect. 6.14 for some guidance on how to
solve differential equations numerically). Calculate and
plot x(t) as a function of t for different initial conditions.
Consider two initial equations that are very similar, and
compute how the solutions diverge as time goes by.

(d) Plot z(t) vs. x(t), with t acting as a parameter of the
curve.

Problem 37. Consider the difference equation

xn+1 =
{

axn, 0 < xn < 0.5

a(1 − xn), 0.5 < x < 1

(a) Plot xn+1 vs. xn for the case a = 3/2, producing a figure
analogous to Fig. 10.23.

(b) Find the range of values of a for which the solution for
large n does not diverge to infinity or decay to zero. You
can do this using either arguments based on plots such
as that in part (a) or numerical examples.

(c) Find the equilibrium value x∗ as a function of a, using a
method similar to that in Eq. 10.40.

(d) Determine if this value is stable or unstable, based on
the magnitude of the slope of the xn+1 vs. xn curve.

(e) For a = 3/2, calculate the first 20 values of xn us-
ing 0.250 and 0.251 as initial conditions. Be sure to
carry your calculations out to at least five significant fig-
ures. Do the results appear to be chaotic? Are the results
sensitive to the initial conditions?

(f) For one of the data sets generated in part (e), plot xn+1

vs xn for 20 values of n to create a plot analogous to
Fig. 10.28. Explain how you could use this plot to dis-
tinguish chaotic data from a random list of numbers
between zero and one.

Section 10.9

Problem 38. Show that for the logistic difference equation,
the slope dxn+1/dxn at x∗ is given by 2−a, so that for a > 3
the slope has magnitude > 1.

Use a spreadsheet to plot xn for different values of a and
explore the period doubling.

Plot xj+1 vs. xj , and show why we restricted a to values
less than four.

For the logistic map with a = 3.9, evaluate xj using the
two initial conditions x1 = 0.2000 and x1 = 0.2001. Carry
out the calculation for at least 20 iterations.
Problem 39. Cyclic variations in the population of a species
are often studied with a predator–prey model such as the
Lotka–Voltera equations (Chap. 2 Problem 38). It is also
possible to have cyclic variations of a single species. This
problem explores one such model and is based on Appendix
B of Ginzburg and Colyvan (2004).

Let Nt represent the population at generation t. Let X rep-
resent the quality of the resources available to that species. R
is the maximum growth rate, and f (X) is a monotonically
increasing function that asymptotically approaches unity for
large X. The population in the next generation is

Nt+1 = NtRf (Xt ).

If f is constant, we have exponential growth or decay, de-
pending on whether Rf is greater or less than 1. We will
model f by f (Xt ) = Xt/(k + Xt ), where parameter k

determines how rapidly f approaches its asymptotic value.
Now assume the total amount of food, S, does not change

with time and that X depends on the per capita food supply
S/N through a monotonically increasing function g:

Xt+1 = Xtg(S/Nt+1).

A crucial assumption is that the current quality depends on
both the present per capita food supply and the quality in the
previous generation. When there is more food available to
the mother, it increases the reproductive rate of the mother.
Ginzburg and Colyvan call this the maternal effect.

Model functions f and g by

Nt+1 = NtR
Xt

k + Xt

Xt+1 = XtM
S/Nt+1

p + S/Nt+1
.

(a) Show that with the change of variables n = pN/S and
x = X/k the equations reduce to

nt+1 = ntR
xt

1 + xt

xt+1 = xtM
1

1 + nt+1
.

(b) Use a spread sheet to model the behavior for a range of
values of R and M , starting with R = 20 and M = 10.

Use initial conditions n0 = x0 = 1. If M > 1, explore
what values of R lead to oscillations.

(c) Use the spread sheet to construct phase-plane plots of
ln(n) vs ln(x).

Problem 40. Consider the two sets of data below, one pro-
duced by the logistic map and the other produced from a table
of random numbers. Which is which?
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Set 1 Set 2
0.9750 0.7464
0.0951 0.2349
0.3356 0.6017
0.8696 0.0213
0.4422 0.7935
0.9620 0.0336
0.1426 0.6476
0.4768 0.5630
0.9729 0.9116
0.1028 0.1748
0.3597 0.8706
0.8982 0.9058

Problem 41. The onset of ventricular fibrillation in the heart
can be understood in part as a property of cardiac restitution.
The action potential duration (APD) depends on the previ-
ous diastolic interval (DI ): the time from the end of the last
action potential until the start of the next one. The relation-
ship between APD and DI is called the restitution curve. In
cardiac muscle, a typical restitution curve has the form

APDi+1 = 300
(

1 − e−DIi/100
)

where all times are given in ms. Suppose we apply to the
heart a series of stimuli, with period (or “cycle length”) CL.

APD DI
CL

Since APD + DI = CL, we have DIi+1 = CL −
APDi+1.

(a) Suppose we stimulate with a long cycle length (CL =
400 ms). Using an initial value of DI1 = 200, calculate
APDi and DIi for ten iterations. What happens?

(b) Shorten the cycle length to CL = 300 ms. Using the
same DI1, calculate APDi and DIi for ten iterations.
What happens now? (In the jargon of cardiac electro-
physiology, this behavior is often called alternans).

(c) Shorten the cycle length further to CL = 200 ms. Using
the same DI1, calculate APDi and DIi for ten itera-
tions. If DIi+1 is negative (corresponding to tissue so
refractory that it fires no action potential), keep adding
CL to it until it becomes positive before calculating the
next APD. What happens now?

(d) Shorten the cycle length further to CL = 100 ms. Us-
ing the same DI1, calculate APDi and DIi for twenty
iterations. What happens now?

Your results in part (d) should be chaotic, resembling ventric-
ular fibrillation. We must not overinterpret this simple model,

however, because fibrillation consists of propagating wave
fronts, whereas this simple model does not include spatial
effects. For a more detailed account of a model similar to
this one, see Hastings et al. (2000).
Problem 42. In Problem 41, the onset of alternans oc-
curs when the slope of the restitution curve APDi+1 =
300

(
1 − e−DIi/100

)
becomes greater than 1.

(a) Calculate the slope of the restitution curve
d (APD) /d (DI) analytically.

(b) Set the slope equal to 1 and solve for the resulting
value of DI . Use the restitution curve to determine the
corresponding values of APD and CL.

(c) Calculate APDi and DIi for twenty iterations for CL

10% above and 10 % below the value determined in part
(b). What behaviors do you observe?

(d) Suppose you apply a drug to the heart that can
change the restitution curve to APDi+1 =
300

(
1 − be−DIi/100

)
. Plot APD as a function of

DI for b = 0, 0.5, and 1. What value of b ensures that
the slope of the restitution curve is always less than
1? Garfinkel et al. (2000) have suggested that one way
to prevent ventricular fibrillation is to use drugs that
“flatten” the restitution curve.

Problem 43. Use the restitution curve from Problem 42 with
b = 1/3 and CL = 250 to analyze the response of the system
with initial diastolic intervals of 50, 60, 70, 80, and 90. You
should find that the qualitative behavior depends on the initial
condition. Which values of the initial diastolic interval give a
1 : 1 response? Which give 2 : 1? Determine the initial value
of the DI to three significant figures for which the system
makes a transition from one behavior to the other. When two
qualitatively different behaviors can both occur, depending
on the initial conditions, the system is bistable. To learn more
about such behavior, see Yehia et al. (1999).
Problem 44. Elementary models of cellular excitable media
(sometimes called cellular automata) provide valuable in-
sight into the electrical behavior of the heart. Winfree (1987,
pp. 106–107) describes one such model. A hexagonal array
represents a sheet of cardiac tissue.

Each cell in the array can be in one of three states: excited
(E), refractory (R), or quiescent (Q). A cell changes state
by the following rules:
1. If in state E, then at the next time step it changes to state

R,
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2. If in state R, then at the next time step it changes to state
Q,

3. If in state Q, then at the next time step it remains in state
Q unless one of its six nearest neighbors is in state E, in
which case it changes to state E.

(a) Start with the central cell in state E, and the rest of the
cells in state Q. What happens in subsequent time steps?
You should get an outwardly propagating wave front.
Let the simulation run long enough to see what happens
when the wave front hits the edge of the array. Does it
“reflect” off the edge? Does the tissue ever go to the state
of all Q?

(b) Start with the top five and bottom five cells in state E,
and the rest in state Q. What happens when the two re-
sulting wave fronts collide? Does the tissue ever go to
the state of all Q?

(c) Start with the four black cells in state E, the three gray
cells in state R, and the rest in state Q.

What happens? Does the tissue ever go to the state of
all Q? This results in a spiral wave and may be respon-
sible for some heart arrhythmias, such as ventricular
tachycardia.

(d) In part (c), there is a special point called a phase singu-
larity where cells in states E, R, and Q all meet at one
point. Find the phase singularities in the results of part
(c). How many are there? Do they move?

Problem 45. In the cellular excitable medium described
in Problem 44, what happens if you apply an electrical
stimulus? The stimulus is described by a fourth rule:

4. A stimulus changes the state to E, regardless of the
previous state.

Assume the stimulus is applied only to the central cell.
Start with the initial condition

which will initiate a wave front propagating upward. At a
later time, apply the stimulus and see what happens. If the
initial condition is t = 1, then try applying the stimulus at
t = 4, 5, or 6. Are there any situations in which you produce
phase singularities? If so, how many? Is the timing of the
stimulus important?

Section 10.10

Problem 46. By substitution show that w(t) = w0e
−γ t

cos ωt can be a solution of the delay-differential equation,
Eq. 10.44 if γ = (1/τ) eγ td cos ωtd , ω = (1/τ) eγ td sin ωtd .
Introduce the dimensionless variables α = td/τ , ξ = ωtd ,
and η = γ td and show that the result is the simultaneous
equations ξ = αeη sin ξ, η = αeη cos ξ. From these obtain
the equivalent equations η = ξ cot ξ and ξ2 = α2e2η − η2.
Show how these can be solved graphically if α is known.

Section 10.12

Problem 47. Find an equation relating L, the total amount
of light energy per second reaching the retina, I , the inten-
sity of the light (W m−2), and R, the radius of the pupil.
Calculate the gain G = ∂L/∂R and the logarithmic gain
g = (1/L)(∂L/∂R). Consider the two cases shown in the
figure.
(a) There is uniform illumination of the pupil.
(b) The rectangle of illumination partially overlaps the pupil

so that the area within the pupil is a(R − b).

a

b

R
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Problem 48. Suppose you measure the arrival time of an
action potential wave front at four points (1–4) arranged in
a diamond pattern each a distance b from a central point
(open circle) located at (r0, θ) relative to the origin. Use the
steps below to calculate the wave front speed, direction, and
curvature from these four measurements.

(a) Assume that the wave front is circular and propagates
outward from the origin. Use the law of cosines to write
r1, r2, r3 and r4 (the distance of each electrode from the
origin) in terms of r0, b and θ .

(b) Pull a factor r0 outside the square root in each of your
four expressions from part (a).

(c) Assume r0 is much greater than b, and perform a Taylor
expansion of each expression in terms of the small pa-
rameter ξ = b/r0. Include terms that are constant, linear
and quadratic in ξ .

(d) Write the arrival time at each of the four electrodes at
tn = rn/v, where v is the wave speed.

(e) Let �tij = ti −tj . Find expressions for �t31 and �t24 in
terms of b, θ , and v. Solve these equations to determine
v and θ in terms of �t31,�t24, and b.

(f) Find expressions for �t14 and �t23 in terms of b, θ,

and v. Now (and this is the most difficult step), find an
expression for the radius of curvature, r0, in terms of
b,�t13,�t24,�t14, and �t23.

Problem 49. Write a computer program to reproduce the
numerical results in Fig. 10.35b and c. The calculation was
originally performed by Glass and Mackey using the delay
differential equation

dx

dt
= β0x(t − τ )

1 + xn(t − τ)
− γ x(t)

where x is the white blood cell count (equal to P/θ in the
figure), β0 = 0.2, γ = 0.1, and n = 10. The initial condition
for x is 0.1. Figure 10.35b uses τ = 6, and Fig. 10.35c uses
τ = 20. (See Sect. 6.14 for some guidance on how to solve
differential equations numerically.)
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11TheMethod of Least Squares and Signal Analysis

This chapter deals with three common problems in experi-
mental science. The first is fitting a discrete set of experimen-
tal data with a mathematical function. The function usually
has some parameters that must be adjusted to give a “best”
fit. The second is to detect a periodic change in some vari-
able, a signal, which may be masked by random changes,
noise, superimposed on the signal. The third is to determine
whether sets of apparently unsystematic data are from a ran-
dom process or a process governed by deterministic chaotic
behavior.

These techniques are used in many fields, including phys-
iology and biophysics. The fitting techniques lead naturally
to Fourier series, which are used extensively in image recon-
struction and image analysis. Using least squares or Fourier
series normally requires extensive computation. Commercial
packages for making these calculations are readily available.
The problems at the end of the chapter are often artificially
designed for simple computation, rather than being “real.”
We hope that the chapter will help you develop some in-
tuition for the techniques before you use the commercial
packages.

This chapter is a self-contained discussion of signal anal-
ysis. It is a prerequisite to Chap. 12 on image reconstruction.

We will find that a periodic signal can be built up of sine
waves of different frequencies, and that it is possible to speak
of the frequency spectrum of a signal. The first five sections
of the chapter show how to adjust the parameters in a polyno-
mial or in a sum of sines and cosines to fit experimental data.
Sections 11.5 and 11.6 discuss sine and cosine expansions for
continuous periodic functions. Sections 11.7 and 11.8 intro-
duce the cross-correlation and autocorrelation functions and
their relation to the power spectrum. Sections 11.9 through
11.12 extend these techniques to pulses. Sections 11.13 and
11.14 introduce noise and the use of correlation functions to
detect signals that are masked by noise.

Many linear feedback systems are most easily studied by
how they respond to sinusoidal stimuli at various frequen-
cies, and there are techniques using impulse or noise stimuli

that provide the same information. Section 11.15 explains the
frequency response of a linear system, and the next section
describes the effect of a simple linear system on the power
spectrum of Johnson noise. The next section introduces some
of the concepts involved in testing data for chaotic behavior.
Finally, Sect. 11.18 discusses stochastic resonance, where
introducing noise into a nonlinear system can enhance a
desired effect.

11.1 The Method of Least Squares and
Polynomial Regression

In this section, we show how to approximate or “fit” a set of
discrete data yj with a polynomial function

yj = y(xj ) =
∑

k

akx
k
j .

Several criteria can be used to determine the “best” fit (Press
et al. 1992, Sect. 15.7); the one described in this chapter is
called the method of least squares. Instead of immediately
deriving the general polynomial result, we first consider the
simple (and rather useless) fit y = x + b (the coefficient of x

is unity), then the more useful linear fit y = ax + b.

11.1.1 The Simplest Example

Suppose that we wish to describe the data in Table 11.1 by
a fitting function y(x). A plot of the data suggests that a
straight line will be a reasonable approximation to the data.
For mathematical simplicity, we first try a line with unit slope
but adjustable intercept:

y(xj ) = xj + b. (11.1)

Figure 11.1a plots y vs. x for different values of b. It is
clear by inspection that the curves for b = 1 and b = 2

R. K. Hobbie, B. J. Roth, Intermediate Physics for Medicine and Biology, 303
DOI 10.1007/978-3-319-12682-1_11, c© Springer International Publishing Switzerland 2015
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Table 11.1 Sample data

x y

1 2
4 6
5 7

are closer to the points than those for b = 0 or b = 3.
For a quantitative measure of how good the fit is, we use
the quantity

Q = 1

N

N∑

j=1

[
yj − y(xj )

]2
, (11.2)

which is called the mean square error. It is the square of
the residuals (the differences between the measured values
of y and the values of y calculated from the approximation
to the data, yj − y(xj )) summed over all N data points and
divided by N . It is reminiscent of the variance, with the mean
replaced by the fitting function y(xj ). The least-squares tech-
nique adjusts the parameters in the function y(xj ) to make
Q a minimum. Table 11.2 shows the steps in the calculation
of Q for various values of b. Figure 11.1b shows how Q

changes as b is changed.
It is tedious to calculate Q for many different values of b;

instead we can treat this as a maximum–minimum problem
in calculus. We write

Q = 1

N

N∑

j=1

(yj − xj − b)2

= 1

N

[
(y1 − x1 − b)2 + (y2 − x2 − b)2 + · · ·

]
.

The derivative is

dQ

db
= − 1

N

N∑

j=1

2(yj − xj − b)

= 1

N

[−2(y1 − x1 − b) − 2(y2 − x2 − b) + · · · ] .

Setting this equal to zero to find the extremum gives

N∑

j=1

yj =
N∑

j=1

xj +
N∑

j=1

b

or, not bothering to show explicitly that the index ranges over
all the data points,

∑

j

yj =
∑

j

xj + Nb.

Using this result for the example above gives 15 = 10 + 3b,
or b = 1.67 for the smallest value of Q = 0.22.

11.1.2 A Linear Fit

The previous example was rather artificial, because for sim-
plicity we did not allow the slope of the line to vary. The
maximum–minimum procedure is easily extended to two or
more parameters. If the fitting function is given by y =
ax + b, then Q becomes

Q = 1

N

N∑

j=1

(yj − axj − b)2.

At the minimum, both ∂Q/∂a = 0 and ∂Q/∂b = 0. The
former gives

∂Q

∂a
= 2

N

N∑

j=1

(yj − axj − b)(−xj ) = 0

or
∑

j

xj yj − a
∑

j

x2
j − b

∑

j

xj = 0. (11.3)

The latter gives

∂Q

∂b
= 2

N

N∑

j=1

(yj − axj − b)(−1) = 0

or
N∑

j=1

yj − a

N∑

j=1

xj − Nb = 0. (11.4)

For the example in Table 11.1
∑

xj = 10,
∑

yj = 15,∑
x2
j = 42, and

∑
xjyj = 61. Therefore, Eqs. 11.3 and

11.4 become 42a + 10b = 61 and 10a + 3b = 15. These
can be easily solved to give a = 1.27 and b = 0.77. The best
straight-line fit to the data of Table 11.1 is y = 0.77+1.27x.
The value of Q, calculated from Eq. 11.2, is 0.013. The best
fit is plotted in Fig. 11.2. It is considerably better than the fit
with the slope constrained to be one.

A general expression for the solution to Eqs. 11.3 and 11.4
is

a =
N

(
N∑

j=1
xjyj

)

−
(

N∑

j=1
xj

)(
N∑

j=1
yj

)

N

(
N∑

j=1
x2
j

)

−
(

N∑

j=1
xj

)2
, (11.5a)

b =

N∑

j=1
yj

N
−

a

(
N∑

j=1
xj

)

N
≡ y − ax, (11.5b)

where x and y are the means. In doing computations where
the range of data is small compared to the mean, better
numerical accuracy can be obtained from

a = Sxy/Sxx, (11.5c)
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43210
b
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1.67
 

1
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(a) (b)

Fig. 11.1 Fits to the data of Table 11.1 by a curve of the form y = x + b. a Plots of y vs. x. b Plot of Q vs. b. Q is defined in Eq. 11.2

Table 11.2 Calculation of Q for the example of Eq. 11.1

Index b = 0 b = 1 b = 2

j xj yj y(xj )
[
yj − y(xj )

]2
y(xj )

[
yj − y(xj )

]2
y(xj )

[
yj − y(xj )

]2

1 1 2 1 1 2 0 3 1
2 4 6 4 4 5 1 6 0
3 5 7 5 4 6 1 7 0
Sum 9 2 1
Q 3 0.67 0.33

using the sums

Sxx =
N∑

j=1

(
xj − x

)2
, (11.5d)

and

Sxy =
N∑

j=1

(xj − x)(yj − y). (11.5e)

11.1.3 A Polynomial Fit

The method of least squares can be extended to a polynomial
of arbitrary degree. The only requirement is that the number
of adjustable parameters (which is one more than the degree
of the polynomial) be less than the number of data points. If
this requirement is not met, the equations cannot be solved
uniquely; see Problem 8. If the polynomial is written as

y(xj ) = a0 +a1xj +a2x
2
j +· · ·+anx

n
j =

n∑

k=0

akx
k
j , (11.6)

then the expression for the mean square error is

Q = 1

N

N∑

j=1

(

yj −
n∑

k=0

akx
k
j

)2

. (11.7)

8

6

4

2

0

y

86420

x

Q = 0.013

y = 0.77 + 1.27 x 

Fig. 11.2 The best fit to the data of Table 11.1 with the function y =
ax + b. Both the slope and the intercept have been chosen to minimize
Q

Index j ranges over the data points; index k ranges over the
terms in the polynomial. This expression for Q can be dif-
ferentiated with respect to one of the n + 1 parameters, say,
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am:

∂Q

∂am

= 2

N

N∑

j=1

[(

yj −
n∑

k=0

akx
k
j

)

(−xm
j )

]

.

Setting this derivative equal to zero gives

N∑

j=1

yjx
m
j =

n∑

k=0

N∑

j=1

akx
k
j xm

j =
n∑

k=0

ak

N∑

j=1

xk+m
j .

This is one of the equations we need. Doing the same thing
for all values of m, m = 0, 1, 2, . . . , n, we get n+1 equations
that must be solved simultaneously for the n + 1 parameters
a0, a1, . . . , an.

For m = 0:

N∑

j=1

yj = Na0 + a1

N∑

j=1

xj + a2

N∑

j=1

x2
j + · · · + an

N∑

j=1

xn
j .

(11.8a)
For m = 1:

N∑

j=1

xjyj = a0

N∑

j=1

xj + a1

N∑

j=1

x2
j + a2

N∑

j=1

x3
j

+ · · · + an

N∑

j=1

xn+1
j . (11.8b)

For m = n:

N∑

j=1

xn
j yj = a0

N∑

j=1

xn
j + a1

N∑

j=1

xn+1
j + a2

N∑

j=1

xn+2
j

+ · · · + an

N∑

j=1

x2n
j . (11.8c)

Solving these equations is not as formidable a task as it
seems. Given the data points (xj , yj ), the sums are all evalu-
ated. When these numbers are inserted in Eqs. 11.8, the result
is a set of n+1 simultaneous equations in the n+1 unknown
coefficients ak . This technique is called linear least-squares
fitting of a polynomial or polynomial regression. Routines for
solving the simultaneous equations or for carrying out the
whole procedure are readily available.

11.1.4 VariableWeighting

The least-squares technique described here gives each data
point the same weight. If some points are measured more
accurately than others, they should be given more weight.

This can be done by assigning each data point its own weight,
replacing Eq. 11.2 by

Q = 1

N

N∑

j=1

wj

[
yj − y(xj )

]2
. (11.9)

For example, repeated measurements of yj for a particular
xj might give results that are Gaussian-distributed about a
mean value with standard deviation σj and variance σ 2

j . (See
Appendices G and I.) Then it would be appropriate to use the
weight wj = 1/σ 2

j . Setting all the weights equal to 1 as we
have been doing is correct only if the variance is the same for
each yj . It is easy to show that the effect of this weighting is
to add a factor of 1/σ 2

j to each term in the sums in Eqs. 11.8.
This analysis assumes that errors exist only in the y val-

ues. If there are errors in the x values as well, it is possible to
make an approximate correction based on an effective error
in the y values (Orear 1982) or to use an iterative but exact
least-squares method (Lybanon 1984).

11.2 Nonlinear Least Squares

If we need to fit a single exponential to a set of data, we have
two choices:

Method 1. Use semilog paper or make a linear fit to v =
log y.

Method 2. Use a statistical package that makes a fit
directly to y(x) using the method of nonlinear least squares.

Both methods can be used either with uniform weighting
of each data point, Eq. 11.2, or with individual weightings,
Eq. 11.9.

The linear least-squares technique, Method 1, can only be
used to fit data with a single exponential y = ae−bx , where
a and b are to be determined. Take logarithms of each side
of the equation:

log y = log a − bx log e,

v = a′ − b′x.

This is a linear equation, and constants a′ and b′ can be
determined using Eqs. 11.5. With a sum of two or more ex-
ponentials, this method does not work. We will see below
that even when it does work, Method 1 should not be used.

Method 2 can be used for any fitting function, for example
y = a−bx , y = ae−bx + c, or even a sum of exponentials:

y = a1e
−b1x + a2e

−b2x + · · · .

When we try to minimize Q by the technique of the previ-
ous section, we find that when the derivatives of this fitting
function are set equal to zero, the equations in a1, a2, etc., are
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Fig. 11.3 A comparison of fitting techniques when each data point has the same weight. The solid line shows the original model, y = e−0.5x . The
data points have a Gaussian-distributed random error with standard deviation 0.09. The small-dashed line is a nonlinear least squares fit to y. The
value of b is 0.47. The longer-dashed line is a linear-least squares fit to log-transformed data, v = log y. The value of b is 0.34

linear if we assume that the values of the bk are known. How-
ever, the equations for determining the b’s are transcendental
equations that are quite difficult to solve.

The problem can be solved using the technique of nonlin-
ear least squares. In its simplest form, one makes an initial
guess for each parameter1 b10, b20, . . . , bk0 and says that the
correct value of each b is given by bk = bk0 +hk . The calcu-
lated value of y is written as a Taylor’s series expansion with
all the derivatives evaluated for b10, b20, . . . :

y(xj ; b1, b2, . . . ) = y(xj ; b10, b20, . . . )+ ∂y

∂b1
h1+ ∂y

∂b2
h2+· · · .

Since y and its derivatives can be evaluated using the current
guess for each b, the expression is linear in the hk , and the
linear least-squares technique can be used to determine the
values of the hk that minimize Q. After each hk has been
determined, the revised values bk = bk0 + hk are used
as the initial guesses, and the process is repeated until a
minimum value of Q is found. The technique is not always
stable; it can overshoot and give too large a value for hk .
There are many ways to improve the process to ensure
more rapid convergence. The most common is called the
Levenberg–Marquardt method (see Bevington and Robinson
2003 or Press et al. 1992).

Using the method of nonlinear least squares used to be
quite difficult. Now, however, it is available in many statisti-
cal packages, such as R (see The R Project at http://www.r-
project.org/).

Referring back to Fig. 2.6, we see that if each data point
on a linear plot has the same weight (variance), then the
weights of the log-transformed data should be very differ-
ent. This fact has not always been appreciated. It is very easy
to use Method 1 (take the logarithm of y and make a lin-
ear least-squares fit to the transformed data) giving the same

1 The parameters ak can either be included in the parameter list, or
the values of ak for each trial set bk can be determined by linear least
squares.

weight to each data point. This can give substantial errors in
the parameters.

For example, some ecologists study the decomposition of
litter on the forest floor. They make a number of porous litter
bags, fill each one with the same mass of litter material m(0),
put them on the forest floor, and retrieve bags at various later
times. If several bags are retrieved at the same time, there is
much more scatter in the mass from bag to bag than there is in
the original mass measurement m(0). The dependent variable
is the fraction of mass remaining: y(xj ) = m(xj )/m(0). A
model, such as simple exponential decay, is used to fit y.
There is no data point for x = 0 but the fit y = ae−bx must
have a = 1. Sometimes there is nothing left in a litter bag
and y(xj ) = 0.

Incorrect analyses occur frequently in the literature. Adair
et al. (2010) studied the way decomposition data have been
analyzed in 498 papers. They also compared the results of
using Method 1 and Method 2 on both real and artificial data.

At least 40 % of the papers used Method 1; only 15 %
explicitly stated that they used Method 2. The other papers
were not clear about the method used. The distinction be-
tween the methods is shown in Fig. 11.3. The original model
was simple exponential decay with b = 0.5: y = e−0.5x .
Gaussian-distributed random noise with standard deviation
σ = 0.09 was added to each data point. (These values are
typical of decomposition experiments.) When this was fit us-
ing Method 1, linear least squares on the log-transformed
data with all points weighted the same, the estimate of b was
0.34, a significant underestimate. With Method 2, a nonlinear
least squares fit to the original data with equal weighting, the
value of b was 0.47.

There is another problem with Method 1. If one of the
values of y(xj ) = 0, it cannot be log-transformed. Some
investigators have substituted arbitrary small values that are
very far from the fit in the semilog plot, greatly distorting the
estimated value of b. It is better to delete these data points in
Method 1. Zero values present no problem with Method 2.
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Fig. 11.4 Two different periodic functions

Nearly 60 % of the papers analyzed made the fit using y =
ae−bx and adjusting a to improve the fit. This gave a smaller
Q but the estimating function was not 1 at x = 0, and the
value of b was quite different than if a is set equal to 1.

In the simulation studies Adair et al. found that Method 1
gave reliable parameter estimates only when the errors
were lognormally distributed (i.e., Gaussian in the log-
transformed data). Method 2, however, gave good parameter
estimates in all cases. In the real data sets, Method 2 gave
consistently larger estimates of b than Method 1. (This
same effect was observed in the simulation studies.) The
differences were most pronounced for rapid decay (large
values of b).

The moral: use nonlinear least squares, Method 2!
The same problem occurs while using log–log plots for

allometric scaling (Packard 2009).

11.3 The Presence of Many Frequencies in a
Periodic Function

A function y that repeats itself after a time2 T is said to be
periodic with period T . The mathematical description of this
periodicity is

y(t + T ) = y(t). (11.10)

Two examples of functions with period T are shown in
Fig. 11.4. One of these functions is a sine wave, y(t) =
A sin(ω0t − φ), where A is the amplitude, ω0 is the angular
frequency, and φ is the phase of the function. Changing the
amplitude changes the height of the function. Changing the
phase shifts the function along the time axis. The sine func-
tion repeats itself when the argument shifts by 2π radians. It
repeats itself after time T , where ω0T = 2π. Therefore the
angular frequency is related to the period by

ω0 = 2π

T
. (11.11)

2 Although we speak of t and time, the technique can be applied to any
independent variable if the dependent variable repeats as in Eq. 11.10.
Zebra stripes are (almost) periodic functions of position.

(The units of ω0 are radian s−1, but radians are dimension-
less.) It is completely equivalent to write the function in
terms of the frequency as y(t) = A sin (2πf0t − φ). The
frequency f0 is the number of cycles per second. Its units are
s−1 or hertz (Hz) (hertz is not used for angular frequency):

f0 = 1

T
= ω0

2π
. (11.12)

It is possible to write function y as a sum of a sine term and
a cosine term instead of using phase φ:

y(t) = A sin(ω0t − φ) = A(sin ω0t cos φ − cos ω0t sin φ)

= (A cos φ) sin ω0t − (A sin φ) cos ω0t

= S sin ω0t − C cos ω0t. (11.13)

The upper function graphed in Fig. 11.4 also has period T .
Harmonics are integer multiples of the fundamental

frequency. They have the time dependence cos(kω0t) or
sin(kω0t), where k = 2, 3, 4, . . . . These also have period
T . (They also have shorter periods, but they still satisfy the
definition Eq. 11.10 for a function of period T .)

We can generate periodic functions of different shapes by
combining various harmonics. Different combinations of the
fundamental, third harmonic, and fifth harmonic are shown
in Fig. 11.5. In this figure, part a is a pure sine wave, parts b
and c have some third harmonic added with a different phase
in each case, and parts d and e show the addition of a fifth
harmonic term to part b with different phases.

An even function is one for which y(t) = y(−t). For an
odd function, y(t) = −y(−t). The cosine is even, and the
sine is odd. A sum of sine terms gives an odd function. A
sum of cosine terms gives an even function.

11.4 Fourier Series for Discrete Data

The ability to adjust the amplitude of sines and cosines to
approximate a specific shape suggests that discrete periodic
data can be fitted by a function of the form

y(tj ) = a0 +
n∑

k=1

ak cos(kω0tj ) +
n∑

k=1

bk sin(kω0tj )

= a0 +
n∑

k=1

ak cos(k2πf0tj ) +
n∑

k=1

bk sin(k2πf0tj ).

(11.14)

It is important to note that if we have a set of data to fit, in
some cases we may not know the actual period of the data;
we sample for some interval of length T . In that case the
period T = 2π/ω0 is a characteristic of the fitting function
that we calculate, not of the data being fitted.
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Fig. 11.5 Various periodic signals made by adding sine waves that are
harmonically related. Each signal has an angular frequency ω0 = 1 and
a period T = 2π

There are 2n + 1 parameters (a0; a1, . . . , an; b1, . . . , bn).
Since there are N independent data points, there can be at
most N independent coefficients. Therefore 2n+ 1 ≤ N , or3

n ≤ N − 1

2
. (11.15)

This means that there must be at least two samples per period
at the highest frequency present. This is known as the Nyquist
sampling criterion.

11.4.1 Determining the Parameters

If the least-squares criterion is used to determine the param-
eters, Eq. 11.14 is a Fourier-series representation of the data.
Using the least-squares criterion to determine the coefficients

3 For equally spaced data and N even, there are actually n = N/2 +
1 values of ak and n = N/2 − 1 values of bk . (We will find from
Eq. 11.26c that bk for k = N/2 is identically zero). Thus, there are N

parameters and N coefficients. We will ignore this point in this chapter,
since for large N it makes little difference.

to fit N data points requires minimizing the mean square
residual

Q = 1

N

N∑

j=1

[

yj − a0 −
n∑

k=1

ak cos(kω0tj ) (11.16)

−
n∑

k=1

bk sin(kω0tj )

]2

.

The derivatives that must be set to zero are

∂Q

∂a0
= − 2

N

N∑

j=1

[(

yj − a0 −
n∑

k=1

ak cos(kω0tj )

−
n∑

k=1

bk sin(kω0tj )

)

(1)

]

,

∂Q

∂am

= − 2

N

N∑

j=1

[(

yj − a0 −
n∑

k=1

ak cos(kω0tj )

−
n∑

k=1

bk sin(kω0tj )

)

cos(mω0tj )

]

,

and

∂Q

∂bm

= − 2

N

N∑

j=1

[(

yj − a0 −
n∑

k=1

ak cos(kω0tj )

−
n∑

k=1

bk sin(kω0tj )

)

sin(mω0tj )

]

.

Setting each derivative equal to zero and interchanging the
order of the summations give 2n + 1 equations analogous to
Eq. 11.8. The first is

N∑

j=1

yj = Na0 +
n∑

k=1

ak

N∑

j=1

cos(kω0tj ) (11.17)

+
n∑

k=1

bk

N∑

j=1

sin(kω0tj ).

There are n equations of the form

N∑

j=1

yj cos(mω0tj ) = a0

N∑

j=1

cos(mω0tj )

+
n∑

k=1

ak

N∑

j=1

cos(kω0tj ) cos(mω0tj )

(11.18)

+
n∑

k=1

bk

N∑

j=1

sin(kω0tj ) cos(mω0tj )
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for m = 1, . . . , n, and n more of the form

N∑

j=1

yj sin(mω0tj ) = a0

N∑

j=1

sin(mω0tj )

+
n∑

k=1

ak

N∑

j=1

cos(kω0tj ) sin(mω0tj )

+
n∑

k=1

bk

N∑

j=1

sin(kω0tj ) sin(mω0tj ).

(11.19)

Since the tj are known, each of the sums over the data points
(index j ) on the right hand side can be evaluated independent
of the yj .

11.4.2 Equally Spaced Data Points Simplify
the Equations

If the data points are equally spaced, the equations become
much simpler. There are N data points spread out over an
interval T : tj = jT /N = 2πj/Nω0, j = 1, . . . , N . The ar-
guments of the sines and cosines are of the form (2πjk/N).
One can show that

N∑

j=1

cos

(
2πjk

N

)
=
{

N, k = 0 or k = N,

0 otherwise
(11.20)

N∑

j=1

sin

(
2πjk

N

)
= 0, for all k, (11.21)

N∑

j=1

cos

(
2πjk

N

)
cos

(
2πjm

N

)
(11.22)

=
{

N/2, k = m or k = N − m,

0 otherwise,

N∑

j=1

sin

(
2πjk

N

)
sin

(
2πjm

N

)
(11.23)

=
⎧
⎨

⎩

N/2, k = m,

−N/2, k = N − m,

0 otherwise,

N∑

j=1

sin

(
2πjk

N

)
cos

(
2πjm

N

)
= 0 for all k. (11.24)

Due to these properties, Eqs. 11.17–11.19 become a set of
independent equations when the data are equally spaced:

a0 = 1

N

N∑

j=1

yj , (11.25a)

1 2 3 4j = t

 T 

1 2 30j = t

 T 

Fig. 11.6 A case where N = 4. The values of time are spaced by T/N

and distributed uniformly. In the top case the values of j range from 1
to N . In the lower case they range from 0 to N − 1. The values of all
the trigonometric functions are the same for j = 0 and for j = N

am = 2

N

N∑

j=1

yj cos

(
2πjm

N

)
, (11.25b)

bm = 2

N

N∑

j=1

yj sin

(
2πjm

N

)
. (11.25c)

11.4.3 The Standard Form for the Discrete
Fourier Transform

It is customary to change the notation to make the equations
more symmetric. Figure 11.6 shows the four different times
corresponding to N = 4 with j = 1, 2, 3, 4. Because of the
periodicity of the sines and cosines, j = N gives exactly the
same value of a sine or cosine as does j = 0. Therefore, if
we reassign the data point corresponding to j = N to have
the value j = 0 and sum from 0 to N − 1, the sums will be
unchanged:

a0 = 1

N

N−1∑

j=0

yj , (11.26a)

am = 2

N

N−1∑

j=0

yj cos

(
2πjm

N

)
, (11.26b)

bm = 2

N

N−1∑

j=0

yj sin

(
2πjm

N

)
. (11.26c)

For equally spaced data the function can be written as

yj = y(tj ) = a0+
n∑

k=1

ak cos

(
2πjk

N

)
+

n∑

k=1

bk sin

(
2πjk

N

)
.

(11.26d)
You can show (see the problems at the end of this chapter)

that the symmetry and antisymmetry in Eqs. 11.22 and 11.23
for k = N −m means that Eqs. 11.25 and 11.26 for k > N/2
repeat those for k < N/2. We can use this fact to make the
equations more symmetric by changing the factor in front of
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the summations in Eqs. 11.26b and 11.26c to be 1/N instead
of 2/N and extending the summation in Eq. 11.26d all the
way to n = N − 1. Since cos(0) = 1 and sin(0) = 0, we can
include the term a0 by including k = 0 in the sum. We then
have the set of equations

yj = y(tj ) =
N−1∑

k=0

ak cos

(
2πjk

N

)
+

N−1∑

k=0

bk sin

(
2πjk

N

)
,

(11.27a)

ak = 1

N

N−1∑

j=0

yj cos

(
2πjk

N

)
, (11.27b)

bk = 1

N

N−1∑

j=0

yj sin

(
2πjk

N

)
. (11.27c)

This set of equations is the usual form for the discrete
Fourier transform. We will continue to use our earlier form,
Eqs. 11.26, in the rest of this chapter.

11.4.4 Complex Exponential Notation

The Fourier transform is usually written in terms of complex
exponentials. We have avoided using complex exponentials.
They are not necessary for anything done in this book. The
sole advantage of complex exponentials is to simplify the no-
tation. The actual calculations must be done with real num-
bers. Since you will undoubtedly see complex notation in
other books, the notation is included here for completeness.

The numbers that we have been using are called real num-
bers. The number i = √−1 is called an imaginary number.
A combination of a real and imaginary number is called
a complex number. The remarkable property of imaginary
numbers that make them useful in this context is that

eiθ = cos θ + i sin θ. (11.28)

If we define the complex number Yk = ak−ibk , we can write
Eqs. 11.27 as

Yk = 1

N

N−1∑

j=0

yj e
−i2πjk/N (11.29a)

and

yj =
N−1∑

k=0

Yke
i2πjk/N . (11.29b)

Since our function y is assumed to be real, in the second
equation we keep only the real part of the sum. To repeat:
this gives only a more compact notation. It does not save in
the actual calculations.

Fig. 11.7 A square wave y(tj ) and the calculated function y(t) =
b1 sin(ω0t) are shown, along with the residuals and the squares of the
residuals for each point. The value of b1 is 4/π, which minimizes Q for
that term

Table 11.3 Fourier coefficients obtained for a square wave fit

Term k ak bk

0 0.000
1 0.000 1.273
2 0.000 0.000
3 0.000 0.424
4 0.000 0.000
5 0.000 0.253
6 0.000 0.000
7 0.000 0.181

11.4.5 Example: The SquareWave

Figures 11.7–11.10 show fits to a square wave with 128 data
points. The function is y0 = 0, yj = 1, j = 1, . . . , 63, y64 =
0, and yj = −1, j = 65, . . . , 127. This is an odd function
of t . Therefore, the series should contain only sine terms; all
ak should be zero. The calculated coefficients are shown in
Table 11.3. The even values of the bk vanish. We will see
why below.

Figure 11.7 shows the square wave as dots and y(x) as a
smooth curve when b1 = 1.273 and all the other coefficients
are zero. This provides the minimum Q obtainable with a
single term. Figure 11.8 shows why Q is larger for any other
value of b1. Figure 11.9 shows the terms for k = 1 and k = 3.
The value of Q is further reduced. Figure 11.10 shows why
even terms do not reduce Q. In this case b2 = 0.5 has been
added to b1. The fit is improved for the regions 0 < t < T/4
and 3T/4 < t < T , but between those regions the fit is made
worse.
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Fig. 11.8 A single term is used to approximate the square wave. a
b1 = 1.00, which is too small a value. b b1 = 1.75, which is too large.
In both cases Q is larger than the minimum value for a single term,
shown in Fig. 11.7

11.4.6 Example: When the Sampling Time
is not a Multiple of the Period of the
Signal

The discussion just after Eq. 11.14 pointed out that in some
cases we may not know the actual period and fundamental

Fig. 11.9 Terms b1 and b3 have their optimum values. Q is smaller
than in Fig. 11.7

Fig. 11.10 This figure shows why even terms do not contribute. A term
b2 = 0.5 has been added to a term with the correct value of b1. It
improves the fit for t < T/4 and t > 3T/4 but makes it worse between
T/4 and 3T/4
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j
(b) N = 80

0 80

j0 20

(a) N = 20

Fig. 11.11 Sine wave yj = sin
[
3.3 × 2πj/N

]
with 20 data points (a)

and with 80 data points (b). The sampling time is not an integral number
of periods

frequency ω0 of the data. If we do know the actual period and
the data points yj are a sine or cosine with exact frequency
ω0 or a harmonic, and if no random errors are superimposed
on the data, then only the coefficients corresponding to those
frequencies will be nonzero. The reason is that if the function
is exactly periodic, then by sampling for one period we have
effectively sampled for an infinite time.

If the measuring duration T is not an integral multiple
of the period of the signal—that is, the frequency of the
signal y is not an exact harmonic of ω0—then the Fourier
series contains terms at several frequencies. This is shown in
Figs. 11.11 and 11.12 for the data yj = sin

[
3.3 × 2πj/N

]
.

Figure 11.11 shows the yj for N = 20 and N = 80
samples during the period of the measurement. For 20 sam-
ples, n = 9; for 80 samples, n = 39. Figure 11.12 shows
(a2

k + b2
k)

1/2 for both sample sets for k = 0 to 9, calculated
using Eqs. 11.26. For 80 samples, the value of (a2

k + b2
k)

1/2

is very small for k > 9 and is not plotted. The frequency
spectrum is virtually independent of the number of samples.
There is a zero-frequency component because there is a net
positive area under the curve. The largest amplitude occurs
for k = 3. If one imagines a smooth curve drawn through the
histogram, its peak would be slightly above k = 3. We will
see later that the width of this curve depends on the duration
of the measurement, T .

Figure 11.13 shows the fit to the data of Fig. 11.11a. Since
the data points had no errors, the fitting function with 20 pa-
rameters passes through each of the 20 data points. However,

1.0

0.8

0.6

0.4

0.2

0.0

(a
k2  +

 b
k2 )1/

2

86420

k

N = 20
N = 80

Fig. 11.12 The amplitude of the mixed sine and cosine coefficients
(a2

k + b2
k)

1/2 vs k for the function yj = sin 3.3 × 2πj/N . The signal
is sampled for 20 (open circles) or 80 (solid circles) data points. The
amplitude spectrum is nearly independent of the number of samples

200 j

Fig. 11.13 The solid line shows the calculated fit for the 20 data points
in Fig. 11.11a. The red line is the same as the red lines in Fig. 11.11

it does not match y of Fig. 11.11a at other points. Note par-
ticularly the difference between the function near j = 1 and
near j = 19.

11.4.7 Example: Spontaneous Births

Figure 11.14 shows the number of spontaneous births per
hour vs local time of day for 600,000 live births in various
parts of the world. The basic period is 24 h; there is also a
component with k = 3 (T = 8 h). These data were reported
by Kaiser and Halberg (1962). More recent data show peaks
at different times (Anderka et al. 2000). Changes might be
due to a difference in the duration of labor.
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Fig. 11.14 Data on the number of spontaneous births per hour, fit with
terms having periods of 24 and 8 h

11.4.8 Example: Photosynthesis in Plants

Tobacco plant leaves were exposed to white light similar
to sunlight, with the amplitude varying sinusoidally with a
frequency ω0 corresponding to a period of 60 or 80 s (Nedbal
and Březina 2002). Fluorescence measurements showed an
oscillation with predominant frequencies of ω0, 2ω0, and

3ω0. This is shown in Fig. 11.15. The authors present a feed-
back model, very similar to those in Sects. 10.10.6 and 11.15.
A nonlinearity in the model is responsible for generating the
second and third harmonics.

11.4.9 Pitfalls of Discrete Sampling: Aliasing

We saw in the preceding section that N samples in time T

allow the determination of unique Fourier coefficients only
for the terms from k = 0 to n = (N − 1)/2. This means
that for a sampling interval T/N , the maximum angular fre-
quency is (N − 1)ω0/2. The period of the highest frequency
that can be determined is Tmin = 2T/(N − 1). This is ap-
proximately twice the spacing of the data points. One must
sample at least twice per period to determine the coefficient
at a particular frequency.

If a component is present whose frequency is more than
half the sampling frequency, it will appear in the analysis
at a lower frequency. This is the familiar stroboscopic ef-
fect in which the wheels of the stagecoach appear to rotate
backward because the samples (movie frames) are not made
rapidly enough. In signal analysis, this is called aliasing. It
can be seen in Fig. 11.16, which shows a sine wave sam-
pled at regularly spaced intervals that are longer than half a
period.

This phenomenon is inescapable if frequencies greater
than (N − 1)ω0/2 are present. They must be removed by
analog or digital techniques before the sampling is done. For
a more detailed discussion, see Blackman and Tukey (1958)

Fig. 11.15 Tobacco leaves were exposed to sinusoidally varying light with a period of 60 or 80 s (thin line, upper panels). The leaves were also
interrogated with a measuring flash of orange light which stimulated fluorescence. The large circles show the resulting fluorescence. The lower
panels show the frequencies in the fluorescence signal. (From Nedbal and Březina 2002. Used by permission)
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Fig. 11.16 An example of aliasing. The data are sampled less often
than twice per period and appear to be at a much lower frequency

or Press et al. (1992). An example of aliasing is found in a
later section, in Fig. 11.42. Maughan et al. (1973) pointed
out how researchers have been “stung” by this problem in
hematology.

11.4.10 Fast Fourier Transform

The calculation of the Fourier coefficients using our equa-
tions involves N evaluations of the sine or cosine, N mul-
tiplications, and N additions for each coefficient. There are
N coefficients, so that there must be N2 evaluations of the
sines and cosines, which uses a lot of computer time. Coo-
ley and Tukey (1965) showed that it is possible to group the
data in such a way that the number of multiplications is about
(N/2) log2 N instead of N2 and the sines and cosines need to
be evaluated only once, a technique known as the fast Fourier
transform (FFT). For example, for 1024 = 210 data points,
N2 = 1, 048, 576, while (N/2) log2 N = (512)(10) =
5120. This speeds up the calculation by a factor of 204. The
techniques for the FFT are discussed by many authors (see
Press et al. 1992 or Visscher 1996). Bracewell (1990) has
written an interesting review of all the popular numerical
transforms. He points out that the grouping used in the FFT
dates back to Gauss in the early nineteenth century.

11.5 Fourier Series for a Periodic Function

It is possible to define the Fourier series for a continuous pe-
riodic function y(t) as well as for discrete data points yj .
In fact, the function need only be piecewise continuous, that
is, with a finite number of discontinuities. The calculated
function is given by the analog of Eq. 11.14:

ycalc(t) = a0+
n∑

k=1

ak cos(kω0t)+
n∑

k=1

bk sin(kω0t). (11.30)

The quantity to be minimized is still the mean square error,
in this case

Q = 1

T

∫ T

0

[
y(t) − ycalc(t)

]2
dt. (11.31)

When Q is a minimum, ∂Q/∂am and ∂Q/∂bm must be zero
for each coefficient. For example,

∂Q

∂am

= 1

T

∂

∂am

∫ T

0

×
(

y(t) − a0 −
n∑

k=1

[ak cos(kω0t) + bk sin(kω0t)]

)2

dt

= − 2

T

∫ T

0
[(

y(t) − a0 −
n∑

k=1

[ak cos(kω0t) + bk sin(kω0t)]

)

× cos(mω0t)

]

dt = 0.

This integral must be zero for each value of m from 1 to n. If
the order of integration and summation is interchanged, the
result is

∫ T

0
y(t) cos(mω0t) dt − a0

∫ T

0
cos(mω0t) dt

−
n∑

k=1

ak

∫ T

0
cos(kω0t) cos(mω0t) dt

−
n∑

k=1

bk

∫ T

0
sin(kω0t) cos(mω0t) dt = 0. (11.32)

The integral of cos(mω0t) over a period vanishes. The last
two integrals are of the form given in Appendix E, Eqs. E.4
and E.5:

∫ T

0
cos(kω0t) cos(mω0t) dt =

{
0, k �= m

T/2, k = m,∫ T

0
sin(kω0t) cos(mω0t) dt = 0.

(11.33)
These results are the orthogonality relations for the trigono-
metric functions. Inserting these values, we find that only one
term in the first summation over k remains, and we have

∫ T

0
y(t) cos(mω0t) dt − am

T

2
= 0,

or

am = 2

T

∫ T

0
y(t) cos(mω0t) dt. (11.34a)

Minimizing with respect to bm gives

bm = 2

T

∫ T

0
y(t) sin(mω0t) dt, (11.34b)

and minimizing with respect to a0 gives

a0 = 1

T

∫ T

0
y(t)dt. (11.34c)
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Table 11.4 Value of the kth coefficient and the value of Q when terms
through the kth are included from Eq. 11.36

k bk Q

1 1.2732 0.19
3 0.4244 0.10
5 0.2546 0.07
7 0.1819 0.05
9 0.1415 0.04

These equations are completely general. Because of the or-
thogonality of the integrals, the coefficients are independent,
just as they were in the discrete case for equally spaced data.
This is not surprising, since the continuous case corresponds
to an infinite set of uniformly spaced data.

Note the similarity of these equations to the discrete re-
sults, Eqs. 11.25. In each case a0 is the average of the
function over the period. The other coefficients are twice the
average of the signal multiplied by the sine or cosine whose
coefficient is being calculated.

The integrals can be taken over any period. Sometimes
it is convenient to make the interval −T/2 to T/2. As we
would expect, the integrals involving sines vanish when y is
an even function, and those involving cosines vanish when y

is an odd function. For a continuous function, the upper limit
of the sum in Eq. 11.30 can be extended from n to ∞:

ycalc(t) = a0+
∞∑

k=1

ak cos(kω0t)+
∞∑

k=1

bk sin(kω0t). (11.35)

Lighthill (1958) proves that any piecewise continuous func-
tion converges to its Fourier series if n = ∞ (the Fourier
theorem).

For the square wave y(t) = 1, 0 < t < T/2; y(t) = −1,
T/2 < t < T , we find

ak = 0,

bk =
{

0, k even,
4/πk, k odd.

(11.36)

Table 11.4 shows the first few coefficients for the Fourier
series representing the square wave, obtained from Eq. 11.36.
They are the same as those for the discrete data in Table 11.3.
Figure 11.17 shows the fits for n = 3 and n = 39. As the
number of terms in the fit is increased, the value of Q de-
creases. However, spikes of constant height (about 18 % of
the amplitude of the square wave or 9 % of the discontinuity
in y) remain. These are seen in Fig. 11.17. These spikes ap-
pear whenever there is a discontinuity in y and are called the
Gibbs phenomenon.

Figure 11.18 shows the blood flow in the pulmonary
artery of a dog as a function of time. It has been fitted by
a mean and four terms of the form Mk sin(kω0t − φk). The
technique is useful because the elastic properties of the ar-
terial wall can be described in terms of sinusoidal pressure
variations at various frequencies (Milnor 1972).

n = 3; Q = 0.102

(a)

n = 39; Q = 0.013

Gibbs phenomenon

(b)

Fig. 11.17 Fit to the square wave. a Fit with the terms for k = 1 and
k = 3. The value of Q is 0.102. b Fit with terms through k = 39. Q is
very small, but the Gibbs phenomenon—spikes near the discontinuity—
is apparent

Fig. 11.18 Analysis of the pulmonary arterial blood flow in a
dog, in terms of a Fourier series. (From Milnor 1972. Copyright
c©Massachusetts Medical Society. All rights reserved. Drawing cour-

tesy of Prof. Milnor)
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11.6 The Power Spectrum

Since the power dissipated in a resistor is v2/R or i2R, the
square of any function (or signal) is often called the power.
A periodic signal y(t) can be written as

y(t) = a0 +
∞∑

k=1

[ak cos(kω0t) + bk sin(kω0t)] . (11.37)

The coefficients are given by Eqs. 11.34.
The average “power” in the signal is defined to be4

〈
y2
〉
= lim

T ′→∞
1

2T ′

∫ T ′

−T ′
y2(t) dt. (11.38)

For a periodic signal, the same result can be obtained by
integrating over one period:

〈
y2
〉
= 1

T

∫ T

0
y2(t) dt. (11.39)

To calculate this using Eq. 11.37 for y(t), we have to write
the sum twice and multiply both sums together:

1

T

∫ T

0
y2(t) dt = 1

T

∫ T

0

×
(

a0 +
n∑

k=1

[ak cos(kω0t) + bk sin(kω0t)]

)

×
⎛

⎝a0 +
n∑

j=1

[
aj cos(jω0t) + bj sin(jω0t)

]
⎞

⎠ dt.

When these terms are multiplied together and written out, we
have

〈
y2
〉
= 1

T

∫ T

0
dt

(
(i)

a2
0 + 2a0

∞∑

k=1

[
(ii)

ak cos(kω0t) +
(iii)

bk sin(kω0t)

]

+
∞∑

k=1

[
(iv)

a2
k cos2(kω0t) +

(v)

b2
k sin2(kω0t)

]

+
∞∑

k=1

∑

j �=k

(vi)
akaj cos(kω0t) cos(jω0t)

+
∞∑

k=1

∑

j �=k

(vii)
bkbj sin(kω0t) sin(jω0t)

+2
∞∑

k=1

∞∑

j=1

(viii)
akbj cos(kω0t) sin(jω0t)

⎞

⎠ .

4 The time average of a variable will be denoted by 〈〉 brackets.
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Fig. 11.19 The power spectrum Φk for the square wave of Fig. 11.7 or
Fig. 11.18, calculated using the values of bk from Table 11.4

Each term has been labeled (i) through (viii). Assume that
the function y is sufficiently well behaved so that the order
of integration and summation can be interchanged. Term (i)
gives a2

0 . Terms (ii) and (iii) are integrals of the cosine or sine
over an integral number of cycles and vanish. Terms (iv) and
(v) give a2

k /2 and b2
k/2. Terms (vi), (vii), and (viii) all vanish

because of Eq. 11.33. We finally have for the average power

〈
y2(t)

〉
= a2

0 + 1

2

∞∑

k=1

(a2
k + b2

k) =
∞∑

k=0

Φk. (11.40)

The coefficients are defined by Eqs. 11.34. We could have
made a similar argument for the discrete Fourier series of
Eqs. 11.25 or 11.26 and obtained the same result. In both
cases the average power is a sum of terms Φk that represent
the average power at each frequency kω0. The term Φ0 =
a2

0 is the average of the square of the zero-frequency or dc
(direct-current) term and Φk = (a2

k + b2
k)/2 is the average

of the squares of the terms ak cos(kω0t) and bk sin(kω0t).
Figure 11.19 shows the power spectrum of the square wave
that was used in the example.

11.7 Correlation Functions

The correlation function is useful to test whether two func-
tions of time are correlated, that is, whether a change in one
is accompanied by a change in the other. Let the two vari-
ables to be tested be y1(t) and y2(t). The change in y2 may
occur earlier or later than the change in y1; therefore the cor-
relation must be examined as one of the variables is shifted
in time. Examples of pairs of variables that may be corre-
lated are wheat price and rainfall, urinary output and fluid
intake, and the voltage changes at two different points along
the nerve axon. The variables may or may not be periodic.
Exhibiting a correlation does not establish a cause-and-effect
relationship. (The height of a growing tree may correlate for
several years with an increase in the stock market.)
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y1(t)y2(t + τ)

86420 t

y2(t + τ) τ = 2.5

y1(t)y2(t + τ)

y1(t)y2(t + τ)

y2(t + τ) τ = 2.0

y2(t + τ) τ = 1.5

y1(t)y2(t + τ)

y2(t + τ) τ = 1

y2(t)

y1(t)

(a)

φ12(τ)

-4 -2 0 2 4τ

(b)

(c)

Fig. 11.20 An example of the cross-correlation function. a The two
signals to be correlated. b Plots of y2(t +τ) and the product y1(t)y2(t +
τ) for different values of τ . c Plot of φ12(τ ). The peak occurs when
signal y2 has been advanced 2 s

11.7.1 Cross-Correlation of a Pulse

To calculate the cross-correlation function of y1 and y2, ad-
vance y2(t) by an amount τ , multiply y1 by the shifted y2,
and integrate the product. Figure 11.20 shows the process for
two square pulses one-second long. The second pulse occurs
2 s later than the first. As the second pulse is advanced the
pulses begin to overlap. When the second pulse has been ad-
vanced by 2 s the overlap is greatest; as it is advanced more,
the overlap falls to zero. The cross-correlation function de-
pends on τ and is plotted in Fig. 11.20c. The mathematical
statement of this procedure for a pulse is

φ12(τ ) =
∫ ∞

−∞
y1(t)y2(t + τ) dt. (11.41)

The integrand makes a positive contribution to the integral if
y1(t) and y2(t + τ) are both positive at the same time or both
negative at the same time. It makes a negative contribution if
one function is positive while the other is negative.

11.7.2 Cross-Correlation of a Nonpulse Signal

If the signals are not pulses, then the cross-correlation inte-
gral is defined as

φ12(τ ) = 〈y1(t)y2(t + τ)〉 . (11.42)

As before, the average is the integral over a long time divided
by the time interval:

φ12(τ ) = lim
T →∞

1

2T

∫ T

−T

y1(t)y2(t + τ) dt. (11.43)

If the signals have period T , the average can be taken by
integrating over a single period:

φ12(τ ) = 1

T

∫ t ′+T

t ′
y1(t)y2(t + τ) dt. (11.44)

Note the difference in units between φ12 as defined for
pulses in Eq. 11.41 where the units of φ are the units of y2

times time, and φ12 defined in Eqs. 11.42–11.44 where the
units are those of y2.

The cross-correlation depends only on the relative shift of
the two signals. It does not matter whether y2 is advanced by
an amount τ or y1 is delayed by the same amount:

φ21(−τ) = φ12(τ ). (11.45)

11.7.3 Cross-Correlation Example

As an example of the cross-correlation, consider a square
wave that has value ±1 and a sine wave with the same
period (Fig. 11.21). When the square wave and sine wave
are in phase, the product is always positive and the cross-
correlation has its maximum value. As the square wave is
shifted the product is sometimes positive and sometimes neg-
ative. When they are 1/4 period out of phase, the average of
the integrand is zero, as shown in Fig. 11.21b. Still more shift
results in the correlation function becoming negative, then
positive again, with a shift of one full period giving the same
result as no shift.

11.7.4 Autocorrelation

The autocorrelation function is the correlation of the signal
with itself:

φ11(τ ) =
∫

y1(t)y1(t + τ) dt (pulse), (11.46)

φ11(τ ) = 〈y1(t)y1(t + τ)〉 (nonpulse). (11.47)
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y2(t+τ)

y1(t)y2(t+τ)
(a)  τ = 0;  φ12 > 0 

y2(t+τ)

y1(t)

y1(t)

y1(t)

y2(t+τ)

y1(t)y2(t+τ)

(b) τ = 3T/4 or -T/4;  φ12 = 0 

y1(t)y2(t+τ)

(c)  τ = ± T/2;  φ12 < 0

Fig. 11.21 Cross-correlation of a square wave and a sine wave of the
same period

Since the signal is correlated with itself, advancing one
copy of the signal is the same as delaying the other. The
autocorrelation is an even function of τ :

φ11(τ ) = φ11(−τ). (11.48)

11.7.5 Autocorrelation Examples

The autocorrelation function for a sine wave can be calcu-
lated analytically. If the amplitude of the sine wave is A and
the frequency is ω = 2π/T ,

φ11(τ ) = A2

T

∫ T

0
sin(ωt) sin(ωt + ωτ) dt

= A2

T

∫ T

0
sin(ωt)

× [sin(ωt) cos(ωτ) + cos(ωt) sin(ωτ)] dt

Fig. 11.22 Plots of y(t), y(t + τ), and their product for a square wave

Fig. 11.23 Plot of φ11(τ ) for the square wave

= A2 cos(ωτ)

[
1

T

∫ T

0
sin2(ωt) dt

]

+ A2 sin(ωτ)

[
1

T

∫ T

0
sin(ωt) cos(ωt) dt

]
.

It is shown in Appendix E that the first term in square brack-
ets is 1

2 and the second is 0. Therefore the autocorrelation
function of the sine wave is

φ11(τ ) = A2

2
cos(ωτ). (11.49)

As a final example, consider the autocorrelation of a
square wave of unit amplitude. One period is drawn in
Fig. 11.22 showing the wave, the advanced wave, and the
product. The average is the net area divided by T . The area
above the axis is (2)(T /2 − τ)(1) since there are two rect-
angles of height 1 and width T/2 − τ . From this must be
subtracted the area of the two rectangles of height 1 and
width τ that are below the axis. The net area is T − 4τ . The
autocorrelation function is

φ11(τ ) = 1 − 4τ/T , 0 < τ < T/2. (11.50)

The plot of the integrand in Fig. 11.22 is only valid for
0 < τ < T/2. We can use the fact that the autocorrelation
is an even function to draw φ for −T/2 < τ < 0. We then
have φ for the whole period. It is plotted in Fig. 11.23.
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11.8 The Autocorrelation Function and the
Power Spectrum

We saw that the power spectrum of a periodic signal is related
to the coefficients in its Fourier series (Eq. 11.40):

〈
y2(t)

〉
= a2

0 + 1

2

∞∑

k=1

(a2
k + b2

k),

with the term for each value of k representing the amount
of power carried in the signal component at that frequency.
The Fourier series for the autocorrelation function carries the
same information. To see this, calculate the autocorrelation
function of

y1(t) = a0 +
∞∑

k=1

[ak cos(kω0t) + bk sin(kω0t)] .

We can write

φ11(τ ) = 〈y1(t)y1(t + τ)〉

=
〈(

a0 +
∞∑

k=1

[ak cos(kω0t) + bk sin(kω0t)]

)

×
⎛

⎝a0 +
∞∑

j=1

{
aj cos

[
jω0(t + τ)

] + bj sin
[
jω0(t + τ)

]}
⎞

⎠
〉

.

The next step is to multiply out all the terms as we did when
deriving Eq. 11.40. We then use the trigonometric identities5

cos(x + y) = cos x cos y − sin x sin y,

sin(x + y) = cos x sin y + sin x cos y.

For many of the terms, either the averages are zero or pairs
of terms cancel. We finally obtain

φ11(τ ) = a2
0 +

∞∑

k=1

1

2
(a2

k + b2
k) cos(kω0τ). (11.51)

This has only cosine terms, since the autocorrelation function
is even.

For zero shift,

φ11(0) = a2
0 +

∞∑

k=1

1

2
(a2

k + b2
k).

Comparison with Eq. 11.40 shows that this is the power in
the signal. We can get this result directly from Eq. 11.38. The
integral is the same as the definition of the autocorrelation
function when τ = 0.

5 One virtue of the complex notation is that these addition formulae be-
come the standard rule for multiplying exponentials: ei(x+y) = eixeiy .

Φ
k

y (t) ak ,bk

φ11(τ )

1
2(ak

2 + bk
2 )

Fourier series

Fourier series

Φk =Auto- 
correlation

Power 
spectrum 
(discrete)

Fig. 11.24 The power spectrum of a periodic signal can be obtained
either from the squares of the Fourier coefficients of the signal or from
the Fourier coefficients of the autocorrelation function

The Fourier series for the autocorrelation function is
particularly easy to obtain. We need only pick out the co-
efficients in Eq. 11.51. Write the Fourier expansion of the
autocorrelation function as

φ11(τ ) = α0 +
∞∑

k=1

αk cos(kω0τ). (11.52)

Comparing terms in Eqs. 11.51 and 11.52 shows that α0 =
a2

0 and αk = (a2
k + b2

k)/2. We can also compare these with
the definition of Φk in Eq. 11.40 and say that

Φ0 = average dc (zero-
frequency) power

= α0 = a2
0,

Φk = average power at
frequency kω0

= αk = 1
2 (a2

k + b2
k).

(11.53)
The autocorrelation function contains no phase informa-
tion about the signal. The sine and cosine terms at a given
frequency are completely mixed together.

There are two ways to find the power Φk at frequency
kω0. Both are shown in Fig. 11.24. The function y(t) and its
Fourier coefficients are completely equivalent, and one can
go from one to the other. Squaring the coefficients and adding
them gives the power spectrum. This is a one-way process;
once they have been squared and added, there is no way to
separate them again. The autocorrelation function also in-
volves squaring and adding and is a one-way process. The
autocorrelation function and the power spectrum are related
by a Fourier series and can be calculated from each other.

11.9 Nonperiodic Signals and Fourier
Integrals

Sometimes we have to deal with a signal that is a pulse that
occurs just once. Several pulses are shown in Fig. 11.25; they
come in an infinite variety of shapes. Noise is another signal
that never repeats itself and is therefore not periodic. The
Fourier integral or Fourier transform is an extension of the
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Fig. 11.25 Various pulses. The common feature is that they occur
once. a Square pulse. b Half cycle of a sine wave. c One cycle of a
sine wave. d Gaussian. e Nerve pulse. f Exponentially decaying pulse.
g Gated sine wave

Fourier series that allows us to deal with nonperiodic signals
(Bracewell 2000).

11.9.1 Introduce Negative Frequencies and
Make the Coefficients Half as Large

The Fourier series expansion of a periodic function y(t) was
seen in Eq. 11.35 with the coefficients given by Eqs. 11.34.
Since y(t) has period T , the integrals in Eqs. 11.34 can be
over any interval that is one period long. Let us therefore
make the limits of integration −T/2 to T/2 and also remem-
ber that 1/T = ω0/2π. With these substitutions, Eqs. 11.34
become

a0 = ω0

2π

∫ T/2

−T/2
y(t) dt,

ak = ω0

π

∫ T/2

−T/2
y(t) cos(kω0t) dt, (11.54)

bk = ω0

π

∫ T/2

−T/2
y(t) sin(kω0t) dt.

Now allow k to have negative as well as positive values. If
the coefficients for negative k are also defined by Eqs. 11.54,
they have the properties [since cos(kω0t) = cos(−kω0t) and
sin(kω0t) = − sin(−kω0t)],

a−k = ak, b−k = −bk.

Therefore, the terms ak cos(kω0t) and bk sin(kω0t) in
Eq. 11.30 are the same function of t whether k is positive or
negative. By introducing negative values of k we can make

the coefficients in front of the integrals for ak and bk in
Eqs. 11.54 become ω0/2π. This is the same trick used to ob-
tain the discrete equations, Eqs. 11.27. With negative values
of k allowed, we have

y(t) = a′
0 +

∞∑

k=−∞
k �=0

[
a′
k cos(kω0t) + b′

k sin(kω0t)
]
,

a′
0 = ω0

2π

∫ T/2

−T/2
y(t) dt,

a′
k = ω0

2π

∫ T/2

−T/2
y(t) cos(kω0t) dt,

b′
k = ω0

2π

∫ T/2

−T/2
y(t) sin(kω0t) dt.

Since cos(0) = 1 and sin(0) = 0, we can incorporate the def-
inition of a′

0 into the definition of a′
k and introduce b′

0 which
is always zero. The sum can then include k = 0:

y(t) =
∞∑

k=−∞

[
a′
k cos(kω0t) + b′

k sin(kω0t)
]
,

a′
k = ω0

2π

∫ T/2

−T/2
y(t) cos(kω0t) dt, (11.55)

b′
k = ω0

2π

∫ T/2

−T/2
y(t) sin(kω0t) dt.

A final change of variables defines Ck = 2πa′
k/ω0 and

Sk = 2πb′
k/ω0. With these changes the Fourier series and

its coefficients are

y(t) = ω0

2π

∞∑

k=−∞
[Ck cos(kω0t) + Sk sin(kω0t)] ,

Ck =
∫ T/2

−T/2
y(t) cos(kω0t) dt, (11.56)

Sk =
∫ T/2

−T/2
y(t) sin(kω0t) dt.

To recapitulate, there is nothing fundamentally new in
Eqs. 11.56. Negative values of k were introduced so that the
sum goes over each value of |k| twice (except for k = 0).
This allowed the coefficients to be made half as large.
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Fig. 11.26 a A periodic signal. b A nonperiodic signal

Fig. 11.27 An approximation to the nonperiodic signal shown in
Fig. 11.26b

Fig. 11.28 A histogram of Ck vs. k

11.9.2 Make the Period Infinite

These equations can be used to calculate the Fourier series
for a periodic signal such as that shown in Fig. 11.26a. Sup-
pose that instead we want to find the coefficients for the
nonperiodic signal shown in Fig. 11.26b. This signal can be
approximated by another periodic signal shown in Fig. 11.27.
The approximation to Fig. 11.26b becomes better and better
as T is made longer. As T becomes infinite, the fundamen-
tal angular frequency ω0 approaches 0. Define ω = kω0.

The frequencies ω are discrete with spacing ω0. Consider a
small frequency interval encompassing many values of k, as
shown in Fig. 11.28. Since ω0 is approaching zero, there can
be many values of ω and k between ω and ω + �ω. The fre-
quencies will be nearly the same, so the values of Ck will be
nearly the same. All of the terms in the sum in Eq. 11.56 can
be replaced by an average value of Ck or Sk multiplied by
the number of values of k in the interval, which is �ω/ω0.
Finally, we set Ck=C(ω) and �ω = dω. The sum becomes
an integral with �ω = dω:

y(t) = ω0

2π

∫ ∞

−∞
[C(ω) cos ωt + S(ω) sin ωt]

dω

ω0
,

or finally, since dω = 2πdf ,

y(t) = 1

2π

∫ ∞

−∞
[C(ω) cos ωt + S(ω) sin ωt] dω

=
∫ ∞

−∞
[
C(f ) cos(2πf t) + S(f ) sin(2πf t)

]
df,

C(ω) =
∫ ∞

−∞
y(t) cos ωt dt,

S(ω) =
∫ ∞

−∞
y(t) sin ωt dt.

(11.57)
These equations constitute a Fourier integral pair or Fourier
transform pair. They are completely symmetric in the vari-
ables f and t and symmetric apart from the factor 2π in the
variables ω and t . We obtain C(ω) or S(ω) by multiplying the
function y(t) by the appropriate trigonometric function and
integrating over time. We obtain y(t) by multiplying C and
S by the appropriate trigonometric function and integrating
over frequency.

11.9.3 Complex Notation

Using complex notation, we define

Y (ω) = C(ω) − iS(ω) (11.58)

and write

y(t) = 1

2π

∫∞
−∞ Y (ω)eiωt dω = ∫∞

−∞ Y (ω)eiωt df,

Y (ω) =
∫ ∞

−∞
y(t)e−iωt dt.

(11.59)

11.9.4 Example: The Exponential Pulse

As an example, consider the function

y(t) =
{

0, t ≤ 0

Ae−at , t > 0.
(11.60)

The functions C and S are evaluated using Eqs. 11.57. Since
y(t) is zero for negative times, the integrals extend from zero
to infinity. They are found in all standard integral tables:

C(ω) = A

∫ ∞

0
e−at cos ωt dt = A/a

1 + (ω/a)2
,

S(ω) = A

∫ ∞

0
e−at sin ωt dt = (A/a)(ω/a)

1 + (ω/a)2
.

(11.61)

These are plotted in Fig. 11.29. Function C is even, while S

is odd. The functions are plotted on log–log graph paper in
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Fig. 11.29 The sine and cosine coefficients in the Fourier transform of
an exponentially decaying pulse
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Fig. 11.30 Log–log plot of the coefficients in Fig. 11.29
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Fig. 11.31 Function f (t) and its even and odd parts

Fig. 11.30. Remember that only positive values of ω/a can
be shown on a logarithmic scale, so the origin and negative
frequencies cannot be shown. It is apparent from the slopes
of the curves that C falls off as (ω/a)−2 while S falls more
slowly, as (ω/a)−1. One way of explaining this difference
is to note that the function y(t) can be written as a sum of
even and odd parts as shown in Fig. 11.31. The odd function,
which is given by the sine terms in the integral, has a dis-
continuity, while the even function does not. A more detailed
study of Fourier expansions shows that a function with a dis-
continuity has coefficients that decrease as 1/ω or 1/k, while
the coefficients of a function without a discontinuity decrease
more rapidly. (Recall that the coefficients of the square wave
were 4/πk.)

Fig. 11.32 The δ function and its integral

11.10 The Delta Function

It will be useful in the next sections to introduce a pulse that
is very narrow, very tall, and has unit area under its curve.
Physicists call this function the delta function δ(t). Engineers
call it the impulse function u0(t).

The δ function is defined by the equations

δ(t) = 0, t �= 0
∫ ε

−ε

δ(t) dt =
∫ ∞

−∞
δ(t) dt = 1.

(11.62)

The δ function can be thought of as a rectangle of width a

and height 1/a in the limit a → 0, or as a Gaussian func-
tion (Appendix I) as σ → 0. Many other functions have the
same limiting properties. The δ function is not like the usual
function in mathematics because of its infinite discontinu-
ity at the origin. It is one of a class of generalized functions
whose properties have been rigorously developed by mathe-
maticians6 since they were first used by the physicist P. A. M.
Dirac.

Since integrating across the origin picks up this spike of
unit area, the integral of the δ function is a step of unit height
at the origin. The δ function and its integral are shown in
Fig. 11.32. The δ function can be positioned at t = a by
writing δ(t − a) because the argument vanishes at t = a.

Multiplying any function by the δ function and integrating
picks out the value of the function when the argument of the
δ function is zero:

∫ ∞

−∞
y(t)δ(t) dt = y(0)

∫ ∞

−∞
δ(t) dt = y(0),

∫ ∞

−∞
y(t)δ(t − a) dt = y(a)

∫ ∞

−∞
δ(t − a) dt = y(a).

(11.63)
The second integral on each line is based on the fact that y(t)

has a constant value when the δ function is nonzero so it can
be taken outside the integral.

6 A rigorous but relatively elementary mathematical treatment is given
by Lighthill (1958).
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The δ function has the following properties that are proved
in Problem 34:

δ(t) = δ(−t),

t δ(t) = 0

δ(at) = 1

a
δ(t).

(11.64)

11.11 The Energy Spectrum of a Pulse and
Parseval’s Theorem

For a signal with period T , the average power is

1
T

∫ T

0
y2(t)dt. We can also define the average power for a

signal lasting a very long time as

lim
T ′→∞

1

2T ′

∫ T ′

−T ′
y2(t)dt = a2

0 + 1

2

∑

k

(a2
k + b2

k).

In the limit of infinite duration, both the integral and the
denominator are infinite, but the ratio is finite.

For a pulse the integral is finite and the average power
vanishes. In that case, we use the integral without dividing
by T and call it the energy in the pulse.

Since y(t) is given by a Fourier integral, the energy in the
pulse can be written as

∫ ∞

−∞
y2(t) dt =

(
1

2π

)2 ∫ ∞

−∞
dt

∫ ∞

−∞
dω

∫ ∞

−∞
dω′

[C(ω) cos ωt + S(ω) sin ωt]×[C(ω′) cos ω′t + S(ω′) sin ω′t
]
.

If the terms are multiplied out, this becomes
∫ ∞

−∞
y2(t) dt =

(
1

2π

)2 ∫ ∞

−∞
dt

∫ ∞

−∞
dω

∫ ∞

−∞
dω′

[
C(ω)C(ω′) cos ωt cos ω′t

+ C(ω)S(ω′) cos ωt sin ω′t (11.65)

+ S(ω)C(ω′) sin ωt cos ω′t
+S(ω)S(ω′) sin ωt sin ω′t

]
.

To simplify this expression, we interchange the order of in-
tegration, carrying out the time integration first. We assume
that the function y(t) is sufficiently well behaved so that this
can be done.

Changing the order gives three integrals to consider:
∫ ∞

−∞
cos ωt cos ω′t dt,

∫ ∞

−∞
cos ωt sin ω′t dt,

∫ ∞

−∞
sin ωt sin ω′t dt.

These are analogous to the trigonometric integrals of Ap-
pendix E, except that they extend over all time instead of
just one period. Therefore, we might expect that an integral
such as

∫∞
−∞ cos ωt sin ω′t dt would vanish for all possi-

ble values of ω and ω′. We might expect that the integrals∫∞
−∞ cos ωt cos ω′t dt and

∫∞
−∞ sin ωt sin ω′t dt would van-

ish when ω �= ω′ and be infinite when ω = ω′. Such is indeed
the case. This is reminiscent of the δ function, but it does not
tell us the exact relationship of these integrals to it.

To find the exact values of the integrals we use the fol-
lowing trick. Let y(t) be the function for which C(ω) =
δ(ω − ω′). Then, using Eqs. 11.57 and 11.63 we get

y(t) = 1

2π

∫ ∞

−∞
δ(ω − ω′) cos ωt dω = 1

2π
cos ω′t.

The inverse equation for C(ω) is

C(ω) =
∫ ∞

−∞
y(t) cos ωt dt = 1

2π

∫ ∞

−∞
cos ω′t cos ωt dt.

But C(ω) = δ(ω − ω′). Therefore
∫ ∞

−∞
cos ωt cos ω′t dt = 2π δ(ω − ω′). (11.66a)

A similar argument shows that
∫ ∞

−∞
sin(ωt) sin(ω′t) dt = 2π δ(ω − ω′). (11.66b)

The fact that both the sine and cosine integrals are the same
should not be surprising, since a sine curve is jut a cosine
curve shifted along the axis and we are integrating from −∞
to ∞.

11.11.1 Parseval’s Theorem

The integrals in Eqs. 11.66 can be used to evaluate Eq. 11.65.
The result is
∫ ∞

−∞
y2(t) dt = 1

2π

∫ ∞

−∞
dω

∫ ∞

−∞
dω′[C(ω)C(ω′)δ(ω − ω′)

+ S(ω)S(ω′)δ(ω − w′)]

∫ ∞

−∞
y2(t) dt = 1

2π

∫ ∞

−∞
dω
[
C2(ω) + S2(ω)

]
. (11.67)

This result is known as Parseval’s theorem. If we define the
function

Φ ′(ω) = C2(ω) + S2(ω), (11.68a)

then Eq. 11.67 takes the form
∫ ∞

−∞
y2(t) dt =

∫ ∞

−∞
Φ ′(ω)

dω

2π
=
∫ ∞

−∞
Φ ′(f )df.

(11.68b)
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Fig. 11.33 The energy spectrum Φ ′(ω) for an exponential pulse

The prime is to remind us that this is energy and not power.
The left-hand side is the total energy in the signal, and
y2(t) dt is the amount of energy between t and t + dt . This
suggests that we call Φ ′(ω) dω/2π = Φ ′(f ) df the amount
of energy in the angular frequency interval between ω and
ω + dω or the frequency interval between f and f + df .

11.11.2 Example: The Exponential Pulse

The energy spectrum of the exponential pulse that was used
earlier as an example is

Φ ′(ω) = C2(ω) + S2(ω) =
(

A

a

)2 1

1 + (ω/a)2
. (11.69)

It is plotted in Fig. 11.33.

11.12 The Autocorrelation of a Pulse and its
Relation to the Energy Spectrum

The correlation functions for pulses are defined as integrals
instead of averages:

φ12(τ ) =
∫ ∞

−∞
y1(t)y2(t + τ) dt,

φ11(τ ) =
∫ ∞

−∞
y1(t)y1(t + τ) dt.

(11.70)

Consider the autocorrelation function of the exponential
pulse, Eq. 11.60. Figure 11.34 shows the functions involved
in calculating the autocorrelation for a typical positive value
of τ . Since the autocorrelation function is even, negative
values of τ need not be considered. The product of the
function and the shifted function is (Ae−at )(Ae−a(t+τ)) =
A2e−aτ e−2at . It can be seen from Fig. 11.34 that the limits
of integration are from zero to infinity. Thus,

φ11(τ ) = A2e−aτ

∫ ∞

0
e−2at dt = A2e−aτ

2a
, τ > 0.
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Fig. 11.34 Calculation of the autocorrelation of the exponential pulse.
The figure shows y(t), y(t + τ), and their product, for τ = 1
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Fig. 11.35 The autocorrelation function for an exponentially decaying
pulse

Because φ11 is even, the full autocorrelation function is

φ11(τ ) = A2

2a
e−a|τ |. (11.71)

This is plotted in Fig. 11.35.
The autocorrelation function has a Fourier transform Φ ′.

Only the cosine term appears, since φ11 is even:

Φ ′(ω) = A2

2a

∫ ∞

−∞
e−a|t | cos ωt dt

= A2

a

∫ ∞

0
e−at cos ωt dt.
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Fig. 11.36 Two ways to obtain the energy spectrum of a pulse signal

We have seen this integral before, in conjunction with
Eq. 11.61. The result is

Φ ′(ω) =
(

A

a

)2 1

1 + (ω/a)2
.

Comparing this with Eq. 11.68, we again see that

Φ ′(ω) = C2(ω) + S2(ω). (11.72)

This relationship between the autocorrelation and Φ ′ can be
proved in general by representing each function in the defini-
tion of the autocorrelation function by its Fourier transform,
using the trigonometric addition formulas, carrying out the
time integration first, and using the δ-function definitions.
The result is

φ11(τ ) = 1

2π

∫ ∞

−∞

[
C2(ω) + S2(ω)

]
cos ωτ dω

= 1

2π

∫ ∞

−∞
Φ ′(ω) cos ωτ dω. (11.73)

As with the periodic signal, there are two ways to go from
the signal to the energy spectrum. The Fourier transform is
taken of either the original function or the autocorrelation
function. Squaring and adding is done either in the time do-
main to y(t) to obtain the autocorrelation function, or in the
frequency domain by squaring and adding the coefficients.
The Fourier transforms can be taken in either direction.
Squaring and adding is one-directional and makes it impos-
sible to go from the energy spectrum back to the original
function. These processes are illustrated in Fig. 11.36.

11.13 Noise

The function y(t) we wish to study is often the result of
a measurement of some system: the electrocardiogram, the
electroencephalogram (EEG), blood flow, etc., and is called
a signal. Most signals are accompanied by noise. Random
noise fluctuates in such a way that we cannot predict what
its value will be at some future time. Instead we must talk
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Fig. 11.37 a The solid line shows function yj that was calculated
from a one-dimensional random walk with a Gaussian-distributed step
length. The dashed line shows the function calculated from the Fourier
coefficients of yj based on the first half of the time interval. It does
not fit the second half of the function. This is characteristic of random
functions. b The power spectrum calculated from the first half of yj .
The zero-frequency component has been suppressed because it depends
on the starting value of y

about the probability that the noise has a certain value. A key
problem is to learn as much as one can about a signal that
is contaminated by noise. The techniques discussed in this
chapter are often useful.

A very important property of noise can be seen from the
data shown in Fig. 11.37a. The data consist of 460 discrete
values that appear to have several similar peaks. A discrete
Fourier transform of the first 230 values gives fairly large
values for the first few coefficients ak and bk . Yet these val-
ues of ak and bk fail to describe subsequent values of yj . The
reason is that the yj are actually random. In this case they
are the net displacement after j steps in a random walk in
which each step length is Gaussian distributed with standard
deviation σ = 5. The Fourier transform of a random function
does not exist. We can apply the recipe to the data and calcu-
late the coefficients. But if we apply the same recipe to some
other set of data points from the random function we get dif-
ferent values of the coefficients, although the sum of their
squares, (a2

k + b2
k)

1/2, would be nearly the same. The sum
of the squares of the coefficients is plotted in Fig. 11.37b. It
is the phases that change randomly, while the amount of en-
ergy at a particular frequency remains constant or fluctuates
slightly about some average value.
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Fig. 11.38 Some possible autocorrelation functions of noise

Noise is not periodic, but neither is it a pulse. It has fi-
nite power, but it will have infinite energy if the noise goes
on “forever.” To describe noise we must use averages, calcu-
lated over a time interval that is “long enough” so that the
average does not change. Suppose that we are measuring the
electrical potential between a pair of electrodes on the scalp.
Assume that there is no obvious periodicity, and we think
it is noise. If we measure the potential for only a few mil-
liseconds, we will get one average value. If we measure for
the same length of time a few minutes later, we may get a
different average. But if we average for 2 or 3 min, then a
repetition gives almost the same average.

In general, random signals may vary with time in such a
way that this average changes. (If we repeat the measure-
ments on the scalp in a few hours, the averages may be
different.) We will assume that properties such as the mean
and standard deviation and power spectrum do not change
with time, so that if we average over a “long enough” inter-
val and repeat the average at a later time, we get the same
result. Processes that generate data with these properties
are called stationary. We limit our discussion to stationary
random processes.

The correlation functions are not particularly useful for
well-defined periodic signals, but they are very useful to de-
scribe noise or a signal that is contaminated by noise. (In
fact, they allow us to detect a periodic signal that is com-
pletely hidden by noise. The technique is described in the
next section.)

Space limitations require us to state some properties of
the autocorrelation function of noise without proof, though
the results are plausible. Many discussions of noise are avail-
able. An excellent one with a biological focus is by DeFelice
(1981).

The autocorrelation function is given by Eq. 11.47:

φ11(τ ) = 〈y1(t)y1(t + τ)〉 = lim
T →∞

1

2T

∫ T

−T

y1(t)y1(t+τ) dt.

The properties of the autocorrelation function depend on the
details of the noise. Some possible shapes for the autocorre-
lation function are shown in Fig. 11.38.

The following properties of the autocorrelation function
can be proved:
1. The autocorrelation function is an even function of τ .

This follows from the definition.
2. The autocorrelation function for τ = 0, φ11(0), measures

the average power in the signal. This also follows from
the definition.

3. For a random signal with no constant or periodic compo-
nents, the autocorrelation function goes to zero as τ →
∞. This is plausible, since for large shifts, if the signal is
completely random, there is no correlation.

4. The autocorrelation function has its peak value at τ =
0. This is also plausible, since for any shift of a random
signal there will be some loss of correlation.

11.14 Correlation Functions and Noisy
Signals

The autocorrelation function is useful for detecting a periodic
signal in the presence of noise. We assume that the system
that measures these is linear: the response to two simultane-
ous signals is the sum of the responses to each individually.
Section 11.18 will consider what happens when the response
is nonlinear.

11.14.1 Detecting Signals in Noise

Suppose that the periodic signal is s(t), the random noise is
n(t), and the average of both is zero. The combination of
signal and noise is

y(t) = s(t) + n(t). (11.74)

The autocorrelation of the combination is

φyy(τ ) = 〈[s(t) + n(t)] [s(t + τ) + n(t + τ)]〉
= 〈s(t)s(t + τ)〉 + 〈s(t)n(t + τ)〉
+ 〈n(t)s(t + τ)〉 + 〈n(t)n(t + τ)〉 .

Each term in the average can be identified as a correlation
function:

φyy(τ ) = φss(τ ) + φsn(τ ) + φns(τ ) + φnn(τ ).

Since the noise is random, the cross-correlations φns and φsn

should be zero if the averages were taken over a sufficiently
long time. Therefore,

φyy(τ ) = φss(τ ) + φnn(τ ). (11.75)

The autocorrelation of a periodic signal is periodic in τ ,
while the autocorrelation of the noise approaches zero if τ

is long enough.
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If we suspect that a periodic signal is masked by noise,
we can calculate the autocorrelation function. If the auto-
correlation function shows periodicity that persists for long
shift times τ , a periodic signal is present. The period of the
correlation function is the same as that of the signal. Acqui-
sition of the data and calculation of the correlation function
are done with digital techniques. Press et al. (1992) have an
excellent discussion of the techniques and pitfalls.

11.14.2 Signal Averaging

If the period of a signal is known to be T , perhaps from
the autocorrelation function or more likely because one is
looking for the response evoked by a periodic stimulus, it is
possible to take consecutive segments of the combined signal
plus noise of length T , place them one on top of another, and
average them. One can also do this for the response evoked
by a stimulus. The signal will be the same in each seg-
ment, while the noise will be uncorrelated. After N sampling
periods, signal averaging reduces the noise by 1/

√
N .

Examples of this are the visual or auditory evoked re-
sponse. The signal in the electroencephalogram or magne-
toencephalogram is measured in response to a flash of light
or an audible click. (In other experiments the subject may
perform a repetitive task.) The stimulus is repeated over and
over while the signal plus noise is recorded and averaged.
The average reproduces the shape of the signal. Figure 11.39
shows an example of signal averaging for an evoked response
in the EEG for increasing values of N .

The signal-averaging procedure can also be described in
terms of a cross-correlation with a series of δ functions at
the stimulus times. Suppose a local signal l(t) is produced
in synchrony with the stimulus. The cross-correlation of l(t)

with y(t) is

φyl(τ ) = 〈[s(t) + n(t)] l(t + τ)〉 = φsl + φnl.

Whatever the local signal is, its cross-correlation with the
noise approaches zero for long averaging times, so

φyl(τ ) = φsl(τ ). (11.76)

If the local signal is a series of narrow spikes approximated
by δ functions, then

l(t) = δ(t) + δ(t − T ) + δ(t − 2T ) + · · · .

Since both s(t) and l(t) are periodic with the same period,
the average can be taken over a single period. The integral
then contains one δ function:

φyl(−τ) = φsl(−τ) = 1

T

∫ T

0
s(t)δ(t − τ) dt = s(τ )

T
.

Fig. 11.39 An example of signal averaging. An evoked response is
recorded along with the EEG from a scalp electrode. As the number
of repetitions N is increased, the EEG background noise decreases and
the evoked response stands out. (Copyright c© 2006 from Mainardi et
al. 2006, pp. 2-1–2-25. Reproduced by permission of Taylor & Francis
LLC. Permission conveyed through Copyright Clearance Center, Inc.)

11.14.3 Power Spectral Density

We have already seen that the Fourier transform of a ran-
dom signal does not exist. Because the phases of a random
signal are continually changing, we were unable to predict
the future behavior of a time series in Fig. 11.37. If the sig-
nal is stationary, averages, including the average power, do
not change with time and have meaning. The autocorrela-
tion function of a random signal does exist, and so does
the Fourier transform of the autocorrelation. If Φ(ω) is the
Fourier transform of the autocorrelation function of a random
signal, then

lim
T →∞

1

2T

∫ T

−T

y2(t) dt =
∫ ∞

−∞
Φ(ω)

dω

2π
, (11.77)

and we can think of Φ as giving the power between frequen-
cies f and f + df . This is called the Wiener theorem for
random signals. The quantity Φ is often called the power
spectral density or PSD. Figure 11.40 summarizes how the
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Fig. 11.40 The relationships between the power spectrum or energy
spectrum and a periodic signal (a), a pulse (b), and a random signal (c).
The Fourier transform and series are bidirectional; the other processes
are not

power or energy spectrum can be obtained for a periodic
signal, a pulse, and a random signal.

In the digital realm there are several ways to calculate
the power spectral density.7 The Blackman–Tukey method
makes a digital estimate of the correlation function and takes
its discrete Fourier transform, as described in Fig. 11.40c.
The periodogram uses the discrete Fourier transform di-
rectly. Though the Fourier transform of a random signal does
not exist because of the randomly changing phases, the sum
of the squares of the coefficients is stable. In fact, we plot-
ted Φk calculated from the discrete Fourier transform in
Fig. 11.37b. Figure 11.41 shows both ways of calculating
Φ(f ) for a surface electromyogram—the signal from a mus-
cle measured on the surface of the skin. Slight differences
can be seen, but they are not significant.

Figure 11.42 shows the power spectrum of an EEG sig-
nal and also the effect of aliasing. The original signal has no
frequency components above 40 Hz. Sampling was done at
80 Hz. A 50-Hz power frequency signal was added, and the

7 See Press et al. (1992), Cohen (2006), or Mainardi et al. (2006).

Fig. 11.41 The power spectrum from a surface electromyogram calcu-
lated two different ways. The upper panel shows the Blackman–Tukey
method, which is a fast Fourier transform (FFT) of a digital estimate of
the autocorrelation function. The lower panel is the sum of the squares
of the coefficients in a direct fast Fourier transform of the discrete data.
(Copyright c© 2006 from Cohen 2006. Reproduced by permission of
Taylor & Francis Group, LLC. Permission conveyed through Copyright
Clearance Center, Inc.)

Fig. 11.42 The power spectrum of an electroencephalogram signal
showing the problem with aliasing, and also the presence of negative
frequencies appearing as positive frequencies above the Nyquist fre-
quency. (Copyright c© 2006 from Mainardi et al. 2006. Reproduced
by permission of Taylor & Francis Group, LLC. Permission conveyed
through Copyright Clearance Center, Inc.)

Fourier transform shows a spurious response at 30 Hz. The
second panel also shows the mirror-image power spectrum
from 40 to 80 Hz that should be thought of as occurring at
negative frequencies (the factor of 2 again).

11.14.4 Units

It is worth pausing to review the units of the various func-
tions we have introduced. They become confusing because
we have three different cases: a periodic signal that is infi-
nite in extent, a pulse signal that is of finite duration, and a
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Table 11.5 Units used in the various functions in this chapter, assuming that y is measured in (unit)

Type of function
Signal Expansion coefficients Correlation functions Power or energy

Discrete periodic Power (unit2)
y (unit) ak, bk (unit) φ (unit2) Φk (unit2)

Pulse Energy
y (unit) C, S (unit s) φ (unit2 s) Φ ′(ω) (unit2 s2)

Φ ′(ω) dω (unit2 s)

Random Power (unit2)
y (unit) φ (unit2) Φ(ω) (unit2 s)

Φ(ω) dω (unit2)

random-noise signal that is also infinite in extent but not pe-
riodic. For both signals that are infinite in extent we must use
the “power,” and for the pulse we must use “energy.”

Often in signal analysis the units of “power” and “energy”
may not be watts or joules. If the signal is a voltage, then
the power dissipated in resistance R is v2/R in watts. Our
“power” defined from the equations above would be just v2.

Suppose that the signal y is measured in “units.” Then
the “power” is in (units)2 and the “energy” for a pulse is
in (units)2 s. The correlation functions for the infinite sig-
nals are in (units)2 while those for pulses are in (units)2 s.
Table 11.5 summarizes the situation.

11.15 Frequency Response of a Linear System

Chapter 10 discussed feedback in a linear system in terms
of the solution of a differential equation that described the
response of the system as a function of time. The simplest
system treated there was described by Eq. 10.20:

τ1
dx

dt
+ x = ap(t) + G1y(t). (11.78)

Function p(t) is the input signal. This equation was com-
bined with Eq. 10.21 to obtain

τ1
dx

dt
+ (1 − G1G2)x = ap(t). (11.79)

It is often useful to characterize the behavior of a system
by its response to sine waves of different frequencies instead
of by its time response. The most familiar example is the au-
dio amplifier: the output signal x(t) is some function of an
input signal p(t) that is seldom a pure sinusoid. An equation
analogous to Eq. 11.79 relates x and p. The amplifier is usu-
ally descried as having “a frequency response of −0.5 dB at
10 Hz and 30 kHz.” It is easy to feed a sinusoidal signal of
different frequencies into the amplifier and measure the am-
plitude ratio of the output sine wave to the input sine wave.8

8 The technique works only for a linear system. If the system is not
linear, the output will not be sinusoidal.

To describe the amplifier completely, it is also necessary to
measure the phase delay or the time delay at each frequency.
The combination of amplitude and phase response is called
the transfer function of the amplifier.

In principle, once the properties of a linear system are
known, either in terms of a differential equation or the trans-
fer function, its response to any input can be calculated. In
the time domain, one solves the differential equation with
input p(t) on the right-hand side. In the frequency domain,
one computes the Fourier transform of the input, makes the
appropriate changes in amplitude and phase at every fre-
quency according to the transfer function, and takes the
inverse Fourier transform of the result. The inverse transform
gives the output response as a function of time. Sometimes
the differential equation may be impossible to solve analyt-
ically or the inverse Fourier transform cannot be obtained,
and numerical solutions are all that can be obtained.

The frequency-response technique may be particularly
useful if the system has several stages (a microphone, an
amplifier, one or more loudspeakers); one can multiply the
amplitudes and add the phases of each stage.

If the differential equation is known, the frequency re-
sponse can be calculated. Conversely, if the frequency and
phase responses are known, the differential equation can be
deduced. We give an example of the former approach in this
section. The latter technique requires more mathematics than
we have developed.

11.15.1 Example of Calculating the Frequency
Response

As an example of the frequency response method of de-
scribing the system, consider Eq. 11.79. With G2 = 0, the
results apply to the case without feedback, Eq. 11.78. Let
p(t) = cos ωt and a = 1. We want a solution of the form

x(t) = G(ω) cos(ωt − θ), (11.80)

where G(ω) is the overall gain or amplitude ratio, and θ(ω)

the phase shift, at frequency ω. We can show by substitution
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Fig. 11.43 Plot of G(ω) for a system described by Eq. 11.81. Two
cases are shown: without feedback (1 − G1G2 = 1) and with feedback
(1 − G1G2 = 3). The dots mark the half-power frequencies (see text)

that Eq. 11.80 is a solution of Eq. 11.79 if

G(ω) = 1

1 − G1G2

(
1

1 + ω2τ 2
1 /(1 − G1G2)2

)1/2

,

tan θ = ωτ1

1 − G1G2
.

(11.81)
The behavior of the gain is plotted in Fig. 11.43, both without
feedback (1 − G1G2 = 1) and with feedback (1 − G1G2 =
3). At low frequencies the gain is constant. It falls at high
frequencies (ωτ1 � 1) as ω−1. When ω = 1/τ1 (without
feedback) or ω = 3/τ1 (with feedback), the gain is 1/

√
2

times its value at zero frequency. This frequency is called
the half-power frequency because the power is proportional
to the square of the signal and its value at the half-power
frequency is 1/2 times its value at zero frequency.

Negative feedback reduces the gain and also raises the
half-power frequency from 1/τ1 to (1 − G1G2)/τ1. The
time constant is reduced by the feedback from τ1 to τ1/(1 −
G1G2). Recall Eq. 10.23.

11.15.2 The Decibel

The gain is often expressed in decibels9 (dB):

gain(dB) = 20 log10 G(ω). (11.82)

9 The bel is the logarithm to the base 10 of the power ratio. The decibel
is one tenth as large as the bel. Since the power ratio is the square of the
voltage ratio or gain, the factor in Eq. 11.82 is 20.

A gain ratio of unity is equivalent to 0 dB; a gain of 1000 is
20 log10(1000) = 60 dB. One advantage to expressing gain
in decibels is that the gains in dB for several stages add. If
the first process has a gain of 2 (6 dB) and the second has
a gain of 100 (40 dB), the overall gain is 200 (46 dB). For
the amplifier whose gain has fallen by 0.5 dB at 10 Hz and
30 kHz, the ratio G(ω)/Gmax is given by solving

−0.5 = 20 log10(G/Gmax),

G/Gmax = 10−0.025 = 0.944.

The gain has fallen to 94.4 % of its maximum value at 10 Hz
and 30 kHz. If the maximum gain were 1000 (60 dB), then
the gain would have fallen to 944 (59.5 dB) at 10 and 30 kHz.

The fall in gain is called the roll-off, in this case the
high-frequency roll-off. At high frequencies the gain is pro-
portional to 1/ω, so it drops by a factor of 2 (6 dB) when
the frequency doubles (1 octave). Therefore, the gain has
a high-frequency roll-off of 6 dB per octave. A roll-off of
6 dB per octave is characteristic of systems with a single time
constant, as in Eq. 11.79.

11.15.3 Example: Impulse Response

As an example, we show that the response of the system to
a δ function calculated in the time domain is consistent with
the frequency response. Let the input be p(t) = δ(t). The
Fourier transform of the input is

Cin(ω) =
∫ ∞

−∞
δ(t) cos ωt dt = 1,

Sin(ω) =
∫ ∞

−∞
δ(t) sin ωt dt = 0.

The δ function contains constant power at all frequencies.
The sine coefficients are zero because a δ function at t = 0
is an even function. The gain and phase delay are applied
to C(ω) to get the Fourier transform of the output signal.
Although we started with a purely even function (only co-
sine terms) the phase shift means that the output contains
both sine and cosine terms. To calculate the output, we write
Eq. 11.80 as

x(t) =
∫

[G(ω) cos θ cos ωt + G(ω) sin θ sin ωt] dω,

from which

Cout (ω) = G(ω) cos θ,

Sout(ω) = G(ω) sin θ.
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From Eq. 11.81 we get (letting G2 = 0 and doing a fair
amount of algebra)

Cout(ω) = 1

1 + ω2τ 2
1

,

Sout(ω) = ωτ1

1 + ω2τ 2
1

.

(11.83)

It is easier to solve the differential equation, take the
Fourier transform of the solution, and compare it to Eq. 11.83
than it is to find the inverse transform with the mathematical
tools at our disposal. For G2 = 0 the equation to be solved is

τ1
dx

dt
+ x = δ(t).

For all positive t a steady-state solution is x(t) = 0. The
solution of the homogeneous equation is x(t) = Ae−t/τ1 .
The value A is obtained by integrating the equation from −ε

to ε as ε → 0:

τ1

∫ ε

−ε

dx

dt
dt +

∫ ε

−ε

x dt =
∫ ε

−ε

δ(t) dt.

The first term is x(ε)− x(−ε) → x(0)− 0. The second term
vanishes in the limit, since x is finite and the width goes to
zero. From the definition of the δ function the right-hand side
of the equation is 1. Therefore

x =
{

0, t < 0
(1/τ1)e

−t/τ1 , t > 0.
(11.84)

The Fourier coefficients of this function were calculated in
Eqs. 11.61. They are

C(ω) = 1

1 + ω2τ 2
1

,

S(ω) = ωτ1

1 + ω2τ 2
1

.

These agree with Eqs. 11.83. We have demonstrated that the
response of this particular linear system to a δ function is the
Fourier transform of the transfer function of the system.

11.16 The Frequency Spectrum of Noise

In Sect. 9.8, we introduced Johnson noise and shot noise.
Both are inescapable. Johnson noise arises from the Brown-
ian motion of charge carriers in a conductor; shot noise arises
from fluctuations due to the discrete nature of the charge
carriers.

C

R

i
ve

+

Ð

+

Ð

Fig. 11.44 The circuit for analyzing the noise produced by a resistance
R connected to capacitance C. The circuit assumes that the noise is
generated in a voltage source e(t) in series with the resistance. The
voltage across the capacitance is v

11.16.1 Johnson Noise

When we introduced Johnson noise we said nothing about
its frequency spectrum. We used the equipartition theorem
to argue that since the energy on a capacitor depends on the
square of the voltage, there would be fluctuations in a capac-
itor whose average voltage is zero given by (in the notation
of this chapter)

1

2
C
〈
v2
〉
= 1

2
kBT . (11.85)

(In this section we will use T both for time and, when imme-
diately following the Boltzmann constant, for temperature.
We also have, briefly, C for capacitance as well as for the
Fourier cosine coefficient. We will avoid the use of C for
capacitance as much as possible.)

If the capacitor is completely isolated the charge on its
plates, and hence the voltage between them, cannot fluctu-
ate. The equipartition theorem applies to the capacitor only
when it is in thermal equilibrium with its surroundings. This
thermal contact can be provided by a resistor R between the
plates of the capacitor. It is actually the Brownian movement
of the charge carriers in this resistor that cause the Johnson
noise. In analyzing the noise in electric circuits, it is cus-
tomary to imagine that the noise arises in an ideal voltage
source: a “battery” that maintains the voltage across its ter-
minals, fluctuating randomly with time, regardless of how
much current flows through it. It is placed in series with the
resistor. This is not a real source. It is a fictitious source that
gives the correct results in circuit analysis. We call the volt-
age across this noise source e(t) and we want to learn about
its properties.

Imagine that we place the noise source and its associ-
ated resistor across the plates of a capacitor, as shown in
Fig. 11.44. We want to relate the voltage across the capac-
itor, v, to the voltage across the noise source, e. We know
that e(t) = v(t) + Ri(t), and that i = Cdv/dt . (See the
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discussion surrounding Eq. 6.36 and 6.37.) Therefore

e(t) = v(t) + RC
dv

dt
= τ1

dv

dt
+ v. (11.86)

(By introducing τ1 = RC we eliminate the need to use C

for capacitance until the very end of the argument. We use
the subscript on τ1 to distinguish it from the argument of the
correlation function.)

Even though the voltage is random, let us assume we can
write it as a Fourier integral. Our final results depend only on
the power spectrum and not on the phases. We write

v(t) = 1

2π

∫ ∞

−∞
[C(ω) cos ωt + S(ω) sin ωt] dω. (11.87)

Differentiating this gives an expression for dv/dt :

dv

dt
= 1

2π

∫ ∞

−∞
[−ωC(ω) sin ωt + ωS(ω) cos ωt] dω.

(11.88)
Combining these with Eq. 11.86 gives us the Fourier trans-
form of e(t):

e(t) = 1

2π

∫ ∞

−∞
{[C(ω) + ωτ1S(ω)] cos ωt

+ [S(ω) − ωτ1C(ω)] sin ωt} dω

= 1

2π

∫ ∞

−∞
[α (ω) cos ωt + β(ω) sin ωt)] dω.

We now need to calculate
〈
v2(t)

〉
and

〈
e2(t)

〉
. The calcula-

tion is exactly the same as what we did to derive Parseval’s
theorem in Eqs. 11.67–11.68, except that we are dealing with
random signals instead of pulses and we have to introduce

lim
T →∞

1

2T

on each side of the equation. When we do this, we find

〈
v2(t)

〉 = 1

2π

∫ ∞

−∞
[
C2(ω) + S2(ω)

]
dω

= 1

2π

∫ ∞

−∞
Φv(ω) dω,

〈
e2(t)

〉 = 1

2π

∫ ∞

−∞
[
α2(ω) + β2(ω)

]
dω

= 1

2π

∫ ∞

−∞
Φe(ω) dω.

(11.89)

If we expand Φe, we find that

Φe(ω) = α2(ω) + β2(ω)

=
[
C2(ω) + S2(ω)

]
(1 + ω2τ 2

1 )

= Φv(ω)(1 + ω2τ 2
1 ). (11.90)

Johnson noise was discovered experimentally by J. B.
Johnson in 1926. The next year Nyquist explained its ori-
gin using thermodynamic arguments and showed that un-
til one reaches frequencies high enough so that quantum-
mechanical effects are important, Φe is a constant indepen-
dent of frequency (Nyquist 1928). We will not reproduce his
argument; rather we will assume that Φe is a constant and
find the value of Φe for which the mean square voltage across
the capacitor satisfies the equipartition theorem, Eq. 11.85.

The expression for Φv becomes

Φv(ω) = Φe

1 + ω2τ 2
1

, (11.91)

and from the first of Eqs. 11.89,

〈
v2(t)

〉
= 1

2π

∫ ∞

−∞
Φv(ω) dω = Φe

2π

∫ ∞

−∞
dω

1 + ω2τ 2
1
(11.92)

= Φe

2πτ1

∫ ∞

−∞
dx

1 + x2

= Φe

2πτ1

[
tan−1(∞) − tan−1(−∞)

]
= Φe

2τ1
.

Putting this expression in the equipartition statement,
Eq. 11.85, and remembering that τ1 = RC, we obtain

C
〈
v2(t)

〉

2
= 1

2
C

Φe

2RC
= kBT

2
,

Φe = 2RkBT . (11.93)

The units of Φe are V2 s or V2 Hz−1. This is for frequencies
that extend from −∞ to ∞. If we were dealing with only
positive frequencies, we would have

Φe = 4RkBT (using positive frequencies only). (11.94)

Either way, this says that the power spectrum for the ficti-
tious source e(t) is constant so there is equal power at all
frequencies (up to the limits imposed by quantum mechan-
ical effects). For this reason, Johnson noise is called white
noise, in analogy with white light that contains all frequen-
cies. The voltage fluctuations across the capacitor have the
power spectrum

Φv(ω) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2RkBT

1 + ω2τ 2
1

, −∞ < ω < ∞

4RkBT

1 + ω2τ 2
1

, 0 < ω < ∞.

(11.95)

Figure 11.45 shows the Johnson-noise power spectra and
rms voltage spectra plotted vs frequency. These are based on
T = 300 K, R = 106 Ω, C = 10−9 F, and τ1 = RC =
10−3 s. The labels on the ordinates are worth discussion. On
the left we have Φ/R, which from Eq. 11.95 is in joules,
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Fig. 11.45 The power spectrum of the noise source e and the voltage across the capacitor v. The left panel plots Φ/R vs f . The right panel plots
vrms in each frequency interval. The parameters are described in the text

Fig. 11.46 Spectral density of various sources of the magnetic field,
expressed in terms of the magnetic field in femtotesla (1 fT = 10−15 T).
(Reprinted with permission from Hämäläinen et al. 1993. Copyright
1993 by the American Physical Society)

which is W s or W Hz−1. The units for the graph on the right
that are consistent with this are W1/2 s1/2 = W1/2 Hz−1/2 =
V Ω−1/2 Hz−1/2. The resistance has been included to make
the units V Hz−1/2. The 1/f 2 falloff at high frequencies is
due to the frequency response of the RC circuit and is not
characteristic of the noise.

Figure 11.46 shows an example: the spectral density of
the magnetic field from an article on the magnetoencephalo-
gram. The units are femtotesla Hz−1/2 (1 femtotesla =
1 fT = 10−15 T).

We can determine the autocorrelation functions Φee(τ )

and Φvv(τ ). Equation 11.73 gave the Fourier transform of
the autocorrelation function for a pulse. For a random sig-
nal the autocorrelation is very similar but involves the power

instead of the energy:

φee(τ ) = 1

2π

∫ ∞

−∞
Φe(ω) cos ωt dω,

φvv(τ ) = 1

2π

∫ ∞

−∞
Φv(ω) cos ωt dω.

(11.96)

For the voltage source the autocorrelation function is

φee(τ ) = 2RkBT

2π

∫ ∞

−∞
cos ωt dω. (11.97)

To evaluate this, consider Eq. 11.66a, which shows the
Fourier transform of the δ function. The integral there is over
time. Interchange the time and angular frequency variables
to write

∫ ∞

−∞
cos ωτ cos ωτ ′ dω = 2πδ(τ − τ ′). (11.98)

Let τ ′ = 0:
∫ ∞

−∞
cos ωτ dω = 2πδ(τ ). (11.99)

The final expression for the autocorrelation function of the
noise source is

Φee(τ ) = 2RkBT δ(τ). (11.100)

To find φvv(τ ), consider the discussion surrounding
Eqs. 11.70 and 11.71. There we discussed the Fourier trans-
form pair (letting a = 1/τ1)

A2

1 + ω2τ 2
1

Fourier transform←−−−−−−−−−−−→ A2

2τ1
e−|τ |/τ1 , (11.101)

from which we obtain the autocorrelation function for the
voltage across the capacitor:

Φvv(τ ) = RkBT

τ1
e−|τ |/τ1 . (11.102)
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Let us compare these two results. The autocorrelation of
the noise source is a δ function. Any shift at all destroys the
correlation. The noise equivalent voltage source and resis-
tor, isolated from anything else, respond instantaneously to
random noise changes, the correlation function is infinitely
narrow, and all frequencies are present. When the source and
resistor are connected to a capacitor, the voltage across the
capacitor cannot change instantaneously. There is a high-
frequency roll-off, and the voltage at one time is correlated
with the voltage at surrounding times. As the time constant of
the circuit becomes smaller, Φvv(τ ) becomes narrower and
taller, approaching the δ function.

The power spectrum across the capacitor has the same
form as the square of the magnitude of the gain (transfer
function) of Eq. 11.81. This is the transfer function for an
RC circuit, as can be seen by comparing Eq. 11.79 with
Eq. 11.86. This is a special case of a general result, that lin-
ear systems can be analyzed by measuring how they respond
to white noise.

11.16.2 Shot Noise

Chapter 9 also mentioned shot noise, which occurs because
the charge carriers have a finite charge, so the number of
them passing a given point in a circuit in a given time fluctu-
ates about an average value. One can show that shot noise is
also white noise.

11.16.3 1/f Noise

Johnson noise and shot noise are fundamental and indepen-
dent of the details of the construction of the resistance. The
former depends on the Brownian motion of the charge carri-
ers, and the latter depends on the number of charge carriers
required to transport a given amount of charge. They are ir-
reducible lower limits on the noise (for a given resistance
and temperature). If one measures the noise in a real resistor
in a circuit, one finds additional or “excess” noise that can
be reduced by changing the materials or construction of the
resistor. This excess noise often has a 1/f frequency depen-
dence. For white noise the power in every frequency interval
is proportional to the width of the interval, so there is 10
times as much power in the frequency decade from 10 to
100 Hz as in the decade from 1 to 10 Hz. For 1/f noise,
on the other hand, there is equal power in each frequency
decade. This kind of noise is sometimes called “pink noise”
in allusion to the fact that pink light has more power in the
red (lower frequency) part of the spectrum than the rest.

Noise with a 1/f spectrum had been discovered in many
places: resistors, transistors, and the fluctuations in the flow
of sand in an hourglass, in traffic flow, in the heartbeat,

and even in human cognition. It is thought that there might
be some universal principle underlying 1/f noise, possibly
related to chaos, but this is still an area of active investigation.

11.17 Testing Data for Chaotic Behavior

A major problem in data analysis is to find the meaning-
ful signal due to the physical or biological process in the
presence of noise. We have introduced some of the analysis
techniques in this chapter. A problem that has become impor-
tant in recent years is to determine whether a variable that is
apparently random is due to truly random behavior in the un-
derlying process or whether the process is displaying chaotic
behavior. The techniques for determining this are still under
development and are beyond the scope of this book. An ex-
cellent introduction is found in Chap. 6 of Kaplan and Glass
(1995). We close by mentioning two of the tools used in this
analysis: embedding and surrogate data.

One of the problems in analyzing data from complex
systems is that we may not be able to measure all of the
variables. For example, we may have the electrocardiogram
or even an intracellular potential recording but have no in-
formation about the details of the ionic currents of several
species through the membrane that change the potential.
We may measure the level of thyroid hormones T3 and
T4 but have no information about the other hormones in
the thyroid–hypothalamus–pituitary feedback system. Fortu-
nately, we do not need to measure all the variables. There is
a data-reduction technique that can be applied to a few of the
variables that shows the dynamics of the full system.

11.17.1 Embedding

To see how embedding works, consider a system with two
degrees of freedom described by a set of nonlinear differen-
tial equations with the form of Eqs. 10.35. In order to make
the subscript on x available to index measurements of the
variable at different times, we write the variables as x and y

instead of x1 and x2:

dx

dt
= f1(x, y),

dy

dt
= f2(x, y).

A phase-space plot would be in the xy plane. Suppose we
only measure variable x, and that we obtain a sequence of
measurements xj = x(tj ). The time derivative is approxi-
mately

xj+h − xj

tj+h − tj
≈ dx

dt
= f1(x, y).

A series of measurements at different times gives us infor-
mation about how function f1 depends on x. A remarkable
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result that we state without proof is that it also gives informa-
tion about the entire system. (See Kaplan and Glass 1995 for
a more detailed discussion and references to the literature.)
Figure 11.47 shows this in a specific case. It is a calcula-
tion using the van der Pol oscillator. This nonlinear oscillator
has been used to model many systems since it was first pro-
posed in the 1920s. It can be written as the pair of first-order
equations

dx

dt
= 1

a

(
y − x3

3
+ x

)
,

dy

dt
= −ax,

where a is a very small positive number. The top panel of
Fig. 11.47 shows values of xj vs j (labeled as Dt vs t). The
middle panel shows a phase-plane plot of y vs x. The bottom
panel plots xj+10 vs xj . Shading is used to identify some of
the early data points in all three panels. The trajectory in the
bottom panel has all the same characteristics as the phase-
plane plot.

This is an example of a general technique called time-lag
embedding. The set of differential equations with two de-
grees of freedom has been converted into a nonlinear map
in one degree of freedom.

For a system with three degrees of freedom, we could
make a three-dimensional plot by creating sets of three num-
bers from the n measured values, which we can think of and
plot as the three components of a vector

xj = (xj , xj−h, xj−2h), j = 2h, 2h + 1, . . . , n − 1.

In general, we can construct a p-dimensional set of vectors

xj = (xj , xj−h, . . . xj−ph), j = ph, . . . , n − 1.

We call p the embedding dimension and h the embedding
lag. There are a number of further calculations that can be
done to the embedded vector to help decide on the behavior
of the underlying system. These are described in Kaplan and
Glass (1995).

11.17.2 Surrogate Data

In general, a fully conclusive answer to the question of
whether the data are due to a random process or a chaotic
process cannot be obtained, though strong indications can be.
The most rigorous way to test for the presence of chaotic be-
havior is to make the hypothesis, called the null hypothesis,
that the data are explained by a linear process plus random
noise. One then develops a test statistic (several standard tests
are used) and compares the value of the test statistic for the
real data to its value for sets of data that are consistent with
the null hypothesis. These sets are called surrogate data. We
examined one linear system with noise: the random walk of

Fig. 11.47 Plots of the solution to the van der Pol equation with a
certain set of initial conditions. The top panel shows values of xj vs j

(labeled as Dt vs t). The middle panel is a phase-plane plot of y vs x.
The bottom panel plots xj+10 vs xj . Shading is used to identify some
of the early data points in all three panels. The trajectory in the bottom
panel has the same characteristics as the phase-plane plot. (Used by
permission from Kaplan and Glass 1995)

Fig. 11.37. The next value in the sequence was the previous
value plus random noise. We saw that the power spectrum
was defined, but the phases changed randomly. We can think
of any linear system driven by random noise as having a de-
fined transfer function G(ω) with random phases. Therefore,
we can generate sets of surrogate data by taking the trans-
form of the original data in the form of an amplitude and
phase, related to C and S by Eq. 11.13. We then random-
ize the phases and calculate the inverse Fourier transform
of the randomized coefficients to generate the surrogate data
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Fig. 11.48 A sine wave of unit amplitude drives a threshold detector.
A spike is generated every time the signal rises through 0.9

sequence. The surrogate data have the same power spectrum
and autocorrelation function as the original data. We then ap-
ply the various test statistics. If we were to do this to the data
from Fig. 11.37, we would find the tests the same for the orig-
inal data and the sets of surrogate data, because the original
data set is consistent with the null hypothesis.

11.18 Stochastic Resonance

A nonlinear phenomenon called stochastic resonance has
been recognized in recent years. In stochastic resonance, ran-
dom fluctuations increase the sensitivity to detect weak sig-
nals or allow some other desirable process to take place, such
as ion transport. Stochastic resonance takes many forms. It
was first invoked in 1981 to explain why the earth has peri-
odic ice ages.10 It has been proposed as a mechanism in bi-
ological processes, but the models are rather complicated.11

We discuss two simple physical examples.

11.18.1 Threshold Detection

In a linear system, any amount of noise decreases the signal-
to-noise ratio. In a nonlinear system, weak noise can enhance
signal detection. The simplest nonlinear system that shows
this is a threshold detector: an output signal is generated
when the input (signal + noise) exceeds a fixed threshold.

Suppose that a sine-wave signal is sent to a threshold de-
tector. Every time the signal rises above the threshold, a pulse

10 References can be found in the articles by Wiesenfeld and Jaramillo
(1998) and by Astumian and Moss (1998).
11 See Astumian (1997); Astumian and Moss (1998); Wiesenfeld and
Jaramillo (1998); Gammaitoni et al. (1998); Adair et al. (1998); Glass
(2001).
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Fig. 11.49 Power spectrum for a train of rectangular pulses of width
2d when d/T = 1/20

is generated, as shown in Fig. 11.48. The output signal is a
series of pulses spaced by T , the period of the sine wave.
Problem 29 shows that for a series of pulses of width 2d

separated by time T , the power at frequency kω0 = 2πk/T

is Φk = (2/π2k2) sin2 (2πkd/T ). This power spectrum is
plotted in Fig. 11.49.

If the amplitude of the sine wave in Fig. 11.48 is less than
0.9, the threshold will never be exceeded. However, if suffi-
cient noise is added to a sine wave that is below threshold,
the signal and noise combined will occasionally exceed the
threshold. This will happen more frequently when the sine-
wave signal is positive than when it is negative so output
pulses will occur more frequently during peaks of the signal.

Experiments were done with an electronic circuit that
behaves as we have described. The results are shown in
Figs. 11.50 and 11.51. Fig. 11.50 shows the weak sinusoidal
signal with and without the noise added to it, along with the
resulting pulses and the power spectrum. Fig. 11.51 shows
the power in the pulse train at the signal frequency and the
signal-to-noise ratio, as a function of noise level. The ampli-
tude of the sine wave is 0.1 V. As the noise level increases,
both the signal and the SNR increase, reach a maximum, and
decrease. The signal-to-noise ratio peaks when the rms noise
level is about 0.25 V; the power at the signal frequency peaks
at about 0.3 V. As the noise increases above these values the
SNR and signal decrease. The lines are theoretical fits; both
the theory and the data are described by Gingl et al. (1995).

11.18.2 Feynman’s Ratchet

Perpetual motion machines violate either the first or second
law of thermodynamics (or both). In his Lectures on Physics,
Richard Feynman (1963) analyzed a microscopic cog wheel
(ratchet) and pawl as shown in Fig. 11.52. Feynman’s anal-
ysis is elegant, full of insight, and well worth reading. The
analysis here follows that in Astumian and Moss (1998). An
amount of energy �U is required to compress the spring
enough to lift the pawl over the tooth. This energy can come
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Fig. 11.50 Stochastic resonance. a The two curves show the sinusoidal
signal and the combination of Gaussian noise plus signal. The latter oc-
casionally exceeds the threshold value shown by the straight line. b The
pulses generated when the combination of signal plus noise rises above
threshold. c The averaged power spectrum of the pulse train. (From
Gingl et al. 1995. Used by permission)

Fig. 11.51 The results of an electronics experiment and a theoretical
calculation of threshold detection. One curve shows the square of the
output sinusoidal signal, Ps . The other shows the signal-to-noise ratio.
(From Gingl et al. 1995. Used by permission)

either from an imbalance of the molecular bombardment of
the paddle wheel at temperature T1, or from molecular bom-
bardment of the pawl spring, which is at temperature T2.

Clockwise rotation will result if the pawl rides up the ramped
side of the ratchet and will occur with a probability pro-
portional to e−�U/kBT1 ; counterclockwise rotation requires
energy transfer to the pawl spring, with a probability propor-
tional to e−�U/kBT2 . With T1 = T + �T and T2 = T − �T ,

Fig. 11.52 Feynman’s Ratchet. a A cog wheel is attached to a paddle
wheel in a reservoir at temperature T1. A pawl is attached to a spring
located in a reservoir at temperature T2. b The net rate of clockwise
motion vs. T = (T1 + T2)/2. The details are discussed in the text.
(Reproduced by permission from Astumian and Moss 1998. Copyright
1998 American Institute of Physics.)

one can show (see Problem 44), that the net rate is

net rate ∝ 2�U�T

kBT 2
e−�U/kBT . (11.103)

Fig. 11.52b plots the net rate for the parameters �U = 0.05
eV and �T = 10 K. While thermal gradients are not found
in the body, Astumian and Moss show that particles in similar
asymmetrically shaped potentials can be driven by having the
barrier height vary randomly with time.

Symbols Used in Chap. 11
Symbol Use Units First

used
page

a Coefficient in polynomial fit 303
a Slope 303
a Coefficient of even (cosine)

term
308

a Parameter in exponential 306
a Arbitrary constant 323
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b Intercept 303
b Parameter in exponential 306
b Coefficient of odd (sine) term 308
e Noise voltage source V 333
f, f0 Frequency Hz 308
f Function 335
h Small quantity 306
h Shift index 335
i

√−1 311
i Current A 317
j Index, usually denoting a data

point
303

k Index denoting terms in a sum 303
kB Boltzmann constant J K−1 332
l, m Particular values of index k 309
l Local signal 328
n Maximum value of index k 308
n Noise 327
p Parameter or input signal 330
p Dimension of a vector 336

s Signal 327
t Time s 308
v log y 306
v Voltage V 317
x Independent variable 303
x Vector of data points 336
y Dependent variable 303
A Amplitude 308
C,Ck Amplitude of cosine term 308
C Capacitance F 332
G Gain 330
N Number of data points 304
Q Goodness of fit or mean square

residual
304

R Residual 311
R Resistance Ω 317
S, Sk Amplitude of sine term 308
Sxx, Sxy Sums of residuals and their

products
304

T Period s 308
T Temperature K 332
U Energy J 337
Y, Yk Complex Fourier transform or

series of y
311

α Fourier coefficient in
autocorrelation function 320

α, β Fourier coefficients V Hz−1/2
333

δ Delta function
323

φ, θ Phase
308

φ Correlation function
318

τ Shift time s
318

τ1 Time constant s
330

ω,ω0 Angular frequency s−1
308

Φk Power at frequency kω0 317
Φ(ω) Power in frequency interval

328
Φ ′(ω) Energy in frequency interval

324
〈〉 Time average

317

Problems

Section 11.1

Problem 1. Find the least squares straight line fit to the
following data:

x y

0 2
1 5
2 8
3 11

Problem 2. Suppose that you wish to pick one number to
characterize a set of data x1, x2, . . . , xN . Prove that the mean
x, defined by

x = 1

N

N∑

j=1

xj ,

minimizes the mean square error

Q = 1

N

N∑

j=1

(xj − x)2.

Problem 3. Derive Eqs. 11.5.
Problem 4. Suppose that the experimental values y(xj ) are
exactly equal to the calculated values plus random noise for
each data point: y(xj ) = ycalc(xj ) + nj . What is Q?
Problem 5. You wish to fit a set of data (xj , yj ) with an
expression of the form y = Bx2. Differentiate the expression
for Q to find an equation for B.
Problem 6. Assume a dipole p is located at the origin and
is directed in the xy plane. The z component of the magnetic
field, Bz, produced by this dipole is measured at nine points
on the surface z = 50 mm . The data are

i xi (mm) yi (mm) Bzi (fT)
1 −50 −50 −154
2 0 −50 −170
3 50 −50 −31
4 −50 0 −113
5 0 0 0
6 50 0 113
7 −50 50 31
8 0 50 170
9 50 50 154

The magnetic field of a dipole is given by Eq. 8.17, which in
this case is

Bz = μ0

4π

[
pxyi

(
x2
i + y2

i + z2
i

)3/2
− pyxi
(
x2
i + y2

i + z2
i

)3/2

]

.

Use the method of least squares to fit the data to the equation,
and determine px and py .
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Problem 7. Consider the data

x y

100 4004
101 4017
102 4039
103 4063

(a) Fit these data with a straight line y = ax + b using
Eqs. 11.5a and 11.5b to find a.

(b) Use Eq. 11.5c to determine a. Your result should be the
same as in part (a).

(c) Repeat parts (a) and (b) while rounding all the interme-
diate numbers to four significant figures. Do Eqs. 11.5a
and 11.5b give the same result as Eq. 11.5c? If not,
which is more accurate? To explore more about how nu-
merical errors can creep into computations, see Acton
(1990).

Problem 8. This problem is designed to show you what hap-
pens when the number of parameters exceeds the number of
data points. Suppose that you have two data points:

x y

0 1
1 4

Find the best fits for one parameter (the mean) and two pa-
rameters (y = ax + b). Then try to fit the data with three
parameters (a quadratic). What happens when you try to
solve the equations?
Problem 9. The strength-duration curve for electrical stim-
ulation of a nerve is described by Eq. 7.45: i = iR(1+ tC/t),

where i is the stimulus current, iR is the rheobase, and tC
is the chronaxie. During an experiment you measure the
following data:

t (ms) i (mA)
0.5 2.004
1.0 1.248
1.5 0.997
2.0 0.879
2.5 0.802
3.0 0.749

Determine the rheobase and chronaxie by fitting these data
with Eq. 7.45. Hint: let a = iR and b = iRtC, so that the
equation is linear in a and b : i = a+b/t . Use the linear least
squares method to determine a and b. Plot i vs t, showing
both the theoretical expression and the measured data points.

Section 11.2

Problem 10.
(a) Obtain equations for the linear least-squares fit of y =

Bxm to data by making a change of variables.

(b) Apply the results of (a) to the case of Problem 5. Why
does it give slightly different results?

(c) Carry out a numerical comparison of Problems 5 and (b)
with the data points

x y

1 3
2 12
3 27

Repeat with

x y

1 2.9
2 12.1
3 27.1

Problem 11. Consider the data given in Problem 2.40 relat-
ing molecular weight M and molecular radius R. Assume the
radius is determined from the molecular weight by a power
law: R = BMn. Fit the data to this expression to determine
B and n. Hint: take logarithms of both sides of the equation.
Problem 12. In Prob. 6 the dipole strength and orientation
were determined by fitting the equation for the magnetic field
of a dipole to the data, using the linear least squares method.
In that problem the location of the dipole was known. Now,
suppose the location of the dipole (x0, y0, z0) is not known.
Derive an equation for Bz(px, py, x0, y0, z0) in this more
general case. Determine which parameters can be found us-
ing linear least squares, and which must be determined using
nonlinear least squares.

Section 11.4

Problem 13. Write a computer program to verify
Eqs. 11.20–11.24.
Problem 14. Consider Eqs. 11.17–11.19 when n = N and
show that all equations for m > N/2 reproduce the equations
for m < N/2.
Problem 15. The secretion of the hormone cortisol by the
adrenal gland is subject to a 24-h (circadian) rhythm (Guyton
1991). Suppose the concentration of cortisol in the blood, K

(in μg per 100 ml) is measured as a function of time, t (in
hours, with 0 being midnight and 12 being noon), resulting
in the following data:

t K

0 10.3
4 16.1
8 18.3
12 13.7
16 7.9
20 6.0
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Fit these data to the function K = a + b cos (2πt/24) +
c sin (2πt/24) using the method of least squares, and deter-
mine a, b, and c.
Problem 16. Verify that Eqs. 11.29 follow from Eqs. 11.27.
Problem 17. This problem provides some insight into
the fast Fourier transform. Start with the expression for
an N -point Fourier transform in complex notation, Yk in
Eq. 11.29a. Show that Yk can be written as the sum of two
N/2-point Fourier transforms: Yk = 1

2

[
Y e

k + WkYo
k

]
, where

W = exp (−i2π/N), superscript e stands for even values of
j , and o stands for odd values.
Problem 18. The following data from Kaiser and Halberg
(1962) show the number of spontaneous births vs time of
day. Note that the point for 2300–2400 is much higher than
for 0000–0100. This is probably due to a bias: if a woman has
been in labor for a long time and the baby is born a few min-
utes after midnight, the birth may be recorded in the previous
day. Fit these data with a 24-h period and again including an
8-h period as well. Make a correction for the midnight bias.

Time Births Time Births
0000 − 0100 23,847 1200 − 1300 24,038
0100 − 0200 28,088 1300 − 1400 22,234
0200 − 0300 28,338 1400 − 1500 21,900
0300 − 0400 28,664 1500 − 1600 21,903
0400 − 0500 28,452 1600 − 1700 21,789
0500 − 0600 27,912 1700 − 1800 21,927
0600 − 0700 27,489 1800 − 1900 21,761
0700 − 0800 26,852 1900 − 2000 21,995
0800 − 0900 26,421 2000 − 2100 22,913
0900 − 1000 26,947 2100 − 2200 23,671
1000 − 1100 26,498 2200 − 2300 24,149
1100 − 1200 25,615 2300 − 2400 27,819

Problem 19. Calculate the discrete Fourier transform of the
data yi = 0.00, 0.25, 0.50, 0.75, 0.50, 0.25 using Eq. 11.26.

Section 11.5

Problem 20. Let y(t) be a periodic function with period T :

y(t) = t, 0 < t < T .

(a) Plot y(t) over the range −2T < t < 2T .
(b) Use Eqs. 11.30 and 11.34 to calculate the Fourier series

for y(t).
(c) Plot the Fourier series using only the term k = 0, then

using k = 0 and k = 1, and finally k = 0, k = 1 and
k = 2. Compare these plots to the plot in part (a).

Problem 21. Let y(t) be a periodic function with period T :

y(t) = sin(πt/T ), 0 < t < T .

(a) Plot y(t) over the range −2T < t < 2T .
(b) Use Eqs. 11.30 and 11.34 to calculate the Fourier series

for y(t).

(c) Plot the Fourier series using only the term k = 0, then
using k = 0 and k = 1, and finally k = 0, k = 1 and
k = 2. Compare these plots to the plot in part (a).

Problem 22. Use Eqs. 11.34 to derive Eq. 11.36.

Section 11.6

Problem 23. Calculate the power spectrum for the function
given in Problem 20.

Section 11.7

Problem 24. Suppose that y(x, t) = y(x − vt). Calculate
the cross correlation between signals y(x1) and y(x2).
Problem 25. Calculate the cross-correlation, φ12, for the
example in Fig. 11.21:

y1(t) =
{ +1, 0 < t < T/2

−1, T /2 < t < T

y2(t) = sin

(
2πt

T

)
.

Both functions are periodic.
Problem 26. Suppose you measure some noisy signal ev-
ery hour for several weeks. Explain how you could use the
autocorrelation function to search for a circadian rhythm: a
component of the signal that varies with a period of one day.

Section 11.8

Problem 27. Fill in the missing steps to show that the
autocorrelation of y1(t) is given by Eq. 11.51.
Problem 28. Consider a square wave of amplitude A and
period T .
(a) What are the coefficients in a Fourier-series expansion?
(b) What is the power spectrum?
(c) What is the autocorrelation of the square wave?
(d) Find the Fourier-series expansion of the autocorrelation

function and compare it to the power spectrum.
Problem 29. The series of pulses shown are an approxi-
mation for the concentration of follicle-stimulating hormone
(FSH) released during the menstrual cycle.

(a) Determine a0, ak , and bk in terms of d and T .
(b) Sketch the autocorrelation function.
(c) What is the power spectrum?
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Problem 30. Consider the following simplified model for
the periodic release of follicle-stimulating hormone (FSH).
At t = 0 a substance is released so the plasma concentration
rises to value C0. The substance is cleared so that C(t) =
C0e

−t/τ . Thereafter the substance is released in like amounts
at times T , 2T , and so on. Furthermore, τ 	 T .
(a) Plot C(t) for two or three periods.
(b) Find general expressions for a0, ak , and bk . Use the fact

that integrals from 0 to T can be extended to infinity
because τ 	 T . Use the following integral table:

∫ ∞

0
e−ax dx = 1

a
,

∫ ∞

0
e−ax cos mx dx = a

a2 + m2
,

∫ ∞

0
e−ax sin mx dx = m

a2 + m2
.

(c) What is the “power” at each frequency?
(d) Plot the “power” for k = 1, 10, 100 for two cases:

τ/T = 0.1 and 0.01. Compare the results to the results
of Problem 29.

(e) Discuss qualitatively the effect that making the pulses
narrower has on the power spectrum. Does the use of
Fourier series seem reasonable in this case? Which de-
scription of the process is easier—the time domain or
the frequency domain?

(f) It has sometimes been said that if the transform for a
given frequency is written as Ak cos(kω0t − φk) that φk

gives timing information. What is φ1 in this case? φ2?
Do you agree with the statement?

Problem 31. Calculate the autocorrelation function and the
power spectrum for the previous problem.

Section 11.9

Problem 32. Calculate the Fourier transform of exp[−(at)2]
using complex notation (Eq. 11.59). Hint: complete the
square.
Problem 33. Figure 11.24 implies that two different func-
tions can have the same autocorrelation, so that taking the
autocorrelation is a one-way process. Show this by calculat-
ing the autocorrelation of A cos(ωt) and comparing it to the
autocorrelation of A sin(ωt) given in Eq. 11.49.

Section 11.10

Problem 34. Prove that

δ(t) = δ(−t),

t δ(t) = 0,

δ(at) = 1

a
δ(t).

Section 11.11

Problem 35. Rewrite Eqs. 11.61 in terms of an amplitude
and a phase. Plot them.
Problem 36. Find the Fourier transform of

f (t) =
{

1, −a ≤ t ≤ a,

0, everywhere else.

Problem 37. Find the Fourier transform of

y =
{

e−at sin ω0t, t ≥ 0,

0, t < 0.

Determine C(ω), S(ω), and Φ ′(ω) for ω > 0 if the term
that peaks at negative frequencies can be ignored for positive
frequencies.

Section 11.14

Problem 38. Here are some data.

t y t y t y

2 1.39 14 5.01 26 0.91
3 0.67 15 0.75 27 1.32
4 −1.38 16 0.90 28 1.92
5 −0.76 17 −0.42 29 0.57
6 5.23 18 3.68 30 2.30
7 1.31 19 4.15 31 1.09
8 2.63 20 1.45 32 −0.71
9 1.03 21 −2.44 33 −1.72
10 4.62 22 4.44 34 4.22
11 1.98 23 −0.08 35 3.20
12 0.47 24 2.34 36 1.69

(a) Plot them.
(b) If you are told that there is a signal in these data with a

period of 4 s, you can group them together and average
them. This is equivalent to taking the cross correlation
with a series of δ functions. Estimate the signal shape.

Section 11.15

Problem 39. Verify that Eqs. 11.80 and 11.81 are solutions
of Eq. 11.79.
Problem 40. Equation 11.81 is plotted on log–log graph
paper in Fig. 11.43. Plot it on linear graph paper.
Problem 41. If the frequency response of a system were
proportional to 1/

[
1 + (ω/ω0)

3
]
, what would be the high

frequency roll-off in decibels per octave for ω � ω0?
Problem 42. Consider a signal y = A cos ωt . What is the
time derivative? For a fixed value of A, how does the deriva-
tive compare to the original signal as the frequency is in-
creased? Repeat these considerations for the integral of y(t).
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Section 11.16

Problem 43. Show that integration of Eq. 11.102 over all
shift times is consistent with the integration of the δ function
that is obtained in the limit τ1 → 0.

Section 11.18

Problem 44. Show that the net clockwise rate of rotation of
the Feynman ratchet is given by Eq. 11.103.
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12Images

Images are very important in the remainder of this book.
They may be formed by the eye, a camera, an x-ray machine,
a nuclear medicine camera, magnetic resonance imaging, or
ultrasound. The concepts developed in Chap. 11 can be used
to understand and describe image quality. The same con-
cepts are also used to reconstruct computed tomographic or
magnetic resonance images of the body. A very complete,
advanced mathematical treatment of all kinds of images is
found in a 1500-page book by Barrett and Myers (2004).
A history of medical imaging has been written by Kevles
(1997).

The convolution integral of Sect. 12.1 shows how the re-
sponse of a linear system can be related to the input to the
system and the impulse (δ-function) response of the system.
It forms the basis for the rest of the chapter. The Fourier-
transform properties of the convolution are also described in
this section. Section 12.2 introduces quantitative ways to re-
late the image to the object, using the techniques developed
in Chap. 11 to describe the blurring that occurs. Section 12.3
shows the importance of different spatial frequencies in an
image and their effect on the quality of the image.

Sections 12.4 and 12.5 pose the fundamental problem
of reconstructing slices from projections and introduce two
techniques for solving it: the Fourier transform and filtered
back projection. Section 12.6 provides a numerical example
of filtered back projection for a circularly symmetric object.

This chapter is quite mathematical. The key understand-
ing to take from it is the relationship between spatial
frequencies and image quality in Sect. 12.3.

12.1 The Convolution Integral and Its Fourier
Transform

12.1.1 One Dimension

We now apply the techniques developed in Chap. 11 to de-
scribe the formation of images. An image is a function of

position, usually in two dimensions at an image plane. We
start with the simpler case of an image extending along a line.
Functions of time are easier to think about, so let us imag-
ine a one-dimensional example that is a function of time:
a high-fidelity sound system. A hi-fi system is (one hopes)
linear, which means that the relationship between the out-
put response and a complicated input can be written as a
superposition of responses to more elementary input func-
tions. The output might be the instantaneous air pressure at
some point in the room; the input might be the air pressure at
a microphone or the magnetization on a strip of tape.

It takes a certain amount of time for the signal to propa-
gate through the system. In the simplest case the response at
the ear would exactly reproduce the response at the input a
very short time earlier. In actual practice the response at time
t may depend on the input at a number of earlier times, be-
cause of limitations in the electronic equipment or echoes in
the room. If the entire system is linear, the output g(t) can
be written as a superposition integral, summing the weighted
response to inputs at other times. If f (t ′) is the input and h

is the weighting, the output g(t) is

g(t) =
∫ ∞

−∞
f (t ′)h(t, t ′) dt ′. (12.1)

Variable t ′ is a dummy variable. The integration is over all
values of t ′ and it does not appear in the final result, which
depends only on the functional forms of f and h. Note also
that if f and g are expressed in the same units, then h has the
dimensions of s−1.

If input f is a δ function at time t ′0, then

g(t) =
∫ ∞

−∞
δ(t ′ − t ′0)h(t, t ′) dt ′ = h(t, t ′0). (12.2)

We see that h(t, t ′) is the impulse response of the system
to an impulse at time t ′. If the impulse response of a linear
system is known, it is possible to calculate the response to
any arbitrary input.
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If, in addition to being linear, the system responds to an
impulse the same way regardless of when it occurs, the sys-
tem is said to be stationary. In the hi-fi example, this means
that no one is adjusting the volume or tone controls. For a
stationary system the impulse response depends only on the
time difference t − t ′:

h(t, t ′) = h(t − t ′), (12.3)

and the superposition integral takes the form

g(t) =
∫ ∞

−∞
f (t ′)h(t − t ′) dt ′. (12.4a)

This is called the convolution integral. It is often abbreviated
as

g(t) = f (t) ⊗ h(t). (12.4b)

For the hi-fi system the function h(t − t ′) is zero for all t ′
larger (later) than t ; the response does not depend on future
inputs. For the images we will be considering shortly, where
the variables represent positions in the object and image, h

can exist for negative arguments.
We saw an example of the impulse response in

Sect. 11.15, where we found that the solution of the differen-
tial equation for the system was a step exponential, Eq. 11.84.
For that simple linear system we can write

h(t − t ′) =
{

0, t < t ′

(1/τ1)e
−(t−t ′)/τ1 , t > t ′.

(12.5)

We have seen superposition integrals before: for one-
dimensional diffusion (Eq. 4.73) and for the potential
(Eq. 7.21) and magnetic field (Eq. 8.14) outside a cell.

There is an important relationship between the Fourier
transforms of the functions appearing in the convolution in-
tegral, which was hinted at in Sect. 11.15. If the sine and
cosine transforms of function h are denoted by Ch(ω) and
Sh(ω), with similar notation for f and g, the relationships
can be written

Cg(ω) = Cf (ω)Ch(ω) − Sf (ω)Sh(ω),

Sg(ω) = Cf (ω)Sh(ω) + Sf (ω)Ch(ω).
(12.6a)

This is called the convolution theorem. If we were using com-
plex exponential notation, the Fourier transforms would be
related by

G(ω) = F(ω)H(ω). (12.6b)

The convolution of two functions in time is equivalent to
multiplying their Fourier transforms.

Equations 12.6a are similar to the addition formulas for
sines and cosines, which are of course used in the derivation.
To derive them, we take the Fourier transforms of f and h:

f (t ′) = 1

2π

∫ ∞

−∞
[
Cf (ω) cos ωt ′ + Sf (ω) sin ωt ′

]
dω

h(t − t ′) = 1

2π

∫ ∞

−∞
[
Ch(ω) cos ω(t − t ′)

+ Sh(ω) sin ω(t − t ′)
]

dω.

Then

g(t) =
∫ ∞

−∞
f (t ′)h(t − t ′) dt ′

=
(

1

2π

)2 ∫ ∞

−∞
dt ′
[∫ ∞

−∞
dω
[
Cf (ω) cos ωt ′ + Sf (ω) sin ωt ′

]

×
∫ ∞

−∞
dω′ [Ch(ω

′) cos ω′(t − t ′) + Sh(ω
′) sin ω′(t − t ′)

]]
.

We can use the trigonometric addition formulas and the fact
that sin(−ω′t ′) = − sin ω′t ′ to rewrite and expand this ex-
pression, much as we did in the last chapter. Carrying out the
integration over t ′ first and using the properties of integrals
of the δ function gives

g(t) = 1

2π

∫ ∞

−∞
dω
[
Cf (ω)Ch(ω) − Sf (ω)Sh(ω)

]
cos ωt

+ 1

2π

∫ ∞

−∞
dω
[
Cf (ω)Sh(ω) + Sf (ω)Ch(ω)

]
sin ωt.

Comparison of this with Eqs. 11.57 proves Eq. 12.6a.
Fourier techniques need not be restricted to frequency and

time. The quality and resolution of the image on the retina,
an x-ray film, or a photograph are best described in terms of
spatial frequency. The distance across the image in some di-
rection is x, and a sinusoidal variation in the image would
have the form A(λ) sin(2πx/λ − φ). The spatial frequency,
1/λ, is the number of cycles per unit length and is expressed
in cycles per meter or cycles per millimeter. The wave num-
ber or angular wave number is k = 2π/λ, where λ is the
wavelength. We can write the variation as A(k) sin(kx − φ).

12.1.2 Two Dimensions

The convolution and Fourier transform in two dimensions are
needed to analyze the response of a system that forms a two-
dimensional image of a two-dimensional object. The object
can be represented by function f (x′, y′) in the object plane.
The image is given by a function g(x, y) in the image plane:

g(x, y) =
∫ ∞

−∞

∫ ∞

−∞
f (x′, y′)h(x, x′; y, y′) dx′dy′. (12.7)
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If the contribution of object point (x′, y′) to the image at
(x, y) depends only on the relative distances x − x′ and
y − y′, then the two-dimensional impulse response is h(x −
x′, y−y′), and the image is obtained by the two-dimensional
convolution

g(x, y) =
∫ ∞

−∞

∫ ∞

−∞
f (x′, y′)h(x − x′, y − y′) dx′dy′

(12.8a)
or

g(x, y) = f (x, y) ⊗ ⊗ h(x, y). (12.8b)

The Fourier transform in two dimensions is defined by

f (x, y) =
(

1

2π

)2 ∫ ∞

−∞
dkx

×
∫ ∞

−∞
dky[C(kx, ky) cos(kxx + kyy) (12.9a)

+ S(kx, ky) sin(kxx + kyy)].

The coefficients are given by

C(kx, ky) =
∫ ∞

−∞
dx

∫ ∞

−∞
dyf (x, y) cos(kxx + kyy),

(12.9b)

S(kx, ky) =
∫ ∞

−∞
dx

∫ ∞

−∞
dyf (x, y) sin(kxx + kyy).

(12.9c)

The Fourier transforms of the functions in the convolu-
tion are related by equations similar to those for the one-
dimensional convolution.

Cg(kx, ky) = Cf (kx, ky)Ch(kx, ky)

−Sf (kx, ky)Sh(kx, ky),

Sg(kx, ky) = Cf (kx, ky)Sh(kx, ky)

+Sf (kx, ky)Ch(kx, ky).

(12.10)

With complex notation we would define the two-
dimensional Fourier transform pair by

F(kx, ky) =
∫ ∞

−∞

∫ ∞

−∞
f (x, y)e−i(kxx+kyy) dxdy,

f (x, y) =
(

1

2π

)2 ∫ ∞

−∞

∫ ∞

−∞
F(kx, ky)e

i(kxx+kyy)dkxdky,

(12.11a)
and the convolution theorem would be

G(kx, ky) = F(kx, ky)H(kx, ky). (12.11b)

12.2 The Relationship Between the Object
and the Image

12.2.1 Point Spread Function

Suppose that an object in the x′y′ plane is described by
a function L(x′, y′) that varies from place to place on the
object. The image is

Eimage(x, y) =
�

L(x′, y′)h(x, y; x′, y′) dx′dy′. (12.12)

Function h is called the point spread function. The point
spread function tells how information from a point source
at (x′, y′) spreads out over the image plane. It receives its
name from the following. If we imagine that the object is a
point described by L(x′, y′) = Lδ(x′ − x′

0)δ(y
′ − y′

0), then
integration shows that

Eimage = h(x, y; x′
0, y

′
0).

The point spread function has the same functional form as the
image from a point source, just as did the impulse response
in one dimension.

You can verify that the point spread function for an ideal
imaging system with magnification m is

h(x, y; x′, y′) = m2δ(x − mx′)δ(y − my′). (12.13)

The δ functions pick out the values (x′ = x/m, y′ = y/m) in
the object plane to contribute to the image at (x, y). You can
make the verification by substituting Eq. 12.13 in Eq. 12.12
and using the properties of the δ function from Eq. 11.64.

This discussion assumes that intensities add. This is true
when the oscillations of the radiant energy (such as the elec-
tric field for light waves) have random phases lasting for a
time short compared to the measurement time. Such radiant
energy is called incoherent.1

We have already seen that when the impulse response in
a one-dimensional system depends on coordinate differences
such as t − t ′ (or x − x′ or x −mx′), the system is stationary.
In this case it is also said to be space invariant: changing the
position of the object changes the position of the image but
not its functional form. Stationarity is easier to obtain in a
system such as a hi-fi system than in an imaging system, but
we usually assume that it holds in an imaging system as well.
For a space-invariant system

Eimage(x, y) =
�

L(x′, y′)h(x − mx′, y − my′) dx′ dy′.
(12.14)

1 These arguments also work for coherent radiation, where the phases
are important, but the point spread function is for the amplitude of the
wave instead of the square of the amplitude (intensity). The calculation
then gives rise to interference and diffraction effects.
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This is a two-dimensional convolution. The convolution
theorem is

Cimage(kx, ky) = Cobject(kx, ky)Ch(kx, ky)

−Sobject(kx, ky)Sh(kx, ky),

Simage(kx, ky) = Cobject(kx, ky)Sh(kx, ky)

+Sobject(kx, ky)Ch(kx, ky).

(12.15)

12.2.2 Optical, Modulation, and Phase
Transfer Functions

The optical transfer function (OTF) is the Fourier trans-
form of the point spread function, Ch(kx, ky) and Sh(kx, ky).
It is analogous to the transfer function for an amplifier
(Sect. 11.15). The modulation transfer function (MTF) is the
amplitude of the OTF:

MTF(kx, ky) =
[
C2

h(kx, ky) + S2
h(kx, ky)

]1/2
. (12.16)

The phase transfer function is

PTF(kx, ky) = tan−1
(

Sh(kx, ky)

Ch(kx, ky)

)
. (12.17)

Often the transfer functions are normalized by dividing them
by their value at zero spatial frequency.

The modulation transfer function can be measured by
using a set of objects for which L varies sinusoidally at dif-
ferent spatial frequencies. The property L cannot be negative
and must be offset by a zero-frequency component:

L(x, y) = a + b cos(kxx + kyy), 0 < b < a. (12.18)

The image is described by

E = MTF(0, 0)a

+ MTF(kx, ky)b cos
[
kxx + kyy + φ(kx, ky)

]
. (12.19)

The modulation of the object is defined to be

(modulation) = Lmax − Lmin

Lmax + Lmin
= (a + b) − (a − b)

(a + b) + (a − b)
= b

a
.

(12.20)
A similar expression defines the modulation of the image.
The modulation transfer function is the ratio of the modula-
tion of the image divided by the modulation of the object.
The phase of the optical transfer function describes shifts of
the phase of the image at each angular frequency along the
appropriate axis. It is fully as important as the amplitude,
since it describes the evenness or oddness of the image about
its stated origin.

The modulation transfer function of an ideal system
would be flat for all spatial frequencies. However, there is

Fig. 12.1 The point spread function and modulation transfer func-
tion for a diffraction-limited circular aperture. (Source: Williams and
Becklund 1972). Used by permission of the authors

M
T

F

k

Diffraction Limit

12

Fig. 12.2 Three possible modulation transfer functions. The top one
is the diffraction limit for monochromatic light. (Compare it with
Fig. 12.1.) Curve 2 is higher than curve 1 at the highest value of k

shown, but an image produced by system 2 would not have as much
“punch.” It has less content at the middle spatial frequencies

an upper limit imposed by diffraction, if nothing else. Fig-
ure 12.1 shows the point spread function and MTF for a
diffraction-limited case. Figure 12.2 shows three possible
modulation transfer functions for an imaging system. The
upper one represents the diffraction limit. It has the same
general shape as in Fig. 12.1. Curves 1 and 2 might be for
real systems. While the second system transmits more of the
highest spatial frequencies, it transmits less of the midrange
frequencies, and its image would not have as much “punch”
as the first system. Figure 12.3 shows the modulation trans-
fer functions of several photographic films, with (a) being the
most sensitive and (e) the least sensitive but with the high-
est resolution. Photographers are well aware of the trade-off
between speed and resolution in film. Fast films are “more
grainy” than slow films.

A complex imaging system may have several compo-
nents, just as the hi-fi system did. If the system is linear, the
modulation transfer function for the combined system is the
product of the modulation transfer functions for each com-
ponent. The optical transfer functions combine according to
equations like Eq. 12.10.
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Fig. 12.3 Some representative modulation transfer functions for var-
ious photographic films, showing how the resolution decreases as the
film sensitivity increases. Film (a) has the greatest sensitivity and worst
resolution. Film (e) is the least sensitive (“slowest”) and has the best
resolution. (With permission from Shaw 1979)

Fig. 12.4 The point spread function. Two impulse sources of different
heights are shown in the object plane. The response to them is shown in
the image plane

Fig. 12.5 The line spread function. Two line sources are shown in the
object plane. The response to them is shown in the image plane

12.2.3 Line and Edge Spread Functions

The line spread function is the response of a system to a
line object in the object plane. In general, the system is not
isotropic and the line spread function depends on the orien-
tation of the line. The Fourier transform of the line spread
function along the y axis is Ch(kx, 0) and Sh(kx, 0). Figure
12.4 shows a geometrical interpretation of the point spread
function. Figure 12.5 shows the line spread function. The
edge spread function is the response to an object that is a
step function. All of these functions are interrelated. A dis-
cussion of how one can be obtained from another is found in
many places, including Chap. 9 of Gaskill (1978).

12.3 Spatial Frequencies in an Image

There are some universal relationships between the spatial
frequencies present in an image and the character of the
image. These relationships hold whether the image is a pho-
tograph, an x-ray film, a computed tomographic scan, an
ultrasound or nuclear medicine image, or a magnetic res-
onance image. In this section we describe these general
relationships, which we will use throughout the rest of the
book.

The first general relationship concerns the size of an
image and the lowest spatial frequency present. For simplic-
ity, consider the x direction and the corresponding spatial
frequencies k. The object is nonperiodic. But its image is
represented by a Fourier series which has period L. We saw
in Chap. 11 that if the lowest angular frequency present
is ω0, the period is T = 2π/ω0. The lowest spatial fre-
quency present (other than zero) is k0 = 2π/L. The series
has harmonics with separation �k = k0. This leads to the
fundamental relationship

L = 2π

k0
. (12.21)

The lowest spatial frequency present (which equals the sepa-
ration of the spatial frequencies) is related to the size of the
image L (the “field of view” or FOV).

The second general relationship concerns the spatial reso-
lution in an image and the highest spatial frequency present.
If the image has N discrete samples, then the sampling in-
terval or spatial resolution is �x = L/N. This allows (or
requires) the determination of N/2 cosine coefficients and
N/2 sine coefficients (see Sect. 11.4). The highest spatial
frequency present is kmax = N�k/2. We obtain

�x = L

2

�k

kmax
= π

kmax
. (12.22)

The spatial resolution is inversely proportional to the highest
spatial frequency present. As we saw for the Fourier series
representing a square wave, the higher harmonics give fine
detail and sharpness to the image.

To reiterate: The lowest spatial frequency in the image de-
termines the field of view. The lower the minimum spatial
frequency, the larger the field of view. The highest spatial
frequency in the image determines the resolution. The higher
the maximum spatial frequency, the finer the resolution.

Here are a number of pictures that show how changing
the coefficients in certain regions of k space affect an image.
Figure 12.6b shows a transverse scan of a head by magnetic
resonance imaging. This is a normal image to compare with
the following figures. It consists of 256 samples in each di-
rection or 256 × 256 pixels. The magnitude of its Fourier
transform is shown in Fig. 12.6a. Figure 12.7 shows the
cosine and sine coefficients in the expansion.

Figures 12.8 and 12.9 show what happens when the high-
frequency Fourier components are removed. In the first case
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Fig. 12.6 A magnetic resonance imaging head scan: a The squared
amplitude C2 + S2 in k space. b The image. This is a normal image
to compare with the following figures. Prepared by Mr. Tuong Huu
Le, Center for Magnetic Resonance Research, University of Minnesota.
Thanks also to Prof. Xiaoping Hu

Fig. 12.7 The sine and cosine coefficients for the image in Fig. 12.6.
a C(kx, ky). b S(kx, ky). Prepared by Mr. Tuong Huu Le, Center for
Magnetic Resonance Research, University of Minnesota. Thanks also
to Prof. Xiaoping Hu

Fig. 12.8 The image that results when the high-frequency Fourier
components above kx max/2 and ky max/2 are removed. Note the blur-
ring compared to Fig. 12.6. Prepared by Mr. Tuong Huu Le, Center for
Magnetic Resonance Research, University of Minnesota. Thanks also
to Prof. Xiaoping Hu

Fig. 12.9 The image that results when the high-frequency Fourier
components above kx max/4 and ky max/4 are removed. The blurring
is even greater. Prepared by Mr. Tuong Huu Le, Center for Magnetic
Resonance Research, University of Minnesota. Thanks also to Prof.
Xiaoping Hu

Fig. 12.10 The image that results when the low-frequency Fourier
components below kx max/4 and ky max/4 are removed. Prepared by Mr.
Tuong Huu Le, Center for Magnetic Resonance Research, University of
Minnesota. Thanks also to Prof. Xiaoping Hu

they have been removed above kx max/2 and ky max/2. In
the second they are removed above kx max/4 and ky max/4.
Compare the blurring in these figures with the original
image.

When the low-frequency coefficients are set to zero as in
Fig. 12.10, only the high-frequency edges remain. In this
case the Fourier components below kx max/4 and ky max/4
have been set to zero. (Keeping the same values of kx max

and �k and removing the information on those coefficients
keeps the field of view the same.)

Figure 12.11 shows the artifact that results from set-
ting every other Fourier coefficient to zero: “ghost” images
(Buonocore and Gao 1977). In the first case alternate Fourier
coefficients have been removed in kx space; in the second
they have been removed in both kx and ky .
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Fig. 12.11 The Fourier coefficients for every other value of k have
been set to zero which leads to ghost images. a Every other value of kx

has been removed. b Every other value of both kx and ky has been re-
moved. Prepared by Mr. Tuong Huu Le, Center for Magnetic Resonance
Research, University of Minnesota. Thanks also to Prof. Xiaoping Hu

Fig. 12.12 a Function F(x) is the integral of f (x, y) over all y. b The
scan is repeated at angle with the x axis

12.3.1 Summary

In summary: The lowest spatial frequency in the image de-
termines the field of view. The lower the minimum spatial fre-
quency, the larger the field of view. Low spatial frequencies
provide shape, contrast, and brightness.

The highest spatial frequency in the image determines
the resolution. The higher the maximum spatial frequency,
the finer the resolution. High spatial frequencies provide
resolution, edges, and sharp detail.

12.4 Two-Dimensional Image Reconstruction
from Projections by Fourier Transform

The reconstruction problem can be stated as follows. A func-
tion f (x, y) exists in two dimensions. Measurements are
made that give projections: the integrals of f (x, y) along
various lines as a function of displacement perpendicular to
each line. For example, integration parallel to the y axis gives

a function of x,

F(x) =
∫ ∞

−∞
f (x, y) dy, (12.23)

as shown in Fig. 12.12. The scan is repeated at many different
angles θ with the x axis, giving a set of functions F(θ, x′),
where x′ is the distance along the axis at angle θ with the x

axis. The problem is to reconstruct f (x, y) from the set of
functions F(θ, x′). Several different techniques can be used.
A detailed reference is the book by Cho et al. (1993).

We will consider two of these techniques: reconstruction
by Fourier transform, where the Fourier coefficients are ob-
tained from projections (in this section), and filtered back
projection (Sect. 12.5).

The Fourier transform technique is easiest to understand.
Consider Eqs. 12.9. If ky = 0 in Eq. 12.9b, the result is

C(kx, 0) =
∫ ∞

−∞
cos(kxx)dx

∫ ∞

−∞
f (x, y)dy

=
∫ ∞

−∞
cos(kxx)F (θ = 0, x)dx. (12.24)

Similarly

S(kx, 0) =
∫ ∞

−∞
sin(kxx)F (0, x)dx. (12.25)

To state this in words: the Fourier transform of F(0, x) de-
termines the sine and cosine transforms of f (x, y) along the
line ky = 0 (the kx axis) in the spatial frequency plane. This
is shown in Fig. 12.13.

A scan in another direction can be Fourier-transformed to
give C and S at an angle θ with the kx axis. The Fourier
transform of the projection at angle θ is equal to the two-
dimensional Fourier transform of the object, evaluated in the
direction θ in Fourier transform space. This result is known
as the projection theorem or the central slice theorem (Prob-
lem 20). The transforms of a set of projections at many
different angles provide values of C and S throughout the
kxky plane that can be used in Eq. 12.9a to calculate f (x, y).
In Chap. 18 we will find that the data from an MRI scan give
the functions C(kx, ky) and S(kx, ky) directly.

In practice, the transforms are discrete. Using the no-
tation that includes the redundant frequencies above N/2
and makes the coefficients half as large (Eqs. 11.27), the
two-dimensional discrete Fourier transform (DFT) is2

fjk =
N−1∑

l=0

N−1∑

m=0

Clm cos

[
2π(j l + km)

N

]
(12.26a)

2 In this notation the low frequencies occur for low values of the indices
l and m. Usually, as in Figs. 12.6, 12.7, 12.8, 12.9, 12.10,and 12.11, the
indices are shifted so k = 0 occurs in the middle of the sum.
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Fig. 12.13 The Fourier transform of F(θ = 0, x) = ∫
f (x, y)dy

gives Fourier coefficients C and S along the kx axis (ky = 0). The
Fourier transform of scans at other angles θ give C and S along
corresponding lines in the kxky plane

l

m

Fig. 12.14 The two-dimensional Fourier reconstruction requires val-
ues of C and S at the lattice points shown. The Fourier transforms of
the projections F(θ, x) give the coefficients along the circular arcs.
Interpolation is necessary to do the reconstruction

+
N−1∑

l=0

N−1∑

m=0

Slm sin

[
2π(j l + km)

N

]
.

The coefficients are given by

Clm = 1

N2

N−1∑

j=0

N−1∑

k=0

fjk cos

[
2π(j l + km)

N

]
, (12.26b)

Slm = 1

N2

N−1∑

j=0

N−1∑

k=0

fjk sin

[
2π(j l + km)

N

]
. (12.26c)
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Fig. 12.15 The principle of back projection. Each point in the image
is generated by summing all values of F(θ, x′) that projected through
that point. For point A at the center of rotation, the appropriate value of
x′ is the same at each angle. For other points such as B, the value of x′
is different at each angle

Making a DFT of the projections gives values for C

and S that lie on the circles in Fig. 12.14. But taking the
inverse transform to calculate the reconstructed image re-
quires values at the lattice points. They are obtained by
interpolation (see Problem 23). The details of how the inter-
polation is made are crucial when using the Fourier transform
reconstruction technique.

12.5 Reconstruction from Projections by
Filtered Back Projection

Filtered back projection is more difficult to understand than
the direct Fourier technique.3 It is easy to see that every
point in the object contributes to some point in each projec-
tion. The converse is also true. In a back projection every
point in each projection contributes to some point in the re-
constructed image. This can be seen from Fig. 12.15, which
shows two points A and B and three projections. For point
A, which is at the center of rotation, the relevant value of x′
is the same in each projection, while for point B the value of
x′ is different in each projection.

A very simple procedure would be to construct an im-
age by back-projecting every projection. The back projection
fb(x, y) at point (x, y) is the sum of F(θ, x′) for every pro-
jection or scan, using the value of x′ that corresponds to the
original projection through that point. That is, for Fig. 12.15,
the back projection at point A would be the sum of the three
values for which the solid projection lines intersect the scans,

3 A simple experiment on back-projection using a laser pointer is
described by Delaney and Rodriguez (2002).
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Fig. 12.16 By considering components of the coordinates of point P

in both coordinate systems, one can derive the transformation equations,
Eqs. 12.27 and 12.28

while for point B it would be the sum of the values where the
three dashed lines strike the scans. This gives a rather crude
image, but we will see how to refine it.4

Figure 12.16 shows how to relate the values of x′ and y′
for a projection at angle θ to the object or image coordinates
x and y. The transformations are

x′ = x cos θ + y sin θ,

y′ = −x sin θ + y cos θ,
(12.27)

and the inverse transformations are

x = x′ cos θ − y′ sin θ,

y = x′ sin θ + y′ cos θ.
(12.28)

The projection at angle θ is integrated along the line y′:

F(θ, x′) =
∫

f (x, y) dy′

=
∫

f (x′ cos θ − y′ sin θ, x′ sin θ + y′ cos θ)dy′.

(12.29)

The process of calculating F(θ, x′) from f (x, y) is some-
times called the Radon transformation. When F(θ, x′) is
plotted with x′ on the horizontal axis, θ on the vertical axis,
and F as the brightness or height on a third perpendicular
axis, the resulting picture is called a sinogram. For exam-
ple, the projection of f (x, y) = δ(x − x0)δ(y − y0) is
F(θ, x′) = δ(x′ − (x0 cos θ +y0 sin θ)). A plot of this object
and its sinogram is shown in Fig. 12.17.

4 To see why it is crude, suppose the original object is a disk at the
origin. Every projection will be the same because of the symmetry
in angle. Every back projection will lay down a contribution to the
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Fig. 12.17 An object and its sinogram. The object is a δ function at
(x0, y0). a The object and the path of a projection at angle θ . b A sino-
gram of the object F(θ, x′). The value of F would be plotted on an axis
perpendicular to the x′θ plane. The line shows the values of θ and x′
for which F is nonzero

The definition of the back-projection is

fb(x, y) =
∫ π

0
F(θ, x′) dθ, (12.30)

where x′ is determined for each projection by using
Eq. 12.27. The limits of integration are 0 and π since the
projection for θ + π repeats the projection for angle θ .

We will now show that the image fb(x, y) obtained by
taking projections of the object F(θ, x′) and then back-
projecting them is equivalent to taking the convolution of the
object with the function h(x − x′, y − y′) = 1/r , where r is
the distance in the xy plane from the object point to the image
point. Function h depends only on the distance between the
object and image points. This is discussed in greater detail
by Barrett and Myers (2004, p. 280). To simplify the alge-
bra, we find the back projection at the origin. We want the
set of projections for x′ = 0 as a function of scan angle θ .
They are, from Eq. 12.29,

F(θ, 0) =
∫ ∞

−∞
f (−y′ sin θ, y′ cos θ) dy′. (12.31)

In terms of angle θ ′ = θ + π/2 which is the angle from the
x axis to the y′ axis,

F(θ ′, 0) =
∫ ∞

−∞
f (y′ cos θ ′, y′ sin θ ′) dy′.

The arguments of f look very much like components of
a vector, with magnitude r ′ and components r ′ cos θ ′ and
r ′ sin θ ′. This suggests expressing the integral in polar co-
ordinates. Since y′ is a dummy variable, call it r ′. In terms of
r ′ and θ ′ the projection is

image along a stripe. Even though the reconstructed image will be
largest where the original circle was, the image will have nonzero values
throughout the image plane. We will see this example in Sect. 12.6.
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 θ '  y '

(a) (b)

Fig. 12.18 Integration for the back projection is over y′ from −∞ to
+∞, as shown in a. This can be converted to an integral from 0 to ∞ if
the angular integration is taken from 0 to 2π, as shown in b

F(θ ′, 0) =
∫ ∞

−∞
f (r ′, θ ′) dr ′ . (12.32)

Inserting this expression in Eq. 12.30 gives for the back
projection

fb(0, 0) =
∫ π

0
F(θ ′, 0)dθ ′ =

∫ ∞

−∞

∫ π

0
f (r ′, θ ′) dr ′ dθ ′.

(12.33)
Figure 12.18a shows how y′ (that is, r ′) is integrated from
−∞ to ∞ while θ ′ goes from 0 to π. For the purposes
of Eq. 12.33 the limits of integration can be changed as in
Fig. 12.18b. Variable r ′ can range from 0 to ∞ while θ ′ goes
from 0 to 2π. Then the expression for fb looks even more
like an integration in polar coordinates:

fb(0, 0) =
∫ ∞

0

∫ 2π

0
f (r ′, θ ′) dr ′ dθ ′.

There is still one difference between this and polar coor-
dinates. The element of area, which is dx′dy′ in Cartesian
coordinates, is r ′dr ′dθ ′ in polar coordinates. Therefore, let
us rewrite this as

fb(0, 0) =
∫ ∞

0

∫ 2π

0

(
f (r ′, θ ′)

r ′

)
r ′ dr ′ dθ ′. (12.34)

We now change to the Cartesian variables x′ and y′. The
back-projected image at the origin is

fb(0, 0) =
∫ ∞

−∞

∫ ∞

−∞
f (x′, y′)

(x′2 + y′2)1/2
dx′ dy′. (12.35)

For an arbitrary point (x, y) the result is similar:

fb(x, y) =
∫ ∞

−∞

∫ ∞

−∞
f (x′, y′)

[
(x − x′)2 + (y − y′)2

]1/2
dx′ dy′.

(12.36)
We have shown that the image obtained by taking projections
of the object F(θ, x′) and then back projecting them is equiv-
alent to taking the convolution of the object with the function

h(x − x′, y − y′) = 1/r , where r is the distance in the xy

plane from the object point to the image point.
The back-projected image is not a faithful reproduction

of the object. But it is possible to manipulate the projections
F(θ, x′) to produce a function G(θ, x′) whose back projec-
tion is the desired f (x, y). This is the process of filtering
before making the back projection. To find the relationship
between F and the desired function G, note that there is some
function g(x, y) that we do not know, but which, when pro-
jected and then back projected, yields the desired function
f (x, y). That is,

f (x, y) = gb(x, y) = (12.37)
∫ ∞

−∞

∫ ∞

−∞
g(x′, y′)

[
(x − x′)2 + (y − y′)2

]1/2
dx′ dy′.

Equations 12.10 relate the Fourier coefficients of f , g, and
h(r) = 1/r:

Cf (kx, ky) = Cg(kx, ky)Ch(kx, ky) − Sg(kx, ky)Sh(kx, ky),

Sf (kx, ky) = Cg(kx, ky)Sh(kx, ky) + Sg(kx, ky)Ch(kx, ky).

These can be solved for

Sg = ChSf − ShCf

C2
h + S2

h

,

Cg = ChCf + ShSf

C2
h + S2

h

.

(12.38)

One can show by direct integration (see Problem 31) that the
Fourier transform of h(r) = 1/r is

Ch(kx, ky) = 2π(k2
x + k2

y)
−1/2,

Sh(kx, ky) = 0,
(12.39)

so that

Cg(kx, ky) = 1

2π
(k2

x + k2
y)

1/2Cf (kx, ky),

Sg(kx, ky) = 1

2π
(k2

x + k2
y)

1/2Sf (kx, ky).

(12.40)

If function g(x, y) were known and were projected to
give G(θ, x′), then back-projecting G would give the desired
f (x, y). The final step is to relate G(θ, x′) and F(θ, x′) so
that we do not have to know g(x, y). To establish this rela-
tionship, consider a projection on the x axis. Equations 12.24
and 12.25 show that

F(0, x) = 1

2π

∫ ∞

−∞
[
Cf (kx, 0) cos(kxx) + Sf (kx, 0) sin(kxx)

]
dkx,
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while

G(0, x) = 1

2π

∫ ∞

−∞
[
Cg(kx, 0) cos(kxx) + Sg(kx, 0) sin(kxx)

]
dkx.

Equations 12.40 relate the Fourier coefficients for F and G.
For ky = 0, (k2

x + k2
y)

1/2 = |kx |. Therefore

G(0, x) =
(

1

2π

)2 ∫ ∞

−∞
[
Cf (kx, 0) cos(kxx)

+Sf (kx, 0) sin(kxx)
] |kx | dkx. (12.41)

This result is independent of the choice of axis, so it must be
true for any projection. There is a function h(x) which can
be convolved with any F(θ, x) to give the desired function
G(θ, x). Equation 12.41 shows that

Cg(kx, 0) = Cf (kx, 0) |kx | /2π,

Sg(kx, 0) = Sf (kx, 0) |kx | /2π.

Comparison with Eqs. 12.9 shows that

Ch = |kx | /2π, Sh = 0.

Therefore

h(x) =
(

1

2π

)2 ∫ ∞

−∞
|kx | cos(kxx) dkx.

Because the integrand is an even function, we can multiply
by 2 and integrate from zero to infinity. The integral to infin-
ity does not exist. However, there is some maximum spatial
frequency, roughly the reciprocal of the resolution we want,
which we call kx max. We can therefore cut the integral off at
this maximum spatial frequency and obtain

h(x) = 1

2π2

∫ kx max

0
kx cos(kxx) dkx

= 1

2π2

[
cos(kxx)

x2
+ kx sin(kxx)

x

]kx max

0

= k2
x max

(2π)2

[
2 sinc(ξ) − sinc2(ξ/2)

]
, (12.42)

where ξ = kx maxx and sinc(ξ) = sin(ξ)/ξ . The function
h(x) is plotted in Fig. 12.19. Using a sharp high-frequency
cutoff introduces some problems, which are described below
and which are easily overcome.

To summarize: If each projection F is convolved with the
function h of Eq. 12.42 and then back-projected, the back-
projected image is equal to the desired image.

Figure 12.20 summarizes the two methods of reconstruct-
ing an image from projections.
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20151050
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k = 0
k = 1 k = 3 k = 5

Fig. 12.19 The weighting function h(x) of Eq. 12.42. The bars show
the nonzero values for the example in Sect. 12.6
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Fig. 12.20 A summary of the two methods for reconstructing an image

12.6 An Example of Filtered Back Projection

It is not difficult to write a computer program to perform fil-
tered back projection if execution speed is not a concern. For
our example we will use an object with circular symmetry,
so that every projection is equivalent and only one projection
needs to be convolved with the weighting function h. Be-
cause of the circular symmetry the back projection is needed
only along one diameter. The program shown in Fig. 12.21
was used to reconstruct the image.

The “top-hat” function is used as the object:

f (x, y) =
{

1, x2 + y2 < a2

0, otherwise.
(12.43)

The projection is independent of θ : F(x) = 2(a2−x2)1/2 for
x2 < a2. Procedure CalcF evaluates F(x) for 100 points.
Variables x and i are related by x = 2i/N − 1, so that x

ranges from −1 to 1 as index i goes from 0 to 100. The value
of a is 0.5.

The convolution is done by procedure Convolve, which
uses convolving function h to operate on function F to pro-
duce G. The discrete form of h is obtained from Eq. 12.42
by the following argument, originally due to Ramachandran



356 12 Images

Fig. 12.21 The program used to make a filtered back projection of a circularly symmetric function
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Fig. 12.22 Reconstruction of a circularly symmetric image by filtered
back projection. a The projection F(x). b The convolved projection
G(x). c The image from back-projecting the convolved data

and Lakshminarayanan (see Cho et al. 1993, p. 80). Variable
x is considered on the interval (−1, 1), so the period is 2 and
ω0 = π. The maximum spatial frequency is kx max = Nπ/2.
The value of x in the weighting function h(x) depends on the
value of index k = i − j : xi − xj = 2(i − j)/N = 2k/N .
Therefore ξ = kx maxx = (Nπ/2)(2/N)k = πk, where k is
an integer. From Eq. 12.42 we obtain

h(k) =
⎧
⎨

⎩

N2/16, k = 0
0, k even

−N2/4k2π2 k odd.
(12.44)

Procedure Convolve replaces the integral of Eq. 12.4a by a
sum. The factor dx in the integral becomes 1/N in the sum.

Procedure BackProject forms the image from G. One
hundred eighty projections are done in 1 ◦ increments from 0
to 179. The value of x is determined from x = i cos θ , but it
is shifted so that the rotation takes place about i = 50. Unless
x is at the end points, the value of G is obtained by linear
interpolation. The value of �θ used to convert the integral to
a sum is π/180.

Procedure PrintData writes the data for the plots
shown in Fig. 12.22. One can see from inspection of
Fig. 12.22 how the convolution converts the semicircular
projection F into a function G that is flat-topped over the

Fig. 12.23 Reconstruction by simple back projection without convo-
lution. The object is the same as in Fig. 12.22

Fig. 12.24 An early CT brain scan, showing ringing inside the skull.
Photograph courtesy of St. Paul Radiology Associates, St. Paul, MN

Fig. 12.25 Brain scans using a gradual high-frequency cutoff to elim-
inate ringing. Photograph courtesy of Prof. J. T. Payne, Department of
Diagnostic Radiology, University of Minnesota
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Fig. 12.26 Anatomic features shown in Fig. 12.25

region of nonvanishing f and has a negative contribution in
the wings. Figure 12.23 shows what the image looks like
if the back projection is done without first performing the
convolution.

One can also see from Fig. 12.22 that ringing is intro-
duced at the sharp edges. This is characteristic of the sharp
high-frequency cutoff at kx (similar to the Fourier series rep-
resentation of a square wave with only a finite number of
terms). Early computer tomography (CT) scans created with
the convolution function presented here showed a dark band
just inside the skull where there was an abrupt change in
f (x, y) upon going from bone to brain (Fig. 12.24). A grad-
ual high-frequency cutoff changes the details of h(k) and
eliminates this ringing (Fig. 12.25). Fig. 12.26 shows the
anatomic details of Fig. 12.25.

Symbols Used in Chap. 12
Symbol Use Units First

used
page

a, b Constants 348
a Radius of “top-hat” function m 355
b′ Length of object m 346
f, g Arbitrary functions 345
fb, gb Back-projected images of f, g 353
h Point spread function; impulse

response for convolution
345

i
√−1 347

j, k Subscript indices for data 352
k, kx, ky Spatial frequencies m−1 346
l, m Subscript indices for Fourier

coefficients
351

m Magnification 347
t, t ′ Time or arbitrary variable 345

x, y, x′, y′ Distance; coordinates in image
or object plane; rotated
coordinate system for image
reconstruction

m 346

A Amplitude 346
Cf Fourier cosine transform of

function f

346

D Length of image m 349
E Function describing an image 347
F Projection of function f 351
F,G,H Complex Fourier transforms of

f, g, h

347

L Property describing an object 347
L Width of image or Field of View

(FOV)
m 349

N Total number of data points;
number of discrete values in one
dimension of an image

349

Sf Fourier sine transform of
function f

346

T Period s 346
δ(t) Dirac delta function s−1 345
λ Wavelength m 346
φ Phase 346
θ, θ ′ Angle 351
τ1 Time constant s 346
ω,ω0 Angular frequency (radian)

s−1
346

ξ Dummy variable 353

Problems

Section 12.1

Problem 1. Compare Eq. 12.4a to Eqs. 4.73 and 7.21 and
deduce the impulse response for those two systems.
Problem 2. Except for the minus sign, Eq. 12.4a is the
same integral that defines the cross-correlation function.
There are some important differences, however. Show that
the convolution function is commutative—interchanging the
order of variables gives the same result—but that the cross-
correlation function is not.
Problem 3. (a) Use the convolution integral, Eq. 12.4a, to
calculate the convolution g(t) of the function h(t − t ′) in Eq.
12.5 with

f (t) =
{

1,

0,

0 < t < T,

otherwise
.

Plot f (t) and g(t).
(b) Calculate the Fourier transform of g(t), h(t − t ′), and

f (t) from part (a), and show that they obey Eq. 12.6a.
Problem 4. Fill in the details in the derivation of Eq. 12.6a.
Problem 5. Use the convolution integral to calculate g(x)

from h(x − x′) = a/[a2 + (x − x′)2] and f (x) = cos(kx).
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Interpret this physically as a spatial frequency filter. Hint:

∫ ∞

−∞
cos(ky)dy

y2 + b2
= π

b
e−kb,

∫ ∞

−∞
sin(ky)dy

y2 + b2
= 0.

Problem 6. If you are familiar with complex variables, use
the definition of the Fourier transform in Eq. 12.11a to prove
the convolution theorem, Eq. 12.11b.
Problem 7. What are the two-dimensional images whose
Fourier transforms are shown?

C = δ(kx −k0)δ(ky )

S = 0

kx

ky

C

= δ(kx − k0)δ(ky )S
= 0

kx

ky

kx

ky

(a)

(b)

(c)

θ

S = 0

C = δ(k − k0x cos θ)
δ(k − k0y sin θ)

Problem 8. Calculate the two-dimensional Fourier trans-
form of the function

f (x, y) =
{

1,

0,

−a/2 < x < a/2, −b/2 < y < b/2,

otherwise.

Plot f (x, y) vs x and y and Cf (kx, ky) vs kx and ky for
a = 2b.
Problem 9. Calculate the two-dimensional Fourier trans-
form of the function

f (x, y) = sech
(x

a

)
sech

(y

b

)
.

You may need the relationship

∫ ∞

0
sech(uz) cos(vz)dz = π

2u
sech

(πv

2u

)
.

Problem 10. Calculate the two-dimensional Fourier trans-
form of the function

f (x, y) =
{

1,

0,

√
x2 + y2 < a,√
x2 + y2 > a.

Hint: convert to polar coordinates in both the xy and kxky

planes, and use the facts that

J0(u) = 1

2π

∫ 2π

0
cos(u cos v)dv,

∫
uJ0(u)du = uJ1(u),

where J0 and J1 are Bessel functions of order zero and order
one. Bessel functions are tabulated and have known proper-
ties, similar to trigonometric functions. See Abramowitz and
Stegun (1972), p. 360.

Section 12.2

Problem 11. Complete the verification of Eq. 12.13 sug-
gested in the text.
Problem 12. Find the Fourier transform of the point spread
function for the ideal imaging system, Eq. 12.13.
Problem 13. Use Eq. 12.15 to show that the sum of the
squares of the Fourier coefficients of the image is equal to
the sum of the squares of the Fourier coefficients of the ob-
ject times the square of the modulation transfer function, for
a given set of spatial frequencies (kx ,ky).
Problem 14. Write the modulation of the image in terms of
the variables in Eq. 12.19.
Problem 15. How does magnification m change the spatial
frequencies in going from object to image? Since one is con-
cerned about seeing detail in the object, resolution and spatial
frequencies are usually converted to object coordinates in
medical imaging, while they are left in terms of the detector
coordinates in photography.

Section 12.3

Problem 16. This problem shows how increasing the detail
in an image introduces high-frequency components. Find the
continuous Fourier transform of the two functions

f1(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, x < 0,

1, 0 < x < 1,

0, x > 1
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f2(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x < 0,
√

3/2, 0 < x < 1/3,

0, 1/3 < x < 2/3,
√

3/2, 2/3 < x < 1,

0, x > 1.

Plot a(kx) = [
C2(kx) + S2(kx)

]1/2
for each function using

a spreadsheet or plotting package, for the range −45 < kx <

45. Compare the features of each plot. Both functions have
the same value of

∫∞
−∞ f 2(x)dx.

Problem 17. To see the blurring effect shown in Fig. 12.8
consider a one-dimensional problem. Let y0 = 1 and yj = 0
for j = 1, 2, . . . , 7. Use Eqs. 11.27b and 11.27c to calcu-
late the discrete Fourier transform of this function ak and bk

for k = 0, 1, 2, . . . , 7. Then remove the high frequencies by
setting ak = bk = 0 for k = 2, 3, 4, . . . , 6, as was done in
Fig. 12.8. (Note that the k = 7 point is equivalent to k = −1
and therefore acts like a “low” frequency.) Use Eq. 11.27a to
calculate new values of yj . Do you get a blurred image?
Problem 18. To see the edge effect in Fig. 12.10, consider
the one-dimensional function defined in Problem 17. After
calculating the discrete Fourier transform ak and bk , remove
the low frequencies by setting ak = bk = 0 for all k except
k = 3, 4, 5 as was done in Fig. 12.10. (Note that the points
k = 6 and 7 are equivalent to k = −2 and k = −1 and there-
fore act like “low” frequencies.) Use Eq. 11.27a to calculate
new values of yj . Do you get an image with edge effects?
Problem 19. To see the ghost image effect in Fig. 12.11,
consider the one-dimensional function described in Problem
17. After calculating the discrete Fourier transform ak and
bk , set ak = bk = 0 for all odd values of k as was done in
Fig. 12.11. Use Eq. 11.27a to calculate new values of yj . Do
you get a “ghost image?”

Section 12.4

Problem 20. Prove the central slice theorem analytically.
Consider the cosine term of the 2-dimensional Fourier trans-
form C(kx, ky) in Eq. 12.9b. Rotate to the primed coordi-
nates given by Eq. 12.28. Note that the area element dxdy

transforms to dx′dy′. Express C as a function of polar co-
ordinates in k-space, kx = k cos θ and ky = k sin θ . Show
that

C(θ, k) =
∫ ∞

−∞
F(θ, x′) cos(kx′)dx′,

S(θ, k) =
∫ ∞

−∞
F(θ, x′) sin(kx′)dx′.

Problem 21. Suppose that f (x, y) is independent of y. Find
expressions for C(kx, ky) and S(kx, ky) and insert them in

the expression for f (x, y) to verify that f (x, y) is recovered.
You will need Eqs. 11.66.
Problem 22. Suppose that the object is a point at the origin,
so that f (x, y) = δ(x)δ(y). Find the projection F(x) and the
transform functions C(kx, 0) and S(kx, 0). Use these results
to reconstruct the image using the Fourier technique.
Problem 23. Figure 12.14 shows that taking the Fourier
transform of the projection F(θ, x′) gives the Fourier co-
efficients C(k, θ) at points along circular arcs in frequency
space. In order to get these coefficients at equally spaced
points in x and y, interpolation is necessary. One simple
method is to use bilinear interpolation (Press et al. 1992).
Suppose you know the Fourier coefficients at points ri =
i�r, θj = j�θ , and you want to get the Fourier coefficients
at points xn = n�x, ym = m�y. For a given xn, ym, con-
vert to polar coordinates to get r and θ , then find the four
known points that “surround” the desired point. The value of
the coefficient is

C(xn, ym) = 1

�r�θ

[
C(ri, θj )(ri+1 − r)(θj+1 − θ)

+C(ri+1, θj )(r − ri)(θj+1 − θ)

+C(ri, θj+1)(ri+1 − r)(θ − θj )

+C(ri+1, θj+1)(r − ri)(θ − θj )
]
.

Suppose C(r, θ) = sin(r)/r , which is also called sinc(r).
If C is known at points with �r = 0.5 and �θ = π/8,
evaluate C at point x = 2, y = 3 using bilinear interpolation.
Compare this result to the exact value of C = sinc((x2 +
y2)1/2). Try this for other points (xn, ym).

Section 12.5

Problem 24. Derive Eqs. 12.27 and 12.28.
Problem 25. An object is described by the function
f (x, y) = e−(x2+y2)/b2

.

(a) Find the Fourier transform C(kx, ky) and S(kx, ky)

directly from Eqs. 12.9 b and c.
(b) Find the projection F(θ, x′) using Eq. 12.29. Then

take the 1-dimensional Fourier transform of F(θ, x′) using
the equations

C(θ, k) =
∫ ∞

−∞
F(θ, x′) cos kx′dx′

S(θ, k) =
∫ ∞

−∞
F(θ, x′) sin kx′dx′.

Use k =
(
k2
x + k2

y

)1/2
to express C and S in terms of kx and

ky. Your answer should be the same as part (a).
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Use the following integral table:

∫ ∞

−∞
e−az2

dz =
√

π

a
∫ ∞

−∞
e−az2

cos bz dz =
√

π

a
e−b2/4a

∫ ∞

−∞
e−az2

sin bz dz = 0.

Problem 26. Assume you have just measured the projection
function F(θ, x′) = π1/2be−(x′−a cos θ)2/b2

. (For this prob-
lem, ignore the fact that your measuring device would only
give F at discrete values of θ and x′.)
(a)Find f (x, y) using the Fourier method. You may need the

integrals from Problem 25.
(b)Qualitatively sketch plots of the object f (x, y) and the

sinogram F(θ, x′). Use a gray scale to indicate the mag-
nitude of f and F .

Problem 27. Repeat Problem 26 using

F(θ, x′) = a
√

π

2
e−x′2/a2

[
1 + cos2 θ

(
2
x′2

a2
− 1

)]
.

Look up any integrals you need.
Problem 28. Suppose an object is a point at the ori-
gin, f (x, y) = δ(x)δ(y). The projection is also a point:
F(θ, x′) = δ(x′). Calculate the back projection fb(x, y)

(without filtering) using Eq. 12.30. To solve the problem, use
this property of δ functions:

δ(g(u)) =
∑

i

δ(u − ui)

|dg/du|u=ui

,

where the ui are the points such that g(ui) = 0. Note that
the back projection is not a point. Back projection without
filtering does not recover the object.
Problem 29. This problem is an extension of Problem 28,
but the object is no longer at the origin. Let f (x, y) = δ(x −
x0)δ(y − y0).
(a)Calculate F(θ, x′). You may need the following proper-

ties of the δ function:
∫

δ(b − z)δ(z − a)dz = δ(b − a),

δ(az) = δ(z)/|a|.
(b)Use the function F(θ, x′) you found in part (a) to calcu-

late the back projection fb(x, y) using Eq. 12.30. You will
need the property of the δ function given in Problem 28.

(c)Show that fb(x, y) is equivalent to the convolution of
f (x, y)with the function 1/

√
(x − x′)2 + (y − y′)2.

Problem 30. Here is an easy way to show that the back pro-
jection fb(x, y) cannot be equivalent to the object f (x, y).
If f (x, y) is dimensionless, determine the units of F(θ, x′)
and fb(x, y). Do f (x, y) and fb(x, y) have the same units?

Problem 31. Consider the Fourier transform of 1/r . The
coefficients are given by

C(kx, ky) =
∫ ∞

−∞

∫ ∞

−∞
dx dy cos(kxx + kyy)

(x2 + y2)1/2
,

S(kx, ky) =
∫ ∞

−∞

∫ ∞

−∞
dx dy sin(kxx + kyy)

(x2 + y2)1/2
.

Transform to polar coordinates (x = r cos θ, y = r sin θ).
Show from symmetry considerations of the angular integral
that S = 0. Use the facts about the Bessel functions in
Problem 10 and

∫ ∞

0
J0(kr)dr = 1/k

to derive Eqs. 12.39. The function J0(x) is a Bessel function
of order zero. It is tabulated and has known properties, simi-
lar to a trigonometric function. See Abramowitz and Stegun
(1972, p. 360).
Problem 32. An object consists of three δ functions at
(0, 2), (

√
3,−1), and (−√

3,−1). Draw the sinogram of the
object.
Problem 33. Let f (x, y) = 1/[(x − a)2 + y2 + b2]. Calcu-
late F(θ, x′). Qualitatively sketch plots of the object f (x, y)

and the sinogram F(θ, x′). Use a gray scale to indicate the
magnitude of f and F .
Problem 34. Let f (x, y) = x/(x2 + y2)2. Calculate
F(θ, x′). Qualitatively sketch plots of the object f (x, y)

and the sinogram F(θ, x′). Use a gray scale to indicate the
magnitude of f and F . Hint:

∫
du

(
u2 + v2

)2 = u

2v2
(
u2 + v2

) + 1

2 |v|3 tan−1
(u

v

)
.

Problem 35. Consider the object f (x, y) =
a/
√

a2 − x2 − y2 for
√

x2 + y2 < a, and 0 otherwise.
(a)Plot f (x, 0) vs x.

(b)Calculate the projection F(θ, x′). Plot F(0, x′) vs x′.
(c)Use the projection from part (b) to calculate the back

projection fb(x, y). Plot fb(x, 0) vs x.
(d)Compare the object and the back projection. Explain

qualitatively how they differ.

Section 12.6

Problem 36. Verify that

F(θ, x) =
{

2
√

a2 − x2, |x| < a

0, |x| > a

is the projection of the function in Eq. 12.43.
Problem 37. Verify Eqs. 12.44.
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Problem 38. Modify the program of Fig. 12.21 and run it
without the convolution.
Problem 39. Modify the program of Fig. 12.21 to recon-
struct an annulus instead of a top-hat function.
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13Sound and Ultrasound

Sound (or acoustics) plays two important roles in our study
of physics in medicine and biology. First, animals hear sound
and thereby sense what is happening in their environment.
Second, physicians use high-frequency sound waves (ultra-
sound) to image structures inside the body. This chapter
provides a brief introduction to the physics of sound and the
medical uses of ultrasound for imaging and therapy. A clas-
sic textbook by Morse and Ingard (1968) provides a more
thorough coverage of theoretical acoustics, and books such
as Hendee and Ritenour (2002) describe the medical uses of
ultrasound in more detail.

In Sect. 13.1, we derive the fundamental equation gov-
erning the propagation of sound: the wave equation. Sec-
tion 13.2 discusses some properties of the wave equation,
including the relationship between frequency, wavelength,
and the speed of sound. The acoustic impedance and its rel-
evance to the reflection of sound waves are introduced in
Sect. 13.3. Section 13.4 describes the intensity of a sound
wave and introduces the decibel intensity scale. The ear and
hearing are described in Sect. 13.5. Section 13.6 discusses
the attenuation of sound waves. Physicians use ultrasound
imaging for medical diagnosis, as described in Sect. 13.7.

13.1 TheWave Equation

In Chap. 1, we assumed that solids and liquids are in-
compressible. If a long rod was truly incompressible, a
displacement of one end would instantly result in an iden-
tical displacement of the other end. In fact, the displacement
does not propagate instantaneously. It travels at the speed of
sound in the rod.

The propagation of sound involves small displacements
of each volume element of the medium from its equilibrium
position. In this section, we consider sound waves propagat-
ing along the x-axis. The results can be generalized to three

x x + dx

  ξ (x + dx,t)  

s  (x,t)n

(a)

(b)

s  (x + dx,t)n

  ξ (x,t)

Fig. 13.1 An elastic rod. a The rod in its equilibrium position. b Each
point on the rod has been displaced from its equilibrium position by an
amount ξ which depends on x and t . As a result there is a normal stress
sn which also depends on x and t

dimensions (see Morse and Ingard 1968). We first consider
an elastic rod, then a fluid in which viscous effects are not
important, and finally, shear waves.

13.1.1 PlaneWaves in an Elastic Rod

The simplest case to consider is an elastic rod which is forced
to move longitudinally at one end. This results in the propa-
gation of a sound wave along the rod. We set up a coordinate
system where x measures distance along the rod from a fixed
origin when no sound wave is traveling along the rod. We
also assume that the disturbance of the rod depends only on
the position along the rod, x, and not on y or z, which are
perpendicular to x. A wave in three dimensions that depends
only on one dimension is called a plane wave.

When the sound travels along the rod, the material at
point x is displaced from its undisturbed position by a small
amount ξ(x, t), as shown in Fig. 13.1. The material origi-
nally at x + dx is displaced by amount ξ(x + dx, t). Since

R. K. Hobbie, B. J. Roth, Intermediate Physics for Medicine and Biology, 363
DOI 10.1007/978-3-319-12682-1_13, c© Springer International Publishing Switzerland 2015
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ξ(x + dx, t) is in general different from ξ(x, t), there is a
strain in the rod (Eq. 1.24)

εn(x, t) = �l

l
= ξ(x + dx, t) − ξ(x, t)

dx
= ∂ξ

∂x
. (13.1)

Young’s modulus, E, relates the stress in the rod, sn, to
the strain, εn (Eq. 1.25):

sn(x, t) = Eεn(x, t) = E
∂ξ

∂x
. (13.2)

The difference between the stress at each end, multiplied by
the cross-sectional area of the rod, S, provides a net force
that accelerates the shaded volume element in Fig. 13.1. The
net force on the volume element is

Fnet = S [sn(x + dx, t) − sn(x, t)] = S
∂sn

∂x
dx = SE

∂εn

∂x
dx,

Fnet = SE
∂2ξ

∂x2
dx. (13.3)

The mass of the shaded volume is ρSdx, where ρ is the
density, and the acceleration of the volume is ∂2ξ/∂t2. [Since
we are not subtracting a value at one end from the value at the
other, and since we are taking the limit as dx → 0, we can
ignore changes in ξ in the interval (x, x + dx)]. Therefore,
Newton’s second law becomes

∂2ξ

∂x2
= ρ

E

∂2ξ

∂t2
. (13.4)

This is the wave equation, and it is seen in many con-
texts, from the vibrations of a string to the propagation of
electromagnetic waves. It is usually written as

∂2ξ

∂x2
= 1

c2

∂2ξ

∂t2
, (13.5)

where c is the speed of propagation of sound in the rod. In
this case

c =
√

E

ρ
. (13.6)

As Young’s modulus becomes very large or the density of the
rod becomes very small, the speed with which a disturbance
travels from one end of the rod to the other becomes larger
and larger.

13.1.2 PlaneWaves in a Fluid

Now we consider a sound wave propagating in a fluid, where
shear can be neglected. We also neglect viscous effects.
Changes in the fluid caused by the sound wave depend only

x x + dx

  ξ (x + dx,t)  

SP(x,t) SP(x + dx,t)

(a)

(b)

0SP0 SP

 ξ (x,t)

Fig. 13.2 Sound propagates in one dimension in a fluid in a tube of
cross-sectional area S. a In equilibriuim the pressure is p0 and the force
on the shaded volume of fluid has magnitude p0S on each end. b When
the sound is propagating, the forces on each end are as shown

on x and t .1 To make it easier to imagine the situation, sup-
pose the fluid is confined in a tube. Then, we can construct
a figure very similar to Fig. 13.1. A small volume of fluid at
rest extends from position x to x + dx, with cross-sectional
area S as shown in Fig. 13.2a. The force pushing on the
left side of the volume is SP0, and the force on the right
is −SP0.2 Here, P0 is the pressure when the fluid is undis-
turbed by a sound wave. In equilibrium, there is no net force
on the volume element.

When the fluid element is displaced, as in Fig. 13.2b, the
net force to the right on the fluid element is

Fnet = S [P(x, t) − P(x + dx, t)] = −S
∂P

∂x
dx. (13.7)

The change of pressure from the equilibrium value P0 is
related to the change of volume of the fluid by the compress-
ibility, κ (Eq. 1.32):

P − P0 = p = − 1

κ

dV

V0
= − 1

κ

dξ

dx
, (13.8)

from which

Fnet = S

κ

∂2ξ

∂x2
dx. (13.9)

To obtain the mass, we use the volume Sdx times the equi-
librium density ρ0. We multiply by the acceleration of the
fluid element, ∂2ξ/∂t2, to obtain

∂2ξ

∂x2
= ρ0κ

∂2ξ

∂t2
. (13.10)

1 We might be looking at a wave whose properties depend on all three
coordinates, x, y, and z, but where, in the region we are studying, the
dependence on y and z is very slight. This is like the 1-D electrostatic
approximations in Chap. 6.
2 See Sect. 1.12; we ignore any forces arising from viscosity, gravity,
or surface tension.
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This is the wave equation, Eq. 13.5, with

c =
√

1

κρ0
. (13.11)

In both of these cases, the wave equation has been writ-
ten in terms of the displacement of elements of the rod or
the fluid from their equilibrium positions. It is also possible
to show that the pressure, fluid density, and velocity of the
fluid element also satisfy the wave equation. The pressure is
discussed in Problem 2. The velocity of the fluid due to the
sound wave is

v = dξ

dt
. (13.12)

Another important relationship is obtained by combining
Eq. 13.12 with Eq. 13.8 and interchanging the order of
differentiation (Appendix N):

∂v

∂x
= −κ

∂p

∂t
. (13.13)

Equation 13.8 and 13.10 can also be used to show that

∂v

∂t
= − 1

ρ0

∂p

∂x
. (13.14)

Finally, since the density is ρ = M/V , we can show that

dρ

ρ0
= κdp. (13.15)

In this section, we have considered Young’s modulus E

and compressibility κ . Remember from Chap. 3 that we can
compress a gas at a constant temperature, and we can also do
it adiabatically, in which case there is no heat flow and the
temperature rises as the gas is compressed. The compressibil-
ity is different in these two cases. When static measurements
of these parameters are made, there is usually time for the
system being studied to remain isothermal. The pressure
changes in a sound wave usually occur so rapidly that there
is not time for heat to flow, and the adiabatic compressibility
must be used. Values of Young’s modulus are also different
for isothermal and adiabatic stresses and strains.

13.1.3 Shear Waves

Sound in a fluid is a longitudinal wave, which means that
the fluid moves in the same direction that the wave propa-
gates. A fluid cannot support a shear stress, but shear stresses
can exist in tissue, which results in another type of acous-
tic wave, called a transverse wave or shear wave, where the
tissue moves perpendicular to the direction the wave propa-
gates. Consider the tissue in Fig. 13.3. When a shear wave
travels through the tissue, the material at point x is displaced

Fig. 13.3 A shear wave in a rod viewed from the top. The deflection is
in the plane of the paper

by a small amount η(x, t) in the transverse direction. The
shear strain is (Eq. 1.27)

εs = η(x + dx, t) − η(x, t)

dx
= ∂η

∂x
,

and the shear modulus, G, relates the stress and strain
(Eq. 1.28)

ss = Gεs = G
∂η

∂x
.

The difference between the stress at each end of the shaded
volume in Fig. 13.3, multiplied by the cross-sectional area S,
provides the net force

Fnet = S[ss(x + dx, t) − ss(x, t)] = S
∂ss

∂x
dx = SG

∂2η

∂x2
dx.

The mass of the shaded volume is ρSdx, and the acceleration
of the volume is ∂2η/∂t2. Newton’s second law becomes

∂2η

∂x2
= ρ

G

∂2η

∂t2

so the speed of the shear wave is

cshear =
√

G

ρ
.

Shear moduli in soft tissue are in the order of G =
4 kPa, implying that the shear wave speed is about 2 m s−1,
compared to 1500 m s−1 for longitudinal acoustic waves.

13.2 Properties of theWave Equation

The parameter c in the wave equation has units of speed. To
appreciate its physical interpretation, consider the departure
from the undisturbed pressure p(x, t) = P(x, t) − P0 =
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f(x - ct)

x

t

Fig. 13.4 A wave f (x − ct) traveling to the right with speed c

f (x − ct), where f is any function. This solution obeys the
wave equation (see Problem 5). It is called a traveling wave.
A point on f (x − ct), for instance its maximum value, cor-
responds to a particular value of the argument x − ct . To
travel with the maximum value of f (x − ct), as t increases,
x must also increase in such a way as to keep x − ct con-
stant. This means that the pressure distribution propagates
to the right with speed c, as shown in Fig. 13.4. Solutions
p(x, t) = g(x + ct), where g is any function, also are
solutions to the wave equation, corresponding to a wave
propagating to the left

The wave speed c is one of the most important parameters
governing the propagation of sound waves. The density of
water is about ρ0 = 1000 kg m−3 and the compressibility
of water is approximately 5 × 10−10 Pa−1, so the speed of
sound in water is about 1400 m s−1. The speed of sound in
tissues is slightly higher: 1540 m s−1 is often taken as an
average speed of sound in soft tissue. The speed of sound in
air is about 344 m s−1. See Denny (1993) for a more detailed
comparison of the speed of sound in air and water.

One very useful traveling wave is p(x, t) =
p0 sin

[
2π
λ

(x − ct)
]

= p0 sin
[
2π( x

λ
− t

T
)
] =

p0 sin(kx − ωt). The pressure distribution oscillates
sinusoidally with frequency

f = c/λ (13.16)

cycles per second (Hz) or angular frequency ω =
2πf (radians) s−1. Equation 13.16 relates the frequency
and wavelength. For instance, middle C has a frequency of
261.63 Hz. In air, the wavelength is (344 m s−1)/(261.63 Hz)
= 1.315 m. The wave number is

k = 2π

λ
= ω

c
. (13.17)

Standing waves such as

p(x, t) = p cos(ωt) sin(kx) (13.18)

are also solutions to the wave equation. An example is shown
in Fig. 13.5. The standing wave in Eq. 13.18 has nodes fixed

Fig. 13.5 A standing wave f (x, t) = sin πx cos πt , plotted for 0 <

x < 2 and 0 < t < 4

in space where sin(kx) is zero. Standing waves can occur, for
example, in an organ pipe and in the ear canal (Problem 7).

A standing wave can also be written as the sum of two si-
nusoidal traveling waves, one to the left and one to the right.
Conversely, two standing waves can be combined to give a
traveling wave (Problem 8).

Since the fluid velocity v obeys the wave equation, it can
also be represented as a sinusoidal wave. It is important to
realize that the fluid oscillates back and forth. The fluid it-
self does not propagate with the wave. What propagates is
the disturbance in the fluid. Sound in a fluid is a longitu-
dinal wave, which means that the fluid oscillates along the
same axis that the disturbance propagates (in this case, both
move in the x direction). Other types of waves exist in nature,
such as electromagnetic waves studied in Chap. 14. Electro-
magnetic waves are transverse waves, because the electric
field oscillates in a direction perpendicular to the direction
of wave propagation. Fluids cannot support significant shear
stresses and only propagate longitudinal waves.

13.3 Acoustic Impedance

13.3.1 Relationships Between Pressure,
Displacement and Velocity in a Plane
Wave

For a plane wave traveling to the right, the pressure, displace-
ment, and speed of the fluid have simple relationships. If the
pressure change is

p(x, t) = p0 sin(kx − ωt), (13.19)
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one can use Eqs. 13.8 and 13.12 to show that the fluid
displacement is

ξ = ξ0 cos(kx − ωt), (13.20)

the fluid velocity is

v = v0 sin(kx − ωt), (13.21)

and the amplitudes are related by

ξ0 = p0
κ

k
= p0

κλ

2π
= p0

κc

ω
, (13.22)

v0 = p0

ρ0c
= p0

Z
. (13.23)

The quantity Z = ρ0c = √
ρ0/κ is called the acoustic

impedance of the medium.3 The acoustic impedance of water
is about (103 kg m−3)(1400 m s−1) = 1.4 × 106 Pa s m−1.
The acoustic impedance of air is about 400 Pa s m−1, so
Zair 	 Zwater (Denny 1993).

13.3.2 Reflection and Transmission of Sound
at a Boundary

Consider next what happens at the boundary between two
different media. Suppose a traveling wave is propagating
to the right in a fluid with sound speed c1 and acoustic
impedance Z1. At x = 0, it encounters a second fluid, with
speed c2 and impedance Z2. In general, the interaction of
the incoming wave with the boundary between the first and
second fluids results in a reflected wave traveling to the left
in fluid 1 and a transmitted (or refracted) wave traveling to
the right in fluid 2 (Fig. 13.6). The acoustic impedances de-
termine how much of the incoming wave is reflected and
how much is transmitted. The waves must oscillate with the
same frequency in both media. The pressure at the bound-
ary must be the same in each medium, and the fluid velocity
must also be continuous across the boundary. Let pi(x, t) =
pi sin

[
ω
c1

(x − c1t)
]
, pr(x, t) = pr sin

[
ω
c1

(x + c1t)
]
, and

pt (x, t) = pt sin
[

ω
c2

(x − c2t)
]

be the incoming, reflected,

and transmitted pressures. The velocities are related to the
pressures by the acoustic impedances. At the boundary, the

3 Strictly speaking, the acoustic impedance is the ratio Z = p0/v0, and
carries information about both the amplitude ratio and the relative phase
of the pressure and velocity. If the waves are in phase, Z is said to be
resistive; if they are π/2 out of phase, Z is said to be reactive. The
characteristic acoustic impedance is a property of the medium: Z0 =
ρ0c. Both have units Pa m s−1 or kg m−2 s−1. For a plane wave, the
impedance is resistive and Z = Z0. For other waves, such as standing
waves, there is a reactive component.

Transmitted

pt(x)

Reflected

pr(x)

pi(x)

Incident

Fig. 13.6 A sound wave with pressure amplitude pi traveling to the
right is incident on a boundary separating tissue 1 on the left from tissue
2 on the right. Each tissue has a different density ρ0 and compressibility
κ . Z2 = 2Z1. Part of the wave is transmitted to the right with ampli-
tude pt , and part is reflected to the left with amplitude pr . The drawing
shows one instant in time

pressure and the velocity must be continuous. In fluid 1, the
amplitude of the pressure is pi + pr , and in fluid 2, it is pt .
In fluid 1, the amplitude of the velocity is (pi − pr)/Z1, and
in fluid 2, it is pt/Z2. (The minus sign arises because the
reflected wave is traveling to the left.) Therefore

pi + pr = pt (13.24)

and

(pi − pr)/Z1 = pt/Z2. (13.25)

We can solve these two equations for pr and pt in terms of
pi :

pr = Z2 − Z1

Z2 + Z1
pi, (13.26)

pt = 2Z2

Z2 + Z1
pi. (13.27)

The intensity I of a sound wave is a measure of the power
per unit area (W m−2). The instantaneous power per unit area
transmitted by the wave in Eq. 13.19 at some point is

I (t) = p(t)v(t) = p0v0 sin2 ωt. (13.28)

The average power per unit area is

I = 1

2
p0v0 = 1

2

p2
0

Z
. (13.29)

Problems 13–15 show that the reflection and transmission
coefficients are

R = Ir

Ii

=
(

Z2 − Z1

Z2 + Z1

)2

, (13.30)
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and

T = It

Ii

= 4Z1Z2

(Z1 + Z2)
2
, (13.31)

and that R + T = 1.
If the acoustic impedance of the two fluids is the same,

Z1 = Z2, there is no reflected wave and the entire incoming
wave is transmitted. If Z1 	 Z2 (e.g., sound going from air
to water), almost all of the sound is reflected.

13.4 Comparing Intensities: Decibels

13.4.1 The Decibel

When comparing two intensities, the range of differences is
often so great that a logarithmic comparison scale is used. We
first saw the decibel when discussing the frequency response
of a linear system in Chap. 11. Intensity levels in dB have
meaning only in terms of ratios:

Intensity Difference (dB) = 10 log10

(
I2

I1

)
. (13.32)

The intensity difference can also be written in terms of
pressure (or displacement or velocity) ratios:

Intensity Difference (dB) = 10 log10

(
I2

I1

)

= 10 log10

(
p2

p1

)2

= 20 log10

(
p2

p1

)
. (13.33)

This assumes that p1 and p2 are measured in the same
medium, so the acoustic impedance does not change. If the
intensity of a wave falls to 1% of its original value, the
intensity difference is 10 log10(0.01) = −20 dB.

13.4.2 Measuring Hearing Response

In auditory acoustics, intensities are measured with respect to
a reference intensity I0 = 10−12 W m−2. This is the intensity
of the faintest sound that a person can typically hear:

Intensity level = 10 log10

(
I

I0

)
. (13.34)

A sound that is ten times as intense as the threshold for hear-
ing has an intensity level of 10 dB. A sound with an average
intensity I = 1 W m−2 is perceived as painful, so the thresh-
old for pain has an intensity level of about 120 dB. Table 13.1
gives the intensity in decibels for some common sounds.

Table 13.1 Approximate intensity levels of various sounds

Sound Intensity
(W m−2)

Level (dB,
A weighting)

Rocket launch pad 105 170
104 160
103 150
102 140

F-84 jet at takeoff, 25 m from the tail;
Large pneumatic riveting machine (1 m);
Boiler shop (maximum level); Peak sound
level at a rock concert

10 130

Sound that produces pain 1 120
Woodworking shop 10−1 110
Near a pneumatic drill (“jack hammer”) 10−2 100
Inside a motor bus 10−3 90
Urban dwelling near heavy traffic 10−4 80
Busy street 10−5 70
Speech at 1 m 10−6 60
Office 10−7 50
Average dwelling 10−8 40
Maximum background sound level
tolerable in a broadcast studio

10−9 30

Whisper; maximum background sound
level tolerable in a motion picture studio

10−10 20

10−11 10
Minimum perceptible sound 10−12 0
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Fig. 13.7 Hearing response (MAF) curve for a young adult

The sensitivity of the ear depends on frequency. A typi-
cal hearing response curve for a young person is shown in
Fig. 13.7. The minimum auditory field (MAF) is measured
with a loudspeaker; the slightly different minimum auditory
pressure (MAP) is measured with headphones. The ear is
most sensitive to sounds between about 100 and 5000 Hz.
A sound at 20 Hz will not be perceived to be as loud as one
at 1000 Hz with the same intensity. Commercial sound level
meters typically have two weightings. The “C” weighting
has almost the same sensitivity at all frequencies. The “A”
weighting more nearly mimics the response of the normal
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Fig. 13.8 A cross section of the ear. From Cameron et al. 1999. Used
by permission

ear. Sounds with the same level when the meter is on “A”
weighting will be perceived as having the same loudness.

13.5 The Ear and Hearing

A cross-section of the ear is shown in Fig. 13.8. The ear can
be thought of as having three different sections, each with a
unique purpose: the external ear gathers sound, the middle
ear transfers energy from the air (low acoustic impedance)
to the liquid of the inner ear (high acoustic impedance), and
the inner ear transforms the signal into nerve impulses going
to the brain.

The external ear consists of the pinna, the visible part of
the ear, and an air-filled tube called the ear canal.

The middle ear is a small chamber filled with air that con-
tains three small bones, or ossicles shown in Fig. 13.9. It is
separated from the ear canal by the ear drum. The bone in
contact with the ear drum is called the malleus (it is shaped
a bit like a mallet or hammer). The next bone is the incus
(from the Latin for an anvil, which it resembles slightly).
The third, in contact with the oval window to the inner ear, is
the stapes (again from the Latin, for stirrup.) The eustachian
tube leads from the middle ear to the mouth and throat (na-
sopharynx). Since the ear is sensitive to very small pressure
changes, the eustachian tube serves the important function
of keeping the pressure on both sides of the ear drum the
same for slow changes, such as when we climb stairs or the
weather changes. The walls of the eustachian tube are often
collapsed together. Swallowing helps to open them up and
equalize the pressure if necessary.

Sound arrives at the ear as a vibration in air. Sound en-
ergy must enter the inner ear in order to be converted into
a nerve signal to the brain. Yet, the inner ear is filled with
liquid. The acoustic impedance of the liquid in the inner ear

Fig. 13.9 Details of the middle ear. From Cameron et al. 1999. Used
by permission

is about 3500 times larger than the acoustic impedance of
air. This means that without the impedance transformation
by the middle ear, the intensity in the inner ear would be only
about 1/1000 of the intensity in air—a loss of about 30 dB
(Problem 14).

The middle ear transforms the impedance by two mech-
anisms. The first is a simple area change. The ear drum
vibrates in response to the pressure changes in the sound
wave. If a sound wave with pressure amplitude pair impinges
on the ear drum of area Sear drum, the total excess force on
the ear drum is F = pairSear drum. For this simplest model,
assume that the three bones behave like a single rigid rod
and there are no effects of the boundary at the circumference
of the ear drum. Then, the bones transmit this force to the
membrane at the oval window, which has area Soval window.
The pressure induced in the liquid in the inner ear is then
pinner ear = F/Soval window = pairSear drum/Soval window. The
area of the ear drum is about Sear drum = 64 mm2, while the
area of the base of the stapes is 3.2 mm2 (Newman 1957).
Therefore, pinner ear = 20pair. Actually, the ear drum and the
membrane at the oval window are not connected by a simple
rigid rod. The malleus, incus, and stapes are pivoted in such a
way that they serve as a set of levers multiplying the force at
the oval window by an additional factor of 1.3. Therefore, the
total pressure amplification by the middle ear is 26. This cor-
responds to a 28 dB change in sound intensity, which almost
compensates for the 30 dB loss going from air to the liquid
of the inner ear. The bones of the middle ear have muscles
that change their stiffness, so they can reduce the amount of
pressure amplification to protect the inner ear from very loud,
low-frequency noises.

The inner ear contains three semicircular canals, which
help control our sense of balance, and the cochlea, which
changes the sound to nerve impulses. All are filled with liq-
uid. The cochlea is a small spiral about the size of the tip
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Fig. 13.10 A schematic representation of the cochlea

Fig. 13.11 A cross section of the cochlea. The hair cells are deformed
as the basilar membrane moves relative to the tectorial membrane

of your little finger. Unwound, it is about 3 cm long. Fig-
ure 13.10 shows it schematically. There are three chambers.
The vestibular chamber connects to the stapes in the middle
ear through the oval window. At the other end of the cochlea
the vestibular chamber connects to the tympanic chamber.
The round window opens onto the middle ear and allows
the pressure to be equalized at low frequencies. The third
chamber is the cochlear duct.

When the stapes moves the oval window, it generates a
sound wave that travels through the liquid in the cochlea.
This produces a displacement of the basilar membrane in
the third chamber, the cochlear duct. Two types of hair cells
sit on the basilar membrane: one row of inner hair cells and
three rows of outer hair cells. The hair cells in turn have very
fine “hairs” on them, called cilia. The cilia of the outer hair
cells touch another membrane, the tectorial membrane, but
the cilia of the inner hair cells do not. A cross-section of this
is shown schematically in Fig. 13.11. When the basilar and
tectorial membranes are displaced by the sound wave, the
cilia on the inner hair cells move in the liquid that fills the re-
gion between the membranes. It is just as if you submerged
your head in a swimming pool and shook it back and forth.
Your head would move in the water, but the motion of your
hair would be altered as the water “dragged” it. As a result
of this motion of the cilia in the liquid, the inner hair cells
generate nerve impulses that then travel to the brain and pro-
vide our sensation of sound. The mechanism was discussed
briefly in Sect. 9.9.

Figure 13.10 shows that the size of the cochlea changes
along its length. So does its stiffness. Different locations
along the cochlea therefore oscillate at different frequencies:

points near the oval window (base or left side of Fig. 13.10)
respond to high frequencies, while points near the apex (right
side of Fig. 13.10) respond to low frequencies. The physics
and neurophysiology of pitch perception and music is fas-
cinating and complex (Sacks 2007; Hartmann 2013). For
instance, some people have absolute pitch. They can iden-
tify a pitch (say, F-sharp) in isolation, just as normal people
can identify a uniform color (say, yellow). Most people can
only perceive relative pitch: one note has a higher pitch than
another (for example, an E is a major third above a C).

The cochlear implant was mentioned in Chap. 7 as a way
to use functional electrical stimulation to partially restore
hearing. A row of electrodes is inserted along the cochlea
to stimulate the nerves that are usually excited by the hair
cells. Some pitch perception can be restored by perform-
ing a Fourier analysis of a sound and stimulating neurons
at different places along the cochlea.

13.6 Attenuation

A plane wave of sound propagating through a medium is
attenuated: there is a decrease in intensity because of dissipa-
tive factors such as viscosity and heat conduction, which we
did not include in Sect. 13.1. The attenuation is exponential.
The amplitude attenuation coefficient4 is defined by

α = − 1

p

dp

dx
, (13.35)

where x is the distance the wave travels in the medium. The
sound pressure amplitude decays exponentially:

p(x) = p(0)e−αx. (13.36)

Since the intensity is proportional to p2,

I (x) = I (0)e−2αx. (13.37)

The intensity attenuation coefficient is μ = 2α. In acoustics,
the attenuation is usually expressed in decibels per meter,
which is then independent of whether μ or α is used.5

The wave equation for acoustics is an approximation, be-
cause the basic equations of fluid dynamics are nonlinear.
Therefore, effects that we have ignored, such as wave-
form distortion, the generation of harmonics, and increased
attenuation may occur, particularly at high sound intensities.

4 ICRU 61 (1998).
5 Sometimes the attenuation coefficient is expressed in nepers m−1, in
which case the natural logarithm of the intensity or pressure ratio is
used.



13.7 Diagnostic Uses of Ultrasound 371

10-1

100

101

102

103

104

105
A

tte
nu

at
io

n 
co

ef
fic

ie
nt

 (
dB

 m
-1

)

106
2 3 4 5 6 7 8 9

107

Frequency (Hz)

Water

Blood

Liver

Muscle along fibers

Muscle across fibers

Skull

Lung

Fig. 13.12 Representative values of the attenuation coefficient for
ultrasound

In air, the attenuation depends on the frequency of the
sound and the temperature and humidity of the air (Lind-
say and Beyer 1989; Denny 1993). Sound that we can hear
(in the frequency range of 20 Hz to 20 kHz) is attenuated by
about 0.1–10 dB km−1. Water transmits sound better than air,
but its attenuation is an even stronger function of frequency.
It also depends on the salt content. At 1000 Hz, sound at-
tenuates in fresh water by about 4 × 10−4 dB km−1. The
attenuation in sea water is about a factor of ten times higher
(Lindsay and Beyer 1989). The low attenuation of sound in
water (especially at low frequencies) allows aquatic animals
to communicate over large distances (Denny 1993).

The attenuation of sound depends strongly on frequency.
Figure 13.12 shows some representative values. As a rule
of thumb, at ultrasonic frequencies the attenuation is pro-
portional to frequency, with the constant of proportionality
being 100 dB m−1 MHz−1. There are large variations in at-
tenuation in tissue, depending on the age of the subject and
other factors. Values can be found in Appendix A of ICRU
61 (1998).

There can also be scattering of the sound from some
object, just as there is for light. The total scattering cross-
section for the object is defined by

σs = Ws

I0
, (13.38)

where Ws is the total power scattered and I0 is the incident
intensity. As in Chap. 14, the differential scattering cross-
section can also be defined. Scattering can be increased by
using an ultrasound contrast agent (Faez et al. 2013).

13.7 Diagnostic Uses of Ultrasound

Ultrasound has several uses in medicine. The most common
is to provide diagnostic images that complement those made
with x-rays, nuclear medicine, and magnetic resonance.6 Ul-
trasound does not provide the image quality of these other
methods, and it is susceptible to artifacts (see Problems
28–31), but it can be performed in real time, at low cost,
with a small instrument at the patient’s bedside. In gen-
eral, the different medical imaging techniques compete with
one another. Each has its own advantages and disadvantages
(Glide-Hurst et al. 2010).

The highest frequency sounds that we can hear (≈
15 kHz) have a wavelength in water of 0.1 m. One prop-
erty of waves is that diffraction limits our ability to produce
an image. Only objects larger than or approximately equal to
the wavelength can be imaged effectively. This property is
what limits light microscopes to resolutions equal to about
the wavelength of visible light, 500 nm. If we used audi-
ble sound to form images, our resolution would be limited
to about 0.07 m, which would be a poor image indeed. To
overcome this difficulty, higher frequencies (ultrasound) are
used. Typically, diagnostic ultrasound uses frequencies on
the order of 1 to 15 MHz, corresponding to wavelengths of
1.4 to 0.1 mm in tissue. Higher frequencies would result in
even shorter wavelengths, but higher frequency sound has in-
creased attenuation, which ultimately sets an upper bound to
the useful frequency.

13.7.1 Ultrasound Transducers

Ultrasound is typically produced using a piezoelectric trans-
ducer. A piezoelectric material converts a stress (or pressure)
into an electric field, and vice versa. A high-frequency oscil-
lating voltage applied across a piezoelectric material creates
a sound wave at the same frequency. Conversely, an oscil-
lating pressure applied to a piezoelectric material creates
an oscillating voltage across it. Measurement of this volt-
age provides a way to record ultrasonic waves. Thus, the
same piezoelectric material can serve as both source and
detector. One piezoelectric material often used in medical
transducers is lead zirconate titanate (PZT). Its density is
7.5 × 103 kg m−3, the speed of sound in the material is
4065 m s−1, and the acoustic impedance is 30×106 Pa s m−1.
About half of the electrical energy is converted to sound
energy, and vice versa.

6 See Kremkau (2006); Carson and Fenster (2008) or Wells (2006).
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Fig. 13.13 Coordinate system for calculating the intensity of sound
radiated from a transducer of radius a. The z axis passes through the
center of the transducer and is perpendicular to it

There are some important features of the radiation pattern
from a transducer that we review next. Consider a circu-
lar transducer or piston, the surface of which is oscillating
back and forth in a fluid. Both faces set up disturbances in
the fluid; however, we consider the radiation from only one
face, since the transducer is placed in a holder which pre-
vents radiation from the rear surface. We can easily calculate
the intensity along the z-axis, which we set up perpendicu-
lar to the piston and passing through its center, as shown in
Fig. 13.13.

The displacement of the face of the transducer, ξ , is the
same as the displacement of the fluid in contact with it. The
entire face of the piston, and therefore the fluid immedi-
ately in front of it, vibrates with a fluid velocity dξ/dt =
v0 cos ωt .7 Each small element of the vibrating fluid creates
a wave that travels radially outward, the points of constant
phase being expanding hemispheres. The amplitude of each
spherical wave decreases as 1/r , the intensity falling as 1/r2.
We want the pressure at a point z on the axis of the trans-
ducer. It is obtained by summing up the effect of all the
spherical waves emanating from the face of the transducer.
At time t the phase of the wave is the same as the phase of the
wave leaving the annular ring r ′dr ′ at the earlier time t−r/c:

p ∝ dξ(z, t)

dt
∝
∫ a

0
2πr ′dr ′ cos[ω(t − r/c)]

r
.

This is easily evaluated by changing variables. Since
r2 = r ′2 + z2, 2rdr = 2r ′dr ′:

p ∝ 2π

∫ r=
√

a2+z2

r=z

rdr
cos[ω(t − r/c)]

r

7 We use dξ/dt because it is in phase with the excess pressure.
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Fig. 13.14 The sound intensity on the axis of a circular transducer. The
sound frequency is 2 MHz, and the transducer radius is 0.5 cm. Both
near- and far-field regions are shown. Labels (a), (b), and (c) show the
positions of the transverse radial scans in Fig. 13.15

= 2π

k

[
sin[ω(t − 1

c

√
a2 + z2)] − sin[ω(t − z/c)]

]
.

To find the average intensity, we square and average over one
period. The result is

I ∝ sin2
[ ω

2c

(
z −

√
a2 + z2

)]
. (13.39)

The result is plotted in Fig. 13.14 for a fairly typical but small
transducer (a = 0.5 cm, f = 2 MHz).

There are several important features of Fig. 13.14. Close
to the transducer there are large oscillations in intensity along
the axis; there are corresponding oscillations perpendicu-
lar to the axis, as shown in Fig. 13.15. The maxima and
minima form circular rings. This is called the near field or
Fresnel zone. Further away the intensity falls as 1/r2, in
the far field or Fraunhoffer zone. The depth of the Fresnel
zone is approximately a2/λ. For the example shown (2 MHz,
transducer diameter 1 cm), the depth is about 3 cm; for a
larger transducer or higher-frequency ultrasound, it would be
greater.

In the far field, approximations can be made to simplify
the calculation. The intensity is then given by

I ∝ 1

r2

(
J1(ka sin θ)

ka sin θ

)2

. (13.40)

Function J1(x) is the Bessel function of order 1. It is found
in math tables and is available in many spreadsheets. The
angular dependence of the far-field intensity is plotted in
Fig. 13.16. If you want the ultrasound to be transmitted
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Fig. 13.15 Scans across the beam from the transducer shown in Fig. 13.14. a In the near field at an on-axis maximum 0.01024 m from the
transducer. b In the near field at an on-axis minimum 0.01575 m from the transducer. c In the far field 0.060 m from the transducer
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Fig. 13.16 The far-field intensity as a function of angle, calculated
from Eq. 13.40. The value ka = 10 corresponds to 1 MHz and
transducer radius a = 0.25 cm. The value ka = 20 corresponds to
f = 2 MHz and a = 0.25 cm or f = 1 MHz and a = 0.5 cm. Value
ka = 40 corresponds to 4 MHz and a = 0.25 cm or f = 2 MHz and
a = 0.5 cm, the case examined in Fig. 13.14

mainly in the direction normal to the face of the transducer,
select a transducer with a larger radius. If the transducer is
used as a detector, a larger transducer is more selective in
the direction perpendicular to its face. By shaping the face of
the transducer, it is possible to bring the beam to a focus at
some particular depth. This improves the spatial resolution
and increases the strength of the returning echo. Ultrasound
imaging may be done in the near field, the far field, or the
transition region. Modern transducers typically consist of an
array of transducers which may lie on a straight or curved
line. They can be driven in such a way as to produce waves
that come to a focus, or that travel in an off-axis direction
(see Hendee and Ritenour 2002 or Fig. 13.18).

The impedance of a typical transducer is about 30 ×
106 Pa s m−1, so it is necessary to have an impedance-
matching material between the transducer and the patient’s
skin (see Problem 16).

13.7.2 Pulse Echo Imaging

Most ultrasonic imaging is based on a pulse-echo technique.
A short pulse (typically 0.5μs in duration with a central
frequency of about 5 MHz) is applied to the tissue by a piezo-
electric transducer. The pulse travels with a speed of about
c = 1540 m s−1 (or 1.54 mmμs−1). Whenever it approaches
a boundary between two tissues having different acoustic
impedances, part of the incident pulse is reflected as an echo,
which can be detected by the same piezoelectric transducer.
The longer the time �t between the generation and detec-
tion of the pulse, the farther away the reflecting boundary.
In general, the distance from the source to the boundary is
�x = c�t/2. Multiple boundaries produce multiple echoes,
with each echo corresponding to a different distance from the
source to boundary. A plot of echo intensity versus time is
called an A scan. An A scan of the eye is shown in Fig. 13.17.
As the attenuation is high, it is customary to increase the gain
of the receiving amplifier as the echo time increases.

To form a two-dimensional image, it is necessary to scan
in many different directions. In a B scan the brightness of the
screen corresponds to the intensity of the echo, plotted ver-
sus position in the body in the plane of the scan. The B-scan
transducer sends a narrow beam into the body. The direction
of the beam is rapidly changed to cover a fan-shaped region
of the body. This can be done with an oscillating or rotating
transducer head (often containing three transducers), with an
array of transducers that are pulsed sequentially, or with a
phased array of transducers that are pulsed together. The op-
eration of sequential pulsing or a phased array can be under-
stood by referring to Fig. 13.18. The basic principle of using
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Fig. 13.17 An A scan of the eye. From ICRU 61, p. 2. Used by
permission

(a) (b)) (c)

Fig. 13.18 How a phased array or delayed-pulse array works. Five
transducers have been pulsed; the semi-circles show the propagating
lines of constant phase from each one. The thick lines show the advanc-
ing wave front. In (a) all five transducers have been pulsed at the same
time. The signals from each transducer add along the plane wave front
traveling to the right. In (b) the top transducer was pulsed first. Each
lower transducer was pulsed at successively later times, so the pulses
have not traveled as far. This steers the beam downward. In (c) the outer
transducers were pulsed first. As one goes inward, each transducer was
pulsed later than the one before. This focuses the beam. The same tech-
nique can be used to steer or focus the sensitivity to the scattered wave
during detection

Fig. 13.19 A B scan of a 16-week fetus

multiple one-dimensional (x) echo scans along different lines
through the body is explored in Problems 24 and 25.

Two-dimensional ultrasound is widely used in diagnostic
medicine; for instance in monitoring the fetus during preg-
nancy. Figure 13.19 shows a typical ultrasound image of a
fetus.

Other imaging methods include motion or M mode to
observe the beating heart as a function of time, and detect-
ing sound backscattered from structures in an organ that are
smaller than a wavelength.

As the tissue response to high intensity ultrasound is
nonlinear, harmonics of the original ultrasound pulse are
generated in the tissue; the second-harmonic signals are used
to form harmonic images.

13.7.3 The Doppler Effect

When the source of an ultrasound wave is moving, the fre-
quency of the wave observed by a stationary receiver is
different than the frequency of the source. This phenomenon
is called the Doppler effect. When the source is moving to-
ward the receiver, the frequency is higher, and when the
source moves away from the receiver, the frequency is lower.

To see why this happens, consider the source moving to
the right with speed vs in a fluid for which the speed of sound
is c. At t = 0, the source emits the crest of a wave with period
T (frequency f = 1/T ). The wave travels to the right. This
crest takes a time t = L/c to reach a stationary receiver a
distance L away. At t = T , one period later, another crest is
emitted by the source. This crest takes less time to reach the
receiver because the source has moved closer to the receiver.
Specifically, the distance from source to receiver is now L −
vsT , so the crest reaches the receiver at t = T +(L−vsT )/c.
The time T ′ between crests reaching the receiver is T ′ =
T + (L − vsT )/c − L/c = T (1 − vs/c). The frequency
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observed by the receiver is

f ′ = 1/T ′ = f

1 − vs/c
. (13.41)

If the source is moving toward the receiver with a speed equal
to 10% of the speed of sound, then f ′ is about 11% higher
than f . When the source is moving away from the receiver,
f ′ = f/(1 + vs/c) (see Problem 33). It is not difficult to
include the effect of motion of the reflecting surface at an
angle with the ultrasound beam.

In medical ultrasound applications, the detected wave is
often a reflection from moving tissue, such as red blood
cells. In this case, the relationship between the frequency
f produced by a stationary source and the frequency f ′
received by the stationary receiver after reflection from an
object moving away from it at speed vo is (see Problem 34)

f ′ = f
1 − vo/c

1 + vo/c
. (13.42)

The difference in frequency between f and f ′ contains infor-
mation about the speed of the object (Problem 36). Doppler
ultrasound is used in medicine to measure speed, such as the
speed of moving blood cells. Often the Doppler shift is mea-
sured for a pulse of ultrasound, so that one can be sure of
the depth at which the Doppler shift occurred. A distribu-
tion of red cell velocities can be measured by looking at the
Doppler shift frequency spectrum. In color flow imaging the
velocity information from Doppler imaging is superimposed
on a B-scan ultrasound image.

13.7.4 Elastography

Several techniques are being developed to measure the elas-
tic properties of tissue. For example, an A-mode signal is
measured with and without a static force on the tissue; the
slight changes in signal reflect changes in tissue density.

In shear wave elastography, the shear wave propagates
so slowly that images of the displacement η(x, t) can be
measured using traditional ultrasound techniques. The distri-
bution of wave speeds can be determined from these images,
and then the distribution of the shear modulus can be calcu-
lated. This method has been used to analyze breast cancer
tumors, which tend to have a higher shear modulus than the
surrounding healthy breast tissue (Berg et al. 2012).

13.7.5 Safety

The skin intensities used in diagnostic ultrasound range from
0.1 W m−2 for an obstetric examination to 25,000 W m−2

for some procedures that image the heart or blood vessels.

These intensities occur over a small area of the body and for
a limited period of time. Many studies have been done to see
if any harm results from these sound intensities. No harmful
effects have been found.

13.8 Therapeutic Uses of Ultrasound

The primary potential causes of harm from ultrasound are
also used for therapy. They are diathermy, the heating of
the tissue because of the energy deposited, and cavitation,
a process in which very high intensity sound waves cause
tiny bubbles of steam to form and then collapse violently.
Cavitation requires intensities of 3.5 × 107 W m−2 or more.

High-intensity-focused ultrasound is made possible by
phased arrays. It is possible to accurately locate the focal
spot by applying lower intensity pulses that only heat the tis-
sue a few degrees. The temperature in the tissue is mapped
using magnetic resonance imaging, described in Chap. 18.
Once the focal region is in the desired target, a longer pulse
is applied to heat the tissue to the desired temperature.
The technique is called magnetic resonance guided focused
ultrasound (MRgFUS) or magnetic resonance guided high
intensity focused ultrasound (MRgHIFUS). This technique
is used for fat reduction (Saedi and Kaminer 2013), breast
(Merckel et al. 2013), and prostate cancer, relief of pain from
metastatic cancer, and neurosurgery.

The neurosurgical use of focused ultrasound has an inter-
esting history. It was first proposed in the 1940s, but the large
impedance difference between skull and soft tissue meant
that a portion of the skull had to be removed in order for
the ultrasound to reach the brain. Focus was achieved with
a plastic lens in front of the transducer. A special water-
filled container coupled the transducer to the surface of the
brain. The development of phased transducer arrays made it
possible to focus without a special lens and also to make cor-
rections for the ultrasound waves passing through the skull
(Clement and Hynynen 2002). There is high energy absorp-
tion at the skull, so transducer arrays covering a large part
of the skull are used, and the water that couples the array
to the scalp is cooled. Some patients have been treated for
chronic neuropathic pain (Jeanmonod et al. 2012). Other uses
are reviewed by Monteith et al. (2013) and Ellis et al. (2013).

Another use of ultrasound is lithotripsy,8 the destruc-
tion of kidney stones using sharply focused ultrasound.
Lithotripsy uses extremely intense, pulsed ultrasound waves.
The peak intensity is about 3.8 × 108 W m−2. The sound is
intense enough so that bubbles of steam form and then col-
lapse. When they collapse near the surface of the stone they

8 Litho- means stone.
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“hammer” on the stone. With repeated blows, the stone shat-
ters. These smaller pieces may pass in the urine, avoiding
surgery.

Symbols Used in Chap. 13
Symbol Use Units First

used
page

a Transducer radius m 372
c Speed of sound m s−1 364
cshear Speed of shear wave m s−1 365
f, g, h Arbitrary functions 366
f, f ′ Frequency Hz 366
k Wave number m−1 366
l Length m 364
p Excess pressure Pa 364
sn Normal stress Pa 364
ss Shear stress Pa 365
r, r ′ Position m 372
t Time s 363
v Fluid or particle velocity m s−1 365
vs , vo Velocity of source, observer m s−1 375
x, y, z Position m 363
E Young’s modulus Pa 364
F Force N 364
G Shear modulus Pa 365
I Intensity W m−2 367
J1 Bessel function of order 1 372
L Distance m 374
M Mass kg 365
P Pressure Pa 364
R Reflection coefficient 367
S Area m2 364
T Transmission coefficient 367
T Period s 375
V Volume m3 364
Ws Power scattered W 371
Z Acoustic impedance Pa s m−1or

kg m−2 s−1
367

α Amplitude attenuation coefficient m−1 370
κ Compressibility Pa−1 364
εn Normal strain 364
εs Shear strain 365
λ Wavelength m 366
η Displacement from equilibrium

in a shear wave
m 365

μ Intensity attenuation coefficient m−1 370
ρ Density kg m−3 364
σ Scattering cross section m2 371
θ Angle 372

ξ Displacement from equilibrium m 363

ω Angular frequency s−1 366

Problems

Section 13.1

Problem 1. Show that 1/
√

ρ0κ has units of speed.
Problem 2. Show that the pressure p satisfies the wave equa-
tion. Hint: Use Eqs. 13.13 and 13.14. Differentiate to obtain
∂2p/∂x2 and ∂2p/∂t2. Also use the fact that when multiple
partial derivatives are taken, the order of differentiation can
be interchanged (Appendix N).
Problem 3. Show that v and ρ also satisfy the wave equa-
tion.
Problem 4. Derive Eq. 13.15.

Section 13.2

Problem 5. Use the chain rule, with u = x − ct , to show
that f (x − ct) obeys the wave equation for any function f .
Show that g(x + ct) also obeys the wave equation.
Problem 6. Calculate the wavelength in air for the lowest
audible frequency (20 Hz for most people) and the highest
audible frequency (20 kHz for most young people).
Problem 7. The ear canal is about 2.5 cm long. It is open
to the air at one end and closed by the ear drum at the other.
This can cause a standing wave to form, which has a pressure
node (zero amplitude) at the opening and pressure maximum
at the ear drum. What is the longest wavelength of a standing
wave that is set up? What frequency does this correspond
to? Compare this to the most sensitive frequency of the ear
(Fig. 13.7).
Problem 8. Use the trigonometric identity sin(a ± b) =
sin a cos b ± cos a sin b to show that a traveling wave can
be written as the sum of two out-of phase standing waves,
and that a standing wave can be written as the sum of two
oppositely-propagating traveling waves.

Section 13.3

Problem 9. Derive the relationships between p0, ξ0, and
v0 (Eqs. 13.22 and 13.23), where p0, ξ0, and v0 are the
amplitudes of a sinusoidally varying plane wave.
Problem 10. For the following five tissues, calculate the
density and compressibility (data are from Hendee and
Ritenour 2002).

Tissue Z (Pa s m−1) c (m s−1)

Fat 1.38 × 106 1475
Brain 1.55 × 106 1560
Blood 1.61 × 106 1570
Muscle 1.65 × 106 1580
Bone 6.10 × 106 3360
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Problem 11. Show that the intensity of a sound wave

(Eq. 13.29) can be written as 1
2ZV 2, as 1

2PV , or as 1
2

P 2

Z
.

Problem 12. The threshold for audible sound is
10−12 W m−2. Use Eq. 13.29 to convert this to the amplitude
of the pressure oscillation in air, using Zair = 400 Pa s m−1.
Compare this to 105 Pa (atmospheric pressure), and to
5 × 10−6 Pa (which is on the order of the amplitude of
random pressure variations in the air due to thermal motion).
Are the pressure oscillations small? Perform the same
analysis for the threshold for pain, I = 1 W m−2.
Problem 13. When an incident sound wave in fluid 1 en-
counters the boundary with fluid 2, the reflection coefficient,
R, is defined as the fraction of the incident intensity that
is reflected. Derive an expression for R in terms of Z1 and
Z2. Use the data in Problem 10 to calculate what fraction of
the incident intensity is reflected at the boundary going from
muscle to fat. Do the same for the boundary going from fat
to muscle.
Problem 14. When an incident sound wave in fluid 1 en-
counters the boundary with fluid 2, the transmission coeffi-
cient, T , is defined as the fraction of the incident intensity
that is transmitted. Derive an expression for T in terms of Z1

and Z2. Hint: recall that fluids 1 and 2 are different, so that
the value of Z in Eq. 13.29 is different for the incident and
transmitted waves.
Problem 15. Use the results of Problems 13 and 14 to show
that R + T = 1.
Problem 16. (a) Show that when sound goes from a trans-
ducer with Ztransducer = 30 × 106 Pa s m−1 to tissue with
Ztissue = 1.5 × 106 Pa s m−1, the transmission coefficient is
T = 0.18.

(b) Show that a coupling medium between the trans-
ducer and tissue will maximize the overall transmission if
Zcoupling = √

ZtransducerZtissue. Show that in that case the
transmission is T = 0.36. Ignore interference effects (λ �
the thickness of the coupling medium).

Section 13.4

Problem 17. If the intensity of a sound wave falls to half its
original value, what is the change in dB?

Section 13.5

Problem 18. A sound wave with intensity of 10−12 W m−2

is the threshold for hearing. Convert that to a pressure
amplitude P . Convert the pressure amplitude to a displace-
ment amplitude using Eq. 13.22, with f = 1 kHz, κair =
10−5 Pa−1, and cair = 344 m s−1. Compare your result
with the size of an atom, which is on the order of 0.1 nm.
Surprised?

Problem 19. The ear can just hear sound at about 1000 Hz at
a level that corresponds to a pressure change of 2 × 10−5 Pa.
Atmospheric pressure is 105 Pa. Since atmospheric pressure
is due to collisions of molecules with the eardrum, there are
pressure fluctuations because of fluctuations in the number
of collisions in time �t . We can expect that �p/p is about
1/(number of collisions)1/2. Suppose that the eardrum has
area S and that when detecting a signal at 1000 Hz it aver-
ages over a time interval of 0.5 ms. The number of collisions
per unit area per unit time is given by nv/4, where n is the
number of air molecules per unit volume and v is an average
velocity of 482 m s−1. The radius of the eardrum is 4.5 mm.
Find �p/p.
Problem 20. People use many cues to estimate the direction
a sound came from. One is the time delay between sound
arriving at the left and right ears. Estimate the maximum time
delay. Ignore any diffraction effects caused by the head.

Section 13.6

Problem 21. Find the conversion between α in dB m−1 and
m−1 (as in I = I0e

−αx).

Section 13.7

Problem 22. An ultrasound pulse used in medical imaging
has a frequency of 5 MHz and a pulse width of 0.5μs. Ap-
proximately how many oscillations of the sound wave occur
in the pulse? The number of oscillations is sometimes called
the quality, Q, of the pulse. A pulse with little damping has
Q � 1, whereas a heavily damped pulse has Q ≈ 1. Is the
ultrasound pulse heavily damped?
Problem 23. A heavily damped pulse does not represent a
single frequency. Consider a pulse p(t) having the shape

p(t) = e−(t/τ )2
cos ω0t.

Using the techniques developed in Sect. 11.9, calculate the
Fourier transform of this pulse. Determine the shape of the
power spectrum. How is the parameter τ related to the width
of the power spectrum? What is the central frequency of the
power spectrum?
Problem 24. Suppose you send a short ultrasound pulse into
the body at t = 0, and observe echoes at t = 31, 79, and
95μs. How far from the source are the three tissue bound-
aries? Assume c = 1540 m s−1 in each tissue, and ignore
attenuation. Draw a line corresponding to the x-axis (x = 0
is the source location), and draw a dot at the position corre-
sponding to each boundary. You have just created an A scan,
where each dot represents a boundary.
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Problem 25. Suppose you emit an ultrasound pulse in the x

direction from a source at each of eight different positions y.
Each pulse receives a series of echoes, as shown in the table
below (Echo times are in μs.):

y (mm): 0 10 20 30 40 50 60 70
Echo 1 35 37 39 40 45 47 48 49
Echo 2 97 98 58 56 57 96 91 90
Echo 3 71 73 71
Echo 4 99 99 98

Draw an x–y coordinate system (x = 0 is location of the
source) and put a bright spot corresponding to each echo.
Assume c = 1540 m s−1 in each tissue, and ignore atten-
uation. You have just created a two-dimensional ultrasound
image.
Problem 26. Assume the attenuation is proportional to fre-
quency, and is given by 100 dB m−1 MHz−1. If you use a
5-MHz ultrasound wave to image a surface 30 mm below
the surface of the skin, the measured echo is what fraction
of the original intensity? Ignore impedance differences at the
surface of the skin and assume that 100 % of the wave is
reflected by the surface, so that the reduction of the echo in-
tensity is caused entirely by attenuation. Remember that you
must consider the round-trip distance traveled by the wave.
Express you answer in dB.
Problem 27. The intensity of echoes depends on not only
the nature of the boundary they reflect from, but also the dis-
tance to the boundary. Consider a boundary that reflects 50 %
of the incident wave intensity. Compare the intensity of the
echoes recorded by the detector for boundaries 10, 20, and
30 mm from the source. Assume an attenuation coefficient
of 500 dB m−1. Ignore any inverse-square fall-off. Clini-
cal ultrasound imaging devices often use a technique called
time gain compensation to selectively amplify later echoes,
thereby correcting for the effect of attenuation that you just
calculated.
Problem 28. The depth resolution of an ultrasound image
depends on the speed of sound and the duration of the ultra-
sound pulse. A pulse having a duration of 0.5μs has what
spatial width (assume c = 1540 m s−1)? Structures smaller
than the spatial pulse width are difficult to resolve using
ultrasound imaging.
Problem 29. Ultrasound images are often generated using a
series of ultrasound pulses, with echoes detected from each
pulse. Images are obtained more quickly if the time between
pulses is short. However, if this time is too short, echoes from
consecutive pulses overlap, making the ultrasound signal dif-
ficult to interpret. Assume the deepest structure you wish to
image is 80 mm from the source, and the speed of sound is
1540 m s−1. What is the minimum time between pulses you
can use without overlapping echoes? How many pulses per
second does this correspond to? If you need to use 256 pulses

in order to build up a two-dimensional image, how many im-
ages can you generate per second? Can you generate images
at the video rate (30 frames per second)?
Problem 30. Suppose that an ultrasound wave is traveling
to the right in muscle, toward a 3-mm thick layer of fat. (Use
the data in Problem 10 for the acoustic properties of these
tissues.) Part of the wave reflects off the left surface of the
fat (echo 1), but part is transmitted and then reflects off the
right surface, producing a wave traveling to the left. Part of
this is detected as echo 2, but part of this left-traveling wave
undergoes two additional reflections, traveling back and forth
through the fat before being detected as echo 3. Echo 3 is
called a reverberation echo and is one source of artifact in
an ultrasound image. You can have more than one, since the
wave can reflect back and forth between the left and right
surfaces multiple times. Calculate the time between the first
three echoes, and the relative intensities of each one (ignore
attenuation).
Problem 31. Assume a fat-muscle boundary is 50 mm be-
low the tissue surface. Calculate the intensity of the reflected
wave, ignoring attenuation, using the data in Problem 10.
Now, assume there is a bone that lies in the region from
20 to 30 mm below the surface, with the fat-muscle bound-
ary still 50 mm below the surface. Calculate the intensity of
the wave reflected from the fat-muscle boundary, accounting
for the front and back bone surfaces, ignoring attenuation.
If the minimum measurable intensity is −25 dB, will the
fat-muscle boundary be observable in each case? In general,
surfaces behind a bone do not appear in ultrasound images.
The bone casts an acoustic shadow.
Problem 32. Verify Eq. 13.39. Show that for z � a, the
intensity falls off as z−2.

Section 13.7.3

Problem 33. Show that when a source of sound waves is
moving away from the receiver, the frequency of the source,
f , and the frequency measured by the receiver, f ′, are related
by f ′ = f/(1 + vs/c).
Problem 34. Suppose a stationary source sends ultrasound
waves to the right. They are reflected from an object mov-
ing to the right with speed vo, and then are recorded by the
stationary receiver (the receiver and source are at the same
location). Derive the relationship in Eq. 13.42 between the
frequency of the source, f , and the frequency recorded by
the receiver, f ′, using the following steps.
(a) Find the time t1 when the receiver records a signal that

was emitted by the source at t = 0, traveled a distance L,
was reflected, and then returned to the receiver.

(b) Find the time t2 when the receiver records a signal that
was emitted by the source at t = T , traveled a distance
L + �L, was reflected, and then returned to the receiver.
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(c) Relate the distance �L to the speed of the object.
(d) Solve for T ′ = t2 − t1.
(e) Determine f ′ in terms of f .
Problem 35. Show that if vo 	 c, Eq. 13.42 reduces to
f ′ = f (1 − 2vo/c).
Problem 36. Solve Eq. 13.42 for vo as a function of
f ′/f . This allows you to measure the emitted and received
frequencies and determine the speed of the object.
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14Atoms and Light

This chapter describes some of the biologically important
properties of infrared, visible, and ultraviolet light. X rays are
discussed in Chaps. 15 and 16. A brief discussion of geomet-
rical optics accompanies the description of image formation
in the eye and errors of refraction.

Section 14.1 considers the particle properties of light
(photons), while Sect. 14.2 looks at the wave properties of
electrons. Photons can be emitted or absorbed when single
atoms change energy levels, and they have certain frequen-
cies characteristic of the atom, as described in Sect. 14.3.
Molecules have additional energy levels shown in Sect. 14.4.
Biological examples include spectrophotometry, photodis-
sociation, immunofluorescence, infrared spectroscopy, and
Raman scattering. There is an extensive literature about
these; the discussion here is quite brief.

Section 14.5 describes the scattering and absorption of
radiation, processes that are important in the rest of this
chapter and in Chaps. 15–17. The probability of scatter-
ing or absorption is measured by the cross section, which
is also introduced here. Photons may scatter many times in
a substance without being absorbed. This leads to the con-
cept of turbid media such as milk or clouds. In some cases
the process can be modeled accurately with the diffusion
approximation developed in Sect. 14.6. Biological exam-
ples of infrared scattering (including Raman scattering) are
described in Sect. 14.7

Photons can be absorbed and emitted by some substances
in a continuous range of frequencies or wavelengths. This
happens when many atoms interact with each other and blur
the energy levels, as in liquids and solids. This leads to the
concept of thermal radiation described in Sect. 14.8. Exam-
ples of thermal radiation are infrared radiation by the skin
and ultraviolet radiation by the sun. The former is discussed
in Sect. 14.9.

Blue and ultraviolet light are used for therapy, as de-
scribed in Sect. 14.10. They can also be harmful, particularly
to skin and eyes.

Lasers are used to heat tissue, often rapidly enough to
do surgery as water in the tissue suddenly boils. Models of
this process include the bioheat equation that is developed in
Sect. 14.11.

Section 14.12 describes the problem of radiometry: mea-
suring radiation. All of the important quantities are defined,
and the corresponding photometric and actinometric quanti-
ties are also introduced.

Section 14.13 describes how the eye focuses an image
on the retina and the correction of simple errors of refrac-
tion. A final example of the photon nature of light is given in
Sect. 14.14: the statistical limit to dark-adapted vision—shot
noise—which is important when the eye is operating in its
most sensitive mode.

We can only provide a brief introduction to the role op-
tics and light play in biology. For more details with many
fascinating examples, see Johnsen (2011).

14.1 The Nature of Light: Waves and Photons

Light travels in a vacuum with a velocity c = 3 × 108 m s−1

(to an accuracy of 0.07 %). When light travels through
matter, its speed is less than this and is given by

cn = c

n
, (14.1)

where n is the index of refraction of the substance. The value
of the index of refraction depends on both the composition
of the substance and the color of the light.

A controversy over the nature of light existed for cen-
turies. Sir Isaac Newton explained many properties of light
with a particle model in the seventeenth century. In the early
nineteenth century, Thomas Young performed some interfer-
ence experiments that could be explained only by assuming
that light is a wave. By the end of the nineteenth cen-
tury, nearly all known properties of light, including many of
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its interactions with matter, could be explained by assum-
ing that light consists of an electromagnetic wave. By an
electromagnetic wave, we mean that
1. Light can be produced by accelerating an electric charge.
2. Light has an electric and a magnetic field associated with

it; the force that the light exerts on a charged particle is
given by Eq. 8.2, F = q(E + v × B). The force due to the
magnetic field is usually very small.

3. The velocity of light traveling in a vacuum is given by
electromagnetic theory as c = 1/

√
ε0μ0, where pa-

rameters ε0 and μ0 are measured in the laboratory for
“ordinary” electric and magnetic fields.
In the early twentieth century, light was discovered to

have both particle properties and electromagnetic wave prop-
erties at the same time. This rather disconcerting discovery
was followed in a few years by the discovery that matter,
which had been thought to consist of particles, also has wave
properties.

A traveling wave of light can be described by a function
of the form f (x − cnt), which represents a disturbance trav-
eling along the x axis in the positive direction. If the wave is
sinusoidal, then the period T , frequency ν,1 and wavelength
λ are related by

ν = 1

T
, cn = λν. (14.2)

As light moves from one medium into another where it trav-
els with a different speed, the frequency remains the same.
The wavelength changes as the speed changes.

Each particle of light or photon has energy E. The en-
ergy of each photon (a “particle” concept) is related to its
frequency (a “wave” concept) by

E = hν = hcn

λ
. (14.3)

The proportionality constant h is called Planck’s constant. It
has the numerical value2

h = 6.63 × 10−34 J s = 4.14 × 10−15 eV s. (14.4)

We use the number “h stroke” or “h bar”:

� = h

2π
= 1.05 × 10−34J s = 0.66 × 10−15 eV s. (14.5)

In terms of the angular frequency ω = 2πν,

E = �ω. (14.6)

1 We used f for frequency in earlier chapters because this is custom-
ary when discussing noise. Here we adopt ν for frequency, the notation
most often used in atomic physics.
2 The electron volt (eV) is a unit of energy. 1eV = 1.6 × 10−19 J. It
is the energy acquired by an electron that moves through a potential
difference of 1 V.

Table 14.1 The regions of the electromagnetic spectrum and their
boundaries

Name Wavelength Frequency (Hz) Energy (eV)
Radio waves

1 m 300 × 106 1.24 × 10−6

Microwaves
1 mm 300 × 109 1.24 × 10−3

Extreme infrared
15 μm 20 × 1012 0.083

Far infrared
6 μm 50 × 1012 0.207

Middle infrared
3 μm 100 × 1012 0.414

Near infrared
750 nm 400 × 1012 1.65

Visible
400 nm 750 × 1012 3.11

Ultraviolet
12 nm 24 × 1015 100

X rays, γ rays

Table 14.2 The visible electromagnetic spectrum

Color Wavelength Frequency Energy
(nm) (THz) (eV)
750 400 1.65

Red
610 490 2.03

Orange
590 510 2.10

Yellow
570 530 2.17

Green
500 600 2.48

Blue
450 670 2.76

Violet
400 750 3.11

The electromagnetic spectrum includes radio waves, mi-
crowaves, infrared, visible, and ultraviolet light, x rays, and
γ (gamma) rays. Table 14.1 shows the wavelengths that sep-
arate these arbitrary regions, together with the frequencies
and the energies of the photons. Visible-light photons have
an energy of a few electron volts. X rays are 104–107 times
more energetic, while γ rays, which come from atomic nu-
clei, are often even more energetic but may have energies
overlapping x-ray energies. The only difference between x
rays and γ rays is their source.

The property of light that we associate with color is the
frequency or the energy of each photon. Visible light covers
a narrow range of frequencies, about an octave (a factor of 2).
Table 14.2 shows the wavelengths and frequencies dividing
the colors of the visible spectrum. The frequencies are in the
400–750 THz range.

Most of the effects discussed in this chapter, particularly
those dealing with emission and absorption, can be explained
by assuming that light is made up of photons. Phenomena
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such as interference, diffraction, and polarization require the
wave theory.

14.2 Electron Waves and Particles: The
ElectronMicroscope

Like light, matter can have both wave and particle properties.
The French physicist, Louis de Broglie, derived a quantum
mechanical relationship between a particle’s momentum p

and wavelength:

λ = h

p
(14.7)

(Eisberg and Resnick 1985). For example, a 100-eV electron
has a speed of 5.9×106 m s−1 (about 2 % the speed of light),
a momentum of 5.4 × 10−24 kg m s−1, and a wavelength of
12 nm.

The electron microscope takes advantage of the short
wavelength of electrons to produce exquisite pictures of very
small objects. Diffraction limits the spatial resolution of an
image to about a wavelength. For a visible light microscope,
this resolution is on the order of 500 nm (Table 14.2). For the
electron microscope, however, the wavelength of the elec-
tron limits the resolution. A typical electron energy used
for imaging is about 100 keV, implying a wavelength much
smaller than an atom (however, practical limitations often
limit the resolution to about 1 nm). Table 1.2 shows that
viruses appear as blurry smears in a light microscope, but
can be resolved with considerable detail in an electron mi-
croscope. In 1986, Ernst Ruska shared the Nobel Prize in
Physics “for his fundamental work in electron optics, and for
the design of the first electron microscope.”

Electron microscopes come in two types. In a transmis-
sion electron microscope (TEM), electrons pass through a
thin sample. In a scanning electron microscope (SEM), a fine
beam of electrons is raster scanned across the sample, and
secondary electrons emitted by the surface are imaged. In
both cases, the image is formed in vacuum and the electron
beam is focused using a magnetic lens.

14.3 Atomic Energy Levels and Atomic
Spectra

The simplest system that can emit or absorb light is an iso-
lated atom. An atom is isolated if it is in a monatomic gas. In
addition to translational kinetic energy, isolated atoms have
specific discrete internal energies, called energy levels. An
atom can change from one energy level to another by emit-
ting or absorbing a photon with an energy equal to the energy

Fig. 14.1 A system can change from one energy to another by emitting
or absorbing a photon. The photon has an energy equal to the difference
in energies of the two levels

difference between the levels. Let the energy levels be la-
beled by i = 1, 2, 3, ..., with the energy of the ith state being
Ei . There is a lowest possible internal energy for the atom;
when the atom is in this state, no further energy loss can take
place. If Ei is greater than the lowest energy, then the atom
can lose energy by emitting a photon of energy Ei − Ef and
exist in a lower energy state Ef (Fig. 14.1).

It is possible, using techniques of quantum mechanics, to
calculate the energies of the levels with reasonable accuracy
(and in some cases with spectacular accuracy). For our pur-
poses, we need to only recognize that energy levels exist and
know their approximate values. You may be familiar with
the model of the hydrogen atom developed by Niels Bohr, in
which the energy of the nth level is given by

En = −
(

1

4πε0

)2
mee

4

2�2n2
, n = 1, 2, 3, . . . . (14.8)

The energy is in joules when the electron mass me is in kilo-
grams, the electronic charge e is in coulombs, and � is in J s.
The Coulomb’s law constant 1/4πε0 is given in Eq. 6.2. Di-
viding the energy in joules by e gives the energy in electron
volts:

En = −13.6

n2
(in eV). (14.9)

The energy-level diagram in Fig. 14.2 shows these ener-
gies and some transitions between them. In other cases, the
energy depends not only on the integer n = 1, 2, 3, 4, . . . ,
but on additional quantum numbers as well.

Figure 14.3 plots the spectrum for hydrogen versus wave-
length, along with some of the energy levels of hydrogen.
Letters a, b, c, . . . mark lines in the spectrum and the asso-
ciated transitions.

In general, the internal energy of an atom depends on the
values of five quantum numbers for each electron in the atom.
The quantum numbers are
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Fig. 14.2 Energy levels in a hydrogen atom. Transitions are shown
corresponding to the emission and absorption of light

Fig. 14.3 The spectrum for hydrogen plotted versus wavelength and
the energy levels for hydrogen. Some spectral lines and the correspond-
ing transitions have been labeled

n = 1, 2, 3, . . . the principal quantum
number

l = 0, 1, 2, . . . , n − 1 the orbital angular mo-
mentum quantum num-
ber

s = 1
2 the spin quantum number

ml = −l,−(l − 1), . . . , l − 1, l “z component” of the or-
bital angular momentum

ms = − 1
2 , 1

2 “z component” of the
spin.

Sometimes the last two quantum numbers, ml and ms ,
are replaced by two other quantum numbers, j and mj . The
allowed values of j and mj are
j = l − 1

2 or l + 1
2 except

that j = 1
2 when l = 0

total angular momentum
quantum number

mj = −j,−(j − 1), “z component” of total
. . . , j − 1, j angular momentum

Whether one uses ml and ms or j and mj , each electron
is described by five quantum numbers, one of which is al-
ways 1

2 . There are four quantum numbers that can change,
corresponding to the three space degrees of freedom and the
spin associated with ms . The internal energy of the atom is
the sum of the kinetic and potential energies of each elec-
tron. The energy of each electron depends on the values of its
quantum numbers. It is influenced by the electric field gen-
erated by the nucleus and all the other electrons. There are
also magnetic interactions between electrons and between
each electron and the nucleus, because the moving charges
generate magnetic fields.

No two electrons in an atom can have the same values
for all their quantum numbers, a fact known as the Pauli
exclusion principle.

The ionization energy is the smallest amount of energy
required to remove an electron from the atom when the atom
is in its ground state. For hydrogen the ionization energy is
13.6 eV. In contrast, it takes only 5.1 eV to remove the least
tightly bound electron from a sodium atom.

An atom can receive energy from an external source, such
as a collision with another atom or some other particle. It can
also absorb a photon of the proper energy. Absorbing just the
right amount of energy allows one of its electrons to move
to a higher energy level, as long as that level is not already
occupied. The atom can then get rid of this excess energy
by radiating a photon, with the excited electron falling to an
unoccupied state with lower energy. This change is usually
consistent with the following selection rules, which can be
derived using quantum mechanics:

�l = 1, �j = 0,±1. (14.10)

14.4 Molecular Energy Levels

In addition to internal energy, an atom can have kinetic
energy of translation with three degrees of freedom. The
translational kinetic energy is also quantized, but as long as
the atom is not confined to a very small volume, the levels
are so closely spaced that the translational kinetic energy can
be regarded as continuous.
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r

R = R1 −R2 = r1 − r2R1

R2

1r

r2

m1

m2

Fig. 14.4 A diatomic molecule. Vectors r1 and r2 are the positions of
the atoms measured in the laboratory. Vectors R1 and R2 are coordi-
nates in the center-of-mass system. Vector r is the position of the center
of mass

Two atoms together have six degrees of translational free-
dom, because each can move in three-dimensional space.
However, if the atoms are bound together, their motions
are not independent One can speak of the three degrees of
freedom for translation of the molecule as a whole (center-of-
mass motion) and also the vector displacement of one atom
from the other. This is shown in Fig. 14.4. Vector r locates
the center of mass of the two atoms. It is located at a point
such that m1R1 = −m2R2.

Consider two particles of mass m1 and m2. Their positions
with respect to some fixed origin are r1 and r2. The velocity
of each particle is vi = dri/dt . The kinetic energy of the ith
particle is Ti = mi(vi · vi )/2. Define the center of mass by

r = m1r1 + m2r2

m1 + m2

and the vectors from the center of mass to each particle by

R1 = r1 − r = m2(r1 − r2)

m1 + m2
= m2R

m1 + m2
,

R2 = −m1R
m1 + m2

.

The total kinetic energy is T = m1(v1 · v1)/2 +
m2(v2 · v2)/2. Since vi = v + Vi , we have

2T =(m1 + m2)(v · v) + m1(V1 · V1)

+ m2(V2 · V2) + 2v · (m1V1 + m2V2).

The last term vanishes because m1R1 + m2R2 = 0. Con-
sider the second term. Differentiating R1 = m2R/(m1 +m2)

shows that

V1 · V1 =
(

m2

m1 + m2

)2

V 2,

V2 · V2 =
(

m1

m1 + m2

)2

V 2.

Therefore,

T = (m1 + m2)v
2

2
+ 1

2

m1m2

m1 + m2
V 2.

The first term is the kinetic energy of a point mass m1 +
m2 traveling at the speed of the center of mass. The second
is the kinetic energy of a particle having the reduced mass
m1m2/(m1 + m2) and the speed of relative motion of the
two particles, V = |V| = |dR/dt |. If R changes magnitude,
the particles are vibrating. If R has a fixed magnitude, the
molecule can rotate. If the molecule is rotating in some plane
with angular velocity ω, then

1

2

m1m2

m1 + m2
V 2 = 1

2

m1m2

m1 + m2
R2ω2 = 1

2
Iω2.

The quantity I = [
m1m2/(m1 + m2)

]
R2 = m1R

2
1 + m2R

2
2

is the moment of inertia of the two objects (Serway and
Jewett 2013, p. 312 and 328). In this case the angular
momentum about the center of mass is

L = R1(m1v1) + R2(m2v2) = m1R
2
1ω + m2R

2
2ω = Iω.

These two equations can be combined to give the rotational
kinetic energy in terms of the angular momentum about the
center of mass:

T = L2

2I
.

Quantum mechanically, the angular momentum cannot
take on any arbitrary value. The square of the angular
momentum is restricted to the values

L2 = r(r + 1)�2, r = 0, 1, 2, . . . .

Since there is no potential energy, the total energy of rotation
of the molecule is

Er = r(r + 1)�2

2I
, r = 0, 1, 2, . . . . (14.11)

The spacing of the rotational levels is shown in Fig. 14.5.
A detailed calculation using quantum mechanics shows that
when a photon is emitted or absorbed, r must change by ±1.
Therefore the photon energy is

�Er = Er − Er−1 = �
2

I
r, r = 1, 2, . . . . (14.12)
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Fig. 14.5 Energy levels of a rotating molecule

Fig. 14.6 The potential energy of a sodium ion and a chloride ion as a
function of their nuclear separation

The problems at the end of the chapter show that these pho-
tons have low energies, so that rotational spectra lie in the
far-infrared region (far meaning far from the visible region,
i.e., very long wavelengths).

The other possibility is that the atoms in the molecule vi-
brate back and forth along the line joining their centers. If
two masses have an equilibrium position a certain distance
apart, work must done either to push them closer together
or to pull them farther apart. In either case, the potential en-
ergy is increased. At the equilibrium separation the potential
energy is a minimum. Figure 14.6 shows the potential en-
ergy Ep of a sodium ion and a chloride ion as a function of
their separation. The potential has a minimum at a separation
R0 of about 0.2 nm. The simplest function that has a mini-
mum is a parabola. A parabola can be used to approximate
the minimum in Fig. 14.6: Ep(R) = 1

2k(R − R0)
2. Since

(see Sect. 6.4) dEp = −Fdr , the force is F = −dEp/dR =

Fig. 14.7 Transitions for vibrational–rotational spectra. (Source: Eis-
berg and Resnick 1985. Copyright c©1985 John Wiley & Sons. Repro-
duced by permission of John Wiley & Sons, Inc.)

−k(R − R0), which is the linear approximation to the force
between the two ions. The force is attractive if R > R0 and
repulsive if R < R0.

A mass subject to a linear restoring force is called a har-
monic oscillator (Appendix F). A mass m subject to a linear
restoring force −kx oscillates with an angular frequency
ω2 = k/m. Classically, the energy of the oscillating mass
depends on the amplitude of the motion and can have any
value. Quantum mechanically, it is restricted to values

Ev = �ω
(
v + 1

2

)
, v = 0, 1, 2, . . . . (14.13)

This is the total energy, including both kinetic and poten-
tial energy. The levels are spaced equally by an amount �ω.
The spacing is usually greater than that for rotational lev-
els, often in the infrared. The transitions that give rise to the
emission or absorption of photons require a change in the
rotational quantum numbers as well as the vibrational ones.
The selection rules are

�r = ±1, �v = ±1. (14.14)

Some of these vibrational–rotational transitions are shown in
Fig. 14.7.

Finally, there can be transitions involving v, r , and the
electronic quantum numbers as well. When the electronic
quantum numbers change, the shape of the interatomic po-
tential changes, as shown in Fig. 14.8. The details of molec-
ular spectra are fairly involved and are summarized in many
texts. Transitions of biological importance are discussed in
Grossweiner (1994, pp. 33–38). If the electron selection rules
are satisfied, the transition is fairly rapid (typically 10−8s), a
process called fluorescence. Sometimes the electron becomes
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Fig. 14.8 A combination of changes in electronic quantum numbers
within an atom and of vibrational and rotational quantum numbers
within the molecule. (Source: Eisberg and Resnick 1985. Copyright
c©1985 John Wiley & Sons. Reproduced by permission of John Wiley

& Sons, Inc)

trapped in a state where it cannot decay according to the elec-
tronic selection rules of Eq. 14.10. It may then have a lifetime
up to several seconds before decaying, a phenomenon called
phosphorescence.

14.5 Scattering and Absorption of Radiation;
Cross Section

In the absence of interference and diffraction effects, photons
in a vacuum travel in a straight line. When they travel through
matter they are apparently slowed down, leading to an index
of refraction greater than unity; they may also be scattered
or absorbed. Visible light does not pass through a building
wall, but it does pass through a glass window. The absorption
may depend on the frequency or wavelength of the light. The
window can be made of colored glass. The light can also be
scattered. This leads to the blue of the sky or to the white of
clouds. If there is absorption as well as scattering, the clouds
may appear gray instead of white. How light is scattered or
absorbed in tissue has become very important in biophysics.
Infrared light absorption can be used to measure chemical

Fig. 14.9 A collimated beam of photons passes from left to right
through a thin slice of material. Some photons pass through, some are
scattered, and some are absorbed

composition of the body. Light is also used for therapy and
for laser surgery.

This section shows how to describe a single interaction
of a photon with some substance. The photon can be scat-
tered or absorbed. Section 14.6 develops one technique for
calculating what happens when the photon undergoes many
scattering events before being absorbed or emerging from the
material.

Imagine that we have a distant source of photons that
travel in straight lines, and that we collimate the beam (send
it through an aperture) so that a nearly parallel beam of pho-
tons is available to us. Imagine also that we can see the tracks
of the N photons in the beam, as in Fig. 14.9. When a thin
sample of material of thickness dz is placed in the beam, a
certain number of photons are scattered and a certain num-
ber are absorbed. If we repeat the experiment many times,
we find that the number of photons scattered fluctuates about
an average value that we call dNs and the number absorbed
fluctuates about an average value dNa . When we vary the
thickness of the absorber, we find that if it is sufficiently thin,
the average number of photons scattered and absorbed is pro-
portional to the thickness as well as the number of incident
photons:

dNs = μsNdz, dNa = μaNdz. (14.15)

The total number of unscattered photons N changes accord-
ing to

dN = −(dNs + dNa) = −N(μs + μa)dz

with solution

N(z) = N0e
−μz = N0e

−(μs+μa)z. (14.16)

The quantity μ is the total linear attenuation coefficient.
Quantities μs and μa are the linear scattering and absorp-
tion coefficients. Both depend on the material and the energy
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(a) (b)

S S'

Fig. 14.10 Each circle represents the cross section σ associated with
a target entity such as an atom. a There is one atom in area S. b There
are NT target atoms per unit area in area S′

of the photons. This kind of exponential absorption is known
as Beer’s law or the Beer–Lambert law.

The interaction of photons with matter is statistical. The
cross section σ is an effective area proportional to the prob-
ability that an interaction takes place. The interaction takes
place with a target entity. It is sometimes convenient to de-
fine the target to be a single molecule, at other times an atom,
and still other times one of the electrons within an atom. We
can visualize the meaning of the cross section by consider-
ing either a single target entity interacting with a beam of
photons or a single photon interacting with a thin foil of tar-
gets. Both are shown in Fig. 14.10. For the single target in
Fig. 14.10a, consider a beam of N photons passing through
the area S with a uniform number per unit area N/S. Let the
average number of interactions be n. The cross section per
target entity is defined by saying that the fraction of photons
that interact is equal to the fraction of the area occupied by
the cross section:

n

N
= σ

S
. (14.17)

We denote the number of photons per unit area by Φ and
write Eq. 14.17 as n = σΦ. This is the average number of
scatterings per target entity or the probability of interaction
per target entity when the beam has Φ photons per unit area:

p = σΦ. (14.18)

Strictly speaking, n is dimensionless, σ has the dimensions
m2, and Φ has dimensions m−2. However, it is often helpful
to think of n as being interactions per target entity and σ as
being m2 per target entity.

Alternatively, imagine sending a beam of photons at the
target of area S′ shown in Fig. 14.10b. There are NT target
entities per unit area in the path of the beam, each having an
associated area σ . The fraction of the photons that interact is
again the fraction of the area that is covered:

n

N
= σS′NT

S′ = σNT . (14.19)

This is the probability that a single photon interacts when
there are NT target entities per unit area. Note the symmetry

with Eq. 14.18. In the first case, there is one target entity and
a certain number of photons per unit area. In the second case,
there is one photon and a certain number of target entities per
unit area.

If a number of mutually exclusive interactions can take
place (such as absorption and scattering), we can define a
cross section for each kind of interaction. The probabilities
and the cross sections add:

σtot =
∑

i

σi . (14.20)

The second interpretation we had above can be used to
relate the cross section to the attenuation coefficient. The
number of target entities per unit area is equal to the number
per unit volume times the thickness of the target along the
beam. To obtain the number of target atoms per unit volume,
recall that 1 mol of atoms contains Avogadro’s number NA

atoms. If A is the mass of a target containing 1 mol of atoms
and the target has mass density ρ, then volume V has mass
ρV and contains ρV/A mol and NAρV/A atoms. There-
fore the number of atoms per unit volume is NAρ/A, and
the number of atoms per unit area is

NT = NAρ

A
dz. (14.21)

The linear coefficients are related to their corresponding
cross sections by

μs = NAρ

A
σs,

μa = NAρ

A
σa,

μ = NAρ

A
(σs + σa) = NAρ

A
σtot,

(14.22)

where σtot is the sum of all the interaction cross sections.
Be careful with units! Avogadro’s number is 6.022141×

1023 entities per mole, which is the number in a gram atomic
weight. For carbon, A = 12.01 × 10−3 kg mol−1 and ρ =
2.0 × 103 kg m−3. This is discussed further on page 433.

We may wish to know the probability that particles (in
this case photons) are scattered in a certain direction. We
have to consider the probability that they are scattered into a
small solid angle dΩ . In this case, σ is called the differential
scattering cross section and is often written as

dσ

dΩ
dΩ or σ(θ)dΩ. (14.23)

The units of the differential scattering cross section are
m2 sr−1. The differential cross section depends on θ , the
angle between the directions of travel of the incident and
scattered particles. In a spherical coordinate system in which
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Fig. 14.11 a A small solid angle dΩ = sin θ dθ dφ surrounds the di-
rection defined by angles θ and φ. b The solid angle dΩ = 2π sin θ dθ

results from integrating over φ

the incident particle moves along the z axis, the solid angle
is dΩ = sin θ dθ dφ (Appendix L). If the cross section has
no φ dependence, then the integration over φ can be carried
out and dΩ = 2π sin θ dθ . These solid angles are shown in
Fig. 14.11.

There are three ways to interpret the exponential decay of
the primary beam. First, the number of particles remaining
in the beam that have undergone no interaction decreases as
the target becomes thicker, so that the number of particles
available to interact in the deeper layers is less. Second, the
exponential can be regarded as taking into account the fact
that in a thicker sample some of the target atoms are hid-
den behind others and are therefore less effective in causing
new interactions. The third interpretation is in terms of the
Poisson probability distribution (Appendix J). Each layer of
thickness dz provides a separate chance for the beam par-
ticles to interact. The probability of interacting in any one
layer dz is small, p = σtotNAρ dz/A, while the total num-
ber of “tries” is z/dz. The average number of interactions is
m = p × number of tries. The probability of no interaction
is e−m = exp(−σtotNAρ z/A) = e−μz.

When the cross section for scattering is large, things can
become quite complicated. For example, photons may scat-
ter many times and be traveling through the material in all
directions. Various approximations have been used to model

photon transport in such a case. We will examine some of
them shortly. One simple correction that is often made is to
consider the average direction a scattered photon travels, for
example, the average value of the cosine of the scattering an-
gle, g = cos θ , where θ is the angle of a single scattering.
If the average angle of scattering is very small, g is nearly
1. If the photon is scattered backward, g = −1, and if the
scattering is isotropic, g = 0. Formally,

g =
∫ π

0 σ(θ) cos θ 2π sin θ dθ
∫ π

0 σ(θ) 2π sin θ dθ
. (14.24)

The reduced scattering coefficient

μ′
s = (1 − g)μs (14.25)

is what is usually measured.
The values of the scattering and absorption coefficients

vary widely. For infrared light at 780 nm, values are roughly3

μ′
s = 1500 m−1, μa = 5 m−1.

14.6 The Diffusion Approximation to Photon
Transport

When photons enter a substance, they may scatter many
times before being absorbed or emerging from the substance.
This leads to turbidity, which we see, for example, in milk
or clouds. The most accurate studies of multiple scatter-
ing are done with Monte Carlo computer simulations, in
which probabilistic calculations are used to follow a large
number of photons as they repeatedly interact in the tissue
being simulated. However, Monte-Carlo techniques use lots
of computer time. Various approximate analytic solutions
also exist. The field is reviewed in Chap. 5 of Grossweiner
(1994).

14.6.1 Diffusion Approximation

One of the approximations, the diffusion approximation, is
described here. It is useful when many scattering events oc-
cur for each photon absorption. This is a valid approximation
for most tissue, but not for cerebrospinal fluid or synovial
(joint) fluid.

3 These are eyeballed from data for various tissues reported in the ar-
ticle by Yodh and Chance (1995). Values are up to ten times larger at
other wavelengths. See Table 5.2 in Grossweiner (1994). Nickell et al.
(2000) report values for skin that depend on both the direction of prop-
agation and the degree of stretching of the skin. They are similar to the
values reported here.
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If the photons have undergone enough scattering in a
medium, all memory of their original direction is lost. In that
case, the movement of the photons can be modeled by the
diffusion equation. In Chap. 4, we wrote Fick’s second law
as

∂C

∂t
= D∇2C + Q.

The left-hand side of the equation is the rate at which the
concentration, the number of particles per unit volume, is
increasing. The term D∇2C is the net diffusive flow into
the small volume, the particle current being given by j =
−D∇C. The last term is the rate of production or loss of
particles within the volume by other processes, depending
on whether Q is positive or negative.

Let us suppose that we can apply this to photons. We will
consider two contributions to Q. The concentration must be
the number of diffusing photons per unit volume. Many in the
incident beam are still traveling in the original direction and
are not diffusing, but if they are scattered they become part of
the diffusing photon pool. Therefore there may be a source
term, which we will call s, due to the incident photons. But
photons are also being absorbed. They are traveling with a
speed cn = c/n, where n is the index of refraction of the
medium. In time dt , they travel a distance dx = cndt , and
the probability that they are absorbed is μadx = μacndt .
Therefore the diffusion equation for photons is

∂C

∂t
= D∇2C − μacnC + s. (14.26)

Each term has the units of photons m−3 s−1.
In photon transfer, it is customary to make two changes in

this equation. The first is to divide all terms by the speed of
the photons in the medium,4 cn. The result is

1

cn

∂C

∂t
= D′∇2C − μaC + s

cn

,

where D′ = D/cn is referred to in the photon transfer liter-
ature as the photon diffusion constant. It has dimensions of
length.

Two important quantities in radiation transfer are the pho-
ton or particle fluence and the photon fluence rate. The
International Commission on Radiation Units and Measure-
ments (ICRU) defines the particle fluence for any kind of
particle, including photons as follows: At the point of inter-
est construct a small sphere of radius a. Let the number of
particles striking the surface of the sphere during some time
interval have an expectation value N . (The expectation value

4 Most papers in this field use c as the velocity of light in the medium.
We prefer to reserve c for the fundamental constant, the velocity of light
in vacuum.

(a) (b)

Fig. 14.12 The particle fluence is the ratio of the expectation or aver-
age value of the number of particles passing through the sphere to the
area of a great circle of the sphere, πa2. It depends on the total num-
ber of particles passing through the sphere, regardless of the direction
they travel. The fluence is the same in each case shown: five particles
traverse each sphere

is the mean of a set of measurements in the limit as the num-
ber of measurements becomes infinite.) The particle fluence
Φ is the ratio N/πa2, where πa2 is the area of a great cir-
cle of the sphere, that is, the area of a circle having the same
radius as the sphere. This is shown in Fig. 14.12 and is a gen-
eralization of our earlier use of Φ as the number of particles
per unit area. It neatly avoids having to introduce obliquity
factors, since for any direction the particles travel, one can
construct a great circle on the sphere that is perpendicular to
their path. The particle fluence rate is

ϕ = dΦ

dt
.

We saw in Chap. 4 that for a group of particles all trav-
eling with the same speed, the number transported across a
plane per unit area per unit time is equal to their concentra-
tion times their speed. The photon concentration is related
to the photon fluence rate by C = ϕ/cn, and the photon
diffusion equation becomes

1

cn

∂ϕ

∂t
= D′∇2ϕ − μaϕ + s. (14.27)

This is the form that is usually found in the literature. The
units of each term are photons m−3 s−1. One can show that5

D′ = 1

3
[
μa + (1 − g)μs

] = 1

3(μa + μ′
s)

. (14.28)

14.6.2 ContinuousMeasurements

If the tissue is continuously irradiated with photons at a con-
stant rate, the term containing the time derivative vanishes. If

5 See, for example, Duderstadt and Hamilton (1976, pp. 133–136).
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in addition we use a broad beam of photons so that we have
a one-dimensional problem and we are far enough into the
tissue so that the source term can be ignored, the model is

D′ d2ϕ

dx2
= μaϕ. (14.29)

This has an exponential solution ϕ = ϕ0e
−μeffx , where

μeff = {
3μa

[
μa + (1 − g)μs

]}1/2. It is interesting to see
what these numbers mean. Using the “typical” values from
Sect. 14.5, the number of photons that have not interacted
(are not yet attenuated) falls exponentially with a character-
istic length or mean depth

λunatten = 1

μ
= 1

μa + μ′
s

= 1

1505
= 0.66 mm.

For the diffuse beam, the mean depth is about ten times this:

λdiffuse = 1

μeff
= 1√

(3)(5)(1505)
= 6.7 mm.

These values are for a wavelength where the tissue is fairly
transparent. The diffusion equation can be solved for other
geometries that model the light source being used.6 One
problem with these measurements is that they give only μeff,
which is a combination of μa and μs . Also, the path length
may be ambiguous because the geometry cannot be modeled
accurately.

14.6.3 PulsedMeasurements

A technique made possible by ultrashort light pulses from a
laser is time-dependent diffusion. It allows determination of
both μs and μa . A very short (150 ps) pulse of light strikes a
small region on the surface of the tissue. A detector placed on
the surface about 4 cm away records the multiply-scattered
photons. A typical plot of the detected photon fluence rate is
shown in Fig. 14.13. Patterson et al. (1989) have shown that
the reflected fluence rate after a pulse is approximately

R(r, t) = z0

(4πD′cnt)3/2t
e−μacnt e−(r2+z2

0

)
/4D′cnt . (14.30)

Here r is the distance of the detector from the source along
the surface of the skin, cnt is the total distance the pho-
ton has traveled before detection, and z0 = 1/

[
(1 − g)μs

]

is the depth at which all the incident photons are assumed
to scatter and become part of the diffuse photon pool. This
curve fits Fig. 14.13 well and can be used to determine μa

and (1 − g)μs . We can understand the various factors in
Eq. 14.30. The last factor is a Gaussian spreading in the

6 See, for example, Grossweiner (1994, p. 98).

Fig. 14.13 Time-resolved infrared spectroscopy. The line is a mea-
surement of the reflected photons from the calf of a human volunteer at
a distance of 4 cm from the pulsed source. The wavelength is 760 nm.
The circles are calculated using Eq. 14.30 and normalized to the peak
value. (Source: Patterson et al. 1989. Copyright by the Optical Society
of America.)

r direction away from the z axis where the photons were
injected. This is a two-dimensional problem. Compare this
with Eq. 4.77, which shows that in two dimensions σ 2

r =
4Dt , and recall that D = D′cn. The middle factor is the frac-
tion of the photons in the pulse that have not been absorbed,
exp(−μax), where x is the total distance the photons have
traveled. The first factor is the normalization that reduces the
amplitude of the Gaussian as it spreads.

A related technique is to apply a continuous laser beam
whose amplitude is modulated at various frequencies be-
tween 50 and 800 MHz. The Fourier transform of Eq. 14.30
gives the change in amplitude and phase of the detected
signal. Their variation with frequency can also be used to
determine μa and μs .7

14.6.4 Refinements to theModel

The diffusion equation, Eq. 14.27, is an approximation, and
the solution given, Eq. 14.30, requires some unrealistic as-
sumptions about the boundary conditions at the surface of
the medium (z = 0). Hielscher et al. (1995) compared
experiment, Monte Carlo calculations, and solutions to the
diffusion equation with three different boundary conditions.
They found that Eq. 14.30 was the easiest to use but leads to
errors in the estimates of the coefficients that become worse
when the detector and source are close together. Their Monte
Carlo calculations fit the data quite well. They also discuss

7 See, for example, Sevick et al. (1991) or Pogue and Patterson (1994).
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Fig. 14.14 The absorption coefficient μa for water, oxyhemoglobin,
and deoxyhemoglobin. (Reprinted with permission from Yodh and
Chance (1995). Copyright 1995, American Institute of Physics)

the reflections that occur when light goes from one medium
into another with a different index of refraction.

14.7 Biological Applications of Infrared
Scattering

There are a number of uses of light in the near infrared: some
clinical and some in the laboratory.

14.7.1 Near Infrared (NIR)

Near-infrared light in the range 600–1000 nm is used to
measure the oxygenation of the blood as a function of time
by determining the absorption at two different wavelengths.
Figure 14.14 shows the absorption coefficients for oxy-
genated and deoxygenated hemoglobin and water. The
greater absorption of blue light in oxygenated hemoglobin
makes oxygenated blood red. (The graph shows only wave-
lengths longer than 600 nm—red and infrared.) The wave-
length 800 nm at which both forms of hemoglobin have the
same absorption is called the isosbestic point. Measurements
of oxygenation are made by comparing the absorption at two
wavelengths on either side of this point.

One of the difficulties with these measurements is know-
ing the path length, since photons undergo many scatterings
before being absorbed or reaching the detector. Scattering
from many tissues besides hemoglobin distorts the signal.
Nonetheless, pulse oximeters that fit over a finger are widely

used. Webster (1997) provides a comprehensive discussion
of the underlying physics, design, calibration, and use of
pulse oximeters. The basic feature is that arterial blood flow
is pulsatile, not continuous. Therefore, measuring the time-
varying (AC) signal selectively monitors arterial blood and
eliminates the contribution from venous blood and tissue.
Scattering corrections must still be made (Farmer 1997;
Wieben 1997).

Development of new applications for infrared scatter-
ing measurements continues as new detectors with differ-
ent spectral sensitivities become available (Yamashita et al.
2001). Continuous sources are also used to determine blood
oxygenation of tissue (Liu et al. 1995).

14.7.2 Optical Coherence Tomography (OCT)

Optical range measurements using the time delay of reflected
or backscattered light from pulses of a few femtosecond
(10−15 s) duration can be used to produce images similar to
those of ultrasound A- and B-mode scans. The spatial extent
of a 30 fs pulse in water is about 7μm. Since it is diffi-
cult to measure time intervals that short, most measurements
are done using interference properties of the light. Optical
coherence tomography is conceptually similar to range mea-
surements but uses interference measurements. It was first
demonstrated by Huang et al. (1991) and has been developed
extensively since then (see Schmitt 1999; Brezinski 2006 or
Fercher et al. 2003). It is widely used in ophthalmology.

This is one topic for which we must use the electromag-
netic wave model for light, since it depends on interference
effects. Light waves differ from sound waves because the
electric field in the wave is a vector perpendicular to the
direction of propagation of the wave. This gives rise to an
important effect—polarization—that we ignore.

Suppose that a wave A sin 2π
λ

(x − cnt) = A sin ω(x/cn −
t) travels in a medium with index of refraction n. A detector
responds to the energy fluence in the wave, which is propor-
tional to the square of the amplitude averaged over time. The

signal is y ∝ A2sin2 ω(x/cn − t) = A2/2. The wave is split,
travels two paths of different lengths, and is recombined at a
detector. The signal is proportional to the power averaged
over many cycles of the wave. The power is proportional to
the square of the electric field:

y ∝ (A/2)2[sin ω(x1/cn − t) + sin ω(x2/cn − t)
]2

= A2

4

(
1 + cos

ω

cn

(x2 − x1)

)
. (14.31)

The signal oscillates between 0 and A2/2 as the difference
in path length is changed. When the path difference is zero,
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Fig. 14.15 The basic apparatus for optical coherence tomography. The
features are described in the text

y ∝ A2/2, our original result. This dependence of the signal
on path length forms the basis for interferometry, which can
be used to measure changes in distance with high accuracy—
counting maxima (fringes) as one path length is varied.

An important consideration is the coherence of the light
beam: the number of cycles over which the phase of the
wave does not change. When an atom emits light, the clas-
sical electromagnetic wave lasts for a finite time, τcoh (often
around 10−8 s). When another atom emits light, the phase is
unrelated to the phase of light already emitted. This means
that if (x2 − x1) /cn > τcoh, the time average will go to zero.

Note that as long as light from a single source has been
split and then recombined, the paths can be quite long. The
interference fringes will be seen when the light is recombined
and the path difference satisfies

x2 − x1 < cnτcoh. (14.32)

This provides a technique for determining the distance of a
reflecting object from the light source, forming the basis for
optical coherence tomography. A light source with a short
coherence time is used for high resolution. The basic appara-
tus is shown in Fig. 14.15. Various light sources are used. The
light pulse travels over an optical fiber to a 50/50 beam split-
ter. Part travels to the sample, where it is reflected back to the
50/50 coupler and then to the detector. The other half of the
light goes to the reference mirror, where it is also reflected
back to the detector. Changing the position of the reference
mirror changes the depth of the image plane in the sample.
The lateral beam position is changed to scan the sample, as
in an ultrasound B-mode scan. Fig. 14.16 shows an image of
the retina.

It is possible to make many kinds of images. Fig. 14.17
shows the parabolic velocity profile of blood flowing in a
retinal blood vessel 176 μm diameter. It was obtained by
measuring the Doppler shift in light scattered from moving

blood cells. It is also possible to image glucose concentra-
tion, because glucose modifies the index of refraction and
thereby the scattering coefficient (Esenaliev et al. 2001). Im-
ages are made of the surface layers of the skin, the eye, the
walls of the mouth, teeth, larynx, esophagus, stomach, and
intestine.

A number of tissues exhibit birefringence—the speed of
light in the skin depends on the orientation of the electric
field vector of the light wave with the cells in the tissue (de
Boer et al. 2002). It is possible to make images with dif-
ferent orientations of the electric field vector to improve the
resolution (Yasuno et al. 2002).

There are a number of offshoots to OCT, such as optical
coherence microscopy and full-field OCM (Saint-Jalmes et
al. 2002).

14.7.3 Raman Spectroscopy

Infrared and microwave probes are used extensively in the
laboratory. Since the vibrational and rotational levels de-
pend on the masses, separations, and forces between the
various atoms bound in a molecule, it is not surprising
that spectroscopy can be used to identify specific bonds.
This is a useful technique in chemistry. Biological appli-
cations are difficult because the absorption coefficients are
large; thin samples must be used, particularly in an aqueous
environment.

One way around this is Raman scattering: the scatter-
ing of light in which the scattered photon does not have its
original energy, but has lost or gained energy correspond-
ing to a rotational or vibrational transition. The effect was
discovered by C. V. Raman in 1928. Raman scattering can
be done with light of any wavelength, from infrared to ul-
traviolet. An idealized example is shown in Fig. 14.18. If
the scattering molecule was originally in the vibrational
ground state and returns to a vibrational excited state, the
Raman-scattered photon has less energy than the original
photon. This is called Stokes-Raman scattering. If the scat-
tering molecule was originally in a higher vibrational state
and returns to the vibrational ground state, the Raman-
scattered photon has higher energy than the original. The
intensity of this Anti-Stokes Raman line will be less than the
intensity of the Stokes-Raman line because populations of
the original vibrational levels are governed by a Boltzmann
factor. Figure 14.19 shows the Stokes-Raman shift spectrum
for cholesterol. Many discussions of Raman spectroscopy
are available. A fairly theoretical one by Berne and Pec-
ora (1976) relies heavily on autocorrelation functions and
spectral analysis that we saw in Chap. 11. Diem (1993) is
a detailed text on vibrational spectroscopy, including Raman
spectroscopy.

Raman spectroscopy has been used extensively for labora-
tory studies; many groups are exploring its utility for in vivo
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Fig. 14.16 Optical coherence tomograms of the retina. The square box in the lower left corner is about 500 μm on a side. N and T indicate nasal
and temporal. The patient has a subchoroidal neovascular membrane (a collection of new and fragile blood vessels that leak) seen as a pocket of
fluid on the left. The lesion was treated with a laser (photocoagulation). The tomogram 1 month later shows resolution of the fluid pocket. (Scans
courtesy of Kirk Morgan, MD)

Fig. 14.17 The parabolic velocity profile of blood flowing in a single
retinal vessel of diameter 176 μm. (Source: Yazdanfar et al. 2000. Used
by permission)

measurements (Hanlon et al. 2000). Infrared light between
800 and 1000 nm is usually used.

14.7.4 Far Infrared or Terahertz Radiation

For many years, there were no good sources or sensitive
detectors for radiation between microwaves and the near in-
frared (0.1–100 THz). Developments in optoelectronics have
solved both problems, and many investigators are exploring
possible medical uses of THz radiation (“T rays”). Classi-
cal electromagnetic wave theory is needed to describe the
interactions, and polarization (the orientation of the E vec-
tor of the propagating wave) is often important. The high
attenuation of water in this frequency range means that stud-
ies are restricted to the skin or surface of organs such as
the esophagus that can be examined endoscopically. Reviews
are provided by Smye et al. (2001), Fitzgerald et al. (2002),
and Zhang (2002). See the article by Armstrong (2012) for a
survey of the challenges of using terahertz radiation.

Fig. 14.18 In Raman scattering, a photon gains or loses energy due to
a change in the energy of the scattering molecule. An idealized example
for water is shown. The very intense line (the tall peak) has no energy
change; the weak lines are Raman scattering. The abscissa is shown as
wavelength λ and as reduced wave number k/2π = 1/λ. The Raman
shift corresponds to �(1/λ) = 3400 cm−1. The wavelength of this
infrared transition is λ = 2940 nm, but the measurement is made near
500 nm

14.8 Thermal Radiation

Any atomic gas emits light if it is heated to a few thousand
kelvin. The light consists of a line spectrum. The famous
yellow line of sodium has

λ = 589.2 nm,

ν = c/λ = 509.2 THz,
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Fig. 14.19 Vibrational Raman lines for cholesterol. A continuous
background has been subtracted. The abscissa is 1/λ = E/hc. (Source:
Hanlon et al. 2000. Used by permission)

Table 14.3 Approximate color temperatures. The range of values
reflects differences between scales established by different observers

Color T (K)
Red, just visible in daylight 750–800
“Cherry” red 975–1175
Yellow 3000–4000
White 5000–6000
Dazzling (bluish white) > 10 000

E = hν = hc/λ = 3.38 × 10−19 J = 2.11 eV.

These photons are emitted when sodium atoms lose 2.11 eV
and return to their ground state. If the sodium atoms are
excited by thermal collisions, the probability that a sodium
atom is in the excited state, relative to the probability that it
is in the ground state, is given by the Boltzmann factor

Pexcited

Pground
= e−E/kBT .

At room temperature kBT = 4.14 × 10−21J, so e−E/kBT =
e−81.5 = 3.8 × 10−36. The number of atoms in the ex-
cited state is utterly negligible. If the temperature is raised to
1500 K, e−E/kBT is 8 × 10−8, and enough atoms are excited
to give off light as they fall back to the ground state.

If a piece of iron is heated to 1500 K, it glows with a red–
orange color. Table 14.3 relates apparent color to temperature
for a glowing metal. If the light is analyzed with a spectro-
scope, it is found to consist of a continuous range of colors
rather than discrete lines.

The difference between the spectra of single atoms and
the spectra of solids and liquids can be understood from
the following argument. If we have N isolated identical
atoms, each atom has an energy level at the energy shown
in Fig. 14.20a. There are a total of N levels, one for each
atom. When two of these atoms are brought close together,

Fig. 14.20 The splitting of energy levels as many atoms are brought
together. a A single atom. b Two atoms. c Three atoms. d Many atoms

Fig. 14.21 A small hole in the wall of a cavity is a better blackbody
than the walls of the cavity are. Any light that enters the hole must
be reflected several times before emerging. It can be absorbed by the
wall at any reflection. If the walls appear black, the hole appears even
blacker. (The walls are highly absorbing diffuse reflectors)

the levels shift slightly and split into two closely spaced lev-
els because of interaction between the atoms. The two levels
for a pair of atoms are shown in Fig. 14.20b. If three atoms
are brought close together, the level splits into three levels
as shown in Fig. 14.20c. If a large number of atoms are
brought close together, the N levels spread out into a band,
Fig. 14.20d. Transitions from one band to another can have
many different energies, and photons with a continuous range
of energies can be emitted or absorbed.

The relative number of photons of different energies that
will be emitted or absorbed depends on the nature of the
substance. Glass and sodium chloride crystals are nearly
transparent in the visible spectrum because the spacing of
the levels is such that no photons of these energies are ab-
sorbed. When such substances are heated enough to populate
the higher energy levels, no photons of these energies are
emitted.

A substance that has so many closely spaced levels that
it can absorb every photon that strikes it appears black. It is
called a blackbody. It is difficult if not impossible to make
a surface that is completely absorbing; the absorption can
be improved by making a cavity, as in Fig. 14.21. Photons
entering the hole in the cavity bounce from the walls many
times before chancing to pass out through the hole again, and
they therefore have a greater chance of being absorbed. Such
a hole in a cavity is a better approximation to a blackbody
than is the absorbing material lining the cavity.

If the surface is not completely absorbing, we define the
emissivity ε(λ), which is the fraction of light absorbed at
wavelength λ. (Why emission and absorption are closely re-
lated is discussed below.) If the light all passes through some
transparent material or is completely reflected, then ε = 0; if
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Fig. 14.22 The blackbody radiation function for several temperatures.
The visible spectrum is marked by v

it is all absorbed, ε = 1. A blackbody has ε(λ) = 1 for all
wavelengths. An object for which ε(λ) is constant but less
than 1 is called a gray body.

When a blackbody is heated, the light given off has a con-
tinuous spectrum because the energy levels are so closely
spaced. By imagining two interacting black bodies in equi-
librium, one can argue8 that the amount of energy emitted by
a blackbody depends only on its temperature and not on the
nature of the surfaces.

The spectrum of power per unit area emitted by a com-
pletely black surface in the wavelength interval between λ

and λ + dλ is

Wλ(λ, T )dλ,

a universal function called the blackbody radiation func-
tion. It has units of W m−3, although it is often expressed
as W cm−2 μm−1. The value of Wλ is plotted for several
different temperatures in Fig. 14.22. As the black surface
or cavity walls become hotter, the spectrum shifts toward
shorter wavelengths, which is consistent with the observa-
tions in Table 14.3. The visible region of the spectrum is
marked on the abscissa in Fig. 14.22; even at 3200 K, most
of the energy is radiated in the infrared.

Figure 14.23 plots Wλ(λ, T ) for two temperatures near
body temperature (37◦ C=310 K). Compare the scales of
Figs. 14.22 and 14.23, and note how much more energy is
emitted by a blackbody at the higher temperature and how it
is shifted to shorter wavelengths.

8 For a brief discussion, see Schroeder (2000).
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Fig. 14.23 The blackbody radiation function Wλ(λ, T ) for T = 310 K
and T = 312 K

Much work was done on the properties of blackbody
or thermal or cavity radiation in the late 1800s and early
1900s. While some properties could be explained by classi-
cal physics, others could not. The description of the function
Wλ(λ, T ) by Max Planck is one of the foundations of quan-
tum mechanics. We will not discuss the history of these
developments, but will simply summarize the properties of
the blackbody radiation function that are important to us.

The value of Wλ(λ, T ) is given by

Wλ(λ, T ) = 2πc2h

λ5
(
ehc/λkBT − 1

) . (14.33)

Consider the expression ehc/λkBT in the denominator. Since
light consists of photons of energy E = hν = hc/λ, the
expression in parentheses in the denominator is eE/kBT −
1. For very large energies (short wavelengths) the 1 can be
neglected and this expression is the Boltzmann factor.

We can find the total amount of power emitted per unit
surface area by integrating9 Eq. 14.33:

Wtot(T ) =
∫ ∞

0
Wλ(λ, T )dλ

= 2π5k4
B

15c2h3
T 4 = σSBT 4. (14.34)

This is the Stefan–Boltzmann law. The Stefan–Boltzmann
constant, which is traditionally denoted by σSB but which

9 This is not a simple integration. See Gasiorowicz (2003, p. 3).
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Fig. 14.24 The transformation from Wλ(λ, T ) to Wν(ν, T ) is such that the same amount of power per unit area is emitted in wavelength interval
(λ, dλ) and the corresponding frequency interval (ν, dν). (For example, the two shaded areas are the same.) The spectrum shown is for a blackbody
at 3200 K

has no relationship to cross section, was known empirically
before Planck’s work. It has the numerical value

σSB = 5.67 × 10−8W m−2 K−4. (14.35)

Early experiments were performed with equipment that
measured the radiation function versus wavelength. It is also
possible to measure versus frequency. To rewrite the ra-
diation function in terms of frequency, let λ1 and λ2 =
λ1 + dλ be two slightly different wavelengths, with power
Wλ(λ, T )dλ emitted per unit surface area at wavelengths be-
tween λ1 and λ2. The same power must be emitted10 between
frequencies ν1 = c/λ1 and ν2 = c/λ2:

Wν(ν, T )dν = Wλ(λ, T )dλ. (14.36)

Since ν = c/λ, dν/dλ = −c/λ2, and

|dν| = + c

λ2
|dλ| . (14.37)

10 Wλ(λ, T ) and Wν(ν, T ) do not have the same functional form. In
fact, they have different units. The units of Wλ(λ, T ) are W m−3, while
those of Wν(ν, T ) are W s m−2.

Equations 14.33–14.37 can be combined to give

Wν(ν, T ) = 2πν2(hν)

c2(ehν/kBT − 1)
. (14.38)

This transformation is shown in Fig. 14.24. The amount of
power per unit area radiated in the 0.5-μminterval between
two of the vertical lines in the graph on the lower right is the
area under the curve of Wλ between these lines. The graph
on the upper right transforms to the corresponding frequency
interval. The radiated power, which is the area under the Wν

curve between the corresponding frequency lines on the up-
per left, is the same. Note that the peaks of the two curves
are at different frequencies or wavelengths. We will see this
same transformation again when we deal with x rays. We
see in the figures above that at higher temperatures the peak
occurs at shorter wavelengths. Equation 14.33 can be differ-
entiated to show that at temperature T , the peak in Wλ occurs
at wavelength

λmaxT = hc

4.9651kB

= 2.90 × 10−3 m K. (14.39)

Similarly, we can differentiate Eq. 14.38 to show that

νmax

T
= 2.82144kB

h
= 5.88 × 1010 K−1s−1.
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Fig. 14.25 A photograph of an incandescent tungsten tube with a small
hole drilled in it. The radiation emerging from the hole is brighter than
that from the tungsten surface. (Source: Halliday et al. (1992). Copy-
right c©1992 John Wiley & Sons. Reproduced by permission of John
Wiley & Sons)

The product λmaxνmax = 1.705 × 108m s−1 = 0.57c.

All this is true for a blackbody. Thermodynamic argu-
ments can be made to show that if a body does not completely
absorb light at some wavelength, that is ε(λ) < 1, then the
power emitted at that wavelength is

ε(λ)Wλ(λ, T ). (14.40)

This is the same ε(λ) that was introduced earlier in this sec-
tion. It is called the emissivity of the surface. This implies
that a surface that appears blackest when it is absorbing radi-
ation will be brightest when it is heated. Figure 14.25 shows
a small hole in a piece of tungsten that has been heated. The
hole forms the opening to a cavity and is therefore more ab-
sorbing than is the tungsten surface. When heated, the hole
emits more light than the tungsten surface.

14.9 Infrared Radiation from the Body

The body radiates energy in the infrared, and this is a sig-
nificant source of energy loss. Infrared radiation has been
used for over 40 years to image the body, but the value of
the technique is still a matter of debate. We saw earlier how
the scattering of infrared radiation by the body can be used
to learn information about tissue beneath the surface.

Measurements of the emissivity of human skin have
shown that for 1 μm < λ ≤ 14 μm, ε(λ) = 0.98 ± 0.01.
This value was found for white, black, and burned skin
(Steketee 1973). In the infrared region in which the human
body radiates, the skin is very nearly a blackbody. Let us
apply Eq. 14.34 to see what the blackbody radiation from
the human body is. The total surface area of a typical adult
male is about 1.73 m2. The surface temperature is about

Fig. 14.26 A blackbody at temperature T within a container with wall
temperature Ts

33 ◦C = 306 K (this is less than the core temperature of
310 K). Therefore the total power radiated is wtot = SWtot =
SσSBT 4 = 860 W. This is a large number, nearly nine
times the basal metabolic rate of 100 W. The reason it is
so large is that it assumes the surroundings are at absolute
zero, or that the subject is radiating in empty space with
no surroundings. When there are nearby surfaces, radiation
from them is received by the subject, and the net radiation
is considerably less than 860 W. The easiest arrangement for
which to calculate the net heat loss is a blackbody at tem-
perature T surrounded by a similar surface at temperature
Ts (Fig. 14.26). At equilibrium the temperature of both ob-
jects is the same, T = Ts and the power emitted by the body
is equal to the power absorbed. Increasing T increases the
power emitted according to Wtot = σSBT 4. The body then
emits more power than it absorbs. Equilibrium is restored
when the body has cooled or the surroundings have warmed
so that the temperatures are again the same. Thermodynamic
arguments can be made to show that the net power radiated
by the body is

wtot = SσSB(T 4 − T 4
s ). (14.41)

If the object is not a blackbody or the wall temperature is not
uniform, the net power loss is more complicated. However,
this model represents a considerable improvement over our
previous calculation. Suppose that the surroundings are at a
temperature Ts = 293 K (20 ◦C). The net loss is

wtot = (1.73)(5.67 × 10−8)(3064 − 2934) = 137 W.

This says that a nude subject surrounded by walls at 20 ◦C
would have to exercise to maintain body temperature, even if
the air temperature were warm enough so that heat conduc-
tion and convection losses were zero.

If you have lived in a cold climate, you have probably
felt cold in a room at night when the drapes are open, even
though a thermometer records air temperatures that should be
comfortable. This is because of radiation from you to the cold
window. The glass is transparent only in the visible range; for
infrared radiation it is opaque and has a high emissivity. The
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radiation of the cold window back to you is much less than
your radiation to it, and you feel cold.

This same problem can occur with a premature infant in
an incubator. If the incubator is placed near a window, one
wall of the incubator can be cooled by radiation to the win-
dow. The infant can be cooled by radiation to the wall of the
incubator, even though a shiny (low-emissivity) thermometer
in the incubator records a reasonable air temperature. One
solution is to be careful where an incubator is placed and
insulate its walls; another is to redesign incubators with a
feedback loop controlling the infant’s temperature.

Infrared radiation can be used to image the body. Two
types of infrared imaging are used. In infrared photography
the subject is illuminated by an external source with wave-
lengths from 700 to 900 nm. The difference in absorption
between oxygenated and deoxygenated hemoglobin allows
one to view veins lying within 2 or 3 mm of the skin. Either
infrared film or a solid-state camera can detect the reflected
radiation.

Thermal imaging detects thermal radiation from the skin
surface. Significant emission from human skin occurs in the
range 4–30 μm, with a peak at 9 μm (Fig. 14.23). The de-
tectors typically respond to wavelengths below 6–12 μm.
Thermography began about 1957 with a report that skin tem-
perature over a breast cancer was slightly elevated. There was
great hope that thermography would provide an inexpensive
way to screen for breast cancer, but there have been too many
technical problems. Normal breasts have more variability in
vascular patterns than was first realized, so that differences
of temperature at corresponding points in each breast are not
an accurate diagnostic criterion. The thermal environment in
which the examination is done is extremely important. The
sensitivity (ability to detect breast cancer) is too low to use
it as a screening device. Thermography has also been pro-
posed to detect and to diagnose various circulatory problems.
Thermography is not widely accepted (Blume 1993; Vreug-
denburg et al. 2013), though it still has its proponents (Lahiri
et al. 2012).

Infrared radiation from the tympanic membrane
(eardrum) and ear canal is used to measure body tem-
perature. One instrument is based on a pyroelectric crystal,
which generates a voltage when heated (Fraden 1991). The
sensors have a permanent electric dipole moment whose
magnitude changes with temperature.

14.9.1 Atherosclerotic Coronary Heart
Disease

Atherosclerotic coronary heart disease (ACHD) has been or
is being studied with every imaging technique described in
this book. All of the techniques are invasive: a catheter is
inserted into the artery in question. In ACHD, a fatty plaque
forms in the lumen (interior passageway) of the artery.

The standard technique is coronary artery angiography:
the heart is imaged by x-ray fluoroscopy (see Chap. 16) while
a dye opaque to x rays is introduced in the vessel. This allows
accurate determination of the degree of stenosis (blocking)
of the vessel. It has been thought that when the artery is
nearly blocked, the restricted blood flow leads to a myocar-
dial infarct (heart attack). It has recently been realized that
smaller plaques may become disrupted and lead to a my-
ocardial infarct. Current research seeks to learn what makes
these particular plaques vulnerable. There is an extensive lit-
erature, reviewed by MacNeill et al. (2003) and Verheye et
al. (2002).

In intravascular ultrasound (IVUS), a 20–40 MHz trans-
ducer at the end of the catheter can detect calcium (which
deposits in areas of tissue injury). IVUS elastography mea-
sures how the arterial wall changes during the pressure
variations of the cardiac cycle, in the hope that changes in
elasticity will indicate vulnerable plaques.

Coronary angioscopy attempts to directly view the arterial
wall using a tiny fiber-optic endoscope. A serious problem
here is blood getting between the tip of the endoscope and the
arterial wall. This has been solved by temporarily occluding
(blocking) the artery “upstream” with a balloon catheter or
by flushing the area with saline solution.

Thermography has also been explored, first with a
temperature-sensitive thermistor, and also with an infrared
imaging mirror. Areas of inflammation have a somewhat
higher temperature than surrounding areas.

Both Raman spectroscopy and near-infrared spectroscopy
have been used.

In intravascular magnetic resonance imaging (MRI is de-
scribed in Chap. 18), the detector coil is made small enough
to fit at the tip of the catheter.

14.9.2 Photodynamic Therapy

Photodynamic therapy (PDT) uses a drug called a photo-
sensitizer that is activated by light (Zhu and Finlay 2008;
Wilson and Patterson 2008). PDT can treat accessible solid
tumors such as basal cell carcinoma, a type of skin cancer
(see Sect. 14.10.4). An example of PDT is the surface ap-
plication of 5-aminolevulinic acid, which is absorbed by the
tumor cells and is transformed metabolically into the photo-
sensitizer protoporphyrin IX. When this molecule interacts
with light in the 600–800-nm range (red and near infrared),
often delivered with a diode laser, it converts molecular oxy-
gen into a highly reactive singlet state that causes necrosis,
apoptosis (programmed cell death), or damage to the vas-
culature that can make the tumor ischemic. Some internal
tumors can be treated using light carried by optical fibers
introduced through an endoscope.
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14.10 Blue and Ultraviolet Radiation

The energy of individual photons of blue and ultraviolet light
is high enough to trigger chemical reactions in the body.
These can be both harmful and beneficial. A beneficial ef-
fect is the use of blue light to treat neonatal jaundice. The
most common harmful effect is the development of sunburn,
skin cancer, and premature aging of the skin.

14.10.1 Treatment of Neonatal Jaundice

Neonatal jaundice occurs when bilirubin builds up in the
blood. Bilirubin is a toxic waste product of the decomposi-
tion of the hemoglobin that is released when red blood cells
die (hemolysis). Bilirubin is insoluble in water and cannot be
excreted through either the kidney or the gut. It is excreted
only after being conjugated with glucuronic acid in the liver.
Bilirubin monoglucuronate and bilirubin diglucuronate are
both water soluble. They are excreted in the bile and leave
via the gut. Some newborns have immature livers that cannot
carry out the conjugation. In other cases there is an increased
rate of hemolysis, and the liver cannot keep up. The serum
bilirubin level can become quite high, leading to a series of
neurological symptoms known as kernicterus. The abnormal
yellow color of the skin called jaundice is due to bilirubin in
the capillaries under the skin.

When the skin of a newborn with jaundice is exposed to
bright light, the jaundice color goes away. Photons of blue
light have sufficient energy to convert the bilirubin molecule
into more soluble and apparently less harmful forms (Mc-
Donagh 1985). Photons of longer wavelength have less en-
ergy and are completely ineffective. The standard form of
phototherapy used to be to place the baby “under the lights.”
Since the lights were bright and also emitted some ultravi-
olet, it was necessary to place patches over the baby’s eyes.
Also, since the baby’s skin had to be exposed to the lights, it
had to be placed in an incubator to keep it warm. A fiberop-
tic blanket has been developed that can be wrapped around
the baby’s torso under clothing or other blankets. The opti-
cal fibers conduct the light from the source directly to the
skin. Eye patches are not needed, and the baby can be fed
and handled. Typical energy fluence rates are (4–6) × 10−2

W m−2 nm−1 in the range 425–475 nm. Acceptance by
nursing staff and parents is very high (Murphy and Oellrich
1990). The blanket can be used for home treatment.

14.10.2 The Ultraviolet Spectrum

Ultraviolet light can come from the sun or from lamps. The
maximum intensity of solar radiation is in the green, at about

Fig. 14.27 The solar spectrum and the approximate spectrum reaching
the earth after atmospheric attenuation

500 nm. The sun emits approximately like a thermal ra-
diator at a temperature of 5800 K. Figure 14.27 shows a
5800 K thermal radiation curve. The power per unit area
from the sun at all wavelengths striking the earth’s outer at-
mosphere, the solar constant, calculated by regarding the sun
as a thermal radiator, is 1390 W m−2. Satellite measurements
give 1372 W m−2 (Madronich 1993). Because of reflection,
scattering, atmospheric absorption, and so forth, the amount
actually striking the earth’s surface is about 1000 W m−2.
Figure 14.27 also shows the effect of absorption of sunlight
in the atmosphere. The sharp cut off at 320 nm is due to at-
mospheric ozone (O3), which absorbs strongly from 200 to
320 nm. Molecular oxygen absorbs strongly below 180 nm.

The ultraviolet spectrum is qualitatively divided into the
following regions:

UVA 315–400 nm
UVB 280–315 nm11

UVC or middle UV 200–280 nm
Far UV 120–200 nm
Extreme UV 10–120 nm

Only the first three are of biological significance, because the
others are strongly absorbed in the atmosphere.

Madronich (1993) gives a detailed discussion of the var-
ious factors that reduce the ultraviolet energy reaching the
earth’s surface. The sensitivity of DNA decreases as the
wavelength increases. Figure 14.28 shows the solar radiation
reaching the ground when the sun is at different angles from
the zenith (directly overhead), weighted for DNA sensitivity.

11 In Europe the range of UVB radiation is 290–300 nm.
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Fig. 14.28 Spectral dose rates weighted for ability to damage DNA
for three different angles of the sun from overhead. The calculation as-
sumes clear skies and an ozone layer of 300 Dobson units (1 DU =
2.69 × 1020 molecule m−2). (Source: Madronich (1993). With kind
permission of Springer Science and Business Media.)

Biological effects of ultraviolet light are reviewed by Diffey
(1991).

14.10.3 Response of the Skin to Ultraviolet
Light

There are several responses of the skin to ultraviolet light.
In order to understand them one must know something about
the anatomy and physiology of skin. The outer layer of the
skin, the epidermis, consists of three sublayers (Fig. 14.29).
A single layer of basal cells is on the inside. Most of these
cells produce keratin, a protein that gives the outer layers of
skin its strength. About 10 % of the cells are melanocytes
that produce the pigment melanin. Next comes a sublayer of
about seven cells, called the prickle layer. On top of this is
a two- or three-cell layer called the stratum granulosum or
granular layer. The surface is a layer of dead cells, primar-
ily keratin and cellular debris, called the stratum corneum or
horny layer. Basal cells are constantly produced in the basal
layer, migrate outward, become the stratum corneum, and are
sloughed off.

In order to discuss injury to tissue, both here by ultravio-
let light and in later chapters by x rays, we need to introduce
some specialized terms. The body’s immediate (acute) re-
sponse to an injury, whether it is an infection, a bump, a cut or
a burn, is the inflammatory response described on page 122.
Prolonged (chronic) irritation may result in abnormal cell
growth. The abnormalities that result in organs or tissues that

Fig. 14.29 The epidermis. The basal layer contains the cells from
which the other layers are derived. As the cells move toward the sur-
face they become the prickle layer and the stratum granulosum. The
stratum corneum is dead cellular debris. The melanocytes, which pro-
duce melanin granules, are in the basal layer. (Reprinted from Pillsbury
and Heaton 1980 with permission from Elsevier.)

are larger than normal are hypertrophy, an enlargement of
existing cells, and hyperplasia, an enlargement due to the for-
mation of new cells. The aberrations in cell growth patterns
are shown in Table 14.4. They are metaplasia, dysplasia, and
anaplasia. Metaplasia is reversible and goes away if the stim-
ulus or irritant is removed. Dysplasia is sometimes reversible
and sometimes progresses to become cancerous. Anaplastic
changes are present in nearly all forms of cancer. Anapla-
sia may result from dysplasia, or it may arise directly from
normal cells.

The acute effect of ultraviolet radiation is reddening of the
skin or erythema due to increased blood flow in the dermis,
the layer beneath the epidermis. This is part of the inflam-
matory reaction. The amount of energy that just produces
detectable erythema is called the minimum erythemal dose.
The 1987 erythema action spectrum adopted by the CIE12

shows the relative sensitivity of the skin versus wavelength

12 Commission International de l’Eclairage or International Commis-
sion on Illumination.
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Table 14.4 Abnormal changes in tissue

Metaplasia A reversible change in which one cell type is replaced by another.
Dysplasia Variation in size, shape, and organization of the cells. Literally, “deranged development”
Anaplasia A marked, irreversible, and regressive change from adult cells that are differentiated in

form to more primitive, less differentiated cells

Differences between benign and malignant tumors
Characteristic Benign Malignant
Histologic differentiation
(microscopic appearance)

Often typical of the tissue of origin Not well differentiated; atypical cells

Mode of growth Expands inside a capsule Expansive; also infiltrative, with no capsule

Rate of growth Progressive; usually slow; few cells undergoing
mitosis (division)

May be rapid, with many cells undergoing mitosis

Metastasis (distant spread) Absent Frequently present

0.0001

0.001

0.01

0.1

1

ε(
λ )

400350300250 λ, nm
UV-AUV-BUV-C

Fig. 14.30 The erythema action spectrum ε(λ) for ultraviolet light, as
adopted by the CIE in 1987

for the production of erythema. It is

ε(λ) =
⎧
⎨

⎩

1.0, 250 ≤ λ ≤ 298 nm
100.094(298−λ), 298 ≤ λ ≤ 328 nm
100.015(139−λ), 328 ≤ λ ≤ 400 nm.

(14.42)

This is plotted in Fig. 14.30. The minimum erythemal dose at
254 nm is about 6 × 107 J m−2. Early effects on skin include
sunburn, tanning (now thought to be an injury response), and
thickening. Daily exposure for 2–7 weeks causes a three- to
fivefold thickening of the stratum corneum.

Some patients have an abnormally high sensitivity to
ultraviolet exposure. They may exhibit abnormal photosen-
sitivity because of various diseases or from taking drugs
such as phenothiazines (a class of tranquilizers), sulfa drugs,
dimethylchlortetracycline, the antidiabetic sulfonureas, thi-
azide diuretics, and even from drinking quinine water. Pho-
tocontact dermatitis is caused by interaction of photons with
substances placed on the skin, such as perfumes containing

furocoumarins, lime peel, fungi, and fluorescein dye used in
lipsticks.

14.10.4 Ultraviolet Light Causes Skin Cancer

Chronic exposure to ultraviolet radiation causes premature
aging of the skin. The skin becomes leathery and wrinkled
and loses elasticity. The characteristics of photo-aged skin
are quite different from skin with normal aging (Kligman
1989). UVA radiation was once thought to be harmless. We
now understand that UVA radiation contributes substantially
to both premature skin aging and skin cancer. This can be
understood in the context of studies showing that both UVA
and UVB suppress the body’s immune system, and that this
immunosuppression plays a major role in cancer caused by
ultraviolet light (Kripke 2003; Moyal and Fourtanier 2002).

There are three types of skin cancer. Basal-cell carcinoma
(BCC) is most common, followed by squamous-cell car-
cinoma (SCC). These are together called nonmelanoma or
nonmelanocytic skin cancer (NMSC). Basal-cell carcinomas
can be quite invasive (Fig. 16.40) but rarely metastasize or
spread to distant organs. Squamous-cell carcinomas are more
prone to metastasis. Melanomas are much more aggressive
and frequently metastasize.

Armstrong and Kricker (2001) review the epidemiology
of skin cancer. There are geographic variations of incidence,
the number of newly diagnosed cases per 100,000 popula-
tion per year. Incidence in New Mexico around 1980 for the
three types of skin cancer is given in Table 14.5 for Anglos
and Hispanics. Their review includes ambient solar radiation,
ethnic origin, color of unexposed skin, personal exposure
history, and personal use of skin protection.

The International Agency for Research on Cancer (IARC
2009) has classified all UV radiation (including UVA) as
“Group 1, carcinogenic to humans.”
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Table 14.5 Estimates of skin cancer incidence rates per 100,000 in
New Mexico, about 1980. (From Fig. 3 in Armstrong and Kricker 2001)

Cancer type Population Males Females
Melanoma Anglo 11.6 11.4

Hispanic 1.2 1.5
SCC Anglo 143 55

Hispanic 13 12
BCC Anglo 495 304

Hispanic 64 35

SCC squamous-cell carcinoma, BCC basal-cell carcinoma

There has been an alarming increase in the use of tanning
parlors by teenagers and young adults. These emit primarily
UVA, which can cause melanoma. Exposure rates are two to
three times greater than solar radiation at the equator at noon
(Schmidt 2012). Many states now prohibit minors from us-
ing tanning parlors. Proponents of tanning parlors point out
that UVB promotes the synthesis of vitamin D; however, the
exposure to UVB in a tanning parlor is much higher than
needed by the body for vitamin D production. Tanning as a
source of Vitamin D is no longer recommended at any age
level (Barysch et al. 2010). An analysis by Lazovich et al.
(2010) concludes: “our results add considerable weight to
the IARC report that indoor tanning is carcinogenic in hu-
mans and should be avoided to reduce the risk of melanoma.”
Australia has the highest incidence of skin cancer in the
world and is a leader in studying and mitigating skin can-
cer. A recent review by O’Sullivan and Tait (2014) makes an
even stronger recommendation: “The research to date sup-
ports a complete ban of indoor tanning as it has shown that
less stringent regulations are ineffective due to the lack of
adherence to them and enforcement of them. Australia and
New Zealand are in a powerful position to lead the devel-
oped world by imposing a complete ban on indoor tanning.
It is imperative to act on this evidence to reduce the risk of
further avoidable morbidity and mortality.”

14.10.5 Protection FromUltraviolet Light

Protection from the sun certainly reduces erythema and prob-
ably reduces skin cancer. Protection is most important in
childhood years, both because children receive three times
the annual sun exposure of adults and because the skin of
children is more susceptible to cancer-causing changes. The
simple sun protection factor (SPF) alone is not an adequate
measure of effectiveness, because it is based on erythema,
which is caused mainly by UVB. Some sunscreens do not
adequately protect against UVA radiation. Buka (2004) re-
views both sunscreens and insect repellents for children. He
finds several products that adequately block both UVA and
UVB. Look for a sunscreen labeled “broad spectrum” or
with at least three stars in a UVA rating system. An adequate

amount must be used: for children he recommends 1 fluid
ounce (30 ml) per application of a product with SPF of 15
or more. The desired application of sunscreen is 2 mg cm−2.
Typical applications are about half this amount. It has been
suggested that one make two applications (Teramura et al.
2012) or use a sunscreen with a very high SPF (Hao et al.
2012).

Because of the high reflectivity of sand and snow, beach
umbrellas provide at most a factor of two protection. Hats
need to have a brim that is at least 7.5 cm wide (Diffey
and Cheeseman 1992). Automobile window glass provides
protection against UVB; however untinted glass transmits
enough UVA to present a significant exposure over several
hours of driving (Kimlin and Parisi 1999).

14.10.6 Ultraviolet Light Damages the Eye

The effect of ultraviolet light on the eye has been reviewed
by Bergmanson and Söderberg (1995). Acute effects include
keratitis (inflammation of the cornea, the transparent por-
tion of the eyeball) and conjunctivitis (inflammation of the
conjunctiva, the mucous membrane covering the eye), also
known as snow blindness or welder’s flash. Laboratory stud-
ies show that ultraviolet-light exposure causes thickening of
the cornea and disrupts corneal metabolism. UVC radiation
is absorbed by the cornea. The lens absorbs UVB and, in
older persons, UVA and visible light. Only a little UVA light
reaches the retina. The retina is also susceptible to trauma
from blue light. Low doses cause photochemical changes in
tissues, while high doses also cause thermal damage.

Chronic low exposure to ultraviolet light causes perma-
nent damage to the cornea, known as droplet keratopathy
or spheroid degeneration. UVA radiation is a significant fac-
tor in the development of a pterygium, a hyperplasia of the
conjunctiva that may grow over the cornea and impair sight.
Rarely, it causes blindness.

Properly designed spectacles and contact lenses can pro-
tect the eye against ultraviolet light (Giasson et al. 2005).
However, both must be designed to absorb ultraviolet. Soft
contacts are larger and provide more protection than rigid
gas-permeable contacts. Protection from high-intensity ultra-
violet light requires sunglasses or welding goggles. Wide-
brimmed hats also help protect the eye from ultraviolet
light.

14.10.7 Ultraviolet Light Therapy

Ultraviolet light is used in therapy, primarily for the treat-
ment of a skin disease called psoriasis, an inflammatory
disorder in which the basal cells move out to the stratum
corneum in much less than the normal 28 days. The skin
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is red and has thick scaling. UVB radiation, often in con-
junction with coal tar applied to the skin, has been used
as a treatment for psoriasis since the 1920s. In the 1960s
a treatment was developed that uses UVA and a chemical
either applied to the skin or administered systemically (pho-
tochemotherapy or PUVA—psoralen UVA). The chemical is
a psoralen derivative. It affects DNA, and when the affected
DNA is irradiated with ultraviolet light, cross-links form,
preventing replication. There are well-defined guidelines for
the use of PUVA to treat psoriasis (Stern 2007). PUVA ther-
apy is also useful in cutaneous T-cell lymphoma, a disease
that first becomes apparent on the skin and then moves to
internal organs.

Another treatment, extracorporeal photopheresis, in-
volves removing the patient’s blood, extracting the red blood
cells, irradiating the plasma and white blood cells with UVA
light outside the body, and returning the red blood cells and
the irradiated white blood cells and plasma to the patient
(Grossweiner 1994, pp. 167f; Knobler et al. 2009).

14.11 Heating Tissue with Light

Sometimes tissue is irradiated in order to heat it; in other
cases tissue heating is an undesired side effect of irradiation.
In either case, we need to understand how the temperature
changes result from the irradiation. Examples of intentional
heating are hyperthermia (heating of tissue as part of cancer
therapy) or laser surgery (tissue ablation13). Tissue is ablated
when sufficient energy is deposited to vaporize the tissue.
Heating may be a side effect of phototherapy.

The temperature changes are often modeled by a heat-
flow equation containing a source term for the deposition of
photon energy and a term representing flow of energy away
from the site in warmed blood. This is one form of the bio-
heat equation, which can include additional terms in more
complicated models.

The linear equation for heat conduction was mentioned as
one form of the transport equation in Table 4.3:

jH = −K
dT

dx
,

with the units of the thermal conductivity K being
J K−1 m−1 s−1. When extended to three dimensions and
combined with the equation of continuity (conservation of
energy), this gives a heat-conduction equation with the same
form as Fick’s second law for diffusion:

ρtct

∂T

∂t
= K∇2T . (14.43)

13 In surgery, ablation means the excision or amputation of tissue.

Here ρt is the density of the tissue (kg m−3) and ct the tis-
sue specific heat capacity (J K−1 kg−1). The left-hand side
of the equation is the rate of energy increase in the tissue
per unit volume, and the right-hand side is the net rate of
heat flow into that volume by conduction—energy flowing
because warmer molecules with more kinetic energy transfer
energy to cooler neighbors in a collision process analogous
to a random walk. This model is for solids; in liquid one must
also consider convection.

We now add a term for energy carried away by flowing
blood. In the linear approximation it is proportional to the
temperature difference between the tissue and the blood sup-
ply and also to the rate of blood flow. Units for this term can
be quite confusing and need to be examined in detail. Blood
flow is usually defined by physiologists as the perfusion P ,
which is the volume flow of blood per unit mass of tissue.
The SI units for P are

P
m3 (blood)
[
kg (tissue)

]
s
.

Its product with the tissue density is the volume flow of blood
per unit volume of tissue:

ρtP =
[
kg (tissue)

] [
m3 (blood)

]

[
m3 (tissue)

] [
kg (tissue)

]
s

= m3(blood)

m3(tissue) s
= s-1.

The quantity is analogous to clearance (Chap. 2). Its inverse
is the time it takes for a volume of blood equal to the tissue
volume to flow through the tissue. Each term of our heat-
flow equation has units of energy per unit volume of tissue
per second. If we assume that the blood enters the tissue at
temperature T0 and leaves at temperature T , the energy lost
by the volume is the heat capacity of blood, cb, times its mass
per unit volume times the temperature rise. The new term in
the heat-flow equation is

cb

J

K kg (blood)
× ρb

kg (blood)

m3 (blood)

× ρtP
m3 (blood)

m3 (tissue) s
× [(T − T0) K]

or

cbρbρtP (T − T0)
J

m3 (tissue) s
,

so the heat-flow equation with blood flow added is

ρtct

∂T

∂t
= K∇2T − cbρbρtP (T − T0).

The last term we consider is the energy deposited by the
photon beam. In Sect. 14.6 we defined the particle fluence
and particle fluence rate for photons. The definition can be
used for both collimated beams and diffuse radiation. In a
similar way we define the energy fluence Ψ as the ratio of the
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expectation value of the amount of photon energy traversing
a small sphere of radius a divided by the area of a great circle
of the sphere, πa2. The energy fluence rate is

ψ = dΨ

dt
. (14.44)

The energy per unit volume lost by a beam with energy
fluence rate ψ can be determined by the following argument.
Consider only the fluence rate due to photons traveling in a
certain direction. Orient the z axis in that direction and con-
sider a small volume dSdz. The rate at which energy flows
into the volume is ψdS, and the rate at which it is absorbed is
ψdSμadz. Therefore, the rate of absorption per unit volume
is μaψ , independent of the direction the photons travel. The
final heat-flow equation is

ρtct

∂T

∂t
= K∇2T − cbρbρtP (T − T0) + μaψ. (14.45)

For monoenergetic photons, the photon energy fluence rate
is related to the photon fluence rate by

ψ = hνϕ. (14.46)

In general, one must first solve Eq. 14.27 to determine ψ and
then solve Eq. 14.45. We could add other terms, such as one
for the thermal energy produced by metabolism within the
tissue.

Sometimes Eq. 14.45 is written with all terms divided by
ρtct , and sometimes with all terms divided by K . If we di-
vide by ρtct , the equation is similar in form to the diffusion
equation in Chap. 4:

∂T

∂t
= D∇2T − cb

ct

ρbP (T − T0) + μa

ρtct

ψ, (14.47)

where

D = K

ρtct

. (14.48)

Values of D are in the range (0.5–2.5)×10−7 m2 s−1 depend-
ing on the tissue type (Grossweiner 1994, pp. 127–129). We
saw in Chap. 4 that for a spreading Gaussian solution to the
diffusion equation the variance is σ 2

x = σ 2
y = σ 2

z = 2Dt .
The thermal relaxation time, that is, the average time for the
temperature rise to spread a distance x, is therefore x2/2D

in one dimension, x2/4D in two dimensions, and x2/6D in
three dimensions.

There is an interplay between the thermal conductivity
term and the blood-flow term. The thermal penetration depth
δth is the distance at which the two terms are comparable.
For larger distances blood flow is more important. To es-
timate the penetration depth, assume that T − T0 changes
over this distance. Then the Laplacian is approximated by

∇2T ≈ (T − T0)/δ
2
th. Equating the diffusive and blood flow

terms gives

D
T − T0

δ2
th

= cb

ct

ρbP (T − T0)

so

δ2
th = D

ct

cb

1

ρbP
= K

ρtcbρbP
. (14.49)

Grossweiner (1994) discusses values for the various tis-
sue parameters, their temperature dependence, and simple
models for tissue heating and ablation.

14.12 Radiometry and Photometry

This section develops some of the concepts and vocabulary
of radiometry, the measurement of radiant energy. We will
be considering five types of radiant energy in the remaining
chapters: infrared radiation, visible light, ultraviolet radia-
tion, x rays, and charged particles. Concepts for the mea-
surement of radiant energy were developed simultaneously
in different disciplines and even in different wavelength
regions, depending on the purpose and the measurement
techniques that were originally available.

It is recommended that the term photometry be reserved
for measurement of the ability of electromagnetic radia-
tion to produce a human visual sensation, that radiometry
be used to describe the measurement of radiant energy in-
dependent of its effect on a particular detector, and that
actinometry be used to denote the measurement of photon
flux or photon dose (total number of photons) independent
of any subsequent photoactivated process (Zalewski 2009,
p. 34.10). This section reviews radiometric units and in-
troduces a few of the related units from photometry and
actinometry. Nomenclature is slightly different for x rays and
charged particles.

Section 14.6 described two quantities, the photon fluence
and the photon fluence rate. The energy fluence and energy
fluence rate were introduced in Sect. 14.11. These are re-
viewed and compared here so that all the definitions are in
one place. The definitions are summarized in Table 14.6.
Symbols are shown for quantities used in this text. The third
column shows symbols that have been recommended by the
American Association of Physicists in Medicine (AAPM 57
1996). They often differ from the usage in this book.
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14.12.1 Radiometric Definitions

14.12.1.1 Radiant Energy and Power
The total amount of energy being considered is the radiant
energy R, measured in joules. It can be the energy emit-
ted by a source, transferred from one region to another, or
received by a detector. We use subscripts s and d to re-
fer to the source and detector. In optics the radiant energy
is electromagnetic radiation. In radiological physics we will
also consider energy transported by charged particles such
as electrons and protons, and by neutral particles such as
photons and neutrons.

The rate at which the energy is radiated, transferred, or
received is the radiant power P (watts).

14.12.1.2 Point Source: Radiant Intensity
The simplest source is a point that radiates uniformly in all
directions. The radiant intensity or radiant power per unit
solid angle (Appendix A) leaving a point source radiating
uniformly in all directions is

dP

dΩ
= P

4π
(W sr-1). (14.50)

The power per unit area falls as 1/r2, while the power per
unit solid angle is independent of r .14 A point source need
not radiate uniformly in all directions. For example, a search-
light 1 m in diameter viewed from a point several kilometers
away appears to be a point. The light might be confined to a
cone with a half-angle of 1◦. Then a plot of dP/dΩ might
look like Fig. 14.31. The total power radiated by the point
source is

P =
∫

dP

dΩ
dΩ. (14.51)

If the power per unit solid angle is symmetric about the axis
of the beam and θ is the angle with respect to the beam axis,
then (see Appendix L)

P =
∫ π

0

dP

dΩ
2π sin θ dθ.

14.12.1.3 Extended Source: Radiance
The radiant energy leaving a source can travel in many dif-
ferent directions. The radiation striking a surface can come
from many different directions. If we consider any small area
in space there will generally be radiation passing through
that area traveling in many different directions. In each case,
the radiant energy or the radiant power is proportional to the

14 The lighting industry calls dP/dΩ the intensity, while in physical
optics intensity is used for power per unit area. We will try to avoid
using the word intensity alone.

θ

d P
dΩ

Fig. 14.31 A plot of power per unit solid angle as a function of angle
from the axis of a hypothetical searchlight

magnitude of the small area projected perpendicular to the
direction the energy is traveling, and to the size of the solid
angle—the range of directions—being considered.

The radiance L is the amount of radiant power per unit
solid angle per unit surface area projected perpendicular to
the direction of the radiant energy. The radiance of radia-
tion traveling through a small area in space is sometimes
difficult to visualize. Figures 14.32 and 14.33 may help. Fig-
ure 14.32 shows radiation leaving three points on a surface
at the left. Some of it passes through the surface represented
by the vertical line on the right. The energy passing through
that surface has components from each point on the radiating
surface. Figure 14.33 shows radiation in a very narrow cone
of solid angles passing through surface dS whose normal is
at an angle θ with the beam direction. The radiance is the
power per unit solid angle divided by dS cos θ .

We have already seen the energy fluence Ψ , which is a
measure of the total radiation entering or leaving a small vol-
ume of space. It is the total amount of energy striking a small
sphere of radius a divided by the area of a great circle πa2 in
the limit as the radius approaches zero. Strictly speaking, if
we repeat the experiment many times, the amount of energy
striking the sphere fluctuates. The energy fluence is defined
in terms of the expectation value of this fluctuating quantity.
Figure 14.12 shows two examples. In Fig. 14.12a, a paral-
lel beam with energy R passes through a circular area πa2

for a time �t . In Fig. 14.12b, a total amount of energy R

strikes a sphere of radius a from many different directions.
In both cases, Ψ = R/πa2. Notice that some of the energy
passing through the sphere passes outside a great circle that
is not perpendicular to the direction in which the radiation is
traveling, but it does pass through a great circle constructed
perpendicular to its direction of travel.
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Fig. 14.32 Radiation emitted from different points of the surface on
the left strikes the surface on the right

dS

 θ dS cos θ 

Fig. 14.33 Surface area dS, projected perpendicular to the direction of
the radiation, has projected area dS cos θ

The energy fluence rate is the amount of energy fluence
per unit time (which for the small sphere is P/πa2):

ψ = dΨ

dt
. (14.52)

Fig. 14.34 Radiant energy is emitted from a source of surface area
dSs into a cone of solid angle dΩ . The direction of emission is at an
angle θs with the normal to the surface. A detecting surface has an ele-
ment of area dSd oriented at a direction θd to the direction of travel of
the radiation from source to detector. The shaded rectangles show the
projections of dSs and dSd perpendicular to the line of length r from
source to detector

The exitance Wr is the radiant power or flux emitted per
unit area of a surface.

14.12.1.4 Energy Striking a Surface: Irradiance
Now consider the energy striking a surface. The irradiance
E is the power per unit area incident on a surface. The strict
definition is the ratio of the power incident on an infinites-
imal element of detector surface dSd to the area projected
perpendicular to the direction the radiant energy is traveling.
If θd is the angle between a normal to the surface and the
direction of propagation, the irradiance is

E = 1

cos θd

dP

dSd

. (14.53)

For a point source radiating uniformly in all directions, the
power at distance r is spread uniformly over a sphere of area
4πr2, so the irradiance on a detecting surface perpendicular
to a line back to the source is

E = P

4πr2
(isotropic point source). (14.54)

For an extended source the power emitted by the surface
is proportional to both the size of the emitting area dSs and
the solid angle of the cone dΩ into which the energy is radi-
ated, as shown in Fig. 14.34. The solid angle subtended by a
small element of area on the detector is dΩ , as shown by the
dashed lines. The amount of power radiated into dΩ from
dSs is

LdSsdΩ = 1

cos θs

d2P

dSs dΩ
dSs dΩ, (14.55)

where the radiance L depends on the direction of emission
as well as the location on the surface. This equation is valid
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whether the energy is emitted directly from the source (as in
a glowing object) or is scattered by the surface (as from this
page). The total power emitted is

P =
∫ ∫

LdSs dΩ. (14.56)

The distinction between angles and areas for the source
and the detector is shown in Fig. 14.34. Note that the
solid angle subtended at the source by dSd is dΩ =
dSd cos θd/r2. The power into an area dSd of the detector
from area dSs of the source is therefore

d2P = L cos θs cos θd dSs dSd

r2
. (14.57)

14.12.1.5 Plane-Wave Relationships
We can derive some useful relationships for a beam of colli-
mated radiation all traveling in one direction (a plane wave).
Imagine that the collimated beam comes from a distant point
source radiating power P . The energy fluence rate at distance
r from the source is the power through a sphere of radius a

divided by πa2:

ψ = πa2P

4πr2

1

πa2
= P

4πr2
.

This is also the power per unit area incident on a circle of
radius a oriented perpendicular to the beam. Therefore, for a
collimated beam,

ψ = E (collimated beam). (14.58)

14.12.1.6 Isotropic Radiation: Lambert’s Law
In general, L may depend on the angle of emission. In some
cases, such as reflection from a “perfectly diffuse” surface,
the radiation is isotropic : L = L0. This is called Lambert’s
law of illumination or Lambert’s cosine law.15

A surface described by Lambert’s law will have equal
power per unit area in the image regardless of the viewing
angle. Look at surfaces around you. Do similar surfaces il-
luminated the same way appear to have the same brightness
when they are oblique to your line of vision?

The power incident on a small element of surface area
dSd from angle dΩ is L0dSd cos θd dΩ , where θd is the an-
gle that the incident radiation makes with the normal to the
surface. The solid angle is 2π sin θd dθd (see Fig. 14.11b).
The irradiance is

E = dSd2πL0
∫ π/2

0 cos θd sin θddθd

dSd

= πL0. (14.59)

15 Sometimes Eq. 14.57 is defined without the factor cos θs , in which
case Lambert’s law has the form L(θs) = L0 cos θs .

The same geometry is used with dSs to show that for
isotropic radiation, the exitance is

Wr = πL0. (14.60)

To determine the energy fluence rate for isotropic radi-
ation consider a small sphere of radius a and the radiation
arriving in a small solid angle dΩ about a line perpendicu-
lar to a great circle of the sphere. The power is L0πa2dΩ .
This argument applies for any direction of the radiation. In-
tegrating over all directions gives the total power L0πa24π.
Therefore, for isotropic (Lambertian) radiation,

ψ = 4πL0 = 4E (isotropic radiation). (14.61)

14.12.1.7 The Spectrum
When the energy is not monochromatic, we define the
amount of energy per unit wavelength interval as Rλ, with
units J m−1 or J nm−1. The total energy between wavelengths
λ1 and λ2 is

∫ λ2

λ1

Rλ(λ) dλ (14.62a)

and between frequencies ν1 and ν2 it is

∫ ν2

ν1

Rν(ν)dν. (14.62b)

The relationship between Rλ and Rν is the same as in Eqs.
14.36 and 14.37.

14.12.2 Photometric Definitions

For the photometric units we also need to know the sensitiv-
ity of the eye. The eye contains two types of light receptors:
rods, which have no color discrimination but are most sensi-
tive, and cones, which are less sensitive and can discriminate
color. Photopic vision is normal vision at high levels of il-
lumination in which the eye can distinguish colors. Scotopic
vision occurs at low light levels with a dark-adapted eye. The
CIE has established the spectral efficiency function V for the
eye of a standard observer for both photopic vision [V (λ)]
and scotopic vision [V ′(λ)]. Both are normalized to unity at
their peak (Fig. 14.35).

The luminous flux Pv in lumens (lm) is the analog of the
energy flux P . The peak sensitivity for photopic vision is for
green light, λ = 555 nm. At that wavelength the relationship
between P and Pv is

P = 1 W ⇐⇒ Pv = 683 lm,
Pv = 1 lm ⇐⇒ P = 1.464 × 10−3 W.

(14.63a)
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Fig. 14.35 The spectral efficiency functions for the CIE standard eye.
Plotted from data in Table 2 of Zalewski (2009)

The ratio Pv/P at 555 nm is the luminous efficacy for pho-
topic vision, Km = 683 lm W−1. For a distribution of
wavelengths,

Pv(photopic) = Km

∫ 700 nm

400 nm
V (λ)Pλ(λ) dλ. (14.63b)

An analogous relationship holds for scotopic vision, with
K ′

m ≈ 1700 lm W−1:

Pv(scotopic) = K ′
m

∫ 700 nm

400 nm
V ′(λ)Pλ(λ) dλ. (14.63c)

If P were spread uniformly over the visible spectrum, the
overall conversion efficiency would be about 200 lm W−1.
A typical incandescent lamp has an efficiency of 10–
20 lm W−1, while a fluorescent lamp has an efficiency of
60–80 lm W−1. A typical LED replacment lamp is about
75 lm W−1. The number of lumens per steradian is the lu-
minous intensity, in lm sr−1. The lumen per steradian is also
called the candela. Other units are shown in Table 14.6.

The peak of the eye’s spectral efficiency function is at
about the peak of the sun’s blackbody spectrum when plot-
ted as a function of wavelength (Eq. 14.33). Some authors
have speculated that this is because we evolved in sun-
light. There is a severe problem with this argument. The
spectral efficiency function has the same value whether we
consider a particular wavelength or its corresponding fre-
quency. The blackbody spectrum is a distribution function—
per wavelength interval (Eq. 14.33) or per frequency interval
(Eq. 14.38).16 The sun’s blackbody spectrum plotted versus

16 Other distribution functions are also useful, for example, per loga-
rithmic frequency or wavelength interval. See Soffer and Lynch (1999)
or Heald (2003).
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Fig. 14.36 Transmission of light through 2 cm of water, compared to
the spectral efficiency of the eye

frequency peaks at a frequency corresponding to a wave-
length of 880 nm, far from the peak of the spectral efficiency
function (See Fig. 14.24). Soffer and Lynch (1999) have dis-
cussed this at length and describe several of the errors in the
literature. The structures in the human eye, as in all verte-
brate eyes, are mostly water. All vertebrate eyes are sensitive
between 390 and 760 μm, with a peak at 500–550 μm. It is
interesting to compare the spectral efficiency function with
the transmission of light through 2 cm of water (Fig. 14.36).
The eye’s response is pretty well centered in this absorption
window. Many insects, crustaceans, fish, birds, and reptiles
have ultraviolet-sensitive receptors (Kevan et al. 2001).

14.12.3 Actinometric Definitions

The actinometric quantities count the number of photons. For
monochromatic photons the energy is the number of photons
times hν. Therefore an actinometric quantity is easily ob-
tained when the radiometric quantity is known. The units are
shown in Table 14.6.

14.13 The Eye

This section presents a simple model for the eye, sufficient
for us to understand how refractive errors are corrected and
to see how photons strike the retina, so that the sensitivity of
the eye can be determined in the next section. For a detailed
but nonmathematical introduction to the eye and vision, see
Rodieck (1998).
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Fig. 14.37 A simplified cross section of the left eye, viewed from
above
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Fig. 14.38 Light passing from one medium to another with a different
index of refraction. All angles are measured with respect to the normal
to the surface

A simplified cross section of the eye is shown in
Fig. 14.37. The principal components through which the
light passes are the curved, thin, transparent cornea, the
aqueous, the lens, the vitreous, and the retina. The iris de-
fines the area of the pupil, the opening in front of the lens
through which light passes.

When light passes through a surface from one medium
to another, part is reflected and part is transmitted. The
transmitted light usually changes direction, a process called
refraction. Figure 14.38 shows the angles involved, all mea-
sured with respect to the dashed line, which is normal to the
surface at the point where the light ray strikes. The angle the
reflected light makes with the normal is the same as the an-
gle of incidence, θr = θ1. The direction the refracted light
travels is described by Snell’s law, n1 sin θ1 = n2 sin θ2.

When light from an object strikes the eye, it must be re-
fracted to form an image on the retina. Most of the refraction
takes place at the surface between the air and the cornea.

h

 u   v  

h' 

 u   v  

α
α

dS' dS
a2Ω = πa

2

u2 π

Fig. 14.39 A source of height h′ emits light in all directions. Some of
this light is intercepted by a lens and focused in an image. a Relation
between object and image distances and sizes. b Collection of light by
the lens

The cornea is very thin, and a light ray is deflected only
a very small distance before it strikes the aqueous. Thus,
most of the refraction occurs because of the difference be-
tween the index of refraction of the air (n = 1.00) and the
aqueous (n = 1.33). The light then passes through the lens
(n = 1.42) and the vitreous (n = 1.33). The lens changes
shape to provide the adjustable part of the overall refraction.

A number of models at varying levels of sophistication are
used to describe the formation of the image on the retina. The
most detailed take into account the refraction at each surface
where the index of refraction changes, including variations
in different layers of the lens itself. Others treat only the re-
fraction at the air–cornea, aqueous–lens, and lens–vitreous
interfaces. The simplest model, and the one we will use,
treats the eye as a thin lens of adjustable focal length f , with
object distance u and fixed image distance v, as shown in
Fig. 14.39. The object and image distances and focal length
are related by the thin-lens equation:

1

u
+ 1

v
= 1

f
. (14.64)

When the object is infinitely far away the image distance is
equal to the focal length of the lens, v = f . A typical value
for v is 1.7 cm. As the object is brought closer to the eye
v cannot change, but the lens changes to decrease the focal
length.

In ophthalmology and optometry it is customary to de-
scribe the refraction of the eye in terms of the vergence.
When light rays are emanating from a point they are diverg-
ing, and the vergence is negative. When they are coming to-
ward a point the vergence is positive and they are converging.
When they are parallel, the vergence is zero. Quantitatively,
the vergences for the geometry shown in Fig. 14.39 are

U = − 1

u
(diverging from the object),

V = 1

v
(converging to the image),

F = 1

f
(a converging lens).

(14.65)
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Table 14.7 Convergence power of the eye in diopters

Refracting structure Relaxed normal
eye

Most converging
eye (age 25)

Air-cornea surface 45 45
Lens 14 24
Entire eye 59 69

The relationship between the vergences is

V = F + U. (14.66)

When the distances are in meters, the vergences are in
diopters.

A given eye requires a particular value of V to form the
image on the retina. The converging power of all the refract-
ing surfaces in the eye must be F = V in order to focus
on an object infinitely far away. Closer objects require more
convergence from the eye, which is provided by the lens.
Table 14.7 shows typical values for the converging power
of the eye. Most of the convergence is provided by the front
surface. When the eye is relaxed, F = V = 59 diopters,
U = 0, and the eye is focused on an object infinitely far
away. With F = 69 diopters, U = 10, and the eye is fo-
cused on an object 0.1 m away. This ability of the lens to
change shape and provide additional converging power is
called accommodation.

In the normal or emmetropic eye, the length of the eye
is such that when the lens is relaxed, rays with no vergence
(parallel rays from a source infinitely far away) are focused
on the retina (V = F ).

In farsightedness or hyperopia, parallel rays come to a fo-
cus behind the retina. The relaxed eye does not have enough
converging power (F < V ). The subject can focus on distant
objects by providing some additional converging power from
the lens, but then the lens cannot provide enough converging
power to focus on nearby objects. A corrective lens, either
spectacles or a contact lens, provides additional convergence.

In nearsightedness or myopia, parallel rays come to a fo-
cus in front of the retina. The eye is slightly too long for the
shape of the cornea (F > V ). The total converging power
of the eye is too great, and the relaxed eye focuses at some
closer distance, from which the rays are diverging. Accom-
modation can only increase the converging power of the eye,
not decrease it, so the unassisted myopic eye cannot focus
on distant objects. Myopia can be corrected by placing a di-
verging spectacle or contact lens in front of the eye, so that
incoming parallel rays are diverging when they strike the
cornea.

When the eye is not symmetric about an axis through the
center of the lens, the images from objects oriented at dif-
ferent angles in the plane perpendicular to the axis form at
different distances from the lens. This is called astigmatism,
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Fig. 14.40 Accommodation versus age. There is considerable varia-
tion between individuals, shown by the error bars

and it can be corrected with a spectacle lens that is not sym-
metric about the axis. The lack of symmetry usually occurs
at the surface of the cornea, so a contact lens can restore the
symmetry.

Surgery to change the radius of curvature of the cornea
can also be used to correct errors of refraction.

As we age, the accommodation of the eye decreases, as
shown in Fig. 14.40. A normal viewing distance of 25 cm
or less requires 4 diopters or more of accommodation. The
graph shows that this limit is usually reached in the early
40s. To make up for the lack of accommodation, one can
place a converging lens in front of the eye when viewing
nearby objects (reading glasses). Bifocals provide a differ-
ent amount of convergence at the top and bottom of the lens.
This can be done either by grinding the lower portion of the
lens with a different radius of curvature or by fusing glass
with a different index of refraction into the lens.

The sharpness of the image is reduced by two other ef-
fects: chromatic aberration and spherical aberration. Chro-
matic aberration occurs because the index of refraction varies
with wavelength. There is nearly a 2-diopter change in over-
all refractive power from the red to the blue. Spherical
aberration occurs because the refractive power changes with
distance from the axis of the eye. This is different from astig-
matism, which is a departure from symmetry at different
angles about the axis.

A concept important in both vision and photography is
depth of field. The retina has a finite spatial resolution, so the
image of a point still appears sharp, even if it is slightly out
of focus. Consider Fig. 14.41. The retina is behind the plane
in which the image is in focus. In dim light, the pupil of the
eye is fully open and light from a point object is spread out
over the larger circle on the retina defined by the solid rays.
In brighter light the pupil is smaller, and light from the same
point object is confined to the smaller circle defined by the
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Retina

Fig. 14.41 Depth of field is illustrated by this ray diagram. The retina
is slightly behind the plane of focus. In dim light, the pupil of the eye
is fully open and light from a point object is spread out over the larger
circle on the retina. When the light is brighter and the pupil is smaller,
light from the same point object is confined to the smaller circle defined
by the dashed lines

dashed lines. As long as this circle is smaller than the spatial
resolution, the image is sharp. This is why we can see better
in brighter light. An older person whose accommodation is
less and who is trying to avoid bifocals often finds that bright
light makes it easier to see nearby objects.

Point-spread functions and modulation transfer functions
can be used to describe the image. (See, for example, Char-
man (2009) or Greivenkamp et al. (1995).) A simpler model
describes the image by a Gaussian with a certain standard de-
viation, equal to the square root of the sum of the variances
due to various effects. The maximum photopic (bright-light)
resolution of the eye is limited by four effects: diffraction of
the light passing through the circular aperture of the pupil
(5–8 μm), spacing of the receptors (≈ 3 μm), chromatic and
spherical aberrations (10–20 μm), and noise in eyeball aim
(a few micrometers) (Stark and Theodoridis 1973). The total
standard deviation is (62 +32 +152 +52)1/2 = 17 μm in the
image on the retina. Since the diameter of the eyeball is about
2 cm, this corresponds to an angular size (α in Fig. 14.39) of
(17 × 10−6)/(2 × 10−2) = 8.5 × 10−4 rad = 0.048 ◦ =
2.9 min of arc. (For further discussion, see Cornsweet (1970,
Chap. 3).)

14.14 Quantum Effects in Dark-Adapted
Vision

The visual process involves two steps. First, the eye creates
an image of an external object on the retina as described
above. Then the photon stimulus is transduced into neurolog-
ical signals that are interpreted by the central nervous system.
The discussion here is limited to a classic experiment on sco-
topic vision that shows the importance of quantum effects
(shot noise) in human vision in dim light. For a more de-
tailed discussion of how photoreceptors detect photons, see
Rodieck (1998).

The experiment was performed by Hecht, Shlaer, and
Pirenne in 1942. It has been described in many places. A
detailed nonmathematical description is that by Cornsweet
(1970).

The retina can be divided into two regions. The fovea, the
area of greatest visual discrimination, is composed entirely

Fig. 14.42 An example of a 10-minute-of-arc field superimposed on
the rods and cones in the retina in the region of greatest sensitivity

of cones. The percentage of rods is highest a few millimeters
away from the fovea, and this part of the retina is most sensi-
tive to faint light. The dark-adapted eye increases sensitivity
by a factor of about 5000.

The experiment was done by having the subject look di-
rectly at a very dim red fixation point while a green light was
flashed in such a place that its image fell on the most sensi-
tive part of the retina. Experiments on the sensitivity of the
dark-adapted eye to flashes of weak light have shown that if
the flash duration is less than 100 ms and the light on the
retina covers a receptor field less than 10 min of arc in size,
the scotopic response of the eye depends on the total amount
of energy or the total number of photons in the flash. Pho-
tons striking anywhere within the receptor field during this
time have the same effect; the eye must combine the effects
occurring in all receptors in the receptor field in a tenth of
a second. A scotopic receptor field is shown in Fig. 14.42.
This scotopic field size (10 min of arc) cannot be compared
to the 2.9 min for maximum resolution, which is for photopic
vision on a different part of the retina.

In the Hecht–Shlaer–Pirenne experiment, the flashes were
short enough and small enough so that only the total number
of photons was important. The fraction of flashes that the
subject recognized was measured as a function of the total
flash energy. A typical response curve is shown in Fig. 14.43.
Let q be the number of photons striking the cornea in front
of the pupil in each flash, which is the total energy in the
flash divided by the energy of each photon. For the 510-nm
green light used, the photon energy is hc/λ = 3.89×10−19 J.
The number of photons striking the cornea can be determined
as follows. Let Lt be the radiance times the duration of the
flash. Consider Eq. 14.57 with both θs and θd nearly zero.
Refer also to the lower half of Fig. 14.39. The energy striking
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Fig. 14.43 Typical response in the experiments of Hecht, Shlaer, and
Pirenne. Curves are calculated using Eq. 14.69. (Data are from Hecht et
al. (1942))

the cornea over the pupil area is

(Lt) dSsdSd

r2
= (Lt) dS′ (πa2

)

u2
.

Because h = h′v/u, the area on the retina where photons
from dS′ fall is dS = dS′(v/u)2. The number of photons
striking the cornea that would be in dS if there were no losses
is

q = (Lt)(πa2)dS′

hνu2
= (Lt)(πa2) dS

hνv2
. (14.67)

The number of photons fluctuates from flash to flash.
Therefore we should speak of q, the average number of
photons striking the cornea per flash. Of these, only some
fraction f actually reach the retina and are absorbed by a
visual pigment molecule. The average number absorbed is

m = f q. (14.68)

Let us next postulate that some minimum number of quanta
n must be absorbed during the flash in order for the subject
to see it. If the average number absorbed per flash is m, there
will sometimes be more and sometimes less than n photons
absorbed per flash. The probability of absorbing x pho-
tons per flash is given by the Poisson distribution P(x;m)

(Appendix J). The probability of seeing the flash is the
probability that x is greater than or equal to n :

P(seeing) =
∞∑

x=n

P (x;m) = 1 −
n−1∑

x=0

P(x;m)

= 1 − e−m

(
1 + m + m2

2! + · · · + mn−1

(n − 1)!
)

.

(14.69)

This function is plotted in Fig. 14.44 as a function of m for
various values of n, with both a linear and a logarithmic scale
for m.

Hecht, Shlaer, and Pirenne used an ingenious method to
determine n. They plotted their data versus the logarithm of
q. Since m = f q, log m = log f + log q; different values
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Fig. 14.44 The probability of seeing a flash, plotted versus a m; b
log m

of f correspond to shifting the curve along the axis. They
then compared the experimental data to various theoretical
curves for the probability of seeing a flash, plotted against
log m. Sliding the paper containing the data along the log m

axis is equivalent to trying different values of f . The data in
Fig. 14.43 are shown along with the curves for n = 5, 7, and
9. For these data, n = 7 gives the best fit. From Fig. 14.43,
a 55% chance of detecting the flash corresponds to 100 pho-
tons for q while being consistent with m = 7. Therefore,
f = 0.07.

Hecht, Shlaer, and Pirenne deduced that about seven pho-
tons must be absorbed by the rods in the area of integration
shown in Fig. 14.42 within 0.1 s in order for the brain to
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detect the flash of light. Their data were consistent with the
hypothesis that the photons arrived at random, with the actual
number in each flash obeying a Poisson distribution. Later
work by Sakitt (1972) is consistent with the rods counting
individual photons, with false positives produced by thermal
noise within the retina (Barlow 1956).

The phototransduction mechanism is quite complicated.
Rieke and Baylor (1998) reviewed the detection of photons
by rod cells. When stimulated with dim light pulses, the rod
cell responds to each flash consistent with the absorption of
0, 1 or, 2 photons. The rods have a dark current that is re-
duced when light falls on them. In other words, the light
hyperpolarizes the cell. This lowers the rate of release of
cyclic GMP. The review discusses what is known about the
chemical transduction process.

If the light intensity is increased, m increases. There will
be shot-noise fluctuations with a standard deviation equal
to m1/2, and the eye should be unable to detect brightness
changes smaller than this. Measurements by Horace Barlow
in 1956 showed that as long as short flashes spanning only
one visual field are used, the minimum detectable intensity
depends on the square root of the light intensity. This sta-
tistical limit to detecting intensity changes is a lower limit;
for larger sources and longer exposure times, the minimum
detectable brightness change is larger and is more nearly
proportional to the intensity than to the square root of the
intensity (Rose 1973).

14.15 Color Vision

The eye can detect color because there are three types of
cones in the retina, each of which responds to a differ-
ent wavelength of light (trichromate vision): red, green, and
blue, the primary colors. However, the response curve for
each type of cone is broad, and there is overlap between them
(particularly the green and red cones). The eye responds to
yellow light by activating both the red and green cones. Ex-
actly the same response occurs if the eye sees a mixture of
red and green light. Thus, we can say that red plus green
equals yellow. Similarly, the color cyan corresponds to acti-
vation of both the green and blue cones, caused either by a
monochromatic beam of cyan light or a mixture of green and
blue light. The eye perceives the color magenta when the red
and blue cones are activated but the green is not. Interest-
ingly, no single wavelength of light can do this, so there is
no such thing as a monochromatic beam of magenta light;
it can only be produced my mixing red and blue. Mixing all
three colors, red and green and blue, gives white light. Color
printers are based on the colors yellow, cyan, and magenta,
because when we view the printed page, we are looking at
the reflection after some light has been absorbed by the ink.

For instance, if white light is incident on a page containing
ink that absorbs blue light, the reflected light will contain
red and green and therefore appear yellow. Human vision is
trichromate, but other animals (such as the dog) have only
two types of cones (dichromate vision), and still others have
more than three types.

Some people suffer from color blindness. The most com-
mon case is when the cones responding to green light are
defective, so that red, yellow, and green light all activate only
the red receptor. Such persons are said to be red–green color
blind: they cannot distinguish red, yellow, and green, but they
can distinguish red from blue.

As with pitch perception, the sensation of color involves
both physics and physiology. For instance, one can stare at
a blue screen until the cones responding to blue become fa-
tigued, and then immediately stare at a white screen and see
a yellow afterimage. Many other optical illusions with color
are possible.

Symbols Used in Chapter 14
Symbol Use Units First

used
page

a Radius m 390
c Speed of light in a vacuum m s−1 381
cn Speed of light in a medium m s−1 381
cb, ct Specific heat of blood, tissue J kg−1 K−1 404
e extinction coefficient m2 417
e Charge on an electron C 383
f Focal length m 411
f Fraction of photons reaching

retina
414

g Scattering anisotropy factor 389
h Planck’s constant J s 382
h, h′ Image height, object height m 411
� Planck’s constant divided by

2π

J s 382

i Label of energy level 383
j Total angular momentum

quantum number
384

jH Energy transport in heat flow W m−2 404
k Spring constant N m−1 386
kB Boltzmann constant J K−1 395
l Orbital angular momentum

quantum number
383

m Mass kg 385
m Average number 414
me Mass of electron kg 383
mi Mass of ith particle kg 385

mj ,ml,ms z quantum number for
angular momentum

383

n Index of refraction 381
n Principal quantum number 383
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n Average number of
photons that interact

388

n Minimum number of
photons to trigger a
response

414

p Probability 389
q Electric charge C 382
q Number of photons 414
q Average value of q 414
r Rotational quantum

number
385

r, r Coordinate m 385
s Spin quantum number 383
s Source term in diffusion

equation
m−3 s−1 390

t Time s 382
v Velocity m s−1 382
v Vibrational quantum

number
386

u, v Object and image distances m 411
wtot Net power radiated W 398
x, z Distance m 382
z0 Depth of first scattering m 391
A Amplitude of wave 392
A Molar mass kg 388
B Magnetic field T 382
C Concentration m−3 390
D Diffusion constant m2 s−1 390
D′ Photon diffusion constant m 390
D Thermal diffusion constant m2 s−1 405
E Electric field V m−1 382
E Energy J 382
Ep Potential energy J 386
Er Rotational energy J 385
Ev Vibrational energy J 386
E Irradiance W m−2 409
F, F Force N 382
F Converging power of a lens diopter

(m−1)

411

I Moment of inertia kg m2 385
K Thermal conductivity W K−1 m−1 404
Km Luminous efficiency,

photopic
lm W−1 410

K ′
m Luminous efficiency,

scotopic
lm W−1 410

L Angular momentum kg m2 s−1 385
L Radiance W m−2 sr−1 409
N Number of photons 387
Na Number absorbed 387
Ns Number scattered 387
NA Avogadro’s number 388
NT Number of target entities

per unit area
m−2 388

P Probability 395

P Tissue perfusion m3 kg−1

s−1
404

P Radiant power W 407
Pv Luminous flux lm 410
Q Rate of production m−3 s−1 390

R, R Coordinate of atom, distance m 385
Rλ Radiant energy per unit

wavelength interval
J m−1

or J nm−1
409

R Reflected fluence rate m2 s−1 391
R Radiant energy J 407
R Rydberg constant m − 1 417
S, S′ Surface area m2 388
T Period s 382
T Kinetic energy J 385
T , Ts, To Temperature K 395
U Object vergence diopter

(m−1)
411

V, V Velocity m s−1 385
V Photopic spectral efficiency

function
409

V ′ Scotopic spectral efficiency
function

409

V Image vergence diopter
(m−1)

411

Wλ Blackbody radiation function W m−3

or
W m−2 nm−1

396

Wν Blackbody radiation function W m−2 Hz−1 397
Wr Exitance W m−2 408
α Angle 411
δth Thermal penetration depth m 405
ε0 Electrical permittivity of free

space
N−1 C2 m−2 382

ε Emissivity 395
ε(λ) Erythema action spectrum 402
θ, φ Angles 388
ϕ Particle fluence rate m−2 s−1 390
λ Wavelength m 382
μ Total linear attenuation

coefficient
m−1 387

μa Linear absorption coefficient m−1 387
μs Linear scattering coefficient m−1 387
μ′

s Reduced linear scattering
coefficient

m−1 389

μeff Effective linear attenuation
coefficient

m−1 391

μ0 Magnetic permeability of
free space

Ω s m−1 382

ρ, ρb, ρt Density, density of blood,
density of tissue

kg m−3 388

σ, σi , σa,

σs, σtot

Cross section m2 388

σ(θ), dσ/dΩ Differential scattering cross
section

m2 sr−1 388

σSB Stefan–Boltzmann constant W m−2 K−4 397
σ 2

r , σ 2
x ,

σ 2
y , σ 2

z

Variance for diffusion or heat
flow

m2 405

ν Frequency s−1 382
τcoh Coherence time s 393

ω Angular frequency (radian) s−1 382
ψ Energy fluence rate W m−2 405
Ψ Energy fluence J m−2 405
Φ Particle fluence m−2 388
Ω Solid angle sr 388
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Problems

Section 14.1

Problem 1. The velocity of light c depends on the param-
eters ε0 and μ0. Use dimensional analysis to find what the
dependence must be. Insert numerical values to obtain c.

Problem 2. An einstein is 1 mol of photons. Derive an
expression for the energy in an einstein as a function of
wavelength. Express the answer in kilocalories and the
wavelength λ in nanometers.

Section 14.3

Problem 3. Use Eq. 14.8 to derive Eq. 14.9.
Problem 4. (a) Starting with Eq. 14.8, derive a formula for
the hydrogen atom spectrum in the form

1

λ
= R

[
1

n2
− 1

m2

]
,

where n and m are integers. R is called the Rydberg constant.
Find an expression for R in terms of fundamental constants.

(b) Verify that the wavelengths of the spectral lines a–d at
the top of Fig. 14.3 are consistent with the energy transitions
shown at the bottom of the figure.
Problem 5. The Lyman series, part of the spectrum of hy-
drogen, is shown at the top of Fig. 14.3 as the line labeled a
and the band of lines to the left of that line. Create a figure
like Fig. 14.3, but which shows a detailed view of the Ly-
man series. Let the wavelength scale at the top of your figure
range from 0 to 150 nm, as opposed to 0–2 μm in Fig. 14.3.
Also include an energy level drawing like at the bottom
of Fig. 14.3 and indicate which transitions correspond to
which lines in the Lyman spectrum. Indicate the shortest
possible wavelength in the Lyman spectrum, show what tran-
sition that wavelength corresponds to, and determine how
this wavelength is related to the Rydberg constant.
Problem 6. The left side of Fig. 14.1 shows the emission of
a photon during a transition from an initial state with energy
Ei to a final one with energy Ef . Usually the Boltzmann fac-
tor ensures that the population of the initial state is less than
the final state. In some cases however, when the initial state
is metastable, one can create a population inversion. Pho-
tons with energy hν corresponding to the energy difference
Ei − Ef can produce stimulated emission of other photons
with the same energy, a type of positive feedback. Lasers
work on this principle. Suppose a laser is made using two
states having an energy difference of 1.79 eV. What is the
wavelength of the output light? What color does this corre-
spond to? Lasers have many uses in medicine (Peng et al.
2008).

Section 14.4

Problem 7. Estimate �
2/2I for an HCl molecule. What

would the spacing of rotational levels be?
Problem 8. An inulin molecule has a molecular weight of
4000 dalton (that is, 1 mol has a mass of 4000 g). Assume
that it is spherical with a radius of 1.2 nm. What is the an-
gular frequency ω of a photon absorbed when its rotational
quantum number changes from 10 to 11? The moment of in-
ertia of a sphere rotating about an axis through its center is
I = (2/5)mR2.
Problem 9. The rotational spectrum of HCl contains lines at
60.4, 69.0, 80.4, 96.4, and 120.4 μm. What is the moment of
inertia of an HCl molecule?
Problem 10. Consider a combined rotational–vibrational
transition for which r goes from 1 to 0 while v goes from
v to (v − 1). Find the frequencies of the photons emitted in
terms of the moment of inertia of the molecule I , the angular
frequency of vibration of the atoms in the molecule ω, and
the quantum number v.
Problem 11. A rotating molecule emits photons when the
rotational quantum number changes by 1. Find the ratio of
the angular frequency of the photons, ωphot, to the angular
frequency of rotation of the molecule, ωrot, as a function of
the rotational quantum number r .

Section 14.5

Problem 12. A beam with 200 particles per square cen-
timeter passes by an atom. The particles are uniformly and
randomly distributed in the area of the beam.
(a) Fifty particles are scattered. What is the total scattering

cross section?
(b) Ten particles are scattered in a cone of 0.1 sr solid angle

about a particular direction. What is the differential cross
section in m2 sr−1?

Problem 13. The differential scattering cross section for a
beam of x-ray photons of a certain energy from carbon at an
angle θ is 50×10−30 m2 sr−1. A beam of 105 photons strikes
a pure carbon target of thickness 0.3 cm. The density of car-
bon is 2 g cm−3, and the atomic weight is 12. The detector
is a circle of 1 cm radius located 20 cm from the target. How
many scattered photons enter the detector?
Problem 14. Photochemists often use the extinction coeffi-
cient e, defined by μa = eC, where C is the concentration in
moles per liter. This assumes the substance being measured
is dissolved in a completely transparent solvent.
(a) What are the units of the extinction coefficient?
(b) What is the conversion between the extinction coeffi-

cient and the absorption cross section?
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Problem 15. Suppose that the absorption coefficient in some
biological substance is 5 m−1. Make the very crude as-
sumption that the substance has the density of water and a
molecular weight of 18. What is the absorption cross section?
Problem 16. For blue light (λ = 470 nm), the attenuation
coefficient in air is about 2 × 10−5 m−1, and the attenuation
coefficient in pure water is about 5 × 10−3 m−1. Calcu-
late the distance that blue light must pass through air and
water before the intensity is reduced to 1% of the original
intensity. Compare these distances to the thickness of the
atmosphere and the depth of the ocean. Do you think that
aquatic plants can use photosynthesis effectively at the bot-
tom of the ocean? For more on the differences between the
optical properties of air and water, see Denny (1993).

Section 14.6

Problem 17. (a) Find the slope of log R versus t in
Eq. 14.30. What is its value for large times?

(b) What can be determined from the time when R has its
maximum value? (Hint: R has a maximum when log R has a
maximum.)
Problem 18. The result of one set of infrared measure-
ments in human calf (leg) muscle gave a total scattering
coefficient μs = 8.3 cm−1 and an absorption coefficient
μa = 0.176 cm−1.
(a) What fraction of the photons have not scattered in pass-

ing through a layer that is 8 μm thick? (This corresponds
roughly to the size of a cell.)

(b) On average, how many scattering events take place for
each absorption event?

(c) What is the cross section for scattering per molecule?
For this estimate, assume the muscle consists en-
tirely of water, with molecular weight 18 and density
103 kg m−3.

Problem 19. Consider light with fluence rate ϕ0 continu-
ously and uniformly irradiating a half-infinite slab of tissue
having an absorption coefficient μa and a reduced scat-
tering coefficient μ′

s . Divide the photons into two types:
the incident ballistic photons that have not yet interacted
with the tissue, and the diffuse photons undergoing multiple
scattering. The diffuse photon fluence rate, ϕ, is governed
by the steady state limit of the photon diffusion equation
(Eq. 14.27). The source of diffuse photons is the scatter-
ing of ballistic photons, so the source term in Eq. 14.27 is
s = μ′

s exp(−z/λunatten), where z is the depth below the tis-
sue surface. At the surface (z = 0), the diffuse photons obey
the boundary condition ϕ = 2Ddϕ/dz.17

17 The derivation of this boundary condition is found in Haskell et al.
(1994). See also Roth (2008).

(a) Derive an analytical expression for the diffuse photon
fluence rate in the tissue, ϕ(z).

(b) Plot ϕ(z) versus z for μa = 0.08 mm−1 and μ′
s =

4 mm−1.
(c) Evaluate λunatten and λdiffuse for these parameters.

Section 14.7

Problem 20. Carry out the averages leading to Eq. 14.31.
Problem 21. If yellow light from a source has a coherence
time of 10−8 s, how many cycles are there in the wave?
Problem 22. What coherence time is needed for a spatial
resolution of 1μm?
Problem 23. An infrared transition involves an energy of
0.1 eV. What are the corresponding frequency and wave-
length? If the Raman effect is observed with light at 550 nm,
what will be the frequencies and wavelengths of each Raman
line?
Problem 24. A Raman spectrum has a line at 500 nm with
subsidiary lines at 400 and 667 nm. What is the wavelength
of the corresponding infrared line?

Section 14.8

Problem 25. Sodium is introduced into a flame at 2500 K.
What fraction of the atoms are in their first excited state?
In their ground state? (Remember that the characteristic
sodium line is yellow.) If the flame temperature changes by
10 K, what is the fractional change in the population of each
state? Which method of measuring sodium concentration
is more stable to changes in flame temperature: measuring
the intensity of an emitted line or measuring the amount of
absorption?
Problem 26. (a) Show that the maximum of the thermal ra-
diation function Wλ(λ, T ) occurs at a wavelength such that
ex(5 − x) = 5, where x = hc/(λmaxkBT ). Verify that
x = 4.9651 is a solution of this transcendental equation, so
that

T λmax = hc

4.9651kB

.

(b) Similarly, show that

νmax

T
= 2.82144kB

h

and that λmaxνmax = 0.57c.
Problem 27. Let Wν(ν) = Aν(ν0 − ν) for ν < ν0, and
Wν(ν) = 0 otherwise.
(a) Plot Wν(ν) versus ν.

(b) Calculate the frequency corresponding to the maximum
of Wν(ν), called νmax.
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(c) Let λ0 = c/ν0 and λmax = c/νmax. Write λmax in terms
of λ0.

(d) Integrate Wν(ν) over all ν to find Wtot.
(e) Use Eqs. 14.36 and 14.37 to calculate Wλ(λ).
(f) Plot Wλ(λ) versus λ.
(g) Calculate the wavelength corresponding to the maxi-

mum of Wλ(λ), called λ∗
max, in terms of λ0.

(h) Compare λmax and λ∗
max. Are they the same or different?

If λ0 is 400 nm, calculate λmax and λ∗
max. What part of

the electromagnetic spectrum is each of these in?
(i) Integrate Wλ(λ) over all λ to find W ∗

tot. Compare Wtot

and W ∗
tot. Are they the same or different?

Problem 28. Integrate Eq. 14.33 over all wavelengths to ob-
tain the Stefan–Boltzmann law, Eq. 14.34. You will need the
integral

∫ ∞

0

x3dx

ex − 1
= π4

15
.

Problem 29. Two parallel surfaces of area S have unit
emissivity and are at temperatures T1 and T2 [T1 > T2,
panel (a)]. They are large compared to their separation, so
that all radiation emitted by one surface strikes the other.
Assume that radiation is emitted and absorbed only by the
two surfaces that face each other. Let P0 be the energy lost
per unit time by body 1. A new sheet of perfectly absorbing
material is introduced between bodies 1 and 2, as shown in
panel (b). It comes to equilibrium temperature T . Let P be
the net energy lost by surface 1 in this case. Find P/P0 in
terms of T1 and T2.

T

(a) (b)

T1 T2 T1 T2

Problem 30. The sun has a radius of 6.9 × 108 m. The earth
is 149.5 × 109 m from the sun. Treat the sun as a thermal
radiator at 5800 K and calculate the energy from the sun
per unit area per unit time striking the upper atmosphere of
the earth (the solar constant). State the result in W m−2 and
cal cm−2 min−1.
Problem 31. If all the energy received by the earth from the
sun is lost as thermal radiation (a poor assumption because a
significant amount is reflected from cloud cover), what is the
equilibrium temperature of the earth?

Section 14.9

Problem 32. Show that an approximation to Eq. 14.41 for
small temperature differences is wtot = SKrad(T − Ts).
Deduce the value of Krad at body temperature. Hint: Fac-
tor T 4 − T 4

s = (T − Ts)(· · · ). You should get Krad =
6.76 W m−2 K−1.
Problem 33. What fractional change in Wλ(λ, T ) for ther-
mal radiation from the human body results when there is a
temperature change of 1 K at 5 μm? 9 μm? 15 μm?

Section 14.10

Problem 34. (a) Suppose that the threshold for erythema
caused by sunlight with λ = 300 nm is 30 J m−2. Does
this suggest that the result is thermal (an excessive tempera-
ture increase) or something else, like the photoelectric effect
or photodissociation? Make some reasonable assumptions to
estimate the temperature rise.

(b) The energy in sunlight at all wavelengths reaching the
earth is 2 cal cm−2 min−1. Suppose that the total body area
exposed is 0.6 m2. What would be the temperature rise per
minute for a 60 kg person if there were no heat-loss mech-
anisms? Compare the rate of energy absorption to the basal
metabolic rate, about 100 W.
Problem 35. Suppose that the energy fluence rate of a paral-
lel beam of ultraviolet light that has passed through thickness
x of solution is given by ψ = ψ0e

−μax . (Scattering is
ignored.) The absorption coefficient μa is related to the con-
centration C (molecules cm−3) of the absorbing molecules in
the solution by μa = eC. Biophysicists working with ultra-
violet light define the dose rate to be the power absorbed per
molecule of absorber. (This is a different definition of dose
than is used in Chap. 15.) Calculate the dose rate for a thin
layer (μax 	 1).
Problem 36. A beam of photons passes through a
monatomic gas of molecular weight A and absorption cross
section σ . Ignore scattering. The gas obeys the ideal gas law,
pV = NkBT .
(a) Find the attenuation coefficient in terms of σ , p, and any

other necessary variables.
(b) Generalize the result to a mixture of several gases,

each with cross section σi , partial pressure pi , and Ni

molecules.
Problem 37. The attenuation of a beam of photons in a
gas of pressure p is given by dΦ = −Φ(σp/kBT ) dx,
where σ is the cross section, kB the Boltzmann constant,
T the absolute temperature, and x the path length. Sup-
pose that the pressure is given as a function of altitude y by
p = p0e

−mgy/kBT . What is the total attenuation by the entire
atmosphere?
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Problem 38. Consider a beam of photons incident on the
atmosphere from directly overhead. The atmosphere contains
several species of molecules, each with partial pressure pi .
The absorption coefficient is μa = (1/kBT )

∑
i σipi . If each

constituent of the atmosphere varies with height y as pi(y) =
p0i exp(−migy/kBT ), show that the fluence rate striking the
earth is given by an expression of the form e−α and find α.

Section 14.11

Problem 39. Consider a tissue with a specific heat of
3.6 J kg−1 K−1, a density of 1000 kg m−3, and a ther-
mal conductivity of 0.5 W m−1 K−1. Assume the specific
heat of blood is the same, and that the tissue perfusion is
4.17 × 10−6 m3 kg−1 s−1. Find the thermal diffusivity, the
time for the heat to flow 1 cm, and the thermal penetration
depth.

Section 14.12

Problem 40. Suppose that a sphere radiates uniformly from
its surface according to Lambert’s cosine law: L = L0. By
considering area dS = 2πr2 sin θ dθ on the surface of a
sphere, find the power radiated per steradian in the direction
of the z axis and the total power radiated.
Problem 41. Show that the exitance, total power per unit
area radiated from a surface obeying Lambert’s cosine law,
is Wr = πL0.
Problem 42. How many photons per second correspond to
1 lm at 555 nm for photopic vision? At 510 nm for scotopic
vision?

Section 14.13

Problem 43. A person is nearsighted, and the relaxed eye
focuses at a distance of 50 cm. What is the strength of the
desired corrective lens in diopters?
Problem 44. What is the distance of closest vision for an
average person with normal vision at age 20? Age 40? Age
60?
Problem 45. A person of age 40 is fitted with bifocals with a
strength of +1 diopter more than the correction for distance
vision. What are the closest and farthest distances of focus
without the bifocal lens and with it? By the time the person
is age 50, what are they with and without the same lens?
Problem 46. You can make a rough measurement of your
own eye’s properties. Tape a piece of paper with some pat-
tern on it on the wall. Cover one eye. Move away from the
wall until the pattern starts to blur. Measure the distance to
the wall in meters. Calculate the vergence of the object, U .

Assume that the F of your relaxed eye is 59 diopters. Calcu-
late V for your eye. Now find the closest distance at which
you can see the paper. Calculate the accommodation of your
eye.
Problem 47. An object is placed 6 cm from a converging
lens with a 5-cm focal length.

Plane of lens

Ray enters lens parallel 
to axis and passes 
through focal point on 
other side.

Ray passing through 
lens plane on axis is 
undeflected.

 h  v 

 u = 6 cm 

h' f = 5cm

(a) Use the thin-lens equation (Eq. 14.64) to calculate the
image distance.

(b) The magnification of the image is given by m = −v/u.
(A negative magnification implies an inverted image.)
What is the magnification for the image in part (a)? A
value |m| > 1 implies a“magnified” image. This is how
a slide projector works.

Problem 48. An object is placed 15 cm from a converging
lens with a focal length of 20 cm.

Object

Image

Plane of 
lens

Focal Point
 v 

 u = 15 cm
 f = 20 cm 

Ray parallel to axis 
passes through 
focal point.

Ray through 
center of lens on 
axis is not 
deflected.

(a) Use the thin-lens equation (Eq. 14.64) to calculate the
image distance. Your value should be negative, corre-
sponding to a “virtual image”.

(b) The magnification of the image is again given by m =
−v/u. What is the magnification for the image in part
(a)? This is how a magnifying glass works.

Problem 49. Combine the results of Problems 47 and 48.
Consider two lenses, the first with focal length 5 cm and the
second with focal length 20 cm, separated by 45 cm. The
object is 6 cm in front of the first lens. The image from the
first lens is the object for the second.
(a) Calculate the image distance and magnification of the

image created by the first lens (called the objective).
(b) Use the first image as the object for the second lens

(called the eyepiece), and calculate the image distance
and magnification of the second image.
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(c) The total magnification is the product of the magnifi-
cations of the objective and eyepiece. What is the total
magnification? This is how the compound microscope
works. The objective lens acts like a slide projector, and
the eyepiece acts like a magnifying glass. Very large to-
tal magnifications can be obtained when the object is
just to the left of the focal point of the objective, and the
first image is just to the right of the focal point of the
eyepiece.

Problem 50. Snell’s law, n1 sin θ1 = n2 sin θ2, gives an in-
teresting result if light passes from a medium with a higher
index of refraction to one with a lower index of refraction,
n1 > n2. Assume light passes from glass (n1 = 1.5) to air
(n2 = 1.0).

(a) If θ1is 30 ◦, what is θ2?
(b) If θ1is 40 ◦, what is θ2?
(c) If θ1is 50 ◦, what is θ2?

This is really a tricky question, because for θ1 greater
than some critical angle, θc, θ2 exceeds 90 ◦, and light
cannot pass into the second medium. Instead all the light
is reflected and remains within the first medium.

(d) Calculate the critical angle for total internal reflection
from glass to air.

Total internal reflection allows thin glass fibers to act as
fiberoptic “light pipes,” which can be used to transmit sig-
nals. Bundles of such optical fibers are used in endoscopes
to see inside the body.
Problem 51. Table 14.7 shows that most of the converging
power of the eye occurs at the air-cornea interface. When
a person is under water, this must be supplied by the water-
cornea surface. The index of refraction of the cornea is closer
to that of water than to that of air. What are the implications
for seeing under water? What are the implications for the
vision of aquatic animals? (For more information on the dif-
ference between the eyes of aquatic and terrestrial animals,
see Denny 1993.)

Section 14.14

Problem 52. How many photons per 0.1 s enter the eye
from a 100 W light bulb 1000 ft away? Assume the pupil
is 6 mm in diameter. How far away can a 100 W bulb be seen
if there is no absorption in the atmosphere? Use a luminous
efficiency of 17 lm W−1 and then assume an equivalent light
source at 555 nm.
Problem 53. The table below shows the radiance of some
extended sources. Without worrying about obliquity factors
(assume that all the light is at normal incidence), calculate
the number of photons entering a receptive field of 0.17 ◦
diameter when the pupil diameter is 6 mm and the integration
time is 0.1 s. Assume a conversion efficiency of 100 lm W−1

and then assume that all the photons are at 555 nm.

Source Radiance (lm m−2 sr−1)

White paper in sunlight 25000
Clear sky 3200
Surface of the moon 2900
White paper in moonlight 0.03

Problem 54. A piece of paper is illuminated by dim light
so that its radiance is 0.01 lm m−2 sr−1 in the direction of
a camera. A camera lens 1 cm in diameter is 0.6 m from
the paper. The sheet of paper is 10 × 10 cm. The shutter
of the camera is open for 1 ms. Assume all the light is at
555 nm. How many photons from the paper enter the lens of
the camera while the shutter is open?
Problem 55. If three or more photons must be absorbed by a
visual receptor field for the observer to see a flash, what frac-
tion of the flashes are seen if the average number of photons
absorbed in a receptor field per flash is four?
Problem 56. Assume that an average of d photons are de-
tected and that the photons are Poisson distributed. What
must d be to detect a signal that is a 1 % change in d, if
the signal-to-noise ratio must be at least 5?
Problem 57. Suppose that the average number of photons
striking a target during an exposure is m. The probability
that x photons strike during a similar exposure is given by the
Poisson distribution. What is the probability that an organism
responds to an exposure of radiation in each of the following
cases?
(a) The response of the organism requires that a single target

within the organism be hit by two or more photons.
(b) The response of the organism requires that two targets

within the organism each be struck by one or more
photons during the exposure.
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15Interaction of Photons and Charged Particles with
Matter

An x-ray image records variations in the passage of x rays
through the body because of scattering and absorption. A
side effect of making the image is the absorption of some x-
ray or charged particle energy by the body. Radiation therapy
depends on the absorption of large amounts of x-ray en-
ergy by a tumor. Diagnostic procedures in nuclear medicine
(Chap. 17) introduce a small amount of radioactive substance
in the body. Radiation from the radioactive nuclei is then
detected. Some of the energy from the photons or charged
particles emitted by the radioactive nucleus is absorbed in
the body. To describe all of these effects requires that we
understand the interaction of photons and charged particles
with matter.

In Chap. 14 we discussed the transport of photons of
ultraviolet and lower energy—a few electron volts or less.
Now we will discuss the transport of photons of much
higher energy—10 keV and above. We will also discuss
the movement through matter of charged particles such
as electrons, protons, and heavier ions. These high energy
photons and charged particles are called ionizing radiation,
because they produce ionization in the material through
which they pass. The distinction is blurred, since ultraviolet
light can also ionize.

A charged particle moving through matter loses energy by
local ionization, disruption of chemical bonds, and increas-
ing the energy of atoms it passes near. It is said to be directly
ionizing. Photons passing through matter transfer energy to
charged particles, which in turn affects the material. These
photons are indirectly ionizing.

Photons and charged particles interact primarily with the
electrons in atoms. Section 15.1 describes the energy levels
of atomic electrons. Section 15.2 describes the various pro-
cesses by which photons interact; these are elaborated in the
next four sections, leading in Sect. 15.7 to the concept of
a photon attenuation coefficient. Attenuation is extended to
compounds and mixtures in Sect. 15.8.

An atom is often left in an excited state by a photon inter-
action. The mechanisms by which it loses energy are covered

in Sect. 15.9. The energy that is transferred to electrons can
cause radiation damage. The transfer process is described in
Sects. 15.10 and 15.15–15.17.

Section 15.11 introduces the charged-particle stopping
power, which is the rate of energy loss by a charged particle
as it passes through a material. Extensions of this concept,
which are important in radiation damage, are the linear en-
ergy transfer and the restricted collision stopping power,
introduced in Sect. 15.12. A charged particle travels a certain
distance through the material as it loses its kinetic energy.
This leads in Sect. 15.13 to the concept of range. Charged
particles also lose energy by emitting photons. The radiation
yield is also discussed in Sect. 15.13. Insight into the process
of radiation damage is gained by examining track structure
in Sect. 15.14.

The last three sections return to the movement of energy
from a photon beam to matter. The discussion requires an un-
derstanding of both photon interactions and charged-particle
stopping power and range.

15.1 Atomic Energy Levels and X-ray
Absorption

A neutral atom has a nuclear charge +Ze surrounded by a
cloud of Z electrons. As was described in Chap. 14, each
electron has a definite energy, characterized by a set of five
quantum numbers: n, l, s (which is always 1

2 ), j, and mj .
(Instead of j and mj , the numbers ml and ms are sometimes
used.) There are restrictions on the values of the numbers:
n = 1, 2, 3, . . . the principal quantum number
l = 0, 1, 2, . . . , n − 1 the orbital angular momentum

quantum number
s = 1

2 the spin quantum number
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j = l − 1
2 or l + 1

2 , except
that

the total angular

j = 1
2 when l = 0 momentum quantum number

mj = −j,−(j − 1),. . . , “z component” of the total
(j − 1), j angular momentum

The dependence of the electron energy on mj is very slight,
unless the atom is in a magnetic field.

In each atom, only one electron can have a particular set
of values of the quantum numbers. Since the atoms we are
considering are not in a magnetic field, electrons with differ-
ent values of mj but the same values for n, l, and j will all
be assumed to have the same energy. Electrons with differ-
ent values of n are said to be in different shells. The shell
for n = 1 is called the K shell; those for n = 2, 3, 4, . . .

are labeled L,M,N, . . . . Different values of l and j for a
fixed value of n are called subshells, denoted by roman nu-
meral subscripts on the shell labels. The maximum number
of electrons that can be placed in a subshell is 2(2l + 1).
Each electron bound to the atom has a certain negative en-
ergy, with zero energy defined when the electron is just
unbound, that is, at rest infinitely far away from the atom.
Table 15.1 lists the energy levels of electrons in tungsten.
Some of the levels in Table 15.1 are shown in Fig. 15.1.
The scale is logarithmic. Since the energies are negative, the
magnitude increases in the downward direction. Tables of
atomic energy levels can be found many places, including
www.csrri.iit.edu/periodic-table.html.

The ionization energy is the energy required to remove the
least-tightly-bound electron from the atom. For tungsten, it is
about 6 eV. If one plots the ionization energy or the chemical
valence of atoms as a function of Z, one finds abrupt changes
when the last electron’s value of n or l changes.

In contrast to this behavior of the outer electrons, the en-
ergy of an inner electron with fixed values of n and l varies
smoothly with Z. To a first approximation, the two inner-
most K electrons are attracted to the nuclear charge Ze.
The energy of the level can be estimated using Eq. 14.9 for
hydrogen, with the nuclear charge e replaced by Ze:

EK = −13.6Z2

12
. (15.1)

The two electrons also repel each other and experience some
repulsion by electrons in other shells. This effect is called
charge screening. Experiment (measuring values of EK )
shows that the effective charge seen by a K electron is ap-
proximately Zeff ≈ Z − 2 for heavy elements, so that for K

electrons (n = 1),

EK ≈ −13.6(Z − 2)2 (in eV). (15.2)

Table 15.1 Energy levels for electrons in a tungsten atom (Z = 74)

n l j Number of elec-
trons

X-ray label Energy (eV)

1 0 1
2 2 K −69 525

2 0 1
2 2 LI −12 100

1 1
2 2 LII −11 544

1 3
2 4 LIII −10 207

3 0 1
2 2 MI −2 820

1 1
2 2 MII −2 575

1 3
2 4 MIII −2 281

2 3
2 4 MIV −1 872

2 5
2 6 MV −1 809

4 0 1
2 2 NI −594

1 1
2 2 NII −490

1 3
2 4 NIII −424

2 3
2 4 NIV −256

2 5
2 6 NV −244

3 5
2 , 7

2 14 NVI,VII −35

5 0 1
2 2 OI −77

1 1
2 2 OII −47

1 3
2 4 OIII −36

2 3
2 , 5

2 4 OIV,V −6

6 0 1
2 2 PI

The screening is greater for electrons with larger values of n,
which may be thought of as being in “orbits” of larger radius.

15.2 Photon Interactions

There are a number of different ways in which a photon
can interact with an atom. The more important ones will
be considered here. It is convenient to adopt a notation
(γ, bc) where γ represents the incident photon and b and
c are the results of the interaction. For example (γ, γ ) rep-
resents initial and final photons having the same energy; in a
(γ, e) interaction the photon is absorbed and only an electron
emerges. This section describes the common interactions and
the energy balance for each case.

15.2.1 Photoelectric Effect

In the photoelectric effect, (γ, e), the photon is absorbed by
the atom and a single electron, called a photoelectron, is
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Fig. 15.1 Energy levels for electrons in tungsten

ejected. The initial photon energy hν0 is equal to the final
energy. The recoil kinetic energy of the atom is very small
because its mass is large, so the final energy is the kinetic
energy of the electron, Tel, plus the excitation energy of the
atom. The excitation energy is equal to the binding energy of
the ejected electron, B. The energy balance is therefore

hν0 = Tel + B. (15.3)

The atom subsequently loses its excitation energy. The deex-
citation process described in Sect. 15.9 involves the emission
of additional photons or electrons. The photoelectric cross
section is τ .

15.2.2 Compton and Incoherent Scattering

In Compton scattering, (γ, γ ′e), the original photon disap-
pears and a photon of lower energy and an electron emerge.
The statement of energy conservation is

hν0 = hν + Tel + B.

Usually the photon energy is high enough so that B can be
neglected, and this is written as

hν0 = hν + Tel. (15.4)

The Compton cross section for scattering from a single elec-
tron is σC . Incoherent scattering is Compton scattering from
all the electrons in the atom, with cross section σincoh.

15.2.3 Coherent Scattering

Coherent scattering is a (γ, γ ) process in which the photon is
elastically scattered from the entire atom. That is, the internal
energy of the atom does not change. The recoil kinetic energy
of the atom is very small (see Problem 8), and it is a good
approximation to say that the energy of the incident photon
equals the energy of the scattered photon:

hν0 = hν. (15.5)

The cross section for coherent scattering is σcoh.

15.2.4 Inelastic Scattering

It is also possible for the final photon to have a different
energy from the initial photon (γ, γ ′) without the emission
of an electron. The internal energy of the target atom or
molecule increases or decreases by a corresponding amount.
Again, the recoil kinetic energy of the atom is negligible.
Examples are fluorescence and Raman scattering. In fluo-
rescence, if one waits long enough, additional photons are
emitted, in which case the reaction could be denoted as
(γ, γ ′γ ′′), or (γ, 2γ ), or even (γ, 3γ ).
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Fig. 15.2 Total cross section for the interactions of photons with car-
bon vs photon energy. The photoelectric cross section is τ , the coherent
scattering cross section σcoh, the total Compton cross section σincoh, and
the nuclear and electronic (triplet) pair production are κn and κe. The
photonuclear scattering cross section PHN is also shown. The cross sec-
tion is given in barns: 1 b = 10−28 m2. Reprinted with permission from
Hubbell et al. (1980). Copyright 1980, American Institute of Physics.
Figure courtesy of J. H. Hubbell

15.2.5 Pair Production

Pair production takes place at high energies. This is a
(γ, e+e−) reaction. Since it takes energy to create the (nega-
tive) electron and the positive electron or positron, their rest
energies must be included in the energy balance equation:

hν0 = T+ +mec
2 +T− +mec

2 = T+ +T− +2mec
2. (15.6)

The cross section for pair production is κ .

15.2.6 Energy Dependence

Figure 15.2 shows the cross section for interactions of pho-
tons with carbon for photon energies from 10 to 1011 eV.
At the lowest energies the photoelectric effect dominates.
Between 10 keV and 10 MeV Compton scattering is most
important. Above 10 MeV pair production takes over. There
is a small bump at about 20 MeV due to nuclear effects, but
its contribution to the cross section is only a few percent of
that due to pair production. The four important effects are
discussed in the next four sections.

15.3 The Photoelectric Effect

In the photoelectric effect a photon of energy hν0 is absorbed
by an atom, and an electron of kinetic energy Tel = hν0 − B

is ejected. B is the magnitude of the binding energy of the
electron and depends on which shell the electron was in.
Therefore it is labeled BK , BL, and so forth. The cross sec-
tion for the photoelectric effect, τ , is a sum of terms for each
shell:

τ = τK + τL + τM + · · · . (15.7)

As the energy of a photon beam is decreased, the photoelec-
tric cross section increases rapidly. For photon energies too
small to remove an electron from the K shell, the cross sec-
tion for the K-shell photoelectric effect is zero. Even though
photons do not have enough energy to remove an electron
from the K shell, they may have enough energy to remove
L-shell electrons. The cross section for L electron photo-
electric effect is much smaller than that for K electrons, but
it increases with decreasing energy until its threshold en-
ergy is reached. This energy dependence is shown for lead in
Fig. 15.3, which plots the cross section for the photoelectric
effect, incoherent Compton scattering, and coherent scatter-
ing. The K absorption edge for the photoelectric effect is
seen. The photoelectric effect below the K absorption edge is
due to L,M, . . . electrons; above this energy the K electrons
also participate. Above 0.8 MeV in lead Compton scattering
becomes more important than the photoelectric effect.

The energy dependence of the photoelectric effect cross
section is between E−2 and E−3. An approximation to the
Z and E dependence of the photoelectric cross section near
100 keV is (Attix 1986, p. 140)

τ ∝ Z4E−3. (15.8)

Once an atom has absorbed a photon and ejected a pho-
toelectron, it is in an excited state. The atom will eventually
lose this excitation energy by capturing an electron and re-
turning to its ground state. The deexcitation processes are
described in Sect. 15.9.

15.4 Compton Scattering

15.4.1 Kinematics

Compton scattering is a (γ, γ ′e) process. The equations that
are used to relate the energy and angle of the emerging pho-
ton and electron, as well as the equations that give the cross
section for the scattering, are usually derived assuming that
the electron is free and at rest. We turn first to the kinematics.
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Fig. 15.3 Cross sections for the photoelectric effect and incoherent and
coherent scattering from lead. The binding energies of the K and L

shells are 0.088 and 0.0152 MeV. Plotted from Table 3.22 of Hubbell
(1969)

A photon has energy E and momentum p, related by

E = hν = pc. (15.9)

This is a special case of a more general relationship from
special relativity:

E2 = (pc)2 + (m0c
2)2. (15.10)

In these equations E is the total energy of the particle, p its
momentum, m0 the rest mass of the particle (measured when
it is not moving), and m0c

2 is the rest energy.1 For a photon,
which can never be at rest, m0 = 0. Equation 15.9 can also
be derived from the classical electromagnetic theory of light.

The conservation of energy and momentum can be used
to derive the relationship between the angle at which the

1 Since this is one of the few relativistic results we will need, it is
not developed here. A discussion can be found in any book on special
relativity.

Fig. 15.4 Momentum relationships in Compton scattering. a Before. b
After. The photon emerges at angle θ , the electron at angle φ

scattered photon emerges and its energy. A detailed knowl-
edge of the forces involved is necessary to calculate the
relative number of photons scattered at different angles; in
fact, this calculation must be done using quantum mechan-
ics. Figure 15.4 shows the geometry of the scattering. The
electron emerges with momentum p, kinetic energy T , and
total energy E = T + mec

2. It emerges at an angle φ with
the direction of the incident photon. The scattered photon
emerges at angle θ with a reduced energy and a correspond-
ing frequency ν′ which is lower than ν0, the frequency of the
incident photon. Conservation of momentum in the direction
of the incident photon gives

hν0

c
= hν′

c
cos θ + p cos φ,

while conservation of momentum at right angles to that
direction gives

hν′

c
sin θ = p sin φ.

Conservation of energy gives

hν0 = hν′ + T .

The equation E = T +mec
2 can be combined with Eq. 15.10

to give

(pc)2 = T 2 + 2mec
2T .

The last four equations can then be combined and solved for
various unknowns.

The wavelength of the scattered photon is

λ′ − λ0 = c

ν′ − c

ν0
= h

mec
(1 − cos θ). (15.11)

The wavelength shift (but not the frequency or energy
shift) is independent of the incident wavelength. The quan-
tity h/mec has the dimensions of length and is called the
Compton wavelength of the electron. Its numerical value is

λC = h

mec
= 2.427 × 10−12 m = 2.427 pm. (15.12)
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Fig. 15.5 The energy of the emerging photon and recoil electron as a
function of θ , the angle of the emerging photon, for a 1-MeV incident
photon

If Eq. 15.11 is solved for the energy of the scattered photon,
the result is

hν′ = hν0

1 + x(1 − cos θ)
, (15.13)

where x is the energy of the incident photon in units of
mec

2 = 511 keV:

x = hν0

mec2
. (15.14)

The energy of the recoil electron is T = hν0 − hν′:

T = hν0x(1 − cos θ)

1 + x(1 − cos θ)
. (15.15)

Figure 15.5 shows the energy of the scattered photon and the
recoil electron as a function of θ, the angle of emergence of
the photon. The sum of the two energies is 1 MeV, the energy
of the incident photon.

15.4.2 Cross Section: Klein–Nishina Formula

The inclusion of dynamics, which allows us to determine the
relative number of photons scattered at each angle, is fairly
complicated. The quantum-mechanical result is known as the
Klein–Nishina formula (Attix 1986). The result depends on
the polarization of the photons. For unpolarized photons, the
cross section per unit solid angle for a photon to be scattered
at angle θ is

dσC

dΩ
= r2

e

2

⎡

⎢⎢
⎣

1 + cos2 θ + x2(1 − cos θ)2

1 + x(1 − cos θ)

[1 + x(1 − cos θ)]2

⎤

⎥⎥
⎦ , (15.16)

where

re = e2

4πε0mec2
= 2.818 × 10−15 m,

10-33

10-32

10-31

10-30

10-29

K
le

in
-N

is
hi

na
 d

σ/
d Ω

 (
m

2  s
r-1

 p
er

 e
le

ct
ro

n)

180160140120100806040200

Photon scattering angle, θ

10 keV

100 keV

1 MeV

10 MeV

100 MeV

1 GeV

Fig. 15.6 Differential cross section for Compton scattering of unpo-
larized photons from a free electron, calculated from Eq. 15.16. The
incident photon energy for each curve is shown on the right

is the classical radius of the electron. The cross section is
plotted in Fig. 15.6. It is peaked in the forward direction at
high energies. As x → 0 (long wavelengths or low energy)
it approaches

dσC

dΩ
= r2

e (1 + cos2 θ)

2
, (15.17)

which is symmetric about 90 ◦.
Equation 15.16 can be integrated over all angles to obtain

the total Compton cross section for a single electron:

σC = 2πr2
e

[
1 + x

x2

(
2(1 + x)

1 + 2x
− ln(1 + 2x)

x

)

+ ln(1 + 2x)

2x
− 1 + 3x

(1 + 2x)2

]
. (15.18)

As x → 0, this approaches

σC → 8πr2
e

3
= 6.652 × 10−29 m2. (15.19)

Figure 15.7 shows σC as a function of energy.
The classical analog of Compton scattering is Thomson

scattering of an electromagnetic wave by a free electron.
The electron experiences the electric field E of an incident
plane electromagnetic wave and therefore has an acceler-
ation −eE/m. Accelerated charges radiate electromagnetic
waves, and the energy radiated in different directions can be
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Fig. 15.7 The total cross section σC for Compton scattering by a single
electron and the cross section for energy transfer σtr = fCσC

calculated, giving Eqs. 15.17 and 15.19. (See, for example,
Jackson 1999, Chap. 14.) In the classical limit of low photon
energies and momenta, the energy of the recoil electron is
negligible.

15.4.3 Incoherent Scattering

The Compton cross section is for a single electron. For an
atom containing Z electrons, the maximum value of the in-
coherent cross section occurs if all Z electrons take part in
the Compton scattering:

σincoh ≤ ZσC.

For carbon ZσC = 4.0×10−28 m2. This value is approached
by σincoh near 10 keV. At low energies σincoh falls below this
maximum value because the electrons are bound and not at
rest. This falloff can be seen in Fig. 15.2. It is appreciable for
energies as high as 7–8 keV, even though the K-shell binding
energy in carbon is only 283 eV. The electron motion and
binding in the target atom also cause a small spread in the
energy of the scattered photons (Carlsson et al. 1982).

Departures of the angular distribution and incoherent
cross section from Z times the Klein–Nishina formula are
discussed by Hubbell et al. (1975) and by Jackson and
Hawkes (1981).

15.4.4 Energy Transferred to the Electron

We will need to know the average energy transferred to an
electron in a Compton scattering. Equation 15.15 gives the
electron kinetic energy as a function of photon scattering
angle. The transfer cross section is defined to be

σtr =
∫ π

0

dσC

dΩ

T (θ)

hν0
2π sin θ dθ = fCσC. (15.20)

This can be integrated. The result is (see Attix 1986, p. 134)

σtr =2πr2
e

[
2(1 + x)2

x2(1 + 2x)
− 1 + 3x

(1 + 2x)2

− (1 + x)(2x2 − 2x − 1)

x2(1 + 2x)2

− 4x2

3(1 + 2x)3
−
(

1 + x

x3
− 1

2x
+ 1

2x3

)
ln(1 + 2x)

]
.

(15.21)

This quantity is also plotted in Fig. 15.7. Equation 15.21 is a
rather nasty equation to evaluate, particularly at low energies,
because many of the terms nearly cancel.

15.5 Coherent Scattering

A photon can also scatter elastically from an atom, with none
of the electrons leaving their energy levels. This (γ, γ ) pro-
cess is called coherent scattering (sometimes called Rayleigh
scattering), and its cross section is σcoh. The entire atom
recoils; if one substitutes the atomic mass in Eqs. 15.14
and 15.15, one finds that the atomic recoil kinetic energy is
negligible.

The primary mechanism for coherent scattering is the os-
cillation of the electron cloud in the atom in response to
the electric field of the incident photons. There are small
contributions to the scattering from nuclear processes. The
cross section can be calculated classically as an extension of
Thomson scattering, or it can be done using various degrees
of quantum-mechanical sophistication (Kissel et al. 1980).

The coherent cross section is peaked in the forward di-
rection because of interference effects between electromag-
netic waves scattered by various parts of the electron cloud.
The peak is narrower for elements of lower atomic number
and for higher energies. Coherent and incoherent scattering
cross sections are shown in Fig. 15.8 for 100-keV photons
scattering from carbon, calcium and lead. Also shown for
comparison is Z(dσ/dΩ)KN .

If the wavelength of the incident photon is large compared
to the size of the atom, then all Z electrons behave like a
single particle with charge −Ze and mass Zme. The classi-
cal radius is replaced by Z2e2/4πε0Zmec

2. From Eqs. 15.17
and 15.19, one can see that the cross section in this limit is
Z2 times the single-electron value: Z2σC . The limiting value
for carbon is 2.39×10−27 m2, which can be compared to the
low energy limit for σcoh in Fig. 15.2.
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Fig. 15.8 The coherent and incoherent differential cross sections as a function of angle for 100-keV photons scattering from carbon, calcium, and
lead. Calculated from Hubbell et al. (1975)

15.6 Pair Production

A photon with energy above 1.02 MeV can produce a
particle–antiparticle pair: a negative electron and a positron.
Conservation of energy requires that

hν0 = T− + mec
2

︸ ︷︷ ︸
electron

+ T+ + mec
2

︸ ︷︷ ︸
positron

= T+ + T− + 2mec
2.

(15.22)
Since the rest energy (mec

2) of an electron or positron is
0.51 MeV, pair production is energetically impossible for
photons below 2mec

2 = 1.02 MeV.
One can show, using hν0 = pc for the photon, that mo-

mentum is not conserved by the positron and electron if
Eq. 15.22 is satisfied. Pair production always takes place in
the Coulomb field of another particle (usually a nucleus) that
recoils to conserve momentum. The nucleus has a large mass,
so its kinetic energy p2/2m is small compared to the terms
in Eq. 15.22. The cross section for this (γ, e+e−) reaction
involving the nucleus is κn.

An additional contrbution to the cross section, κe,
arises when the incident photon energy exceeds 4mec

2 =
2.04 MeV, the threshold for pair production in which a free
electron (rather than a nucleus) recoils to conserve momen-
tum. Because ionization and free-electron pair production
are (γ, e−e−e+) processes, this is usually called triplet
production. Extensive data are given in Hubbell et al. (1980).

The cross section for both processes is κ = κn + κe. The
energy dependence of κ can be seen in Figs. 15.1 and 15.2.

15.7 The Photon Attenuation Coefficient

Consider the arrangement shown in Fig. 15.9a, in which a
beam of photons is collimated so that a narrow beam strikes a
detector. A scattering material is then introduced in the beam.

Fig. 15.9 Measurements with narrow-beam geometry (a) and broad-
beam geometry (b)

Some of the photons pass through the material without inter-
action. Others are scattered. Still others disappear because
of photoelectric effect or pair-production interactions. If we
measure only photons that remain in the unscattered beam,
the loss of photons is called attenuation of the beam. Atten-
uation includes both scattering and absorption. We record as
still belonging to the beam only photons that did not interact;
they still travel in the forward direction with the original en-
ergy. This is called a narrow-beam geometry measurement. It
is an idealization, because photons that undergo Compton or
coherent scattering through a small angle can still strike the
detector. Figure 15.9b shows a source, scatterer, and detec-
tor geometry that is much more difficult to interpret. In this
case photons that are initially traveling in a different direction
are scattered into the detector. These are called broad-beam
geometry experiments.
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In narrow-beam geometry, the total cross section is re-
lated to the total number of particles that have interacted in
the scatterer. Let N be the number of particles that have not
undergone any interaction in passing through scattering ma-
terial of thickness z. We saw in Sect. 14.5 that the number of
particles that have not interacted decreases in thickness dz by

dN = −σtotNAρ

A
N dz,

so that
dN

dz
= −μattenN,

where

μatten = NAρσtot

A
. (15.23)

In these equations ρ is the mass density of the target material
and A is its atomic weight.2 The number of particles that
have undergone no interaction decays exponentially with
distance:

N(z) = N0e
−μattenz. (15.24)

The quantity μatten is called the total linear attenuation
coefficient.

In a broad-beam geometry configuration the total number
of photons reaching the detector includes secondary photons
and is larger than the value given by Eq. 15.24.

The units in Eqs. 15.23 and 15.24 are worth discussing.
Avogadro’s number is 6.022×1023 entities mol−1. If the den-
sity ρ is in kg m−3 and σtot is in m2, then A must be expressed
in kg mol−1 and μatten is in m−1. On the other hand, it is pos-
sible to express ρ in g cm−3, σtot in cm2, and A in g mol−1,
so that μatten is in cm−1. As an example, consider carbon, for
which A = 12.011 × 10−3 kg mol−1 = 12.011 g mol−1. If
σtot = 1.269 × 10−28 m2 atom−1 = 1.269 × 10−24 cm2

atom−1, then either

μatten = (6.022 × 1023 atom mol−1)(2.000 × 103 kg m−3)

12.011 × 10−3 kg mol−1

× (1.269 × 10−28 m2 atom−1)

= 12.7 m−1

or

μatten =
(

(6.022 × 1023 atom mol−1)(2.000 g cm−3)

12.011 g mol−1

)

× (1.269 × 10−24 cm2 atom−1)

= 0.127 cm−1.

2 The atomic weight is potentially confusing. Sometimes A has no units
(as in labeling an nuclear isotope), sometimes it is in grams per mole,
and sometimes it is in kilograms per mole).

The total cross section for photon interactions is

σtot = σcoh + σincoh + τ + κ. (15.25a)

In many situations the coherently scattered photons cannot
be distinguished from those unscattered, and σcoh should not
be included:

σtot = σincoh + τ + κ. (15.25b)

Tables usually include total cross sections and attenuation
coefficients both with and without coherent scattering.

It is possible to regroup the terms in Eqs. 15.23 and 15.24
in a slightly different way:

dN = −N
NAσtot

A
ρdz.

The quantity NAσtot/A is the mass attenuation coefficient,
μatten/ρ (m2 kg−1):

μatten

ρ
= NAσtot

A
. (15.26)

The exponential attenuation is then

N(ρz) = N0e
−(μatten/ρ)(ρz). (15.27)

The mass attenuation coefficient has the advantage of being
independent of the density of the target material, which is
particularly useful if the target is a gas. It has an additional
advantage if Compton scattering is the dominant interaction.
If σtot = ZσC , then

μatten

ρ
= ZσCNA

A
.

Since Z/A is nearly 1/2 for all elements except hydrogen,
this quantity changes very little throughout the periodic ta-
ble. This constancy is not true for the photoelectric effect
or pair production. Figure 15.10 plots the mass attenua-
tion coefficient vs energy for three substances spanning
the periodic table. It is nearly independent of Z around
1 MeV where Compton scattering is dominant. The K

and L absorption edges can be seen for lead; for the
lighter elements they are below 10 keV. Figure 15.11 shows
the contributions to μatten/ρ for air from the photoelec-
tric effect, incoherent scattering, and pair production. Ta-
bles of mass attenuation coefficients are provided by the
National Institute of Standards and Technology (NIST) at
http://www.nist.gov/pml/data/xcom/index.cfm.

15.8 Compounds andMixtures

The usual procedure for dealing with mixtures and com-
pounds is to assume that each atom scatters independently.
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Fig. 15.10 Mass attenuation coefficient vs. energy for lead, cal-
cium, and water. Near 1 MeV the mass attenuation coefficient is
nearly independent of Z. (Plotted from data provided by NIST:
http://www.nist.gov/pml/data/xcom/index.cfm)

If the cross section for element i summed over all the
interaction processes of interest is denoted by σi , then
Eq. 14.19 is replaced by

n

N
=
∑

i

(NT )iσi =
(
∑

i

(NT V )iσi

)

dz, (15.28)

where (NT )i is the number of target atoms of species i per
unit projected area of the target and (NT V )i is the number
of target atoms per unit volume. The sum is taken over all
elements in the compound or mixture.

It is possible to replace the sum by the product of the cross
section per molecule multiplied by the number of molecules
per unit volume. The cross section per molecule is the sum
of the cross sections for all the atoms in the molecule. To
see that this is so, note that a volume of scatterer V con-
tains a total mass M = ρV. The mass of each element is Mi

and the mass fraction is wi = Mi/M . The total number of
atoms of species i in volume V is the number of moles times
Avogadro’s number:

(NT V )i = MiNA

AiV
= wi

Ai

ρNA. (15.29)

The mass fraction of element i in a compound containing ai

atoms per molecule with atomic mass Ai is

wi = aiAi

Amol
, (15.30)
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Fig. 15.11 Mass attenuation coefficient vs energy for air. (Plotted
from data provided by NIST: http://www.nist.gov/pml/data/xcom/
index.cfm)

where Amol is the molecular weight. Therefore

∑

i

(NT V )σi =
(
∑

i

aiσi

Amol

)

ρNA

=
(
∑

i

aiσi

)
ρNA

Amol
= σmol(NT V )mol.

(15.31)

The factor (NT V )mol = ρNA/Amol is the number of
molecules per unit volume. When a target entity (molecule)
consists of a collection of subentities (atoms), we can say
that in this approximation (all subentities interacting in-
dependently), the cross section per entity is the sum of
the cross sections for each subentity. For example, for the
molecule CH4, the total molecular cross section is σcarbon +
4σhydrogen and the molecular weight is [(4 × 1) + 12 = 16]×
10−3 kg mol−1.

15.9 Deexcitation of Atoms

After the photoelectric effect, Compton scattering, or triplet
production, an atom is left with a hole in some electron
shell. An atom can be left in a similar state when an electron
is knocked out by a passing charged particle or by certain
transformations in the atomic nucleus that are discussed in
Chap. 17.

http://www.nist.gov/pml/data/xcom/index.cfm
http://www.nist.gov/pml/data/xcom/index.cfm
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Fig. 15.12 Two possible mechanisms for the deexcitation of an atom
with a hole in the K shell. a The atom with the hole in the K shell. b
An electron has moved from the L shell to the K shell with emission
of a photon of energy BK − BL. c An electron has moved from the L

shell to the K shell. The energy liberated is taken by another electron
from the L shell, which emerges with energy BK − 2BL. This electron
is called an Auger electron

The hole in the shell can be filled by two competing pro-
cesses: a radiative transition, in which a photon is emitted
as an electron falls into the hole from a higher level, or a
nonradiative or radiationless transition, such as the emis-
sion of an Auger electron from a higher level as a second
electron falls from a higher level to fill the hole. Both pro-
cesses are shown in Fig. 15.12. In the radiative transition,
the energy of the photon is equal to the difference in binding
energies of the two levels. For the example of Fig. 15.12b,
the photon energy is BK − BL. The emission of an L-
shell Auger electron is shown in Fig. 15.12c: its energy is
T = (BK − BL) − BL = BK − 2BL. Table 15.2 shows the
energy changes that occur after a hole is created in an atom
by photoelectric excitation. It is worth understanding each
table entry in detail. Two different paths for deexcitation are
shown: one for photon emission and one for ejection of an
Auger electron. The sum of the photon, electron, and atomic
excitation energies does not change.

The photon that is emitted is called a characteristic pho-
ton or a fluorescence photon. Its energy is given by the
difference of two electron energy levels in the atom. There

is an historical nomenclature for these photons. Because a
hole moving to larger values of n corresponds to a decrease
in the total energy of an atom, it is customary to draw the
energy levels for holes instead of electrons, as in Fig. 15.13.
Transitions in which the hole is initially in the n = 1 state
give rise to the K series of x rays, those in which the initial
hole is in the n = 2 state give rise to the L series, and so
on. Greek letters (and their subscripts) are used to denote the
shell (and subshell) of the final hole. The transitions shown
in Fig. 15.13 are consistent with certain selection rules which
can be derived using quantum theory:

�l = ±1, �j = 0,±1. (15.32)

We saw in Eqs. 15.1 and 15.2 that the position of a level
could be estimated by the Bohr formula corrected for screen-
ing. The energy of the Kα line—which depends on screening
for both the initial (n = 2) and final (n = 1) values of ncan
be fitted empirically by

EKα =
(

3
4

)
(13.6)(Z − 1)2. (15.33)

After creation of a hole in the K shell, it is random
whether the atom deexcites by emitting a photon or an Auger
electron. The probability of photon emission is called the flu-
orescence yield, WK . The Auger yield is AK = 1 − WK . For
a vacancy in the L or higher shells, one must consider the flu-
orescence yield for each subshell, defined as the number of
photons emitted with an initial state corresponding to a hole
in a subshell, divided by the number of holes in that subshell.
The situation is further complicated by the fact that radiation-
less transitions can take place within the subshell, thereby
altering the number of vacancies in each subshell. These are
called Coster–Kronig transitions, and they are also accom-
panied by the emission of an electron. For example, a hole
in the LI shell can be filled by an electron from the LIII shell
with the ejection of an M-shell electron. A super–Coster–
Kronig transition involves electrons all within the same shell,
for example, a hole in the MI shell filled by an electron from
the MII shell with the ejection of an electron from the MIV

shell.
One can define an average fluorescence yield WL, WM ,

etc. for each shell, but it is not a fundamental property of the
atom, since it depends on the vacancy distribution in the sub-
shells. Bambynek et al. (1972) review the physics of atomic
deexcitations and present theoretical and experimental data
for the fundamental parameters. They show that WL is less
sensitive to the initial vacancy distribution than one might ex-
pect, because of the rapid changes in hole distribution caused
by the Coster–Kronig transitions. Hubbell et al. (1994) pro-
vide a more recent review. Figure 15.14 shows values for
WK , WL, and WM as a function of Z. One can see from this
figure that radiationless transitions are much more important
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Table 15.2 Energy changes in the photoelectric effect and in subsequent deexcitation

Process Total photon Total electron Atom excitation Sum
energy energy energy

Before photon strikes atom hν 0 0 hν

After photoelectron is ejected (Fig. 15.12) 0 hν − BK BK hν

Case 1: Deexcitation by the emission of a K and an L photon
Emission of K fluorescence photon (Fig. 15.12b) BK − BL hν − BK BL hν

Emission of L fluorescence photon BK − BL,BL hν − BK 0 hν

Case 2: Deexcitation by emission of an Auger electron from the L shell
Emission of Auger electron (Fig. 15.12c) 0 hν − BK,BK − 2BL 2BL hν

First L-shell hole filled by fluorescence BL hν − BK,BK − 2BL BL hν

Second L-shell hole filled by fluorescence BL,BL hν − BK,BK − 2BL 0 hν

Fig. 15.13 Energy-level diagram for holes in tungsten, and some of
the x-ray transitions
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Fig. 15.14 Fluorescence yields for K-, L-, and M-shell vacancies as a
function of atomic number Z. Points are from Table 8 of Hubbell et al.
(1994)

(the fluorescent yield is much smaller) for the L shell than
for the K shell. They are nearly the sole process for higher
shells. The deexcitation is often called the Auger cascade.

The Auger cascade produces many vacancies in the outer
shells of the atom, and some of these may be filled by
electrons from other atoms in the same molecule. This pro-
cess can break molecular bonds. Moreover, the Auger and
Coster–Kronig electrons from the higher shells can be quite
numerous. They are of such low energy that they travel only
a fraction of a cell diameter. This must be taken into con-
sideration when estimating cell damage from radiation. The
effect of radiationless transitions is quite important for cer-
tain radioactive isotopes that are administered to a patient,
particularly when they are bound to the cellular DNA. We
will discuss them further in Chap. 17.

15.10 Energy Transfer from Photons to
Electrons

The attenuation coefficient gives the rate at which photons
interact and leave the primary beam as they pass through
the material. If a beam of monoenergetic photons of energy
E = hν and particle fluence Φ passes through a thin layer
dx of material, the number of particles per unit area that in-
teract in the layer, −dΦ, is proportional to the fluence and
the attenuation coefficient: −dΦ = Φμatten dx. The energy
fluence is Ψ = hνΦ. The reduction of energy fluence of un-
scattered photons is −dΨ = −hν dΦ. For a thick absorber
we can say that the number of unscattered photons and the
energy carried by unscattered photons decay as

Φunscatt = Φ0e
−μattenx, Ψunscatt = Ψ0e

−μattenx. (15.34)

The total energy flow is much more complicated. Every
photon that interacts contributes to a pool of secondary pho-
tons of lower energy and to a pool of electrons and positrons.
Figure 15.15 shows the processes by which energy can move
between the photon pool and the electron–positron pool.
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Fig. 15.15 Routes for the transfer of energy between photons and elec-
trons. The four lines going to the lower box represent electrons; the
others represent photons

Energy that remains as secondary photons, such as those re-
sulting from fluorescence or Compton scattering, can travel
long distances from the site of the initial interaction. Ionizing
particles (photoelectrons, Auger electrons, Compton recoil
electrons, and electron–positron pairs) usually lose their en-
ergy relatively close to where they were produced. We will
see in Sect. 15.13 that for primary photons below 10 MeV,
the mean free path of the secondary electrons is usually short
compared to that of the photons. Damage to cells is caused by
local ionization or excitation of atoms and molecules. This
damage is done much more efficiently by the electrons than
by the photons.

The mass energy transfer coefficient μtr/ρ is a measure
of the energy transferred from primary photons to charged
particles in the interaction. If N monoenergetic photons of
energy E strike a thin absorber of thickness dx, the amount
of energy transferred to charged particles is defined to be

dEtr = NE μtr dx,

so that

μtr

ρ
= 1

ρNE

dEtr

dx
. (15.35)

We can relate μtr to μatten. Suppose the material contains
a single atomic species and that fi is the average fraction
of the photon energy that is transferred to charged particles
in process i. (Different values of i denote the photoelectric
effect, incoherent scattering, coherent scattering, and pair
production.) Multiplying the number of photons that inter-
act by their energy E and by fi gives the energy transferred.
Comparison with Eq. 15.23 shows that

μtr

ρ
= NA

A

∑

i

fiσi . (15.36)

Coherent scattering produces no charged particles, so

μtr

ρ
= NA

A
(τfτ + σincohfC + κfκ) . (15.37)

Fraction fτ for the photoelectric effect can be written in
terms of δ, the average energy emitted as fluorescence radia-
tion per photon absorbed. The quantity δ is calculated taking
into account all atomic energy levels and the fluorescence
yield for each shell. The average electron energy is hν − δ,
so

fτ = hν − δ

hν
= 1 − δ

hν
. (15.38)

We can estimate δ by assuming that τK is the dominant term
in the photoelectric cross section, Eq. 15.7. The probability
that the hole in the K shell is filled by fluorescence is WK .
The energy of the photon is BK −BL or BK −BM , and so on.
A hole is left in a higher shell, which may decay by photon
or Auger-electron emission. The latter is much more likely
for the higher shells. Therefore, nearly all of the photons
emitted have energy BK − BL, so we have the approximate
relationship

δ ≈ WK (BK − BL) . (15.39)

For Compton scattering, the fraction of the energy trans-
ferred to electrons is implicit in Eqs. 15.20 and 15.21. The
transfer cross section fCσC , is plotted in Fig. 15.7.

For pair production, energy in excess of 2mec
2 becomes

kinetic energy of the electron and positron. The fraction is

fκ = 1 − 2mec
2

hν
. (15.40)

All of these can be combined to estimate μtr.
We will see in Sect. 15.11 that charged particles travel-

ing through material can radiate photons through a process
known as bremsstrahlung. The mass energy-absorption co-
efficient μen takes this additional effect into account. It is
defined as

μen

ρ
= μtr

ρ
(1 − g), (15.41)

where g is the fraction of the energy of secondary electrons
that is converted back into photons by bremsstrahlung in the



438 15 Interaction of Photons and Charged Particles with Matter

material. The fraction of the energy converted to photons
depends on the energy of the electrons. Since the average
electron energy is different in the three processes, we can
write (again assuming noninteracting atoms in the target
material)

μen

ρ
= NA

A

∑

i

fiσi(1 − gi). (15.42)

In addition to bremsstrahlung, there is another process
that converts charged-particle energy back into photon en-
ergy. Positrons usually come to rest and then combine with
an electron to produce annihilation radiation. Occasionally,
a positron annihilates while it is still in flight, thereby reduc-
ing the amount of positron kinetic energy that is available
to excite atoms. While not mentioned in the International
Commission on Radiation Units and Measurements (ICRU)
Report 33 (1980) definition, this effect has been included in
the tabulations of μen/ρ by Hubbell (1982). Seltzer (1993)
reviews the calculation of μtr/ρ and μen/ρ.

The energy-transfer and energy-absorption coefficients
differ appreciably when the kinetic energies of the secondary
charged particles are comparable to their rest energies, par-
ticularly in high-Z materials. The ratio μen/μtr for carbon
falls from 1.00 when hν = 0.5 MeV to 0.96 when hν =
10 MeV. For lead at the same energies it is 0.97 and 0.74.
Tables are given by Attix (1986). The difference between the
attenuation and the energy-absorption coefficients is greatest
at energies where Compton scattering predominates, since
the scattered photon carries away a great deal of energy.
Figure 15.16 compares μatten/ρ and μen/ρ for water.

Attenuation and energy-transfer coefficients are
found in Hubbell and Seltzer (1996). These tables are
also available on the web at http://www.nist.gov/pml/
data/xraycoef/index.cfm. Another data source is a computer
program provided by Boone and Chavez (1996).

We will return to these concepts in Sect. 15.15 to discuss
the dose, or energy per unit mass deposited in tissue or
a detector. First, we must discuss energy loss by charged
particles.

15.11 Charged-Particle Stopping Power

The behavior of a particle with charge ze and mass M1 pass-
ing through material is very different from the behavior of
a photon. When a photon interacts, it usually disappears: ei-
ther being completely absorbed as in the photoelectric effect
or pair production, or being replaced by a photon of differ-
ent energy traveling in a different direction as in Compton
scattering. The exception is coherent scattering, where a pho-
ton of the same energy travels in a different direction. A
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Fig. 15.16 Coherent and incoherent attenuation coefficients and the
mass energy absorption coefficient for water. (Plotted from data in
Hubbell 1982)

charged particle has a much larger interaction cross section
than a photon—typically 104–105 times as large. Therefore
the “unattenuated” charged-particle beam falls to zero almost
immediately.

Each interaction usually causes only a slight decrease
in the particle’s energy, and it is convenient to follow the
charged particle along its path. Figure 15.27 shows the tracks
of some α particles (helium nuclei) in photographic emul-
sion. The spacing of the fiducial marks at the bottom is
10μm. Each particle entered at the bottom of the figure and
stopped near the top. Figures 15.28 and 15.29 show the tracks
of electrons. Figure 15.28 is in photographic emulsion, while
Fig. 15.29 is in water. We will be discussing these tracks
in detail in Sect. 15.14. For now, we need only note that
the α-particle tracks are fairly straight, with some deviation
near the end of the track. The electrons, being lighter, show
considerably more scattering.3

3 This distinction between photons and charged particles represents two
extremes on a continuum, and we must be careful not to adhere to the
distinction too rigidly. A photon may be coherently scattered through
a small angle with no loss of energy, while a charged particle may
occasionally lose so much energy that it can no longer be followed.

http://www.nist.gov/pml/data/xraycoef/index.cfm
http://www.nist.gov/pml/data/xraycoef/index.cfm
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It is convenient to speak of how much energy the charged
particle loses per unit path length, the stopping power, and
its range—roughly, the total distance it travels before losing
all its energy. The stopping power is the expectation value
of the amount of kinetic energy T lost by the projectile per
unit path length. The term “power" is historical. The units of
stopping power are J m−1 not J s−1. The mass stopping
power is the stopping power divided by the density of the
stopping material and is analogous to the mass attenua-
tion coefficient (often we will say stopping power when we
actually mean mass stopping power):

S = −dT

dx
,

S

ρ
= − 1

ρ

dT

dx
. (15.43)

In the energy-loss process, the projectile interacts with the
target atom. The projectile loses energy W , which becomes
kinetic energy or internal excitation energy of the atom. In-
ternal excitation may include ionization of the atom. If the
atoms in the material act independently, the cross section per
atom for an interaction that results in an energy loss between
W and W + dW is (dσ/dW)dW . The results of Sect. 14.5
can be used to write the probability that a projectile loses an
amount of energy between W and W + dW while traversing
a thickness dx of a substance of atomic mass number A and
density ρ:

(probability) = n

N
= NAρ

A
dx

dσ

dW
dW. (15.44)

The average total energy loss is

dT = NAρ

A
dx

∫ Wmax

0
W

dσ

dW
dW, (15.45)

and the mass stopping power is

S

ρ
= NA

A

∫ Wmax

0
W

dσ

dW
dW. (15.46)

The integral is sometimes called the stopping cross section
ε. Its units are J m2.

Figure 15.17 shows the mass stopping power for protons,
α particles (z = 2,Mα = 4Mp), and electrons and positrons
(z = ±1) in carbon as a function of energy. We see a number
of features of these curves:
1. All of the stopping power curves have roughly the same

shape, rising with increasing energy, reaching a peak, and
then falling. (The electron and positron curves peak at a
lower energy than is shown in the figure.)

2. There is a region where the stopping power falls approxi-
mately as 1/T .

3. At still higher energies the curves rise again. This can be
seen for the electron and positron curves above 1 MeV.
Similar increases occur in the proton and α-particle
curves at higher energies than are plotted here.

Fig. 15.17 The mass stopping power for electrons (e−), positrons (e+),
protons (p), and α particles in carbon vs kinetic energy. Plotted from
data in ICRU 37, ICRU 49, and the program SRIM (Stopping and Range
of Ions in Matter), version 96.04 (see Ziegleret al. 1985)
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Fig. 15.18 The scaled stopping power. The stopping power in carbon
is plotted vs the speed β = v/c of the projectile for electrons, pro-
tons, and α particles. The α-particle stopping power has been divided
by 4, the square of the particle charge z. Proton and α-particle stopping
powers are from the program SRIM (see caption for Fig. 15.17). The
electron stopping power is from ICRU Report 37 (1984)

The similarities suggest that the stopping power curves for
different projectiles may be related. Figure 15.18 shows the
similarities more clearly. The stopping powers are plotted vs
particle speed in the form β = v/c. At low energies (β 	 1)
β is related to kinetic energy by

β =
(

2T

Mc2

)1/2

. (15.47)
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For larger values of β, the relativistically correct expression

β =
[

1 −
(

1

T/Mc2 + 1

)2
]1/2

, (15.48)

was used to convert Fig. 15.17 to Fig. 15.18. The α-particle
stopping power in Fig. 15.17 has been divided by the square
of the α-particle charge number z2 = 4. All three curves
of (1/z2)S/ρ vs β are described by very similar functions
for β > 0.04, though the electron and α-particle curves
are about 10 % below the proton curve.4 At low speeds the
scaled α-particle curve falls significantly below the proton
curve. The reason, the formation of an electron cloud on the
α particle, is discussed below.

It is not difficult to understand the basic shape of the
stopping power curve. Most of the energy loss is from the
projectile to the electrons of the target atom. Since the elec-
trons are bound to the target nucleus, the speed with which
the projectile passes the target is important. Imagine push-
ing slowly on a swing with a force that gradually increases
and then decreases. The net force on the swing is the vec-
tor sum of the external force exerted Fext, the vertical pull of
gravity, and the tension in the ropes and equals the swing’s
mass times acceleration. For small horizontal displacements
x from equilibrium, the vector sum of the weight and the
tension in the string is horizontal and nearly proportional to
x. It points toward the equilibrium position, and for small
displacements is approximately a linear restoring force. If
the proportionality constant is k, ma = Fext − kx. This
is the equation of motion for an undamped harmonic os-
cillator (Chap. 10 and Appendix F). If the force builds up
slowly, there is a very small acceleration, and the swing an-
gle changes so that Fext ≈ kx. As the force decreases the
swing returns to its resting position. All of the work that was
done to displace the swing is now returned as work by the
swing on the source of the external force. No net energy has
been imparted to the swing. This is called an adiabatic pro-
cess or approximation, a slightly different use of the term
than in Chap. 3.

At the other extreme, the force could be applied for a very
short time, building up to a peak and falling quickly. In this
case, the swing does not have time to move and Fext = ma.

This can be integrated to give
∫

Fext dt = m

∫
a dt = m(vfinal − vinitial). (15.49)

The swing acquires a velocity and hence some kinetic en-
ergy. The integral of force with respect to time is called the
impulse, and this limit is the impulse approximation.

4 A value β = 0.04 corresponds to a kinetic energy of 400 eV for
electrons, 800 keV for protons, and 3.2 MeV for α particles.

The two limits depend on whether the duration of the
force is long or short compared to the natural period of the
swing. The atomic electrons are bound, and they have a nat-
ural period that is the circumference of their orbit divided by
their speed velectron. The length of time that a projectile exerts
a force on the electrons is roughly the diameter of the atom
divided by the projectile speed. Ignoring factors of 2π, we
see that the passage of the projectile will be adiabatic if

datom

vprojectile
� datom

velectron

or vprojectile 	 velectron. The impulse approximation will be
valid if vprojectile � velectron.

This is sufficient to explain the shape of the stopping-
power curves in Fig. 15.18. When the projectile has very low
energy it moves past the atom so slowly that the electrons
have time to rearrange themselves5 and then return to their
original state as the projectile leaves, restoring to the projec-
tile the energy that they received while rearranging. As the
projectile speed increases, the process is no longer adiabatic,
first for the more slowly moving outer electrons and then for
more and more of the inner atomic electrons as the speed
increases. At the other extreme, when the projectile speed be-
comes high enough, we can think of the process in terms of
the impulse approximation. The faster the projectile moves
by, the shorter the time the force is applied and the smaller
the energy transfer. The energy transfer is most effective, and
the peak of the stopping power occurs, when the speed of the
projectile is about equal to the speed of the atomic electrons
in the target.

The cross section dσ/dW in Eqs. 15.44–15.46 is the sum
of cross sections for three possible processes. We have al-
ready described the stopping power due to interactions of
the projectile with the target electrons, Se. There is another
contribution to the stopping power from interactions of the
projectile with the target nucleus, Sn. It is also possible for
the energy loss to involve the radiation of a photon, so we
also have radiative stopping power, Sr . Because these are in-
dependent processes, the total stopping power and the cross
section are each the sum of three terms:

S

ρ
= Se

ρ
+ Sn

ρ
+ Sr

ρ
,

dσ

dW
=
(

dσ

dW

)

e

+
(

dσ

dW

)

n

+
(

dσ

dW

)

r

.

(15.50)

To compare these processes, we need to consider the max-
imum energy that can be transferred, as well as the relative

5 Classically, if the electrons go around the nucleus many times while
the projectile moves by, the shape of their orbits can change in response
to the projectile. Quantum mechanically, the shape of the wave function
can change, but the quantum numbers do not change.
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Table 15.3 Maximum energy transfer and relative importance of nuclear and radiative interactions for various projectiles and targets

Projectile Target Nuclear Electron Sn/S Sr/S
Wmax (eV) Wmax (eV)

Electron, 100 keV Hydrogen 240 50,000 0.01 %
Carbon 20 50,000 0.09 %
Lead 1 50,000 2.2 %

Electron, 1 MeV Hydrogen 4300 500,000 0.13%
Carbon 360 500,000 0.65 %
Lead 20 500,000 11.5 %

Proton, 10 keV Hydrogen 5000 20 1.7 %
Carbon 2800 20 1.6 %
Lead 200 20 1.5 %

Proton, 100 keV Hydrogen 50,000 220 0.17 %
Carbon 28,400 220 0.15 %
Lead 1900 220 0.24 %

Proton, 1 MeV Hydrogen 500,000 2200 0.11 %
Carbon 280,000 2200 0.07 %
Lead 19,000 2200 0.09 %

α particle, 10 keV Hydrogen 6400 5 27 %
Carbon 7500 5 12 %
Lead 700 5 10 %

α particle, 100 keV Hydrogen 64,000 50 1.6 %
Carbon 75,000 50 1.1%
Lead 7400 50 1.8 %

α particle, 1 MeV Hydrogen 640,000 500 0.13 %
Carbon 750,000 500 0.12 %
Lead 74,000 500 0.20 %

probability of each process. The maximum possible energy
transfer Wmax can be calculated using conservation of en-
ergy and momentum. For a collision of a projectile of mass
M1 and kinetic energy T with a target particle of mass M2

which is initially at rest, a nonrelativistic calculation gives

Wmax = 4T M1M2

(M1 + M2)2
. (15.51)

The analogous relativistic equation (needed, for example,
when the projectile is an electron) is

Wmax = 2(2 + T/M1c
2)T M1M2

M2
1 + 2(1 + T/M1c2)M1M2 + M2

2

. (15.52)

The values of Wmax for representative projectiles and targets
are shown in Table 15.3, along with the percentage of the
stopping power due to nuclear collisions. For electrons, the
table also shows the percentage of the stopping power due
to radiative transitions. The percentages are calculated from
ICRU Report 49 (1993). Electrons can scatter from nuclei,
but the amount of recoil energy transferred to the nucleus
is very small. Although electrons undergo a great deal of
nuclear scattering, which results in a tortuous path through
material, they lose very little energy in a nuclear scattering.
The heavier projectiles can lose relatively more energy in
each nuclear collision than in each electron collision. For a
given kind of projectile, nuclear stopping is more important

at lower energies, because less energy can be transferred to
an electron. The heavier the projectile for a given energy,
the more important the nuclear term becomes, for the same
reason.

The collision of electrons with electrons is a special case.
Equation 15.51 or 15.52 gives Wmax = T . Consider the col-
lision of two billiard balls of the same mass. If the projectile
misses the target, it continues straight ahead with its original
energy and W = 0. If it hits the target head on, it comes to
rest and the target travels in the same direction with the same
energy that the projectile had—a situation indistinguishable
from the complete miss. It is customary (but arbitrary) in the
case of identical particles to say that the particle with higher
energy is the projectile, so Wmax = T/2. This adjustment
has been made in Table 15.3 for electrons on electrons and
protons on protons.

Radiation is only important for electrons and occurs in a
certain fraction of the elastic electron scatterings from the
target nucleus. Nuclear scattering gives the electron a fairly
large acceleration. Classically, an accelerated charged par-
ticle radiates electromagnetic waves. This process is called
bremsstrahlung—braking or deceleration radiation. The en-
ergy radiated is proportional to the square of the accelera-
tion, so bremsstrahlung is only important for light projec-
tiles. There is also a contribution from electron–electron or
positron–electron scattering. The electron–electron contribu-
tion vanishes at low energies, although the positron–electron
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(a)

(b)

Fig. 15.19 A projectile, which may or may not carry an electron cloud,
moves past a target atom. a In a gas the projectile interacts with one
atom at a time. b In a liquid or a solid, neighboring atoms may influence
the interaction

bremsstrahlung does not.6 We will see in Chap. 16 that
bremsstrahlung is an important component of the x-ray spec-
trum produced when a beam of electrons strikes a target.
Even so, the fraction of the electron energy that is converted
to radiation is small.

An atom has a radius of a few times 10−10 m. The nucleus
of the atom is much smaller, about 10−15 m, and contains
most of the atom’s mass. The atom’s size is determined by
the electron cloud around the nucleus. Figure 15.19a shows
a projectile entering at the left and traveling to the right
through a gas. It interacts with one target atom at a time. The
solid black dots represent the nuclei of the projectile and the
target atom. The shaded circles represent the electron clouds.
The projectile may or may not have an electron cloud, which
is shown with lighter shading. Figure 15.19b shows the in-
teraction with a solid or liquid in which the target atoms are
tightly packed, and it may not be accurate to say that the
projectile interacts with only one atom at a time.

6 This difference can be understood classically. In the first approx-
imation, the radiation by a charge is proportional to the product of
the charge times its acceleration, qa. For two interacting electrons,
a1 = −a2, q1 = q2, and the sum of these two terms vanishes. For
an electron and a positron a1 = −a2, q1 = −q2, and the two terms add.

bV

M1

M2

d σ = 2πb db

Fig. 15.20 The impact parameter is the perpendicular distance from
the target particle to a line extended from the projectile in the direction
of its velocity before the interaction

Classically, the motion of a charged projectile past a
charged target depends on the charges and masses of the par-
ticles, the initial velocity or kinetic energy of the projectile,
and the impact parameter b, which is the perpendicular dis-
tance from a line through the initial velocity of the projectile
to the target, as shown in Fig. 15.20. The classical cross sec-
tion for having an impact parameter between b and b + db

is the area of the ring, 2πb db. If we could relate b to the
energy loss W , we would have the cross section dσ/dW of
Eq. 15.46.

The energy-loss process is quite complicated, and the
cross section cannot be calculated exactly. A great deal of ex-
perimental and theoretical work on stopping powers has been
done, extending from 1899 to the present time. The history is
nicely reviewed by Ziegler et al. (1985). Much of the recent
work on stopping powers has been motivated by the use of
ion implantation to make semiconductors, the analysis of ma-
terials using ion beams, and medical applications. Currently
stopping powers of low-energy heavy ions can be calculated
with an accuracy of better than 10 %. For high-speed light
ions the accuracy is better than 2 %.

15.11.1 Interaction with Target Electrons

We first consider the interaction of the projectile with a tar-
get electron, which leads to the electronic stopping power,
Se. Many authors call it the collision stopping power, Scol.
There can be interactions in which a single electron is ejected
from a target atom or interactions with the electron cloud as a
whole (a plasmon excitation). The stopping power at higher
energies, where it is nearly proportional to β−2, has been
modeled by Bohr, by Bethe, and by Bloch (see the review
by Ahlen 1980). The Bethe–Bloch model is also valid for
relativistic energies. A nonrelativistic model for high ener-
gies was developed by J. Lindhard and his colleagues (see
references in Ziegler et al. 1985). It allows more accurate
calculations of which electrons in the target receive energy
from the projectile.
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Fig. 15.21 A heavy particle of charge ze, mass M , and velocity V
moves past a stationary electron

We can gain considerable insight into the high-energy loss
process by making a classical calculation of the cross sec-
tion for transferring energy to an electron using the impulse
approximation. This is a simplification of the Bethe–Bloch
model. In our model, a heavy projectile passes by a free
electron that is at rest. Momentum is transferred from the
projectile to the electron. Because of its large mass, the pro-
jectile’s velocity does not change appreciably, but the lighter
electron acquires an appreciable velocity and kinetic energy.
If the momentum transferred to the electron is p, its kinetic
energy is p2/2me. That kinetic energy must have been lost
by the projectile.

Figure 15.21 shows a particle of mass M , charge ze, and
velocity V = βc moving past a stationary electron. The
impact parameter b is the perpendicular distance from the
electron to the path of the projectile. The distance from the
projectile to the electron is r , and the distance along the
path to the point of closest approach is ξ . The momentum
transferred to the electron is p = ∫

Fdt = −e
∫

Edt . By
symmetry, there is no component of p parallel to the path of
the projectile. The reason is shown in Fig. 15.22. For each
location of the projectile that gives a parallel component of
F in one direction, there is a position an equal distance on
the other side of the point of closest approach that gives a
component of F with the same magnitude but in the oppo-
site direction. The perpendicular component of F is the same
for both locations, so there is a net perpendicular component
of momentum transfer. The magnitude of the perpendicular
component of E is

E⊥ = E sin θ = ze sin θ

4πε0r2
= zeb

4πε0r3
= ze

4πε0

b
(
ξ2 + b2

)3/2
.

The perpendicular impulse is
∫

F⊥dt = −e

∫
E⊥(dt/dξ)dξ.

If the fraction of energy lost by the projectile is small, then
dt/dξ = 1/βc does not change during the collision. The

Fig. 15.22 Why the parallel component of p is zero. For every point
where the projectile gives a particular E‖, there is a symmetric point
where E‖ is equal but opposite. The components E⊥ are in the same
direction in both places, so the perpendicular component of p does not
vanish

magnitude of the impulse is therefore

p = − e

V

∫
E⊥dξ = − ze2b

4πε0βc

∫ ∞

−∞
dξ

(ξ2 + b2)3/2

= − ze2b

4πε0βc
lim

x→∞

[
ξ

b2(ξ2 + b2)1/2

]x

−x

= − 2ze2

4πε0βcb
.

The smaller the impact parameter, the greater the momentum
transfer to the electron. The kinetic energy acquired by the
electron is

W = p2

2me

= 2z2e4

(4πε0)
2 mec2β2b2

.

The factor e4/(4πε0)
2mec

2 depends only on the charge and
mass of the electron. It can be written as r2

e mec
2, where re

is the classical radius of the electron (Eq. 15.17). The factor
has the numerical value

r2
e mec

2 = 6.50 × 10−43 J m2 = 4.06 × 1024 eV m2.

Using this notation the energy transfer per target electron is

W = 2z2r2
e mec

2

β2b2
. (15.53)

Note that W does not depend on the mass of the heavy pro-
jectile, but only on its speed. As the speed becomes less, the
energy transfer becomes greater, because the projectile takes
longer to move past the electron and the force is exerted for
a longer time (as long as the time is still short enough so that
the impulse approximation remains valid).
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If the electrons are uniformly distributed, the cross section
for each electron is dσ = (dσ/dW)dW = 2πb db. This can
be written, with the help of Eq. 15.53, in terms of W :

dσ

dW
dW = 4πz2r2

e mec
2

2β2

dW

W 2
. (15.54)

This expression diverges as W approaches zero, correspond-
ing to very large impact parameters. However, the assump-
tion that the target electrons are free fails in this limit, so that
there is some effective lower limit Wmin. Also, the greater the
impact parameter, the longer the electron will experience the
force exerted by the projectile (though it will be weaker). If
the time is too long, the electron can move in response to the
force and not absorb as much energy; the impulse approxi-
mation is no longer valid. We have already seen that there is
a maximum energy transfer Wmax. Multiplying the cross sec-
tion by W , integrating from Wmin to Wmax, and noting that
there are Z electrons per target atom, we obtain

Se

ρ
= 4πNAr2

e mec
2

β2

Z

A
z2 ln

(
Wmax

Wmin

)
. (15.55)

The factor 4πNAr2
e mec

2 has the value 30.707 eV m2 mol−1

= 0.307 07 MeV cm2 mol−1.
A quantum-mechanical calculation gives a result of es-

sentially the same form as Eq. 15.55. The logarithmic term
includes both ionization and plasmon excitation7 and is
called the stopping number per atomic electron L(β, z, Z):

Se

ρ
= 4πr2

e mec
2

β2
NA

Z

A
z2L(β, z, Z). (15.56)

For heavy charged particles L has the form

L(β, z, Z) = L0 + zL1 + z2L2,

L0 = ln

(
β2

1 − β2

)
+ ln

(
2mec

2

I (Z)

)
− β2 − C

Z
− δ

2
.

(15.57)
Equation 15.56 with L = L0 is often called the Bethe–Bloch
formula. The second term in L0 depends on I (Z), the ion-
ization potential of the atoms in the absorber, averaged over
all the electrons in the atom. Values of I (Z) have been cal-
culated theoretically and also derived from measurements of
the stopping power. They range from 14.8 eV for hydrogen
to 884 eV for uranium. The value 14.8 eV is greater than
the ground-state energy of hydrogen, 13.6 eV, because the
ejected electron has some average kinetic energy. Published
values of I can vary considerably, depending on whether the
other correction terms are present. For example, values of I

7 A plasmon excitation is due to the interaction of the projectile with
the entire electron cloud of the atom.

in the literature for hydrogen range from 11 to 20 eV. Dis-
cussions of values for I and the various terms in L can be
found in ICRU Report 49 (1993), in Ahlen (1980), and in At-
tix (1986). The term δ/2 corrects for the density effect. The
calculation above assumed that the electron experienced the
full electric field of the projectile. However, other electrons
in the absorber move slightly, polarizing the absorber and
reducing the field. This effect becomes important at high en-
ergies as the electric field is distorted by relativistic effects. It
also depends on the density of the absorber. A small density
effect persists in conductors even at low energies; however,
it is usually incorporated into the value of I (Z). For the pro-
jectile energies we are considering, the density effect is most
important for electrons.

An alternative nonrelativistic treatment by Lindhard and
colleagues allows the use of accurate atomic electron den-
sity distributions and also considers the effect of electrons
in neighboring atoms.8 In the Lindhard model the stopping
power is

Se

ρ
= NA

A

∫
z2I (V, ρe)ρe4πr2dr, (15.58)

where z is the projectile charge, I is the stopping interaction
strength in J m2 (more often in eV pm2),9 ρe is the elec-
tron density in the atom (in units of the electron charge), and
4πr2dr is the volume element. Integration of ρe over all vol-
ume gives Z, the atomic number of the target. Comparison
of Eqs. 15.58 and 15.46 shows that the integral in Eq. 15.58
is the stopping cross section per target atom.

Figure 15.23 shows how the Lindhard model explains
why the stopping power falls below the 1/β2 curve at lower
projectile velocities. Each panel shows the electron density
in copper, 4πr2ρe, and the interaction strength I . Their prod-
uct, the solid line, is the integrand in Eq. 15.58. The integral
is taken from 0 to 0.14 nm [1.4 Å (angstrom)]. The K , L,
and M shells of copper can be seen in the electron density
curve. Figure 15.23a is for a 10-MeV proton or some other
heavy ion with the same speed. The projectile is moving fast
enough so that all electrons except those in the K shell in-
teract with it. Contrast this with Fig. 15.23b, which is for a
100-keV proton. The projectile speed is much less, and the
interaction is almost exclusively with the outer electrons.10

8 The electron density functions are calculated using quantum me-
chanics. The problem is to find the electron distribution by solving
Schrödinger’s equation with the potential distribution due to the nucleus
and the potential due to the electron charge distribution for which one
is solving. This self-consistent computation is called the Hartree–Fock
approximation.
9 I is not the same as the average ionization energy of Eq. 15.57.
10 The solid line representing the integrand does not fall to zero at
0.12 nm = 1.2 Å because of the effect of electrons from neighbor-
ing atoms. In a solid there are no regions where the electron density is
zero.
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Fig. 15.23 Calculation of the stopping power at low energies involves
integrating the product of the electron charge distribution in the tar-
get atom and the interaction strength function, which depends on the
projectile speed. The dotted line shows the electron charge density for
copper. The solid line shows the integrand. a For 10-MeV protons, all
electrons but those in the K shell contribute. b For 100-keV protons the
interaction function has changed, and only the outermost electrons con-
tribute. Note the much different ordinate scales in a and b. (Provided by
J. F. Ziegler)

Both the Bethe–Bloch and Lindhard models fail at low
energy, because the electrons are not free and many of the
interactions are adiabatic. Some models reviewed by Ziegler
et al. (1985) predict a stopping power proportional to pro-
jectile velocity. This has been found to be true in general,
though not for all elements. The experiments are quite dif-
ficult because of the thinness of the targets, contamination,
etc. Figure 15.24 shows the regions where the various mod-
els apply for protons. For electrons, relativistic effects are
important above about 500 keV. The rise in stopping power
at high energies is due to the density effect (polarization of
the electrons).

Another important effect at low energies is that the slowly
moving ion can capture electrons, decreasing the value of
z2. Ziegler et al. (1985) discuss the scaling of data for dif-
ferent projectiles and the appropriate effective charge values.
The average projectile charge follows a universal curve when
plotted as a function of the appropriate combination of the
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Fig. 15.24 Proton and electron stopping power vs energy in carbon,
showing the regions in which various models are valid

speeds of the projectile and target electrons. They, and the
ICRU Report 49 (1993), assume that for protons the effec-
tive charge is always unity. The theoretical justification is that
the radius of the electron orbit in hydrogen is larger than the
interatomic separation in solids.

15.11.2 Scattering from the Nucleus

The projectile can also scatter from the target atom as a
whole. The recoil kinetic energy of the atom is lost by the
projectile. Since the nucleus contains most of the mass, the
kinematics are those of the bare projectile and the target
nucleus, and this process is called nuclear scattering, with
stopping power Sn. (Sometimes it is called elastic scatter-
ing, with a subscript that can cause it to be confused with
electron interactions.)

Just as with Compton scattering, knowing the angle
through which the projectile is scattered defines the amount
of energy transferred to the target. The angle depends on the
impact parameter. The problem can be solved for a given
impact parameter if the force between the projectile and tar-
get is a function only of their separation and one knows the
potential energy of their separation. The details are found
in Ziegler et al. (1985). We will simply comment on the
contributions to the potential energy. They are
1. The Coulomb force between the projectile and the target

nucleus.
2. The Coulomb force between the projectile and the elec-

tron cloud of the target atom.
3. The Coulomb attraction between the target nucleus and

any electrons surrounding the projectile.
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4. The Coulomb repulsion between the electron clouds of
the target and the projectile.

5. A term due to the Pauli exclusion principle if the projec-
tile is an ion with an electron cloud. To see how it arises,
suppose that both the projectile and target have both of
their possible K-shell electrons. If the nuclei get close
enough, they effectively form a single nucleus that cannot
have four K-shell electrons. Therefore two of the elec-
trons have to move to unfilled shells. This requires energy
that comes from the kinetic energy of the projectile. This
is called Pauli promotion. Even though the electrons have
time to return to their original orbits for a slow projec-
tile, the effect changes the overall potential and hence the
projectile orbit and the probability of a particular energy
transfer.

6. An exchange term that also arises from the Pauli prin-
ciple, related to whether the spins of the projectile and
target electrons are parallel or antiparallel.
Because nuclear scattering is relatively unimportant for

the charged particles we are considering and because it does
not lead to ionization, we will not describe any details of the
calculations.

15.11.3 Stopping of Electrons

Equations similar to Eq. 15.56 are obtained for electrons
and positrons. Recall that energy loss in nuclear scattering
is negligible for positrons and electrons because they are so
light, and that bremsstrahlung transfers some of the elec-
tron kinetic energy to radiation. Electrons and positrons are
assumed to collect no screening charge. Even at low en-
ergies, the electron velocities are high enough so that the
Bethe–Bloch model is used. The collision stopping power
for electrons is11

Se

ρ
= 4πNAr2

e mec
2 1

β2

Z

A
L±. (15.59)

The subscript ± indicates that stopping number per electron
is slightly different for electrons and for positrons. The ex-
act forms can be found in Attix (1986) or in ICRU Report
37 (1984). In both cases L depends on I (Z) and the den-
sity effect. An accurate calculation of the shell correction
for electrons has not been made; therefore ICRU Report 37
omits the shell correction from the tables for electrons and
positrons. This omission makes the use of Eq. 15.58 less ac-
curate for electrons below 10 keV. The best values of Se/ρ

for electrons and positrons are obtained from theoretical cal-
culations using Eq. 15.59 and values of I (Z) determined
from proton data.

11 The literature often replaces the 4π by 2π for electrons and makes L

twice as large.

15.11.4 Compounds

In dealing with compounds, it is frequently assumed that
each atom in the target interacts independently with the pro-
jectile, as we assumed for photons. The stopping power per
molecule is then equal to the sum of the stopping powers for
each atom in the molecule. This leads to a formula analogous
to Eq. 15.31, known as the Bragg rule:

S

ρ
=
∑

i

wi

(
S

ρ

)

i

. (15.60)

This equation applies to the collision, radiative, nuclear, and
total stopping powers. The approximation is quite inaccu-
rate near the peak of the stopping power curve, where the
errors can be greater than a factor of 2. This is not surprising,
given the behavior of the scattering function I in Fig. 15.23b.
Most of the energy loss is to outer electrons—the conduction
electrons if the substance is a metal.

In a semiconductor there are gaps in the energy levels,
and this precludes the low-energy transfers. As a result,
the stopping power is lower in semiconductors. In crystals,
channeling can occur: the stopping power depends on the
orientation of the trajectory with the crystal symmetry axis.

Carbon poses a particular problem. It is an important ele-
ment in the body, and it has chemical bonds that range from
metallic to insulating in nature. Various investigators have
shown variations in stopping power of 30 % for ions in pure
carbon, depending on how it was fabricated. Graphite can
be made with different electrical conductivities, and there
are associated differences in stopping power. Ziegler and
Manoyan (1988) have applied charge-scaling techniques to
several organic carbon compounds by considering separately
the stopping due to closed atomic shells (cores) and the
remaining bonds between different pairs of atoms.

ICRU Reports 37 (1984) and 49 (1993) handle departures
from the Bragg rule in the first approximation by using
different values of I for electrons in compounds. The
density effect is important for electrons and also does not
follow the Bragg rule.

Stopping-power values are found in ICRU Report 37
for positrons and electrons. ICRU Report 49 has stopping
powers for protons and α particles. These data are also found
on the web: http://www.nist.gov/pml/data/star/index.cfm. A
computer program for protons and ions, SRIM (Stopping
and Range of Ions in Matter) is described by Ziegler et al.
(1985) and is available at www.srim.org. It is updated every
few years.
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15.12 Linear Energy Transfer and Restricted
Collision Stopping Power

In modeling the effect of ionizing radiation on targets,
whether they be radiation detectors, photographic emulsions,
cells, or parts of cells, one often wants to know how much
of a charged particle’s energy is absorbed “locally,” that is,
within some region around a particle’s trajectory. An ac-
curate calculation is difficult, since some of the electrons
produced may leave the region of interest. Also, the energy
absorbed in some region of interest around a particle track
comes both from energy lost by the particle while traversing
that track segment and also from photons and charged parti-
cles produced elsewhere by the projectile. (This is discussed
in detail in ICRU Report 16 1970.)

An approximation to the desired quantity is the linear
energy transfer (LET) or the restricted linear collision stop-
ping power L�. It is defined as the ratio dT /dx, where dx

is the distance traveled by the particle and dT is the mean
energy loss to electrons that results in energy transfers less
than some specified �. This use of the symbol L should not
be confused with the stopping number of Eqs. 15.56–15.59.
The quantity L� can be calculated by replacing Wmax by �

in the expression for the stopping power. The value of � is
usually specified in electron volts.

The electron stopping power Se is numerically equal to
L∞. However, Se is defined in terms of the energy lost by the
particle, while L∞ is defined in terms of energy imparted to
the medium.

Note that although the quantity actually of interest may
be the energy imparted within some region around the tra-
jectory, this definition is based on energy transfers less than
�. A quantity based on the region of interest would be easier
to measure; L� is easier to calculate.

ICRU Report 37 calculates L� for positrons and electrons
for values of � down to 1 keV. The report points out that such
calculations are inaccurate for smaller values of �, even in
light elements. ICRU Report 16 provides values of L� for
protons and heavy ions.

15.13 Range, Straggling, and Radiation Yield

We can see in Fig. 15.27 that the α particles, entering from
the bottom with the same energy, all travel about the same
distance before coming to rest. This distance is called the
range of the α particles. It will be defined more precisely
below.

We can estimate the range in the following way. The stop-
ping power represents an average energy loss per unit path
length. The actual energy loss fluctuates about the mean
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Fig. 15.25 Plot of the number of particles passing through an absorber
vs its thickness to show the definition of various ranges. R50 is the
median range, Rex is the extrapolated range, and Rm is the maximum
range

values given by the stopping power. If these fluctuations
are neglected and the projectiles are assumed to lose en-
ergy continuously along their tracks at a rate equal to the
stopping power, then one is making the continuous-slowing-
down approximation (CSDA). In this approximation one can
calculate the range, the distance a particle with initial energy
T0 travels before coming to rest or reaching some final ki-
netic energy Tf . A factor ρ is introduced to express the range
in mass per unit area:

RCSDA(T0, Tf ) = ρ

∫
dx = ρ

∫ T0

Tf

dT

Se + Sn + Sr

.

(15.61)
ICRU Report 37 (1984) discusses the problem of carrying
the integration to Tf = 0.

The CSDA range is not directly measurable. Measure-
ments of the fraction F(R) of monoenergetic particles in
a beam that passes through an absorber of thickness R

gives a curve like that of Fig. 15.25. Various ranges can
be defined using this curve. The most easily measured is
the median range R50, corresponding to an absorber thick-
ness that transmits 50 % of the incident particles. The ex-
trapolated range Rex is obtained by extrapolating the lin-
ear portion of the curve to the abscissa. The maximum
range Rm is the thickness that just stops all of the par-
ticles; it is, of course, very difficult to measure. If F(R)

is known accurately one can define a mean range R =∫
R(−dF/dR)dR/

∫
(−dF/dR)dR. If the shape of the

transmission curve is perfectly symmetrical about the mean,
then R50 is equal to R, even though they are conceptually
quite different. For heavy projectiles R (usually approxi-
mated by R50) provides the best estimate of RCSDA.

The fluctuations in the range are called straggling. The
straggling distribution has also been calculated. The track of
a heavy projectile such as an α particle is fairly straight, be-
cause the various scattering interactions result only in small
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Fig. 15.26 Range of electrons, protons, and α particles in liquid water.
Data are from ICRU Reports 37 (1984) and 49 (1993). Note that for
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angular deviations. The straggling results primarily from the
fact that Sdx represents only an average energy loss in path
length dx. The fluctuations can be integrated to give the
spread in range; see Ahlen (1980) or ICRU Report 37 (1984)
or ICRU Report 49 (1993) or the computer program SRIM
(Ziegler et al. 1985).

Electrons and positrons are so light that they undergo
large-angle scattering (occasionally from an electron, more
often from an atomic nucleus). The resulting electron trajec-
tories are quite tortuous, as can be seen in Figs. 15.28 and
15.29. The median or mean range for an electron is con-
siderably less than RCSDA. For electrons and positrons the
extrapolated range Rex corresponds most closely to RCSDA,
at least in materials with atomic number up to silver (Tung
et al. 1979). Figure 15.26 shows ranges in water. At medium
energies the dependence on energy is approximately T 2.

Tables of ranges are found in the references cited
above or at the NIST web site http://www.nist.gov/pml/
data/star/index.cfm.

The radiation yield, Y , is the fraction of the initial par-
ticle (usually electron) kinetic energy T0 that is converted
to bremsstrahlung photons as the electron comes to rest in
the medium in question. The yield is calculated using the
continuous-slowing-down approximation as (neglecting Sn)

Y (T0) = 1

T0

∫ T0

0

Sr(T )dT

Se(T ) + Sr(T )
. (15.62)

Fig. 15.27 Tracks of 22-MeV α particles in photographic emulsion.
The α particles enter at the bottom of the page and come to rest near
the top. The small square fiducial marks at the bottom are 10 μm apart.
The features of the tracks are discussed in the text. (From Powell et al.
1959). Reproduced by permission of Prof. D. H. Perkins

15.14 Track Structure

We can gain insight into the interaction processes by exam-
ining tracks in photographic emulsions or in cloud chambers.
Figures 15.27 and 15.28 are taken from a classic atlas
of tracks in nuclear emulsions (Powell et al. 1959). They
show the difference between the interaction of heavy and
light particles in matter. Figure 15.27 shows the tracks of
four cosmic-ray α particles, each of which entered the bot-
tom of the figure and stopped near the top. The fiduciary
marks along the bottom are 10 μm apart. Each track is
about 195 μm long, corresponding to an initial α-particle
energy of about 22 MeV. The emulsion has a density of
3.6 × 103 kg m−3. Each black dot is a sensitive silver halide
grain about 0.6 μm in diameter. At the beginning of the track,
S is about 70 keV μm−1 or 42 keV per grain; 10 μm from
the end of the track it is 200 keVμm−1 or 120 keV per
grain. The energy that must be deposited in a grain to ren-
der it developable is about 2.8 keV. The amount of energy

http://www.nist.gov/pml/data/star/index.cfm
http://www.nist.gov/pml/data/star/index.cfm
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Fig. 15.28 Tracks of electrons in emulsion. An electron–positron pair
was produced in the lower left corner. Each particle has an energy of
about 250 keV. The details are discussed in the text. (From Powell et al.
1959. Reproduced by permission of Professor D. H. Perkins)

deposited in each grain is so much larger than this that the
track density is uniform. Small bumps of 1–4 grains can be
seen occasionally along each track. Some of these are due to
δ rays: electrons that have received enough energy to travel a
few micrometers in the emulsion. Others are artifacts due to
the general background fog. Multiple small-angle scattering
causes small deviations in each track, which become greater
as the α particle slows down.

In Figure 15.28 an electron–positron pair has been pro-
duced in the lower left corner of the emulsion by a 1.5-MeV
photon. Each particle has a kinetic energy of about 250 keV.
One immediately notices the tortuous path of both particles
due to large-angle scattering. The stopping power near the
beginning of the track is about 0.8 keV μm−1, so that about
0.5 keV is deposited in each grain. About 30 μm from the

Fig. 15.29 Tracks of ≈1 keV electrons in a cloud chamber. An equiv-
alent scale in water or tissue has been added. Photoelectrons and Auger
electrons can be seen. The lines were drawn to guide the eye. (From
Budd and Marshall 1983, pp. 19–32. Reproduced by permission of the
Radiation Research Society)

end, the stopping power and the average amount of energy
deposited in each grain are about 3 times larger. The upper
track is considerably more dense near the end of its path.
The failure of the other track to show this density increase
could be due to annihilation of the positron in flight or to a
large-angle scattering out of the emulsion.

Figure 15.29 shows the ionization produced by an elec-
tron at a much different scale. It was produced from a cloud
chamber photograph of electron tracks in a low-density gas
(Budd and Marshall 1983). The scale shows distances in
liquid water or tissue that correspond to the same value of
ρx, corrected for phase effects. Note that the scale shows
10 nanometers. An atomic diameter is 0.2–0.6 nm. In each
case a photoelectron of energy between 950 and 1480 eV has
been ejected from a gas atom in the cloud chamber. Auger
electrons are also seen.
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Fig. 15.30 A simulation of photons passing through a layer of wa-
ter 10 cm thick. a The photon energy is 100 keV. One photon has a
photoelectric interaction. The other four are Compton scattered. b The
photon energy is 10 MeV. Two photons do not interact, one produces an
electron–positron pair, and two Compton scatter

15.15 Energy Transferred and Energy
Imparted; Kerma and Absorbed Dose

The response of a substance to radiation, whether it is the
darkening of a photographic film, an electrical pulse in an
ionization chamber, or the response of a tumor to radia-
tion therapy, is due, directly or indirectly, to the ionization
produced by charged particles that lose their kinetic energy
in the substance through the stopping mechanisms we have
just discussed. We now define some quantities that are used
to describe the transfer of energy from photons to charged
particles and the energy lost by charged particles due to
ionization.

15.15.1 An Example

Before discussing the formal definition of these quantities,
let us consider some examples of energy transfer by photons.
Figure 15.30 shows some schematic interactions of photons

in a sample of water 10 cm thick. They are drawn to scale.12

In Fig. 15.30a five photons of energy 100 keV enter from the
left. Photon tracks are dashed. One photon is absorbed by
the photoelectric effect, and four are Compton scattered. The
energy of the photoelectron and the Compton-scattered elec-
trons is so low that the ranges are insignificant on this scale.
In Fig. 15.30b the incident photons have 10 MeV energy.
One has undergone pair production, two have Compton scat-
tered, and two have passed through without interacting. The
electron tracks are shown as thick solid lines. Their lengths
are equal to the CSDA range of electrons or positrons of that
energy. They are drawn as straight lines, even though the real
tracks are tortuous.

One of the quantities of interest is the energy transferred
to kinetic energy of charged particles in some mass of ma-
terial. (We saw this briefly in the discussion surrounding
Eq. 15.35.) Another is the energy imparted in some mass
of material, which is the kinetic energy lost by charged
particles as they come to rest. Figure 15.31 shows the dis-
tinction between the two quantities. It shows two photons
from Fig. 15.30b: one that underwent pair production, and
one that was Compton scattered. The water has been divided
into ten slices, each 1 cm thick. No energy is transferred in
the first slice. Energy is transferred by pair production in the
second slice and by Compton scattering in the third slice. In
each case the electron (or positron) produced loses kinetic
energy in that slice and also in other slices. There is energy
imparted in slices 2–8, even though the energy is transferred
only in slices 2 and 3.

Consider now the actual numbers. In keeping with the lit-
erature,13 we will call the energy transferred Etr, even though
we have been using T for kinetic energy. For pair production
the energy transferred is

Etr = T+ + T− = hν0 − 2mec
2

= 10 − 2 × 0.511 = 8.978 ≈ 9.0 MeV. (15.63)

The partition of energy between the electron and positron
is stochastic. We assume for this example that about 60 %
(5.4 MeV) goes to one member of the positron–electron pair
and 40 % (3.6 MeV) to the other. These numbers are shown
at the vertex of Fig. 15.31. From these energies the ranges
can be determined. Measuring the distance from the end of
the track to the boundary between each slice allows us to

12 These examples were constructed with a pedagogical simulation pro-
gram called MacDose (Hobbie 1992). The program is available at the
book web site: www.oakland.edu/~roth/hobbie.htm. It runs on a Macin-
tosh using OS-9 or earlier. There is also a 26-min video using MacDose
that shows the concepts here in more detail (Hobbie 2009). It is free and
available through iTunes. A more realistic but easily understood Monte
Carlo simulation is described by Arqueros and Montesinos (2003).
13 See ICRU Report 33 (1980) or Attix (1986).
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Fig. 15.31 The difference between energy transferred and energy im-
parted. Two of the photons from Fig. 15.30b are shown. The water
has been divided into ten 1-cm slices. The numbers on the drawing
show the charged-particle energy at the entrance to each slice. The en-
ergy transferred and the energy imparted in each slice are shown at the
bottom

determine the energy of each charged particle as it enters
the slice. For the Compton scattering, 8.75 MeV is trans-
ferred to the recoil electron and the scattered photon has
1.25 MeV. The energy imparted by the 5.4-MeV particle is
5.4 − 4.5 = 0.9 MeV in slice 2, 4.5 − 1.3 = 3.2 MeV in
slice 3, and 1.3 MeV in slice 4. Similar calculations can be
done for the other charged particles. The energy transferred
and the energy imparted in each slice are shown at the bottom
of Fig. 15.31. This ignores any interaction of the 1.25-MeV
Compton-scattered photon and assumes it leaves the volume
of interest. Because for the 100-keV photons the range of
the charged particles is small compared to 1 cm, the energy
transferred and the energy imparted in each slice are the same
in Fig. 15.30a.

Figure 15.32 shows a plot of the transferred and imparted
energy for a uniform beam of 10-MeV photons all traveling
to the right and striking a slab of water 20 cm thick. Both
the energy transferred and the energy imparted are stochastic
quantities. This simulation was done for 40,000 photons, and
you can see the scatter in the points. The energy transferred
falls exponentially as exp (−μattenx).

15.15.2 Energy Transferred and Kerma

We found the energy transferred by calculating the energy of
each electron or positron produced. The standard definition
uses slightly different bookkeeping. It subtracts the energy of
the photons leaving the volume of interest from those enter-
ing, and adds a term Q for the energy going into the volume
due to changes in rest mass. For example, this is the 2mec
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Fig. 15.32 Plot of energy transferred and energy imparted for a sim-
ulation using 40,000 photons of energy 10 MeV. The filled circles are
the energy transferred in each slice, and the open circles are the energy
imparted in each slice

of Eq. 15.63. The standard definition is

Etr = (Rin)u − (Rout)
nonr
u + Q. (15.64)

The quantity R is radiant energy: the energy of particles
(including photons) but not including rest energy. The sub-
script u means that it is the radiant energy of uncharged
particles. The uncharged particles can be photons or neu-
trons.14 Later we will use subscript c to denote the radiant
energy of charged particles. The superscript “nonr” means
that the quantity does not include radiant energy arising
from bremsstrahlung or positron annihilation in flight from
charged particles within the volume. The Q term is positive
if mass is converted to energy (as in annihilation radia-
tion) and negative if energy is converted to mass (as in pair
production).

Using this method of calculating for Fig. 15.31 gives

Etr = (Rin)u − (Rout)
nonr
u +∑Q = 10 − 0 − 2 × 0.511

= 9.0 MeV

for slice 2. For the third slice the equation gives

Etr = (Rin)u − (Rout)
nonr
u +∑Q = 10 − 1.25 + 0

= 8.75 MeV.

For the fourth slice, the uncharged radiant energy in is equal
to the uncharged radiant energy out. In the fifth slice, if

14 Neutrinos, which we will discuss in Chap. 17, travel such long
distances without interacting that they are not considered in the calcu-
lations. Energy carried by neutrinos, which come from nuclear β decay,
is assumed to have left the body.
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the 1.25-MeV photon actually interacts as it appears to, we
would have to include its energy transfer. In all the other
slices the energy transferred is zero.

The energy transferred is a stochastic quantity, and so is
the energy transferred per unit mass, dEtr/dm. Its expec-
tation value is the kerma (kinetic energy released per unit
mass):

K = dEtr

dm
. (15.65)

If we consider monoenergetic photons of energy hν and con-
sider only the interaction of the primary photon beam (not
any secondary photons, such as Compton-scattered photons
or annihilation radiation), then the kerma is

K = μtr

ρ
Ψ, (15.66)

where Ψ is the energy fluence. To see why this is true, note
that if the N photons are spread over area S, then NE = Ψ S

and dm = ρSdx. The kerma is

K = dEtr

dm
= Ψ Sμtrdx

ρSdx
= μtr

ρ
Ψ.

15.15.3 Energy Imparted and Absorbed Dose

The energy imparted, E, is the net energy into the volume
from all sources: uncharged particles, charged particles, and
changes of rest mass:

E = (Rin)u − (Rout)u + (Rin)c − (Rout)c +∑Q. (15.67)

The absorbed dose is the expectation value of the energy
imparted per unit mass:

D = dE

dm
. (15.68)

It is measured in joules per kilogram or gray (Gy).

15.15.4 Net Energy Transferred, Collision
Kerma and Radiative Kerma

Another quantity used in the literature is the net energy
transferred. It subtracts from the energy transferred the en-
ergy that is reradiated (bremsstrahlung and radiation from
positron annihilation in flight), even if the reradiation takes
place outside the volume of interest. It is

Enet
tr = (Rin)u − (Rout)

nonr
u − Rr

u +∑Q. (15.69)

The collision kerma and radiative kerma are defined as
expectation values per unit mass:

KC = dEnet
tr

dm
= K − Kr,

Kr = dRr
u

dm
.

(15.70)

Considering only a primary beam of monoenergetic photons,

KC = μen

ρ
Ψ. (15.71)

15.16 Charged-Particle Equilibrium

There are three equilibrium conditions that sometimes exist
or are assumed to exist, that make it possible to calcu-
late the relationship between energy transferred and energy
imparted.

15.16.1 Radiation Equilibrium

The first and most restrictive condition is radiation equilib-
rium. It is a useful model when considering an extended
radioactive source that is distributed uniformly throughout
some volume V (such as the body or a particular organ).
The source is assumed to emit its radiation isotropically. The
energy released to neutrinos is ignored. A point of interest
within the large volume is surrounded by a smaller volume
v. The volume v must be far enough from the edge of V so
that any radiation emitted from v is absorbed before reaching
the surface of V . The entire volume V is assumed to be of the
same atomic composition and density. Because everything is
isotropic, on average for every photon or neutron or charged
particle entering volume v, another identical one leaves. This
means that

(
Rin
)
c

= (Rout
)
c

(15.72a)

and
(
Rin
)
u

= (Rout
)
u
. (15.72b)

The average energy imparted is

E =∑Q. (15.73)

When the conditions for radiation equilibrium are satisfied,
the absorbed dose is the expectation value of the energy re-
leased by the radioactive material per unit mass. If there is no
radioactive source, there is no energy imparted in radiation
equilibrium.
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Fig. 15.33 One of the conditions for charged-particle equilibrium is
that on average, for every charged particle of a certain energy leaving
volume v traveling in a certain direction, a corresponding particle enters
the volume

15.16.2 Charged-Particle Equilibrium

A less restrictive assumption is charged-particle equilibrium,
in which only Eq. 15.72a is satisfied: the average amount
of charged-particle radiant energy entering the region is the
same as the average amount leaving. The assumption of
charged particle equilibrium is a useful model in several
cases, but we will consider only the case of an external beam
of photons striking volume V . Again we consider what hap-
pens in a smaller volume v, separated from the boundary of
V by a distance larger than the maximum range of any sec-
ondary charged particles produced by the external radiation.
We also assume that the medium is homogeneous and that
only a small fraction of the primary radiation interacts within
the volume so attenuation can be neglected. Then the average
number of charged particles produced per unit volume and
per unit solid angle in any given direction is the same every-
where in the volume. Though the charged particles need not
be produced isotropically, on average for every particle that
leaves volume v, a corresponding one will enter it, as shown
in Fig. 15.33. For charged-particle equilibrium, the average
energy imparted is

E = (Rin
)
u

− (Rout
)
u

+∑Q.

Comparing this with the average of Eq. 15.69 shows that the
average net energy transferred is

Enet
tr = E + (Rout

)
u

− (Rout
)nonr
u

− Rr
u.

Now recall that
(
Rout

)
u

is the average value of all the

uncharged radiation leaving volume v,
(
Rout

)nonr
u

is the av-
erage value of all uncharged radiation leaving excluding
bremsstrahlung and photons from annihilation in flight that
occur within the volume, and Rr

u is the bremsstrahlung
and annihilation-in-flight radiation from charged particles

originating in v regardless of where it occurs. If there is
charged-particle equilibrium, any radiative interaction by a
charged particle after it leaves the volume will on average be
replaced by an identical interaction inside v. If the volume is
small enough so that all radiative loss photons escape from
the volume before undergoing any subsequent interactions,
then

(
Rout

)
u

= (Rout
)nonr
u

+ Rr
u.

Therefore, for charged-particle equilibrium, E = Enet
tr , and

the dose is equal to the collision kerma:

D = KC. (15.74)

One situation where charged-particle equilibrium applies
is for the thin slices in Fig. 15.30a. The electron ranges are
so short (10μm for a 25-keV electron) that a slice can be
thin compared to 1/μ and yet all the electrons produced stay
within the volume.

The conditions for charged-particle equilibrium fail if the
source of photons is too close (Ψ is not uniform because of
1/r2), close to a boundary (as between air and tissue or mus-
cle and bone), for high-energy radiation (as in Fig. 15.32),
or if there is an applied electric or magnetic field that al-
ters the paths of the charged particles (as in some radiation
detectors).

In Fig. 15.32, if we look at the situation far enough to the
right, the energy imparted is proportional to the energy trans-
ferred. This situation is called transient charged-particle
equilibrium.

The dose for a monoenergetic parallel beam of charged
particles with particle fluence Φ passing through a thin layer
can be calculated by making three assumptions:
1. The volume of interest is thin enough so that Se remains

constant.
2. Scattering can be neglected, so every particle passes

straight through the layer.
3. The net kinetic energy carried out of the layer by δ rays is

negligible, either because the layer is thick compared to
the range of the δ rays or because the layer is immersed
in a material of the same atomic number so that charged-
particle equilibrium exists.
Then the energy lost in collisions in a layer of thickness

dz is E = Φ(area)(Se/ρ)ρdz and the mass is ρ(area)dz, so
the dose is

D = Se

ρ
Φ. (15.75)

Attix (1986, pp. 188–195) discusses corrections for situa-
tions where these assumptions are not valid.
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Fig. 15.34 Secondary photons also interact in this simulation. One
100-keV photon enters from the left in each panel. a The primary pho-
ton undergoes a Compton scattering. The Compton-scattered photon
also undergoes a Compton scattering. The third photon escapes from
the water. b The primary photon is Compton scattered. Each Compton-
scattered photon undergoes another Compton scattering, until the sixth
scattered photon leaves through the upstream surface of the water,
traveling nearly in the direction from which the incident photon came

15.17 Buildup

We have been ignoring the interactions of secondary pho-
tons, primarily Compton-scattered photons and annihilation
radiation. They can be quite significant. In fact, there can
be a cascade of several generations of photons, though we
will call them all secondary photons. Figure 15.34 com-
pares two simulations in which the secondary photons are
allowed to interact. In Fig. 15.34a there is one secondary in-
teraction before the scattered photon escapes from the water.
In Fig. 15.34b there are a total of six Compton scatterings
before the secondary photon escapes.

All of these secondary photons produce electrons that
contribute to the energy transferred and energy imparted.
Figure 15.35 compares two cases where 25 photons of energy
100 keV enter the water from the left. The primary interac-
tions are the same in both cases. In Fig. 15.35a the small dots
represent the electrons produced by the interaction of the
primary photons. In Fig. 15.35b the electrons produced by
secondary and subsequent interactions are also shown. The
energy transferred and energy imparted are much greater.

The buildup factor for any quantity is defined as the ratio
of the quantity including secondary and scattered radiation

E = 100 keV Length = 10 cm 

E = 100 keV Length = 10 cm 

(a) Secondaries not included

(b) Secondaries included

Fig. 15.35 Twenty-five 100-keV photons entered the water from the
left. The dots represent recoil electrons from Compton scattering or
photoelectrons. a Only the first interaction of the primary photon is
considered. b Subsequent interactions are also considered

Fig. 15.36 Two different detector geometries. a The detector is at a
fixed location and the absorber thickness is increased. b The detector is
at a varying distance from the source in a water bath
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to the quantity for primary radiation only. For example, if
the primary beam has an energy fluence Ψ0 at the surface,
the energy fluence at depth x in the medium is

Ψ (x) = B(x)Ψ0e
−μx. (15.76)

The buildup factor is quite sensitive to the geometry. Com-
pare the two situations in Fig. 15.36. In Fig. 15.36a the
detector is at a fixed location and the thickness of the ab-
sorber is increased. As the absorber thickness x approaches
zero, the buildup factor approaches unity. In Fig. 15.36b
the detector is at depth x in a water bath. Because of the
backscattered radiation seen in Fig. 15.34b, B(x) > 1 as
x → 0. In this case, it is sometimes called the backscatter
factor. For further discussion, see Attix (1986).

Symbols Used in Chap. 15
Symbol Use Units First

used
page

a Acceleration m s−2 440
ai Number of atoms of

constituent i

434

b Impact parameter m 442
c Velocity of light m s−1 428
d Diameter m 440
e Charge on electron C 425
f, fC, fi ,

fκ , fτ

Fraction of photon energy
transferred to charged particles

431

g Fraction of photon energy of
secondary electrons converted
back into photons by
bremsstrahlung

437

h Planck’s constant J s 427
j Total angular momentum

quantum number
425

k Spring constant N m−1 440
l Orbital angular momentum

quantum number
425

m Mass kg 430
me Electron rest mass kg 428
mj Quantum number for the

component of the total angular
momentum along the z axis

425

m0 Rest mass kg 429
n Principal quantum number 425
n Number 434
p Momentum kg m s−1 429
q Charge C 442
r Position m 444

re “Classical” electron radius m 430
s Spin quantum number 425
t Time s 440
v Velocity m s−1 439
wi Mass fraction of constituent i 434
x, y, z Coordinate axes m 433

x Dimensionless energy ratio 430
z Charge of projectile in

multiples of e

439

A Atomic mass number 433
Ai,Amol Atomic mass number of

constituent i or molecule
(g mol)−1

or
(kg mol)−1

434

AK Auger yield 435
B,BK,

etc.
Binding energy eV or J 427

B Buildup factor or backscatter
factor

455

C Shell correction coefficient 444
D Absorbed dose J kg−1 or

Gy (gray)
452

E Energy J 426
E Electric field V m−1 430
F Force N 440
F Fraction of charged particles

passing through an absorber
447

I Average ionization energy eV or J 444
I Stopping interaction strength J m2 444
K,KC Kerma, collision kerma J kg−1 or

Gy (gray)
452

L Stopping number per atomic
electron

444

L� Restricted linear stopping
power

J m−1 447

M Mass kg 434
N Number of particles 433
NA Avogadro’s number mol−1 433
NT Number of target atoms per

unit projected area
m−2 434

NT V Number of target atoms per
unit volume

m−3 434

Q Energy released from rest mass J 451
R Range m 447
Ru,Rc Radiant energy in the form of

uncharged or charged particles
J 451

S Area m2 452
S Stopping power J m−1 439
Se Electron (collision) stopping

power
J m−1 440

Sn Nuclear stopping power J m−1 440
Sr Radiative stopping power J m−1 440
T Kinetic energy J 427
V Volume m3 434
V Velocity m s−1 443
WK,L,M Probability that a hole in the

K, L, or M shell is filled by
fluorescence

435

W Energy lost in a single
interaction

J 439

Y Radiation yield 448

Z Atomic number of target atom 425
β v/c 439
δ Average energy emitted as

fluorescence radiation per
photon absorbed

J 437

δ Density-effect correction 444
ε Stopping cross section J m2 439
ε0 Electrical permittivity of free

space
N−1 C2 m−2 430

θ, φ Angles 429
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κ Pair production cross section m2 428
λ Wavelength m 429
μ,μatten Attenuation coefficient m−1 433
μen Energy absorption coefficient m−1 437
μtr Energy transfer coefficient m−1 437
ν Frequency Hz 427
ξ Position m 443
ρ Density kg m−3 433
σC Total Compton cross section

for one electron
m2 427

σcoh Coherent Compton cross
section for one atom

m2 427

σincoh Incoherent Compton cross
section for one atom

m2 427

σtr Transfer cross section m2 431
σtot Total cross section m2 433
τ Photoelectric cross section m2 428
� Energy transfer J 447
Φ Particle fluence m−2 436
Ψ Energy fluence J m−2 436
Ω Solid angle sr 430

Problems

Section 15.1

Problem 1. The quantum numbers ms = ± 1
2 and ml =

l, l − 1, l − 2 . . . ,−l are sometimes used instead of j and
mj to describe an electron energy level. Show that the total
number of states for given values of n and l is the same when
either set is used.
Problem 2. Use Eq. 15.2 to estimate the K-shell energies for
the following elements and compare them to the measured
values of EK .

Z Element Measured
EK (keV)

6 Carbon 0.284
20 Calcium 4.04
53 Iodine 33.2
82 Lead 88.0

Section 15.2

Problem 3. In the photoelectric effect, assume that the
ejected electron has mass m and speed v and that the recoil-
ing atom has mass M and speed V . Show that if the two
particles have the same momentum, the kinetic energy of the
atom is smaller than the kinetic energy of the electron by a
factor (m/M). Calculate this factor for carbon and verify the
claim in the text that the kinetic energy of the recoiling atom

is small. Use non-relativistic expressions for the momentum
and kinetic energy.

Section 15.3

Problem 4. The K-shell photoelectric cross section for
100-keV photons on lead (Z = 82) is τ = 1.76 ×
10−25 m2 atom−1. Estimate the photoelectric cross section
for 60-keV photons on calcium (Z = 20).
Problem 5. Write Eq. 15.8 as τ = CZ4E−3, where C is
a proportionality constant. Estimate C from Fig. 15.3 (use
E = 100 keV). Be sure to determine both the value of C and
its units.
Problem 6. Describe how you could use different materials
to determine the energy of monoenergetic x rays of energy
about 50 keV by using changes in the attenuation coefficient.
What materials would you use?

Section 15.4

Problem 7. Derive Eq. 15.11 from the preceding four
equations.
Problem 8. Derive an equation for the direction of the recoil
electron, φ, in terms of θ and λ0.
Problem 9. A 1-MeV photon undergoes Compton scatter-
ing from a carbon target. The scattered photon emerges at an
angle of 30 ◦.
(a) What is the energy of the scattered photon? What is the

energy of the recoil electron?
(b) What is the differential scattering cross section for scat-

tering at an angle of 30 ◦ from one electron? From the
entire carbon atom (Z = 6, A = 12)?

Problem 10. When hv0 >> mec2, what is the energy of a
Compton-scattered photon at 180◦? at 90◦?
Problem 11. Integrate Eq. 15.16 over all possible scattering
angles to obtain Eq. 15.18. Use the solid angle in spherical
coordinates (Appendix L) and the substitution u = 1+x(1−
cos θ).
Problem 12. Integrate Eq. 15.17 over all possible scattering
angles to obtain Eq. 15.19. Use the solid angle in spherical
coordinates (Appendix L).
Problem 13. Find the limit of Eq. 15.16 as x → ∞.
Problem 14. Write Eq. 15.16 in the form

dσC

dΩ
= r2

e

2

(
1 + cos2 θ

)
FKN,

where FKN is the Klein–Nishina factor. Find an expression
for FKN in terms of θ and x. Show that as x → 0, FKN → 1.
Show that when θ = 0, FKN = 1.
Problem 15. Use the expansion ln(1+x) = x−x2/2+x3/3
to show that Eq. 15.18 approaches Eq. 15.19 as x → 0.
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Problem 16. Eq. 15.11 shows that the wavelength shift is
independent of the wavelength of the incident photon. Cal-
culate the fractional wavelength shift (λ − λ0) /λ0 for an
infrared photon (λ0 = 10 μm), an ultraviolet photon (λ0 =
100 nm), a low-energy (“soft”) x ray (λ0 = 1 nm), and a
high-energy x ray (λ0 = 0.01 nm).
Problem 17. Suppose that attenuation is measured for 60-
keV photons passing through water in such a way that
photons scattered less than 5 ◦ still enter the detector. Es-
timate the incoherent Compton scattering cross section per
electron for photons scattered through more than 5 ◦.

Section 15.5

Problem 18. A beam of 59.5-keV photons from 241Am
scatters at 90 ◦ from some calcium atoms (A = 40).
(a) What is the energy of a Compton-scattered photon?
(b) What is the energy of a coherently scattered photon?
(c) What is the recoil energy of the atom in coherent

scattering?

Section 15.6

Problem 19. Show that a single photon cannot produce
an electron–positron pair in free space because energy and
momentum cannot be simultaneously conserved.

Section 15.7

Problem 20. Most diagnostic x rays use photon energies in
the range 20–100 keV. For carbon (Fig. 15.2), which mech-
anism is most important in this range: photoelectric effect,
Compton scattering, coherent scattering, or pair production?
Problem 21. Use Fig. 15.7 to make the following estimates
for 1-MeV photons. What is the mass attenuation coeffi-
cient for water? For aluminum? For lead? What is the linear
attenuation coefficient in each case?
Problem 22. Use Fig. 15.7 to estimate the attenuation coef-
ficient for 0.1-MeV photons on carbon and lead. Compare
your results to values you obtain from the internet or the
literature. Repeat for 1-MeV photons.
Problem 23. Consider photons of three energies: 0.01, 0.02,
and 0.03 MeV. What fraction of the photons at each energy
will be unattenuated after they pass through 0.1 mm of lead
(ρ = 11.35 g cm−3)? Comment on the differences in your
results.

Section 15.8

Problem 24. Use Fig. 15.7 to find the mass attenuation coef-
ficient for 0.2-MeV photons in a polyethylene absorber. The
Compton effect predominates. Polyethylene has the formula
(CH2)n.
Problem 25. What will be the attenuation of 40-keV photons
in muscle 10 cm thick? Repeat for 200-keV photons.
Problem 26. Assume that a patient can be modeled by a slab
of muscle 20 cm thick of density 1 g cm−3. What fraction of
an incident photon beam will emerge without any interaction
if the photons have an energy of 10 keV? 100 keV? 1 MeV?
10 MeV?
Problem 27. Muscle and bone are arranged as shown. As-
sume the density of muscle is 1.0 g cm−3 and the density of
bone is 1.8 g cm−3. The attenuation coefficients are

E (μ/ρ)muscle (cm2 g−1) (μ/ρ)bone (cm2 g−1)

60 keV 0.200 0.274
1 MeV 0.070 0.068

Compare the intensity of the emerging beam that has passed
through bone and muscle and just muscle at the two energies.

Problem 28. A beam of monoenergetic photons travels
through a sample made up of two different materials of un-
known thickness x1 and x2, as shown below. The attenuation
coefficients at two different energies, Ea and Eb, are ac-
curately known. They are μ1(a), μ2(a), μ1(b), and μ2(b).
One measures accurately the log of the ratio of the number
of photons emerging from the sample to the number enter-
ing, R = ln(N0/N), at each energy so that Ra and Rb are
known. Find an expression for x2 in terms of Ra , Rb, and the
attenuation coefficients.

N

x1 x2

 μ  1 μ2

N0
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Section 15.9

Problem 29. The text showed that the mass atenuation co-
efficient for incoherent scattering is nearly independent of Z

(assuming (Z/A) is constant). Show how the mass attenua-
tion coefficient depends on Z for the photoelectric effect (use
Eq. 15.8) and for pair production (assume κ ∝ Z2).
Problem 30. Use Table 15.1 to calculate the photon ener-
gies of the 13 spectral lines for tungsten that are shown in
Fig. 15.13.
Problem 31. Use Table 15.1 and the selection rules in
Eq. 15.32 to determine the allowed spectral lines for tran-
sitions in tungsten between M and N levels. Construct a
drawing like that in Fig. 15.13 showing these transitions.
Be sure to include the NVI and NVII levels in your drawing.
Give these two levels slightly different energies so you can
distinguish the transitions.
Problem 32. Use data from http://webelements.com/
lead/orbital_properties.html to create a table like Table 15.1
and figures like Figs. 15.1 and 15.13, but for lead instead of
tungsten.
Problem 33. You wish to use x-ray fluorescence to de-
tect lead that has been deposited in a patient’s bone. You
shine 100-keV photons on the patient’s bone and want to
detect the 73-keV fluorescence photons that are produced.
The incident photon fluence is Φ0 = 1012 photons m−2.
There are 1014 lead atoms (≈ 1 nmol) in the region illumi-
nated by the incident beam. The photoelectric cross section
is 1.76 × 10−25 m2 atom−1. The fluorescence yield is W =
0.94. Assume for simplicity that the fluorescence photons are
emitted uniformly in all directions. The detector has a sensi-
tive area 1 × 2 cm and is located 10 cm from the lead atoms.
How many fluorescence photons are detected?

Section 15.10

Problem 34. A 5-keV photon strikes a calcium atom. The
following events take place:
1. A K-shell photoelectron is ejected.
2. A Kα photon is emitted. This corresponds to the move-

ment of a hole from the K shell to the L shell.
3. An electron in the M shell goes to the L shell and an

M-shell electron is emitted.
Give the excitation energy of the atom, the total energy in
the form of photons, and the total energy in the form of elec-
tron kinetic energy at each stage. Use the following data for
calcium: Z = 20, A = 40, BK = 4000 eV, BL = 300 eV
(ignore differences in subshells), BM = 40 eV.
Problem 35. The following are the binding energies for
hydrogen and oxygen.

H O

BK 13.6 eV 532 eV
BL 24 eV

(a) Determine fτ for hydrogen from first principles.
(b) Use Eqs. 15.38 and 15.39 to estimate fτ (K shell) for

oxygen.
Problem 36. Use the Thomson scattering cross section,
dσ/dΩ = (r2

e /2)(1 + cos2 θ), the total cross section σC =
8πr2

e /3, and the expression for the total energy of the re-
coil electron Eq. 15.15 to find an expression for fC as
x → 0. Compare some values of fCσC incoh with the plot
in Fig. 15.7.
Problem 37. (a) For 50-keV photons on calcium, estimate

fτ .
(b) For 100-keV photons on calcium, the photoelectric

cross section is τ = 5.89×10−28 m2 atom−1. Use fτ =
1.0. Estimate μtr/ρ. Use the following data for calcium
if you need them: Z = 20, A = 40, BK = 4000 eV,
BL = 300 eV, BM = 40 eV.

Section 15.11

Problem 38. Prove that if a particle of mass M1 and ki-
netic energy T collides head on with a particle of mass M2

that is at rest, the energy transferred to the second particle is
4T M2/M1 or 2M2V

2 in the limit M2 	 M1. The maximum
energy is transferred when the particles move apart along the
line of motion of the incident particle.
Problem 39. The expression for Se = dT /dx has the
SI units J m−1. Therefore Se/ρ in Eq. 15.56 has units
J m2 kg−1.
(a) How must the coefficient in front of Eq. 15.56 be

changed if T is in MeV? If x is in cm instead of m?
(b) What numerical factors must be introduced if NA is in

atoms per g mol and ρ is in g cm−3?
(c) What is the average force on a 10-MeV proton in

carbon? On a 100-keV proton? Use I=78 eV.
(d) What are the units of the stopping cross section (defined

just below Eq. 15.46)?
Problem 40. The peak in the stopping power occurs roughly
where the projectile velocity equals the velocity of the atomic
electrons in the target. Find an expression for the velocity of
an electron in the n = 1 Bohr orbit. Use Eq. 14.8, and the fact
that the total energy is the sum of the kinetic and potential
energies. Use the classical arguments and the fact that the
electron is in a circular orbit to relate the kinetic and potential
energies. The acceleration in a circular orbit is v2/r .
Problem 41. A fishing lure is trolled behind a boat for a to-
tal distance D. Suppose that fish are distributed uniformly
throughout the water at a concentration C fish m−3, and
that the probability of a fish striking the lure depends on b,
the perpendicular distance from the path of the lure to the
fish: p = exp(−b/b0). Calculate the average number of fish
caught.

http://webelements.com/lead/orbital_properties.html
http://webelements.com/lead/orbital_properties.html
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Lure

Fish

Section 15.13

Problem 42. What is the range energy relationship for high-
speed non-relativistic particles if the variation of L with T is
neglected and Eq. 15.56 is the dominant term?
Problem 43. Estimate the maximum electron range, and
hence the radius of the δ-ray cloud surrounding the track of
a 5-MeV α particle. (The rest energy Mc2 of an α particle is
about 4 times 938 MeV.) The range of a low energy electron
in cm is about 10−2β2.

Section 15.15

Problem 44. Suppose that a photon of energy hν enters a
volume of material and produces an electron–positron pair.
Both particles come to rest in the volume, and the positron
annihilates with an electron that was already in the volume.
Both annihilation photons leave the volume. Show that the
formal definition of energy transfer agrees with the common-
sense answer that it is the kinetic energy of the electron and
positron, which is hν −2mec

2. What is the energy imparted?
Problem 45. What are the energy transferred, the net energy
transferred, and the energy imparted in the volume shown?

e

Thν1

hν2

hν3

hν4

T1
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16Medical Uses of X-Rays

X-rays are used to obtain diagnostic information and for can-
cer therapy. They are photons of electromagnetic radiation
with higher energy than photons of visible light. Gamma
rays are photons emitted by radioactive nuclei; except for
their origin, they are identical to x-ray photons of the same
energy. Section 16.1 describes the production of x-rays. Sec-
tion 16.2 introduces some new quantities that are important
for measuring how the absorbed photon energy relates to the
response of a detector—which might be a film, an ioniza-
tion chamber, or a chemical detector. Several detectors are
introduced in Sect. 16.3: film, fluorescent screens, scintilla-
tion detectors, semiconductor detectors, thermoluminescent
dosimeters (TLD), and digital detectors. Section 16.4 de-
scribes the diagnostic radiograph, and the following section
discusses image quality, particularly the importance of noise
in determining image quality. Section 16.6 provides a brief
mention of angiography, and Sect. 16.7 discusses some of the
special problems of mammography. Computed tomography
with x-rays is discussed in Sect. 16.8. The final sections deal
with the biological effects of x-rays, cancer therapy, dose,
and the risk of radiation.

16.1 Production of X-Rays

When a beam of energetic electrons stops in a target x-rays
are emitted. Characteristic x-rays have discrete photon en-
ergies and are produced after excitation of an atom by the
electron beam. Bremsstrahlung (Sect. 15.11) is the continu-
ous spectrum of photon energies produced when an electron
is scattered by an atomic nucleus. Bremsstrahlung is respon-
sible for most of the photons emitted by most x-ray tubes.
The total bremsstrahlung radiation yield as a function of
electron energy for various materials is shown in Fig. 16.1.
High-Z materials are most efficient for producing x-rays.
Tungsten (Z = 74) is often used as a target in x-ray tubes
because it has a high radiation yield and can withstand high

temperatures. For 100-keV electrons on tungsten, the radia-
tion yield is about 1 %: most of the electron energy heats the
target. We now consider these two processes in greater detail.

16.1.1 Characteristic X-Rays

Atomic energy levels are described in Sect. 14.3. The lev-
els for tungsten are shown in Table 15.1 and Fig. 15.1. An
electron bombarding a target can impart sufficient energy to
a target electron to remove it from the atom, leaving an unoc-
cupied energy level or hole. The deexcitation of the atom is
described in Sect. 15.9. For a high-Z material with a hole in
the K shell, the fluorescence yield is large (see Fig. 15.14).
The hole is usually filled when an electron in a higher en-
ergy level drops down to the unoccupied level. As it does
so, the atom emits a characteristic x-ray—a photon with en-
ergy equal to the difference in energies of the two levels. This
leaves a new hole, which is then filled by an electron from a
still higher level with the emission of another x-ray, or by an
Auger cascade.

As a hole moving to larger values of n corresponds to a
decrease of the total energy of the atom, it is customary to
draw the energy-level diagram for holes instead of electrons,
which turns the graph upside down, as in Fig. 16.2. The zero
of energy is the neutral atom in its ground state. As this is a
logarithmic scale, zero cannot be shown.

Creation of the hole requires energy to remove an elec-
tron. That energy is released when the hole is filled. Various
possible transitions are indicated in Fig. 16.2. These transi-
tions are consistent with these selection rules, which can be
derived using quantum theory:

�l = ±1, �j = 0,±1. (16.1)

The transitions are labeled by the letters K , L, M , and so
forth, depending on which shell the hole is in initially. Greek-
letter subscripts distinguish the x-rays from transitions to
different final states.

R. K. Hobbie, B. J. Roth, Intermediate Physics for Medicine and Biology, 461
DOI 10.1007/978-3-319-12682-1_16, c© Springer International Publishing Switzerland 2015
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Fig. 16.1 Radiation yield vs. electron energy for carbon, copper, and
tungsten. Plotted from data in ICRU Report 37 (1984). The radiation
yield is the fraction of the electron’s energy that is converted to photon
energy; see Sect 15.13

Fig. 16.2 Energy-level diagram for holes in tungsten and some of the
x-ray transitions

Fig. 16.3 The energy fluence spectrum of bremsstrahlung x-rays
emitted when monoenergetic electrons strike a thin target

Analogous to the approximate formula of Eq. 15.2 is the
following estimate of the energy of the Kα line (which de-
pends on the screening for two values of n), which we have
seen before as Eq. 15.33:

EKα = 3
4 (13.6 eV)(Z − 1)2. (16.2)

The factor 3/4 is what one would have for hydrogen if ni = 2
and nf = 1 are substituted in the Bohr formula, Eq. 14.9.
The screening also depends strongly on l.

16.1.2 Bremsstrahlung

The other mechanism for x-ray production is the acceleration
of electrons in the Coulomb field of the nucleus, described in
Sect. 15.11. Classically, a charged particle at rest creates an
electric field that is inversely proportional to the square of
the distance from the charge. When in motion with a con-
stant velocity, it creates both an electric field and a magnetic
field. When accelerated, additional electric and magnetic
fields appear that fall off less rapidly—inversely with the first
power of distance from the charge. This is classical electro-
magnetic radiation. Quantum mechanically, when a charged
particle undergoes acceleration or deceleration, it emits pho-
tons. The radiation is called deceleration radiation, braking
radiation, or bremsstrahlung. It has a continuous distribution
of frequencies up to some maximum value.

The photon energy fluence spectrum of bremsstrahlung
radiation from monoenergetic electrons passing through a
thin target is constant from a maximum energy hν0 down
to zero, as shown in Fig. 16.3 (Attix 1986, p. 212). The
maximum frequency is related to the kinetic energy of the
electrons by T = hν0, as one would expect from conserva-
tion of energy. (A photon of energy hν0 is emitted when an
electron loses all of its energy in a single collision).

For a thick target, we assume that all electrons at the same
depth have the same energy (that is, we ignore straggling),
and we ignore attenuation of photons coming out of the tar-
get. The spectrum is then the integral of a number of spectra
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Fig. 16.4 The energy fluence spectrum of bremsstrahlung x-rays from
a thick target, ignoring absorption of the photons in the target. The form
is dΨ/d(hν) = CZ(hν0 − hν)

like that in Fig. 16.3. The thick-target spectrum is shown in
Fig. 16.4. The spectral form is

dΨ

d(hν)
≡ dΨ

dE
= CZ(hν0 − hν) = CZ(T − E). (16.3a)

The photon particle fluence spectrum is

dΦ

dE
= 1

hν

dΨ

dE
= CZ

(
hν0

hν
− 1

)
. (16.3b)

More of the low-energy photons that are generated within
the target are attenuated as they escape, because of the much
larger values of the attenuation coefficient at low energies
(recall Figs. 15.10 and 15.11). This cuts off the low-energy
end of the spectrum. If the electron energy is high enough,
the discrete spectrum due to characteristic fluorescence is
superimposed on the continuous bremsstrahlung spectrum.
Both of these effects are shown in Fig. 16.5, which com-
pares calculations and measurements of the particle fluence
spectrum dΦ/dE.

16.2 Quantities to Describe Radiation
Interactions: Radiation Chemical Yield,
Mean Energy Per Ion Pair, and Exposure

Section 15.15 introduced the quantities energy transferred,
energy imparted, kerma, and absorbed dose, which are used
to describe radiation and its effects. This section introduces
some additional quantities (ICRU Report 33 1980, Reprinted
1992) that are used to describe the interaction of the radiation
with the detectors discussed in Sect. 16.3.

Fig. 16.5 Theoretical and measured photon particle spectra,
dΦ/d(hν), for 100-keV electrons striking a thick tungsten target.
The solid line represents measurements with a high-resolution semi-
conductor detector. The dashed line is the theory of Birch and Marshall
(1979), which takes photon absorption into account. The crosses show
an earlier theoretical model. (From Birch and Marshall 1979. Used by
permission of the Institute of Physics)

16.2.1 Radiation Chemical Yield

The radiation chemical yield G of a substance is the mean
number of moles n of the substance produced, destroyed,
or changed in some volume of matter, divided by the mean
energy imparted to the matter:

G = n

E
. (16.4)

Its units are mol J−1. (A related quantity expressed in non-
SI units is the G value, expressed in molecules or moles per
100 eV of energy imparted.) The radiation chemical yield
is particularly useful for describing chemical dosimeters.
These are usually dilute aqueous solutions, so the radiation
chemical yield of water is the important parameter.

16.2.2 Mean Energy per Ion Pair

Other detectors measure ionization produced in a gas by the
radiation. The mean energy expended in a gas per ion pair
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Table 16.1 Some representative values of the average energy per ion
pair, W

Gas W (eV per ion pair for electronsa)
He 41.3
Ar 26.4
Xe 22.1
Air 33.97b

Semiconductors W (eV per electron-hole pair)
Si 3.68
Ge 2.97
a From ICRU Report 31 (1979)
b ICRU Report 39 (1979) recommends 33.85 J C−1. Attix (1986) uses
33.97 J C−1. Note that 1 J C−1 is equivalent to 1 eV per singly-charged
ion pair

formed, W , is

W = T0

Ni

, (16.5)

where T0 is the initial kinetic energy of a charged particle
and Ni is the mean number of ion pairs formed when T0

is completely dissipated in the gas. The units are joules or
electron volts per ion pair. The mean energy expended per
ion pair is not equal to the ionization energy. To see why,
consider three processes that can take place. The first is ion-
ization, with Ei being the average energy of an ionized atom.
Second, the collision may promote an atomic electron to an
excited state without ionization. The average excitation en-
ergy is Eex. Finally, the charged particle may lose energy
without producing ionization, a process called subexcitation.
The average subexcitation energy is defined to be the en-
ergy lost by this process, Ese, divided by Ni . Conservation
of energy for this model leads to

T0 = NiEi + NexEex + NiEse.

Dividing each term by Ni leads to an expression for W . In
general, W is determined experimentally, because the terms
in this equation are quite difficult to calculate. However, they
have been calculated for helium.1 The mean energy of an
ionized helium atom is only 62 % of the value of W :

W︸︷︷︸
41.8 eV

= Ei︸︷︷︸
25.9 eV

62 %

+ (Nex/Ni

)
Eex

︸ ︷︷ ︸
0.4×20.8=8.3 eV

20%

+ Ese︸︷︷︸
7.6 eV

18 %

Values of W are tabulated in ICRU Report 31 (1979). There
are variations of a few percent depending on whether the
charged particle is an electron or an α particle. Table 16.1
provides a few representative values. Though defined for
a gas, W is also applied to semiconductors as the average
energy per electron–hole pair produced. Values of W for
semiconductors are much smaller than for a gas.

1 See Platzman (1961); also Attix (1986, pp. 339–343).

16.2.3 Exposure

The exposure X is defined only for photons and measures
the energy fluence of the photon beam. It is the amount of
ionization (total charge of one sign) produced per unit mass
of dry air when all of the electrons and positrons liberated in
a small mass of air are completely stopped in air:

X = dq

dm
. (16.6)

The units are coulomb per kilogram. Since the average
amount of energy required to produce an ion pair is well
defined, exposure is closely related to collision kerma in
air. The definition of X does not include ionization arising
from the absorption of bremsstrahlung emitted by the elec-
trons, so there is a slight difference at high energies.2 The
relationship is

X = (Kc)air

(
e

Wair

)
= Ψ

(
μen

ρ

)

air

(
e

Wair

)
. (16.7)

If charged-particle equilibrium exists, the dose in air is
related to the beam energy fluence by Eqs. 15.71 and 15.74:

Dair =
(

μen

ρ

)

air
Ψ.

The dose for the same energy fluence in some other
medium is

Dmed =
(

μen

ρ

)

med
Ψ = (μen/ρ)med

(μen/ρ)air
Dair. (16.8)

The roentgen (R) is an old unit of exposure equivalent to
the production of 2.58 × 10−4 C kg−1 in dry air; this cor-
responds to a dose of 8.69 × 10−3 Gy. (The relationship is
developed in Problem 7).

16.3 Detectors

Detectors are used for recording an image and also for mea-
suring the amount of radiation to which a patient is exposed.
This section describes the most common kinds of detectors.

2 There is also a problem at high energies because the range of the elec-
trons is large. If they are to come to rest within the chamber, the size of
the chamber becomes comparable to the photon attenuation coefficient.
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Fig. 16.6 Optical density vs. the logarithm of the relative exposure for
a hypothetical x-ray film

16.3.1 Film and Screens

Film was the original x-ray detector used by Wilhelm Roent-
gen, the discoverer of x-rays. For years it was the most
common detector for diagnostic radiology. In recent years it
has been replaced by digital detectors. We describe it briefly
for comparison with the newer techniques.

A typical x-ray film has a transparent base about 200 μm
thick, coated on one or both sides with a sensitive emul-
sion containing a silver halide (usually silver bromide). We
will not discuss the rather complicated sequence of steps by
which the absorption of photons or energy loss by charged
particles leads to a latent or developable image in the film.
When the film is developed, the emulsion grains that have
absorbed energy are reduced to black specks of metallic sil-
ver. The film is then fixed, a process in which the silver halide
that was not reduced is removed from the emulsion. The re-
sult is a film that absorbs visible light where it was struck by
ionizing radiation.

The fraction of incident light passing through the film af-
ter development is called the transmittance, T . The optical
density or density is defined to be

OD = log10(1/T ). (16.9)

A film that transmits 1 % of the incident viewing light has an
optical density of 2.

The response of a film is described by plotting the optical
density against the log of the exposure in air immediately in
front of the film (or equivalently, the absorbed dose in the
film emulsion). Since the optical density is the logarithm of
the transmittance, this is a log–log plot of the reciprocal of
the fraction of the visible light transmitted when viewing
the processed film vs. the x-ray exposure before process-
ing. A typical plot of film response is shown in Fig. 16.6.
If the curve is linear, the transmittance is proportional to the

exposure raised to some power:

T ∝ X−γ .

At very small exposures (the toe) the transmission is that of
the base and “clear” emulsion. At very high exposures (the
shoulder) all of the silver halide has been reduced to metallic
silver, and the film has its maximum optical density. In be-
tween is a region that is almost linear (on a log–log scale).
The ratio of maximum to minimum usable exposure is called
the latitude of the film. The largest value of the exponent
occurs at the inflection point and is called the gamma or con-
trast of the film. Both the exponent and the position of the
curve along the log exposure axis depend on the develop-
ment time, the temperature of the developing solution, and
the energy of the x-ray beam. The film speed is the recipro-
cal of the exposure required for an optical density that is 1
greater than the base density.

A typical film has an emulsion containing AgBr. It re-
quires a dose of 1.74 × 10−4 Gy (J kg−1) in air just in front
of the film to produce an optical density of 1. This might be
where the body is not blocking the beam. The smaller dose
to the film where there has been significant attenuation in the
body gives a lighter region, as in the heart and bone shadows
of Fig. 16.17.

The dose to the part of the body just in front of the film
(the exit dose to the patient) can be written in several ways.
For simplicity we assume monoenergetic photons. In terms
of the energy fluence of the photon beam, the exit dose is

Dbody =
(

μen

ρ

)

body
Ψ. (16.10a)

In terms of the dose in air just in front of the film it is

Dbody = (μen/ρ)body

(μen/ρ)air
Dair, (16.10b)

and in terms of the dose in the film it is

Dbody = (μen/ρ)body

(μen/ρ)film
Dfilm. (16.10c)

For 50-keV photons we find from the tables at physics.nist.
gov/PhysRefData/XrayMassCoef/ that (μen/ρ)muscle/

(μen/ρ)air = 0.004 349/0.004 098 = 1.061. Therefore the
exit dose would be (1.74×10−4)(1.061) = 1.85×10−4 Gy.
Because of attenuation, the entrance dose can be much
larger.

The dose can be reduced by a factor of 50 or more if
the film is sandwiched between two fluorescent intensifying
screens. The x-ray photons have a low probability of inter-
acting in the film. The screens have a greater probability
of absorbing the x-ray photons and converting them to vis-
ible light, to which the film is more sensitive. For 50-keV

http://physics.nist.gov/PhysRefData/XrayMassCoef/
http://physics.nist.gov/PhysRefData/XrayMassCoef/
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photons on typical emulsion, the value of μen/ρ is about
0.261 m2 kg−1. A typical value of ρ�x for the film might
be 0.02 kg m−2. Therefore μen�x = 0.0052. The fraction of
incident energy absorbed in the emulsion is 1 − e−0.0052 =
0.0052.

A typical screen might consist of particles of terbium-
doped gadolinium oxysulfide (Gd2O2S:Tb) suspended in a
carrier about 150 μm thick (0.5–1.5 kg m−2). This layer is
backed by a thin reflective layer. Two such screens (one on
each side of the film) with a total thickness of 1.2 kg m−2

absorb 28 % of the 50-keV photons that pass through them
(see Problem 11). The overall effect is to produce the same
optical density when the energy fluence in the x-ray beam is
reduced by a factor of 54—the ratio of the incident radiation
absorbed in the screen and in the film in each case.3 Typi-
cally, a sheet of film is placed in a light-tight cassette whose
front and back walls are made of screen material.

Figure 16.6 shows a plot of optical density vs. the log of
the exposure. The slope at any point on the curve is4

γ = d log10(1/T )

d log10 X
= d ln(1/T )

d ln X
= − dT /T

dX/X

= −X

T

dT

dX
= − 1

G
g, (16.11)

where G = T/X is the large-signal transfer factor and g =
dT /dX is the incremental-signal transfer factor. This will
be used in our discussion of detecting signals in noise in the
next section.

16.3.2 Scintillation Detectors

When x-ray photons interact with matter, some of their en-
ergy is transferred to electrons. These electrons interact in
turn, and some of their energy can become ultraviolet or
visible photons. A scintillator is a substance that produces
these photons with high efficiency, yet is transparent to them.
The photons are then transferred by an optical fiber or a lens
system to a light detector such as a photomultiplier tube or
a solid-state photodetector. Each x-ray photon produces an
electrical current pulse at the detector output, called a count.
When the number of counts is recorded vs. the pulse height

3 The fluorescent radiation has a wavelength of about 545 nm (green),
and each absorbed high-energy photon has sufficient energy to produce
about 14,000 fluorescence photons. However, the efficiency of produc-
tion is only about 5 % so 700 photons are produced. Some of these
escape or are absorbed. Each x-ray photon produces about 150 pho-
tons of visible and ultraviolet light that strike the emulsion—more than
enough to blacken the film in the region where the x-ray photon was
absorbed by the screen.
4 An argument based on Eq. 2.14 can be used to show that log10 x =
(1/2.303) ln x = 0.43 ln x.

Fig. 16.7 Mechanisms by which some of the energy of a primary
photon can escape from a detector. Photons A and B undergo photo-
electric absorption. All of the energy from A is absorbed in the detector,
while the fluorescence x-ray from B escapes. Photons C and D are
Compton scattered. The scattered photon from C undergoes subsequent
absorption, while that from D escapes

(total charge in the pulse, which is proportional to the en-
ergy deposited in the scintillator), the result is a pulse-height
spectrum. For monoenergetic photons, the ideal pulse height
spectrum would consist of a single peak: all pulses would
have the same height. This is not realized in practice for
two reasons: statistical variations in the scintillation process
cause the line to be broadened, and the entire energy of the
incident photon is not converted into electrons.

An atom that has been excited by photoelectric absorp-
tion can decay by the emission of a fluorescence photon. If
this photon is subsequently absorbed in the scintillator, all
of the original photon energy is converted to electron energy
so rapidly that the visible light is all part of one pulse. The
pulse height then corresponds to the full energy of the origi-
nal photon. However, if the initial photoelectric absorption
takes place close to the edge of the detector, the fluores-
cence photon can escape, and the pulse has a lower height
than those in the primary peak. This can be seen in Fig. 16.7.
Photons A and B interact by photoelectric effect. All the en-
ergy for photon A is deposited in the scintillator, while the K

fluorescence photon from B escapes. The effect on a pulse
height spectrum is shown in Fig. 16.8 for a scintillator of
sodium iodide.

In Compton scattering, the energy of the recoil electron
is transferred to the scintillator (unless the electron escapes).
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Fig. 16.8 Spectrum of pulse heights for 140-keV photons from iso-
tope 99mTc incident on a sodium iodide scintillator. The 140-keV total
energy peak is prominent, as is the peak at 110 keV corresponding
to the escape of the K fluorescence x-ray from iodine. The Compton
scatter continuum runs from 49 keV down to zero energy. The peak at
18 keV is from additional radiation from 99mTc (see Chap. 17; Repro-
duced from Wagner 1968, p. 162. Copyright 1968 by W. B. Saunders.
Used by permission of Elsevier)

The scattered photon may escape from the detector, as in D

of Fig. 16.7. (If it is subsequently absorbed, as in mechanism
C of Fig. 16.7, the pulse height will have the peak value). The
energy of the recoil electron is given by Eq. 15.15. The max-
imum electron energy occurs when the photon is scattered
through θ = 180 ◦. Then

Tmax = 2hν0x

1 + 2x
= (hν0)

2

hν0 + mec2/2
.

If the photon energy is in keV, this is

Tmax = (hν0)
2

hν0 + 256
. (16.12)

A pulse-height spectrum for “pure” Compton scatter-
ing of 662-keV photons (as emitted by 137Cs) is shown
in Fig. 16.9. The peak of the Compton continuum is at
Tmax = (662)2/(662 + 256) = 477 keV. The cases of per-
fect resolution with complete absorption and real resolution
with complete absorption are shown, along with the theoret-
ical Compton continuum with perfect resolution, and a real
spectrum.

Fig. 16.9 The response of a sodium iodide detector to 662-keV pho-
tons from 137Cs. Theoretical responses are shown for a detector that
absorbs the energy of all photons and has perfect resolution, for a de-
tector with perfect absorption and finite resolution, and for a detector
in which Compton-scattered photons can escape. Experimental data are
for a 1 1

2 -in. by 1-in. NaI crystal. (Redrawn from Harris et al. 1969; Re-
produced from Wagner 1968, p. 153. Copyright 1968 W. B. Saunders.
Used by permission of Elsevier)

When the energy of the primary photons is so large that
pair production is important, an additional escape mecha-
nism must be considered. We know (Eq. 15.22) that

hν0 = T+ + T− + (mec
2)e− + (mec

2)e+ .

The positron will eventually combine with another electron
to produce two annihilation radiation photons:

(mec
2)e+ + (mec

2)another e− = 2Eγ .

The energy of each annihilation photon is 511 keV. The
initial photon energy is finally distributed as

hν0 = T+ + T− + γ (511) + γ (511).

If all this energy is absorbed in the detector, the pulse height
corresponds to the full energy of the incident photon. One
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Fig. 16.10 Schematic of an ionization chamber or proportional
counter. The ions discharge the capacitor, which is recharged between
counts through resistor R

or both of the annihilation photons can escape, giving the
one-photon escape peak and the two-photon escape peak.

Scintillation detectors vary greatly in size. Large ones
may be tens of centimeters in diameter; others can be less
than a millimeter. A large number of materials are used (van
Eijk 2002).

16.3.3 Gas Detectors

Ionization in gas is the basis for three kinds of x-ray detec-
tors: ionization chambers, proportional counters, and Geiger
counters. A photon passing through a gas can produce pho-
toelectric, Compton, or pair-production electrons. These then
lose energy by electron collisions. Ion pairs are produced in
the gas, the average number being proportional to the amount
of energy lost in the gas. The average amount of energy re-
quired to produce an ion pair is W , as we saw in Sect. 16.2.
Imagine that the ions are produced between the plates of
a charged capacitor as shown in Fig. 16.10. The electrons
are attracted to the positive plate and the positive ions travel
to the negative plate. If all the electrons and ions are cap-
tured, the total charge collected on each plate has magnitude
q = Ne, where e is the charge on the electron or ion and N

is the number of ion pairs formed. If the capacitance is C,
the change in voltage is δv = q/C = Ne/C. Such a device
is called an ionization chamber. The cumulative discharge
of the capacitor is measured in some pocket dosimeters; in
other cases, the capacitor is slowly recharged through a large
resistance R so that each photon detected generates a voltage
pulse of height δv.

A certain minimum voltage between the two plates is nec-
essary to ensure that all the ions produced are collected,
corresponding to the ion chamber region of Fig. 16.11.
The ionization chamber is the “workhorse” detector for
accurately measuring radiation dose.

If the potential on the plates is raised further, the number
of ions collected increases. Between collisions the electrons

Fig. 16.11 The number of ions collected vs. collecting potential for
two particles that deposit different amounts of energy in a gas detec-
tor. The voltage regions are indicated where the device operates as an
ionization chamber, a proportional counter, and a Geiger counter

and ions are accelerated by the electric field, and they ac-
quire enough kinetic energy to produce further ionizations
when they collide with molecules of the gas, a process called
gas multiplication. At moderate potentials, the multiplication
factor is independent of the initial ionization, so the number
of ions collected is larger than that in an ionization cham-
ber but still is proportional to the initial number of ions. In
this region of operation the device is called a proportional
counter. Parallel-plate geometry is not used in a proportional
counter. One electrode is a wire, and the other is a concentric
cylinder.

At still higher values of the applied voltage, pulse size is
independent of the initial number of ion pairs. In this mode
of operation, the device is called a Geiger counter.

Any gas detector used to detect high-energy photons suf-
fers from the fact that the gas is not very dense. At low
energies the photoelectric cross-section is high and most
photons interact. At higher energies, many photons pass
through the gas and detector walls without interacting. A
thin sheet of absorber in front of the gas detector can ac-
tually increase the counting rate. An example is shown in
Fig. 16.12. The detector had an aluminum wall of thickness
0.3 kg m−2. Electrons of 125 keV or more pass completely
through the detector wall. The maximum energy of Compton
electrons from the 1.1-MeV photons is 890 keV. Compton
electrons produced in a thin layer of lead can pass through
the aluminum and ionize the gas in the detector. Once the
total thickness of lead and aluminum is sufficient to stop all
the Compton electrons, the addition of more lead upstream
does not increase the detector efficiency, and exponential
attenuation is seen.
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Fig. 16.12 Counting rate of a Geiger counter vs. the thickness of a lead
absorber in front of the detector, showing the buildup of counting rate
due to the conversion of photons to electrons in the lead by Compton
scattering. These electrons pass through the thin wall of the counter
and ionize the gas. The photons were from 60Co and had an energy of
1.1 MeV

16.3.4 Semiconductor Detectors

A semiconductor detector is very much like an ionization
chamber, except that a solid is used as the detecting medium.
The “ion pair” is an electron that has received sufficient en-
ergy to be able to leave its atom and move freely within the
semiconductor (but not enough energy to leave the semicon-
ductor entirely) and the “hole” that the electron left behind.
Electrons from neighboring atoms can fall into the hole, so
the hole can move from atom to atom just like a positive
charge. Details of the operation of semiconductor detectors
can be found in Lutz (1999).

A semiconductor detector has two principal advantages
over a gas ionization chamber. First, the amount of energy
required to create an electron–hole pair is only about 3 eV,
one tenth the value for a typical gas. This means that many
more pairs are produced and the statistical accuracy is bet-
ter. Second, the density of a solid is much greater than the
density of a gas, so the probability that a photon interacts is
larger. The cross-section for interaction increases with high
Z, so detectors made of germanium (Z = 32) are better for
photon detection than those made of silicon (Z = 14). Diode
detectors are used for real-time dose measurement in patients
receiving radiation therapy (AAPM Report 87 2005).

16.3.5 Thermoluminescent Dosimeters

Thermoluminescent phosphors consist of a small amount of
dielectric material (0.1 g or less) that has been doped with
impurities or has missing atoms in the crystal lattice to form
metastable energy levels or traps. These impurities or defects

are far from one another and are isolated in the lattice, so that
electrons cannot move freely from one trap to another. When
the phosphor is irradiated with ionizing radiation, some of
the electrons are trapped in these metastable states. There are
levels associated with the material at an energy E above the
trap energy (the conduction band) which allow electrons to
move throughout the phosphor. The probability that an elec-
tron escapes from the trap is proportional to a Boltzmann
factor, exp(−E/kBT ). If E is large enough, the lifetime
in the trapped state can be quite long—up to hundreds of
years. Heating allows the electrons to escape to the higher
levels, where they then fall back to the normal state with
the emission of visible photons. Ordinary table salt (NaCl)
exhibits this behavior. If it is irradiated and then sprinkled
on an electric hot plate in a darkened room, one can see the
flashes of light. The light emitted on heating is called ther-
moluminescence. In a thermoluminescent dosimeter (TLD),
the light emitted is measured with a photomultiplier tube as
the temperature is gradually increased. The total amount of
light released is proportional to the energy imparted to the
phosphor by the ionizing radiation.

Thermoluminescent dosimeter can measure an integrated
dose from 10−5 to 103 Gy. Great care must be taken both
in the preparation and reading of the phosphor. Thermolumi-
nescent dosimeter chips are widely used to measure radiation
doses because they are small and have the approximate
atomic number and atomic weight of tissue. They are often
made of LiF. Detailed descriptions are found in Chap. 14 of
Attix (1986), and Shani (1991, 2001). (The two editions of
Shani complement one another.)

16.3.6 Chemical Dosimetry

When radiation interacts with water, free radicals are pro-
duced. A free radical, such as H or OH, is electrically neutral
but has an unpaired electron. Free radicals promote other
chemical reactions. Typically, a dilute indicator of some sort
is added to the water. A common dosimeter is the Fricke fer-
rous sulfate dosimeter. A 1 mM FeSO4 solution is irradiated.
The radiation changes the iron from the ferrous (Fe2+) to the
ferric (Fe3+) state with a G of about 1.6 × 10−6 mol J−1.
The concentration of ferric ion can be measured by absorp-
tion spectroscopy. Details are found in Chap. 14 of Attix
(1986) and in Shani (1991, 2001). Magnetic resonance imag-
ing (Chap. 18) is also used to measure the amount of ferric
ion in the Fricke dosimeter since the relaxation times depend
on the ion concentration. This has led to the gel dosimeter
which allows a three-dimensional measurement of the dose
distribution—useful for planning radiation treatments (Shani
2001, Chap. 9).

Another form of chemical dosimeter is radiochromic film.
It consists of a thin layer of radiosensitive dye bonded to a
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mylar base. The dye darkens with radiation. Radiochromic
films are sensitive for doses of 1–500 Gy, making them use-
ful for measuring doses in radiation therapy (Shani 2001,
Chap. 5).

16.3.7 Digital Detectors

Digital x-ray detectors have replaced film in clinical radiog-
raphy (Doi 2006; Armato and van Ginneken 2008; Cowen
et al. 2008b; Körner et al. 2007; Uffmann and Schaefer-
Prokop 2009). A digitally recorded image generally has up to
400 times the dynamic range (latitude) of film. A factor-of-2
error in film exposure,5 which renders a conventional radio-
graphic image almost useless, is easily tolerated by digital
recording.6 A digitally stored image allows easier retrieval,
transmission, manipulation with computer algorithms, and
duplication.

A number of techniques are used. In Computed Radiogra-
phy (CR), the image is formed on a plate of phosphor crystals
such as barium fluorobromide. Absorption of x-ray photons
leaves the BaFBr crystals in a metastable state, like a TLD
phosphor. Scanning by a thin laser beam in a horizontal and
vertical raster pattern like a television image causes visible
light to be emitted by the trapped electrons. The dynamic
range of a storage phosphor can be as high as 104, compared
to about 102 for radiographic film (Rowlands 2002).

In Direct Radiography (DR) the thin-film transistor (TFT)
array technology used in flat-panel computer screens is used
to make large detector arrays. The TFT arrays provide the
spatial readout. They are combined either with an amorphous
selenium photoconductor that converts the x-ray energy to
charge (direct conversion), or with a structured scintillator
such as a large array of CsI crystals. Each CsI crystal may be
as small as 6 μm diameter by 500 μm long.

16.4 The Diagnostic Radiograph

Figure 16.13 shows the typical elements for making a diag-
nostic x-ray. An image recorded on film or a detector array
is called a radiograph. The x-ray tube ideally serves as a
point source of photons. The photons are filtered and colli-
mated to illuminate only the portion of the patient of interest.
Typically, about 10 % pass through the patient and strike the

5 Even though the film may have a linear response over a larger range,
doubling the exposure usually makes the film too dense to read.
6 Although a digital detector has greater dynamic range, proper ex-
posure is still important. Too low an exposure introduces noise; an
excessive exposure increases he dose to the patient unnecessarily.

Fig. 16.13 Overall scheme for making a radiograph. Photons are pro-
duced when electrons strike the tungsten anode. The beam is collimated
to prevent unnecessary dose to the patient. The patient is placed directly
in front of the grid (if any), and the digital detector array, which can be
film, a sandwich of film and intensifying screen, or a detector array

detector in a chest radiograph. In the abdomen the fraction
is about 1 %. There may be an optional grid, as discussed
below. We discuss each element below, and then discuss the
quality of the image.

16.4.1 X-Ray Tube and Filter

Most routine radiography is done with photons in the range
from 35 to 85 keV. (Mammography uses lower energy, and
computed tomography is somewhat higher.) Figure 16.14
shows the loss of radiographic contrast as the energy of the
incident photons increases and Compton scattering becomes
more important.

The photons are typically produced by an x-ray tube run-
ning with a voltage between cathode and anode of about
100 kilovolt peak7 (100 kVp). The anode is usually made

7 The word peak is included because the voltage from power supplies
in older machines had considerable “ripple” caused by the alternating
voltage from the power lines. Even in modern machines, the voltage
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Fig. 16.14 Radiographs taken at 70 kVp, 250 kVp, and 1.25 MeV
(60Co), illustrating the loss of contrast for higher energy photons. (From
Hendee and Ritenour (2002). Used by permission)

Fig. 16.15 The particle energy spectrum dΦ/dE from a tube oper-
ating at 100 kVp with 1, 2, and 3 mm of aluminum filtration. (From
Hendee and Ritenour (2002). Used by permission)

of tungsten (which has a high radiation yield and withstands
high temperatures) with a copper backing to conduct ther-
mal energy away. The number of x-rays produced for a given
voltage difference depends on the total number of electrons
striking the anode, which is proportional to the product of
the current and the duration of the exposure (mA s). The an-
ode rotates to help keep it cool. Additional filtration removes
low-energy photons that would not get through the body and
would not contribute to the image. Figure 16.15 shows the
effects of different thicknesses of aluminum on the particle
fluence (dΦ/dE) from a tube operating at 100 kVp. The av-
erage photon energy depends upon the filtration as well as
the kVp, and is about 45 keV for 100 kVp and 2 mm of
aluminum filtration (see Problem 18).

pulse applied to the tube may not have a purely rectangular waveform,
and kVp may not uniquely determine the x-ray spectrum during the
pulse. Modern kilovolt power supplies are described by Sobol (2002).

16.4.2 Collimation

The collimator is placed just after the x-ray tube. It has ad-
justable jaws, usually of lead, that limit the size of the beam
striking the patient. Making the beam as small as possible re-
duces the total energy absorbed by the patient. It also reduces
the amount of tissue producing Compton-scattered photons
that strike the detector and reduce the image quality.

16.4.3 Attenuation in the Patient: Contrast
Material

The purpose of a radiograph is to measure features of the
internal anatomy of a patient through differences in the at-
tenuation of rays passing through different parts of the body.
The photon fluence falls with distance from the x-ray tube
as 1/r2. It also falls because of attenuation along the path.
(We ignore the fact that scattered photons may also strike
the detector). We saw in Sect. 15.8 that the mass attenuation
coefficient of a compound can be calculated as a weighted
average of the elements in the compound:

μ

ρ
=
∑

i

(
μ

ρ

)

i

wi .

Table 16.2 lists various elements, their mass attenuation coef-
ficients at 50 keV, and their composition in water, fat, muscle,
and bone. Water and muscle are quite similar, fat has a some-
what smaller attenuation coefficient, and the attenuation of
bone is significantly greater.

Figure 16.16 shows attenuation vs. ρx for the beam in
Fig. 16.15 with 2 mm of Al filtration in water and in bone.
Bone contains calcium, which has a relatively high atomic
number, and the attenuation coefficient rises rapidly as the
energy decreases. Also shown as dashed lines are the cor-
responding values of exp(−μattenx) for the average photon
energy in the incident beam, which is 50 keV. In each case
the transmitted fraction initially falls more steeply than the
dashed line because there is more attenuation of the low-
energy photons. For thicker bone the slope of the curve is
less than the dashed line because only the high-energy pho-
tons remain. This shift of the beam energy and curvature of
the attenuation curves is called beam hardening.

These differences in attenuation make it easy to distin-
guish bone from soft tissue. It is also easy to distinguish
lungs from other tissues because they contain air and have
much lower density. Air-filled lung has a density of 180–
320 kg m−3, compared to about 1000 kg m−3 for water,
muscle, or a solid tumor. Figure 16.17 shows a normal
anterior–posterior (A–P) chest radiograph. You can see the
exponential decay through layers of bone, the outline of
the heart, the arch of the aorta, and the lacy network of
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Table 16.2 Relative composition of various tissues and the attenuation coefficient for 50-keV photons

Fractional mass compositiona

Element μatten/ρ
b

(m2 kg−1)
Adipose
tissue

Water Skeletal
muscle

Cortical
bone, adult

H 0.0336 0.114 0.112 0.102 0.034
C 0.0187 0.598 0.143 0.155
N 0.0198 0.007 0.034 0.042
O 0.0213 0.278 0.888 0.710 0.435
Na 0.0280 0.001 0.001 0.001
Mg 0.0329 0.002
P 0.0492 0.001 0.002 0.103
S 0.0585 0.001 0.003 0.003
Cl 0.0648 0.001 0.001
K 0.0868 0.004
Ca 0.1020 0.225

μatten/ρ (m2 kg−1) 0.0214 0.0227 0.0227 0.0424
ρ (kg m−3) 970 1000 1050 1920
μatten (m−1) 20.8 22.7 23.8 81.5
a Fractional mass compositions are available at http://physics.nist.gov/PhysRefData/XrayMassCoef/tab2.html
b Values are from Hubbell and Seltzer (1996)
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Fig. 16.16 Attenuation of photons in water or muscle and in bone for
the spectrum of Fig. 16.15 (100 kVp, 2 mm aluminum filtration). The
dashed lines are for the attenuation coefficients at 50 keV

blood vessels in the lungs. The patient in Fig. 16.19 has
pneumothorax. Air has leaked into the pleural cavity and
partially collapsed the lungs. You can see this collapse in
the upper portion of each lung. Spontaneous pneumothorax
can occur in any pulmonary disease that causes an alveolus
(air sac) on the surface of the lung to rupture: most com-
monly emphysema, asthma, or tuberculosis. Pneumothorax
can also be caused by perforating trauma to the chest wall.

Spontaneous idiopathic (meaning cause unknown) pneu-
mothorax occasionally occurs in relatively young people.

Abdominal structures are more difficult to visualize be-
cause except for gas in the intestine, everything has about
the same density and atomic number. Contrast agents are in-
troduced through the mouth, rectum, urethra, or bloodstream.
One might think that the highest-Z materials would be best.
However the energy of the K edge rises with increasing Z.
If the K edge is above the energy of the x-rays in the beam,
then only L absorption with a much lower cross-section takes
place. The K edge for iodine is at 33 keV, while that for lead
is at 88 keV. Between these two limits (and therefore in the
range of x-ray energies usually used for diagnostic purposes),
the mass attenuation coefficient of iodine is about twice that
of lead. The two most popular contrast agents are barium
(Z = 56, K edge at 37.4 keV) and iodine (Z = 53). Barium
is swallowed or introduced into the colon. Iodine forms the
basis for contrast agents used to study the cardiovascular sys-
tem (angiography), gall bladder, brain, kidney, and urinary
tract.

If the detector can discriminate photons of different en-
ergies, then one can measure photons on either side of an
element’s K edge, obtaining images that are easily distin-
guished from the image of background material (Schlomka
et al. 2008).

Some pathologic conditions can be identified by the depo-
sition of calcium salts. Such dystrophic (defective) calcifica-
tion occurs in any form of tissue injury, particularly if there
has been tissue necrosis (cell death). It is found in necrotiz-
ing tumors (particularly carcinomas), atherosclerotic blood
vessels, areas of old abscess formation, tuberculous foci, and
damaged heart valves, among others.
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Fig. 16.17 Radiograph of a normal chest. Some of the features are
identified in Fig. 16.18 and are described in the text. (Radiograph
courtesy of D. Ketcham, M.D., Department of Diagnostic Radiology,
University of Minnesota Medical School)

Fig. 16.18 Some of the features in the radiograph of a normal chest,
Fig. 16.17

16.4.4 Antiscatter Grid

Since the radiograph assumes that photons either travel in a
straight line from the point source in the x-ray tube to the de-
tector or are absorbed, Compton-scattered photons that strike
the detector reduce the contrast and contribute an overall
background darkening. This effect can be reduced by placing
an antiscatter grid (or radiographic grid, or “bucky” after its

Fig. 16.19 Radiograph of a patient with pneumothorax. Air has es-
caped from the lungs and caused them to collapse partially. The features
are indicated in Fig. 16.20. (Radiograph courtesy of D. Ketcham, M. D.,
Department of Diagnostic Radiology, University of Minnesota Medical
School)

Fig. 16.20 Key to features in Fig. 16.19. The areas of pneumothorax
are indicated by P. The one on the patient’s left (the viewer’s right)
is difficult to see in the printed version; a radiographic film viewed by
transmitted light has a much greater dynamic range
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Fig. 16.21 Scale drawing of the elements of a typical grid. The thin
lead strips absorb photons that have been scattered through more than
a few degrees. As a result background fog due to scattering is reduced
and the contrast is increased. Since the x-rays come from a point source,
the elements of the grid are usually tilted toward the source and are not
parallel over the entire detector surface

inventor, Gustav Bucky) just in front of the detector. Figure
16.21 shows how a grid works. The grid stops x-rays that are
not traveling parallel to the sides of the grid strips. A typical
grid might have 10–50 strips of lead per centimeter that are
3 mm high and 0.05 mm thick, embedded in plastic or alu-
minum. The strips can be either parallel or “focused,” that is,
slanted to aim at the point source on the anode of the x-ray
tube. The grid can be either linear or crossed, with strips of
lead running in both directions. A grid with a ratio of height
to spacing of 12 improves the contrast by a factor of about
3.75, while increasing the exposure to the patient by a fac-
tor of about 4.25 to keep the detector dose about the same
(Hendee and Ritenour 2002, p. 227). Sometimes the grid is
moved during the exposure if the strips in the grid are thick
enough to show up on the detector.

16.4.5 Detector

Detectors were described in Sect. 16.3. The film-screen
detector is nearly obsolete. In computed radiography a pho-
tophosphor or photostimulable phosphor replaces the film-
screen combination. The latent image on this phosphor is
“read” by a scanning laser beam in a process called pho-
tostimulated luminescence. The resulting image is digitized
(Rowlands 2002). Direct radiography uses a thin-film tran-
sistor detector array (p. 470) to directly produce a digitized
image.

16.5 Image Quality

The quality of a radiographic image depends on three things:
resolution, contrast, and noise. The resolution and con-
trast can be described by concepts introduced in Chap. 12
for a linear, shift-invariant system: the point-spread func-
tion and its Fourier transform, the optical transfer function,
whose magnitude is the modulation transfer function.8 The
noise arises primarily from the fluctuations in the number
of photons striking a given area of the detector—quantum
noise—though granularity of the film or detector array is also
important.

The transfer function for the entire system depends on
many factors: the tube and spot size, filter, source–screen
and source–patient distances, grid, detector, and scatter. If
each of these subsystems operates in series, as in an au-
dio system, one can successively convolve the point-spread
functions or multiply together the (complex) optical trans-
fer functions. It is also possible to have parallel9 subsystems,
each contributing to the final image, in which case the anal-
ysis is more complicated. An excellent review of the use of
transfer-function analysis in radiographic imaging is the ar-
ticle by Metz and Doi (1979). The text by Macovski (1983)
is at about the level of this book and presents many details
of noise and convolution for radiographic, fluoroscopic, to-
mographic, nuclear medicine, and ultrasound images. The
size of the spot where the electrons strike the anode of the
x-ray tube is critical in determining the resolution of the final
image, as discussed in detail by Wagner et al. (1974).

The exposure contrast is the change in exposure between
two (usually adjacent) parts of the image divided by the
average:

Cin = �X

X
. (16.13)

This is similar to the modulation defined in Eq. 12.20. The
brightness contrast is the analogous quantity for the light
from the computer display or the light transmitted through
the processed film:

Cout = �T

T
. (16.14)

8 The point-spread function of a detector is easily measured. A point
source is created by passing the x-rays through a pinhole in a piece
of lead placed directly on the detector. The resulting image is the
point-spread function. We saw in Chap. 12 how this is related to the
modulation transfer function. Standard techniques have been developed
for measuring the modulation transfer function (MTF) (ICRU Report
41 1986; ICRU Report 54 1996).
9 Examples of parallel subsystems are the two emulsion layers on
double-coated film, and the effect of primary and scattered radiation
on the formation of the image.
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Fig. 16.22 An example of the relationship among exposure, image
size, and detectability. A type 1100 aluminum phantom was imaged
with digital fluorography. It was exposed to an 80-kVp x-ray beam with
4.5-mm Al filter. As the image becomes lighter, the thickness of the
aluminum phantom increases in steps: 0.85, 1.3, 2.1, 3.2, and 5.2 mm.
The holes are 1, 1.5, 2, 2.5, and 3 mm in diameter. As the attenuation
in the aluminum increases, so does the signal, and the easier it is to de-
tect the smaller holes. (Photograph courtesy of Richard Geise, Ph.D.,
Department of Radiology, University of Minnesota)

The exposure contrast and brightness contrast are propor-
tional (Eq. 16.11):

Cout = γCin. (16.15)

The radiographic signal is a small change in optical
brightness in adjacent areas of the image. Changes in bright-
ness below a certain value are not detectable by the viewer.
This is apparent in Fig. 16.22, which shows signals with dif-
ferent contrasts and different sizes on a uniform background.
The smaller the diameter of the signal region, the more dif-
ficult the signal is to detect. We will develop a simple model
to explain why.

Suppose first that there is no signal, but that the detector
is illuminated with a uniform beam of x-rays with a con-
stant fluence. We make an exposure for a certain time and
count the number of photons striking a sampling area of the
detector, S. Though the average fluence is constant across
the detector, the photons are randomly distributed. A some-
what different number of photons strike a nearby sampling
area of the same size. This is a situation where the average
number striking a sampling area of a given size is constant,
the total number of photons is very large, and the proba-
bility that any one photon is absorbed in a given sampling
area is small, so the situation is described by Poisson statis-
tics (Appendix J). The mean number of photons striking a

sampling area is ΦS and the standard deviation is (ΦS)1/2.
Suppose that some fraction f ≤ 1 of these photons actually
interact with the detector. Then the mean number interact-
ing is f ΦS and the standard deviation is10 (f ΦS)1/2. Thus
there are fluctuations in the brightness of the image across the
uniformly exposed viewing region, just because of the Pois-
son statistics—quantum noise or shot noise—of the x-ray
photons striking the detector.

The fluctuations in the number of photons striking area
S can be related to fluctuations in the exposure of that area
of the detector, and hence to the response of the detector.
Since the exposure (measured in air just in front of the de-
tector) is proportional to the photon fluence, X = AΦ,

(X − X)2 = A2(Φ − Φ)2 and (�X)rms = A(�Φ)rms. We
define the noise exposure contrast to be the standard devia-
tion of the number of photons affecting the detector in area S

divided by the average number affecting an area that size:11

Cnoise in ≡ (f ΦS)1/2

f ΦS
= (f ΦS)−1/2. (16.16)

The noise brightness contrast is then

Cnoise out = γ (f ΦS)−1/2. (16.17)

The fluctuations in the noise, measured by noise contrast,
are inversely proportional to the square root of the area of
the lesion to be detected.12 This is seen in Fig. 16.22. The
noise in the system is determined by measuring the charge
collected in each pixel of the uniformly exposed detector.
Variations with position can be described either in terms of
its two-dimensional autocorrelation function or its Fourier
transform, the Wiener spectrum. The radiographic noise con-
sists of three components: quantum mottle, the statistical
fluctuations in the number of photons absorbed in a small
area (shot noise); structure mottle due to nonuniformities
in the x-ray absorbing layer of the detector, and graininess,
variation in the size and distribution of the transistors in the
detector. Here we discuss only quantum mottle.

10 This is very similar to the arguments about the fraction of photons
absorbed by a visual pigment molecule in Eq. 14.68. Changes in the
value of f in Fig. 14.43 shift the response curve along the axis.
11 It is sometimes useful to write it as

Cnoise in ≡ (f ΦS)1/2

f ΦS
= 1

f 1/2S1/2

(�Φ)rms

Φ
= 1

f 1/2S1/2

A(�X)rms

AX

= 1

f 1/2S1/2

(�X)rms

X
.

12 An analogous phenomenon is seen when counting individual photons
with a radiation detector at a fixed average rate. The number counted in
a given time interval fluctuates, with the fractional fluctuation inversely
proportional to the square root of the counting time.
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Now introduce a signal, which is a small increase in the
exposure or photon fluence: �Xsignal = A�Φsignal. This
gives a brightness contrast

Csignal out = γ
�Xsignal

X
= γ

�Φsignal

Φ
. (16.18)

The ratio of the signal contrast to the noise contrast is called
the signal-to-noise ratio:

SNR = Csignal out

Cnoise out
= γ

(
�Φsignal/Φ

)

γ (f ΦS)−1/2
= (f S)1/2 �Φsignal

Φ1/2
.

(16.19)
The signal will be detectable only if the signal brightness
contrast exceeds the noise brightness contrast by a certain
amount:13

SNR > k, (f S)1/2 �Φsignal

Φ1/2
> k. (16.20)

The larger the value of the signal-to-noise ratio, the greater
the probability of detecting the signal. Many experiments on
detecting lesions in a noisy background have been done; they
will not be discussed here.14 Values of k that are used range
from 2 to 5.

Let us apply the result in Eq. 16.20 to a simple model:
a monoenergetic x-ray beam passing through a patient. The
total thickness of the patient is L. The attenuation coefficient
is μ. If an x-ray beam with fluence Φ0 strikes the patient, the
fluence of x-ray photons emerging is Φ1 = Φ0e

−μL. Imag-
ine a nearby region where for a distance x the attenuation
coefficient is μ − �μ. The x-ray fluence emerging along a
line passing through this region is

Φ2 = Φ0e
−μ(L−x)−(μ−�μ)x = Φ0e

−μLe�μx

= Φ1e
�μx

≈ Φ1(1 + x �μ). (16.21)

The exposure contrast is therefore Cin = (�Φ)signal/Φ1 ≈
x �μ. We combine this with Eq. 16.20 to obtain

(f SΦ1)
1/2(x �μ) > k, (16.22)

where Φ1 is the fluence leaving the patient or striking the
detector. (These are the same if variations in 1/r2 can be

13 There are statistical fluctuations in the signal as well as the noise.
The variance of the difference between signal and noise will be the sum
of the variances in the signal and in the noise. This has the effect of
increasing the noise by a factor of

√
2, which can be absorbed in the

value of k that is chosen. See Problem 23.
14 The ability to detect the signal accurately is greater when the ob-
server knows the nature of the signal and is only asked whether it is or
is not present. That is, the ability of an observer to detect a signal is less
in the more realistic situation where the observer does not know what
the signal is or where it might be in the radiograph.

neglected, where r is the distance from the tube to the pa-
tient or the tube to the detector). The signal-to-noise ratio
increases as the square root of the photon fluence or expo-
sure, the square root of the area to be detected, and the square
root of f , the fraction of the photons striking the detector that
are actually detected.

The fraction f in this Poisson model is equal to the detec-
tive quantum efficiency (DQE). It is easily visualized as the
fraction of the photons striking the detector that actually af-
fect it. The number of noise equivalent quanta (NEQ) in our
model is f Φ1.15

We can apply Eq. 16.22 to determine the number of pho-
tons that must be transmitted through the patient for a given
image size and given signal-to-noise ratio. We assume that
f = 1. The required photon fluence emerging from the
patient is (dropping the subscript on Φ1)

ΦS >

(
k

x �μ

)2

. (16.23)

If the lesion thickness is x = 1 cm and �μ = 0.01μwater =
(0.01)(22.7) m−1, then x �μ = 0.00227. For k = 4, the
number of photons in the image area must be greater than 3×
106. The exit dose to the patient is (assuming monoenergetic
photons)

Dbody = Ψ

(
μen

ρ

)

body
= (hν)Φ

(
μen

ρ

)

body
(16.24)

= (hν)(3 × 106)

S

(
μen

ρ

)

body
.

The dose increases as the area to be detected decreases. In
order to detect an image 1 mm square using 50-keV photons,
the exit dose in water would have to be at least 9.8×10−5 Gy.

16.6 Angiography and Digital Subtraction
Angiography

One important problem in diagnostic radiology is to image
portions of the vascular tree. Angiography can confirm the
existence of and locate narrowing (stenosis), weakening and
bulging of the vessel wall (aneurysm), congenital malfor-
mations of vessels, and the like. This is done by injecting

15 This simple equality exists only because we are using a model with
Poisson statistics. The DQE is defined more generally as the square of
the signal-to-noise ratio of the detector output divided by the square of
the signal-to-noise ratio of the detector input. The more general defi-
nitions of DQE and NEQ are discussed in Wagner (1983) and Wagner
(1977).
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Fig. 16.23 Digital subtraction angiography. a Brain image with contrast material. b Image without contrast material. c The difference image.
Anterior view of the right internal carotid artery. (Photograph courtesy of Richard Geise, Ph.D., Department of Radiology, University of Minnesota)

a contrast material containing iodine into an artery. If the
images are recorded digitally, it is possible to subtract one
without the contrast medium from one with contrast and see
the vessels more clearly (Fig. 16.23).

In a typical angiographic study, 30–50 ml of contrast ma-
terial is injected into an artery. For a vessel with a diameter
of 8 mm, ρx of the contrast material is about 4 mg cm−2.

16.7 Mammography

Mammography poses particular challenges for medical
physicists. The resolution needed is extremely high (about
15 line pairs (lp) mm−1 compared to 5 lp mm−1 for a chest
radiograph).16 The radiologist may use a magnifying glass
to inspect the image. The contrast in a breast image is in-
herently low. Fat and glandular tissue must be distinguished
by the slight differences in their attenuation coefficients (see
Problem 25). The dose must be made as small as possible.

These challenges have been met. Spatial frequencies of
14–16 lp mm−1 are routinely obtained. Noise limits the
minimum size of a detectable object to > 0.3 mm for mi-
crocalcifications or a few millimeters for soft tissue. Digital
mammography is providing even higher resolution (Pisano
and Yaffe 2005). The typical mammographic dose per view
has been reduced from about 50 mGy in the 1960s and
4.1 mGy in the 1970s to 0.4 mGy in 2008.17 One technique
that has led to these improvements is the molybdenum target
x-ray tube, operating at 25–28 kVp. Figure 16.24 shows the
photon fluence from such a tube, with the 17-keV Kα and

16 Line pairs (abbreviated lp) are analogous to the period of a square
wave.
17 See NCRP Report 100 (1989) for early data; Mettler et al. (2008) for
2008 data.

Fig. 16.24 The x-ray spectrum from a molybdenum anode tube used
for mammography, with and without filtration by a molybdenum foil.
(From Hendee and Ritenour 2002. Used by permission)

19-keV Kβ lines being quite prominent. Filtration of the
beam with the same material, molybdenum, further sharp-
ens the spectrum. The K edge of molybdenum occurs at
an energy just above the Kβ line, removing photons for
energies over about 20 keV. The dashed lines show the
spectrum when a molybdenum filter is used. These photons
interact primarily by the photoelectric effect, so attenua-
tion depends strongly on atomic number. There are few
Compton-scattered photons to degrade the image.

16.8 Computed Tomography

Radiographs provide only an integrated value of the atten-
uation coefficient. That is, if N0(y, z) monoenergetic x-ray
photons traverse the body along a line in the x direction after
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entering the body at coordinates (y, z), the number emerging
without interaction is N(y, z) = N0(y, z)e−α(y,z), where

α(y, z) =
∫

μ(x, y, z) dx.

The radiograph measures N(y, z) or α(y, z). The desired
information is μ(x, y, z). The radiographic image is often
difficult to interpret because of this integration along x. For
example, it may be difficult to visualize the kidneys because
of the overlying intestines.

Several types of computed tomography (tomos means
slice) have been developed in the last few decades.
They include transmission computed tomography (CT),
single-photon emission computed tomography (SPECT), and
positron emission tomography (PET). They all involve re-
constructing, for fixed z, a map of some function f (x, y)

from a set of projections F(θ, x), as described in Sect. 12.4
and 12.5. For CT the function f is the attenuation coeffi-
cient μ(x, y). For SPECT and PET it is the concentration of
a radioactive tracer within the body, as will be described in
Chap. 17.

The history of the development of computed tomogra-
phy is quite interesting (Kalender 2011). The Nobel Prize
in Physiology or Medicine was shared in 1979 by a physi-
cist, Allan Cormack, and an engineer, Godfrey Hounsfield.
Cormack had developed a theory for reconstruction and done
experiments with a cylindrically symmetric object that were
described in two papers in the Journal of Applied Physics in
1963 and 1964. Hounsfield, working independently, built the
first clinical machine, which was installed in 1971. It was de-
scribed in 1973 in the British Journal of Radiology. The No-
bel Prize acceptance speeches (Cormack 1980; Hounsfield
1980) are interesting to read. A neurologist, William Olden-
dorf, had been working independently on the problem but did
not share in the Nobel Prize (See DiChiro and Brooks 1979;
and Broad 1980).

Early machines had an x-ray tube and detector that moved
in precise alignment on opposite sides of the patient to make
each pass. The size of these machines allowed only heads to
be scanned. After one pass, the gantry containing the tube
and detector was rotated 1 ◦ and the next pass was taken.
After data for 180 passes were recorded, the image was
reconstructed. A complete scan took about 4 min.

Figure 16.25 shows the evolution of the detector and
source configurations. The third generation configuration is
the most popular. All of the electrical connections are made
through slip rings. This allows continuous rotation of the
gantry and scanning in a spiral as the patient moves through
the machine. Interpolation in the direction of the axis of ro-
tation (the z axis) is used to perform the reconstruction for a
particular value of z. This is called spiral CT or helical CT.
Kalender (2011) discusses the physical performance of CT
machines, particularly the various forms of spiral machines.

Fig. 16.25 Scanning techniques used in CT scanners. a In the earliest
scanners the x-ray tube and detector moved in synchronization on either
side of the subject. Then their translation path was rotated one degree.
b Nearly all machines now use the “third generation” configuration: a
fan beam and multidetector array rotate continuously around the patient

There may be a single row of detectors or multiple detector
rows parallel to the z axis. Table 16.3 shows how scanners
have improved since they were first introduced. Spiral CT
provides μ(x, y, z), and the images can be displayed in three
dimensions.

Figure 16.26 is an abdominal scan showing a benign
tumor in the liver. Computer analysis of μ(x, y, z) data
can be used to display 3-dimensional images of an organ
(Fig. 16.27). The surface of an organ is defined by a change
in μ.

It is often desirable to measure the attenuation coeffi-
cient with an accuracy of ±0.5 %. For water at 60 keV,
μ = 20 m−1, so μ must be measured with an accuracy of
δμ = 0.1 m−1. (A beam of 120 kVp with 2–3 mm of alu-
minum filtration has about this average photon energy). It is
customary to report the fractional difference between μ and
μwater. The Hounsfield unit is

H = 1000
μtissue − μwater

μwater
. (16.25)

The desired accuracy is ±5 Hounsfield units.
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Table 16.3 The evolution of typical values for high-performance CT machines. (Adapted from Kalender 2011, p. 41)

Feature 1972 1980 1990 2000 2010
Minimum scan time 300 s 5–10 s 1–2 s 0.33–0.5 s 0.27–0.35 s
Data per 360 ◦ scan 57.6 kB 0.2–1 MB 1–2 MB 5–20 MB 0.1–1 GB
Data per spiral scan 12–24 MB 0.1–1 GB 1–100 GB
Image matrix 80 × 80 256 × 256 512 × 512 512 × 512 512 × 512
Power (kW) 2 10 40 60–100 80–120
Slice thickness (mm) 13 2–10 1–10 0.5–1 0.4–0.6
Spatial resolution (Line pair cm−1) 3 8–12 10–15 12–16 12–25

Fig. 16.26 A spiral CT scan of the abdomen. The arrow points to a
biliary cystadenoma, a benign tumor of the liver. (Scan courtesy of
E. Russell Ritenour, Ph.D., Department of Radiology, University of
Minnesota Medical School)

Fig. 16.27 A 3-dimensional rendering of the aorta, renal arteries and
kidneys. (Scan courtesy of E. Russell Ritenour, Ph.D., Department of
Radiology, University of Minnesota Medical School)

Fig. 16.28 A circular object that is to be analyzed. The diameter of the
object is L; the width of each sample in the scan is w. It is desired to
resolve voxels in each sample which have a length w on each side, as
shown for the center diameter

There is a fundamental relationship between the dose
to the patient and the resolution. We derive it here for a
first-generation machine. Suppose we are reconstructing the
image of an object with a circular cross-section as shown in
Fig. 16.28. The object is to be resolved into cubic volume el-
ements or voxels of length w on each side parallel to the x, y

and z axes. The length of each voxel along the z axis perpen-
dicular to the scan is the slice thickness. The diameter of the
object is L. For simplicity, we make the analysis assuming a
first-generation machine, with rectilinear passes repeated at
m different angles between 0 and 180 ◦. The width of each
sample in a scanner pass is w. The number of samples in each
pass is

n = L

w
, (16.26)

and the number of voxels in the object is approximately the
area of the circular object divided by the area of the voxel
in the plane of the slice: πL2/4w2 or πn2/4. To determine
πn2/4 independent values of μ requires at least that many
independent measurements. Since n measurements are made
in each pass, we need m passes where mn = πn2/4 or

m = πn

4
. (16.27)
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With more passes the situation is overdetermined; with fewer
it is underdetermined. If the values of μ are overdetermined,
convolved back projection (Chap. 12) or a similar procedure
can be used to assign the values of μ.

Now consider the attenuation of photons along a diam-
eter of the object in one pass. In Sect. 16.5 we devel-
oped a relationship between the photon fluence in the beam
needed to measure the attenuation with some desired accu-
racy (Eq. 16.21). The same arguments can be applied in this
case:

δΦ = Φ1w δμ.

The photons arrive at the detector, which we assume for sim-
plicity to have 100 % efficiency, at a constant average rate,
so they are Poisson distributed. The standard deviation in
the number of counts is (Φ1S)1/2 = (Φ1w

2)1/2. To detect
the difference between the two samples, w2δΦ must exceed
this by the minimum signal-to-noise ratio, k. This gives the
minimum photon fluence at the detector:

Φ1 >
k2

w4(δμ)2
. (16.28)

It can be shown (Brooks and DiChiro 1976a) that these
counts can be divided among all the passes. Since the dose
is proportional to Φ1, this equation shows a fundamental re-
lationship between dose and resolution. Decreasing w by a
factor of 2 requires a 16-fold increase in dose, while improv-
ing δμ by a factor of 2 requires a dose that is 4 times as
large. For further discussion of this equation, see Kalender
(2011) pp. 169–170. We discuss CT dose in Sect. 16.12. Re-
ducing the dose is a matter of great current interest (Tack and
Gevenois 2007).

16.9 Biological Effects of Radiation

Radiation at sufficiently high doses can kill cells, tumors, or-
gans, or entire animals. Radiation, along with surgery and
chemotherapy, is a mainstay of cancer treatment. Radiation
can also cause mutations. Radiobiology, the study of how
radiation affects cells and organs, has provided major im-
provements in our understanding of cell death and damage.
This understanding has modified and improved our approach
to radiation therapy. This section provides a brief introduc-
tion to radiobiology, but it ignores many important details.
For these details see Hall and Giaccia (2012). The discus-
sion starts with some cell-culture (in vitro) results, presents
the most frequently used model for radiation damage, and
then moves to in vivo tissue irradiation and the eradication of
tumors.
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Fig. 16.29 Typical survival curves for cell culture experiments, for
4-MeV α particles, 15-MeV neutrons, and 250-kVp x-rays. These are
representations of typical experimental data

There are two types of effects. Deterministic or tissue re-
actions occur immediately (early effects) and include skin
reddening (erythema) and cataracts. Late effects are stochas-
tic and include cancer and mental retardation for fetal irra-
diation exceeding 0.3 Gy. We discuss only stochastic effects
here.

16.9.1 Cell-Culture Experiments

Cell-culture studies are the simplest conceptually. A known
number of cells are harvested from a stock culture and placed
on nutrient medium in plastic dishes. The dishes are then
irradiated with a variety of doses including zero as a con-
trol. After a fixed incubation period the cells that survived
irradiation have grown into visible colonies that are stained
and counted. Measurements for many absorbed doses give
survival curves such as those in Fig. 16.29. These curves
are difficult to measure for more than two or three decades,
because of the small number of colonies that remain.

Failure to survive means either that the cell was killed or
that it can no longer reproduce. If the cells die attempting
the next or a later cell division (mitosis) it is called mitotic
death. Some cells die by apoptosis: a mechanism whereby
the cell initiates its own programmed death, going through a
well-defined series of morphologic events that culminate in
fragmentation of the DNA (Hall and Giaccia 2012). Experi-
ments with microscopic beams of radiation and short-range
particles aimed at different parts of the cell have demon-
strated that damage to the cell’s DNA is only one factor in
the cell’s response to the radiation. Nonetheless, the differ-
ences in survival curve shapes that we discuss here are still
important.
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The shape of the survival curve depends on the linear
energy transfer (LET) of the charged particles. For the α

particles in Fig. 16.29 the LET is about 160 keV μm−1, for
neutrons it is about 12 keV μm−1, and for the electrons from
the 250-kVp x-rays it is about 2 keV μm−1. The α particles
and neutrons are called high-LET radiation; the electrons are
low-LET radiation.

High-LET radiation produces so many ion pairs along its
path that it exerts a direct action on the cellular DNA. Low-
LET radiation can also ionize, but it usually acts indirectly. It
ionizes water (primarily) according to the chemical reaction

H2O → H2O+ + e−.

The H2O+ ion decays with a lifetime of about 10−10 s to the
hydroxyl free radical:

H2O+ + H2O → H3O+ + OH.

This then produces hydrogen peroxide and other free radicals
that cause the damage by disrupting chemical bonds in the
DNA.

16.9.2 Chromosome Damage

Cellular DNA is organized into chromosomes. In order to un-
derstand radiation damage to DNA, we must recognize that
there are four phases in the cell division cycle:

M Cell division. This stage includes both division of the
nucleus (mitosis) and of the cytoplasm (cytokinesis).
This phase may last 1 or 2 h.

G1 The first “gap” phase. The cell is synthesizing many
proteins. The duration of G1 determines how fre-
quently the cells divide. It varies widely by kind of
tissue, from a few hours to 200 h.

S Synthesis. A new copy of all the DNA is being made.
This lasts about 8 h.

G2 The second “gap” phase, lasting about 4 h.

Figure 16.30 shows, at different magnifications, a strand of
DNA, various intermediate structures that we will not dis-
cuss, and a chromosome as seen during the M phase of the
cell cycle. The size goes from 2 nm for the DNA double
helix to 1400 nm for the chromosome. In addition to cell sur-
vival curves one can directly measure chromosome damage.
There is strong evidence that radiation, directly or indirectly,
breaks a DNA strand. If only one strand is broken, there are
efficient mechanisms that repair it over the course of a few
hours using the other strand as a template. If both strands

Fig. 16.30 A schematic diagram of how the DNA is packed to give
a chromosome, shown at metaphase of the cell cycle. (Republished
with permission of Taylor and Francis Group from Alberts et al. (1999,
p. 230). Permission conveyed through Copyright Clearance Center, Inc)

are broken, permanent damage results, and the next cell di-
vision produces an abnormal chromosome.18 Several forms
of abnormal chromosomes are known, depending on where
along the strand the damage occurred and how the damaged
pieces connected or failed to connect to other chromosome
fragments. Many of these chromosomal abnormalities are
lethal: the cell either fails to complete its next mitosis, or
it fails within the next few divisions. Other abnormalities al-
low the cell to continue to divide, but they may contribute to
a multistep process that sometimes leads to cancer many cell
generations later.

Even though radiation damage can occur at any time in
the cell cycle (albeit with different sensitivity),19 one looks
for chromosome damage during the next M phase, when the

18 This is a simplification. It is possible for a double strand break to
repair properly. See Hall and Giaccia (2012, p. 18).
19 In general, cells exhibit the greatest sensitivity in M and G2.
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DNA is in the form of visible chromosomes as in the bottom
example in Fig. 16.30. If the broken fragments have rejoined
in the original configuration, no abnormality is seen when the
chromosomes are examined. If the fragments fail to join, the
chromosome has a “deletion.” If the broken ends rejoin other
broken ends, the chromosome appears grossly distorted.

A sequence of processes leads to cellular inactivation.
Ionization is followed by initial DNA damage. Most of this
is repaired, but it can be repaired incorrectly. No repair or
faulty repair results in DNA lesions that are then manifest
as chromosome aberrations, which may be nonlethal, may
cause mutations, or may lead to cell death. The numbers
quoted here are from the review by Steel (1996). A cell dose
of 1 Gy leads to the production of about 2 × 105 ion pairs
per cell nucleus, of which about 2000 are produced in the
cell’s DNA. It has been estimated that the amount of DNA
damage immediately after radiation can be quite large: 1000
single-strand breaks and 40 double-strand breaks per Gy. Yet
survival curves for different cell types show between 0.3
and 10 lethal lesions per gray of absorbed dose. Thus the
amount of repair that takes place is quite large, and the model
introduced below is an oversimplification.

A number of chemicals enhance or inhibit the radiation
damage. Some chemical reactions can “fix” (render perma-
nent) the DNA damage, making it irreparable; others can
scavenge and deactivate free radicals. One of the most im-
portant chemicals is oxygen, which promotes the formation
of free radicals and hence cell damage. Cells with a poor oxy-
gen supply are more resistant to radiation than those with a
normal supply.

16.9.3 The Linear-Quadratic Model

The linear-quadratic model is often used to describe cell
survival curves. We will extended it to very small survival
rates that cannot possibly be confirmed experimentally. We
use it as a simplified model for DNA damage from ioniz-
ing radiation that recognizes two types of damage, shown
in Fig. 16.31. In type-A damage a single ionizing particle
breaks both strands of the DNA, and the chromosome is bro-
ken into two fragments. In type-B damage, a single particle
breaks only one strand. If another particle breaks the other
strand “close enough” to the first break before repair has
taken place, then the chromosome suffers a complete break.

The probability of type-A damage is proportional to the
dose. The average number of cells with type-A damage af-
ter dose D is m = αD = D/D0, and the probability of
no damage is the Poisson probability P(0;m) = e−m =
e−αD . This is the dashed line in Fig. 16.32, which is re-
drawn from Fig. 16.29. For radiations with higher LET the
proportionality constant is greater, as seen in Fig. 16.29.

Fig. 16.31 The two postulated types of DNA damage from ionizing
radiation for our simple model to explain the linear-quadratic cell cul-
ture survival curve. In type-A damage a single ionizing particle breaks
both strands. Two ionizing particles are required for type-B damage,
one breaking each strand
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Fig. 16.32 A survival curve, showing the linear exponent for type-A
damage and the quadratic exponent for type-B damage

In type-B damage one strand is damaged by one ionizing
particle and the other by another ionizing particle. The
probability of fragmenting the DNA molecule is therefore
proportional to the square of the dose. The average number
of molecules with type-B damage is βD2, and the survival
curve for type-B damage alone is e−βD2

, also shown in
Fig. 16.32. This leads to the linear-quadratic model for cell
survival:

Psurvival = e−αD−βD2
. (16.29)

The dose at which mortality from each mechanism is the
same is α/β, as shown in Fig. 16.32.

An extension of the cell survival experiments is the frac-
tionation curve shown in Fig. 16.33. After a given dose, cells
from the culture were harvested and used to inoculate new
cultures. After a few hours they were irradiated again. The
survival curve plotted against total dose starts anew from the
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Fig. 16.33 If the dose for low-LET radiations is divided into fractions,
with a few hours between fractions, all of the single-strand breaks have
been repaired, and survival follows the same curve as for the original
fraction

point corresponding to the first irradiation. The initial dose
of 6 Gy caused both type-A and type-B damage. Before the
second dose, the cells with single-strand damage had been
repaired, and when the second dose was given, it acted on
undamaged cells, so that only type-A damage occurred for
small additional doses.

16.9.4 The Bystander Effect

Ionization damage is not the entire story. The bystander effect
in radiobiology refers to the “induction of biological effects
in cells that are not directly traversed by a charged particle,
but are in close proximity to cells that are” (Hall 2003; Hall
and Giaccia 2012).

One experiment showing the bystander effect involves ir-
radiating cells in culture and transferring some of the culture
medium to unirradiated cells, which then respond as if they
had been irradiated. The effect is absent if the irradiated
medium contains no cells. The irradiated cells secreted some
chemical into the medium that affected the unirradiated cells.
In one such experiment, apoptosis was induced in the unirra-
diated culture by quite low doses to the irradiated cells. The
dose response curve was nearly flat.

Another type of experiment used microbeams of α parti-
cles to irradiate specific cells in a culture, and then measured
the response of neighboring cells which had not been ir-
radiated. The survival of cells not irradiated decreased as
their neighbors were hit with more α particles. It is thought
that some chemical produced in the irradiated cells migrated
into the unirradiated cells through gap junctions connect-
ing the cytoplasm of neighboring cells. Similar experiments
are done with radioactive nuclides that emit very-short range
Auger electrons (see Chap. 17). The nuclides are attached to

Fig. 16.34 Survival curves for assays of human cells. There is a wide
range in initial sensitivity, but not too much difference in final slope.
The shaded area labeled “human A-T cells” is for cells from a disease,
ataxia-tangliectasia, where repair mechanisms are lacking. (Reproduced
with permission from Hall 2002, p. 328)

molecules that are selectively taken up by the cell nucleus or
cytoplasm or that bond to the cell’s DNA (Kassis 2004).

16.9.5 Tissue Irradiation

There is considerable variation in the shape of the survival
curves for human cells (Fig. 16.34). The shaded area labeled
“human A-T cells” is for cells from patients with a genetic
disease, ataxia-tangliectasia, where repair mechanisms are
lacking and breakage of a single strand of DNA leads to cell
death.

The radiation damage to the DNA is not apparent until the
cell tries to divide. At that point, the chromosomes are either
so badly damaged that the cell fails to divide or the damage
survives in later generations as a mutation. Some tissues re-
spond to radiation quite quickly; others show no effect for
a long time. This is due almost entirely to the duration of
the G1 phase or the overall time between cells divisions. Tis-
sues are divided roughly into two groups: early-responding
and late-responding. Early-responding tissues include most
cancers, skin, the small and large intestine, and the testes.
Late-responding tissues include spinal cord, the kidney, lung,
and urinary bladder.

The central problem of radiation oncology is how much
dose to give a patient, over what length of time, in order to



484 16 Medical Uses of X-Rays

0.001

2

4
6

0.01

2

4
6

0.1

2

4
6

1
S

ur
vi

vi
ng

 C
el

l F
ra

ct
io

n

121086420

Total Dose (Gy)

n = 1

n = 2

n = 32

Fig. 16.35 The fraction of cells surviving a total radiation dose when
the dose is divided into 1, 2, and 32 fractions, showing how the curve
approaches e−αD as the number of fractions becomes large

have the greatest probability of killing the tumor while do-
ing the least possible damage to surrounding normal tissue.
While the dose is sometimes given all at once (over several
minutes), it is usually given in fractions five days a week
for four to six weeks. Some recent treatment plans, primarily
for brachytherapy (see Sect. 17.11), use fractions given every
few hours.

What total dose (or dose per fraction) should be given in
how many fractions, with what time between fractions? We
can gain some insight by using the linear-quadratic model.
Let the dose per fraction be Df , the number of fractions
be n, and the total dose be D = nDf . We plot survival
vs. total dose for different numbers of fractions. We assume
that the time between fractions allows for full repair of sub-
lethal damage (single-strand breaks). The probability of a
cell surviving after n fractions have been delivered is

Ps = Psurvival = S =
(
e
−αDf −βD2

f

)n = e−αD−βD2/n.

(16.30)
As the number of fractions becomes very large for a given
total dose, the survival curve approaches e−αD . This can
be seen in Fig. 16.35, which plots survival vs. total dose
delivered in different numbers of fractions. With many frac-
tions the dose per fraction is very small, all the single-strand
breaks are repaired, and almost no type-B cell deaths take
place.

Early-responding tissue and tumors have been found to
have an α/β ratio of about 10 Gy. The survival curve is pri-
marily due to type-A damage. Late-responding tissues have
an α/β ratio of 2–3 Gy. There is considerable variation in
these numbers.

Some of the problems of radiation therapy and the ben-
efits of fractionation can be seen if we consider a strictly
hypothetical example (a toy model) in which α = 0.15 Gy−1
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Fig. 16.36 Cell survival curves for late-responding normal tissue (LR)
and for a hypothetical tumor (in red), showing the improvement ob-
tained by dividing the dose into fractions. With a single fraction, the
tumor survives much better than the normal tissue. With 35 fractions,
this discrepancy has been reduced. The details are discussed in the text

for the tumor and 0.1 Gy−1 for the surrounding tissue. The
tumor is early responding with α/β = 10 Gy, and the sur-
rounding tissue is late responding with α/β = 2 Gy. Figure
16.36 shows the cell-survival curves for 1 and 35 fractions.
The tumor survival in each case is shown in red.

To see the benefit of fractionation, suppose that the patient
can tolerate a dose at which only 10−6 of the cells of the
surrounding tissue survive, represented by the horizontal line
on the graph. (This is not realistic!) For a single fraction, this
corresponds to a total dose of about 15 Gy, which, applied
to the red line, shows that the surviving fraction of tumor
cells is about 3 × 10−3. For 35 fractions the normal tissue
can tolerate about 70 Gy, yielding 4×10−6 as the fraction of
tumor cells surviving.

Suppose next that it is possible to confine the radiation
beam so that the dose to normal tissue is only about 0.6 times
that to the tumor. This means that the tissue dose in Eq. 16.30
is multiplied by 0.6. The result is shown in Fig. 16.37 for 35
fractions. The tumor dose can now be as high as 115 Gy for
the same effect on surrounding tissues, leading to a tumor
survival of only 10−10. We will see how beam shaping is
accomplished in the next section.

These calculations are solely to illustrate the basic princi-
ples, and the doses are not realistic. Clinically useful calcu-
lations must take several additional factors into account: the
actual values of α for the tissue and tumor under considera-
tion, the effect of cell growth after irradiation, the effect of
the first dose on synchronizing the cycles of the remaining
cells, and the oxygen level in the tumor cells. (The greater
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Fig. 16.37 Survival curves for the same cells as in the previous figure,
with the dose to the surrounding tissue reduced to 0.6 times that to the
tumor. Now the probability of tumor survival at high doses is about
0.0001 times that for the surrounding normal tissue. This shows the
importance of confining the radiation to the tumor as much as possible

the oxygen concentration the more sensitive the cells are,
particularly for low-LET radiation. Rapidly growing tumors
often outstrip their blood supply, receive less oxygen, and
are less radio-sensitive.) Fractionation is reviewed in Orton
(1997) and in Hall and Giaccia (2012). It is also neces-
sary to take into account the fact that neither the tumor nor
the surrounding normal tissue receives a uniform dose of
radiation.

16.9.6 AModel for Tumor Eradication

The target theory model can be applied to a collection of cells
to give us insight into the central problem of radiation ther-
apy: tumor eradication. Suppose that a tumor consists of N

cells with identical properties. The cells are uniformly irra-
diated with dose D. If a collection of identical tumors were
irradiated, the number of cells surviving in each tumor would
fluctuate. The probability that a single cell survives is ps(D),
which might be given by Eq. 16.30. If this number is small
and N is large, the number surviving follows a Poisson distri-
bution. The average number surviving is m = Nps(D). The
probability of a cure is the probability that no tumor cells
survive:

Pcure = e−m = e−Nps(D). (16.31)

This can be evaluated using your cell-survival model of
choice.

Figure 16.38 shows a tumor eradication curve based on
the 35-fraction curve in Fig. 16.36. The larger the tumor, the
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Fig. 16.38 The probability of eradicating the tumor (no surviving tu-
mor cells) as a function of dose for tumors containing different numbers
of cells

greater the dose required for cure. Figure 16.39 shows a plot
of the probability of tumor cure and the probability of unac-
ceptable damage to the surrounding tissue. For this example,
at least 60 Gy are required in order to have a good probability
of cure; once the dose is higher than 63 Gy, the damage to
normal tissue is unacceptable.

16.10 Radiation Therapy

The treatment of cancer must deal with two issues: eradica-
tion of the primary tumor (local control), and eradication of
metastases, which may be in nearby tissue or may be at dis-
tant sites in the body. In many cases radiation therapy, either
alone or combined with surgery, is the best technique for lo-
cal control. Two oncologists have provided a review of the
benefits and problems of radiation therapy, addressed specif-
ically to the medical physics community (Schulz and Kagan
2002). They point out that many cancer deaths are due to
metastatic disease, so improved local control does not nec-
essarily provide a corresponding improvement in survival.
Ratliff (2009) provides a survey of literature about radiation
therapy.

Which method of treatment is best can change dramat-
ically as new treatments are developed. For example, a
combination of radiation therapy and chemotherapy was
once used to treat Hodgkin’s disease; chemotherapy has
been improved to the point where radiation is no longer
necessary (DeVita 2003).
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Fig. 16.39 The probability of curing the tumor and the probability of
unacceptable damage to normal tissue vs. dose

Fig. 16.40 X-ray therapy was used to treat a carcinoma of the nose. A

shows the original lesion; B is the result one year later. The patient re-
mained asymptomatic 5 years after treatment. (Reprinted from William
and James 1989, with permission from Elsevier)

16.10.1 Classical Radiation Therapy

Doses for diagnostic radiology vary from about 10−4 to
10−2 Gy. Doses of 20–80 Gy are required to treat cancer. A
great deal of physics is involved in planning the treatment for
each patient [See Khan (2010) or Goitein (2008)]. There is a
choice of radiation beams: photons of various energies, elec-
trons, neutrons, protons, or α particles. Photons and electrons
are routinely available; the other sources require special fa-
cilities. The number of proton facilities is growing rapidly.
Only a few of the beam issues will be raised here. Some
of the dose measurement issues are discussed in the next
section.

An example of the effectiveness of radiation therapy is
shown in Fig. 16.40 The patient developed a carcinoma of
the nose and refused surgery. Radiation with a total dose of
50 Gy was used, and the results one year later are shown. It

Fig. 16.41 The dose vs. depth for x-ray beams of different quality
(energy) on the central axis of the beam. The source–surface distance
(SSD) is 100 cm and the field size is 10×10 cm. The curve “3.0 mm Cu
HVL” is for a photon beam that is reduced to half intensity by a copper
filter 3.0 mm thick. The radioactive element 60Co emits two gamma ray
photons (1.17 and 1.33 MeV.) The labels 4, 10 and 25 MV refer to the
energy of the electron beam striking the x-ray tube anode. (From Khan
2003, p.163. c©2003 Lippincott Williams & Wilkins)

is ironic that the carcinoma probably developed because the
patient was treated with x-rays for acne many years earlier.

We have already seen the importance of reducing dose
to tissue surrounding the tumor. Optimizing the dose deter-
mines the kind of radiation to be used and its energy, as well
as the details of beam filtration and collimation and how it
is aimed at the patients body. For now, we discuss a photon
beam. Attenuation and the 1/r2 decrease of photon fluence
help spare tissue downstream in the beam. Since μatten de-
creases with increasing photon energy up to a few MeV,
higher-energy photons penetrate more deeply and must be
used for treating deeper lesions. There is also dose buildup
with depth over distances comparable to the range of the
Compton-scattered electrons. Both of these effects are shown
in Fig. 16.41.

The beam is collimated to spare normal tissue. Origi-
nally, the collimator consisted of four lead jaws that provided
a rectangular opening with adjustable length and width.
A wedge was sometimes placed in the beam to vary the
intensity across the collimated radiation field.

Figure 16.42 shows isodose contours for various beams.
In addition to the differences with depth seen in Fig. 16.41,
there are significant differences in the sharpness of the dose
distribution across the beam. The extent of the lesion to be
radiated must be carefully determined with radiographs or
CT scans.

If the tumor is not near the surface, the ratio of tumor
dose to normal tissue dose can be increased by irradiating the
patient from several directions. Figure 16.43 shows how the
relative dose to a deep tumor can be increased by irradiating
with two fields on opposite sides of the patient. In Fig. 16.44
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Fig. 16.42 Isodose distributions for radiation under different condi-
tions, all collimated to 10×10 cm. a Radiation from an x-ray tube with
200 kVp, 0.5 m from the surface. b Photons from the radioactive isotope
60Co, 0.8 m from the surface. c 4-MV photons, 1 m from the surface.
d 10-MV photons, 1 m from the surface. (From Khan (2003, p. 204).
c©2003 Lippincott Williams & Wilkins)

three and four fields are used. The angles of the fields can be
changed by rotating the patient couch as well as the gantry
holding the photon source and collimator.

Rectangular fields do not match the shape of the tumor.
To overcome this problem a multileaf collimator replaces the
four original jaws on the therapy machine. A typical multi-
leaf collimator has up to 100 pairs of tungsten alloy leaves,
each a few mm wide, which can be independently adjusted to
provide a pattern like that in Fig. 16.45. This might be used
for up to nine fields from different directions.

16.10.2 Modern X-Ray Therapy

The goal of radiation therapy is to provide as large a dose as
possible to the tumor while sparing adjacent normal tissue.

Fig. 16.43 Isodose distribution when the patient is irradiated equally
from opposite sides. (From Khan (2003, p. 210). c©2003 Lippincott
Williams & Wilkins)

The normal tissue may be quite close to the tumor. Three-
dimensional conformal radiation therapy uses 3-dimensional
information about the target volume. This is difficult, be-
cause even with 3-dimentional display of CT, MRI or ultra-
sound images, it may be impossible to see the edges of the
tumor. Nevertheless, the beam’s-eye view that can be com-
puted from 3-d image data can be very useful in planning the
treatment. For a discussion of conformal radiation therapy,
see Khan (2010), Chap. 19.

In classical radiotherapy, the beam was either of uniform
fluence across the field, or it was shaped by an attenuat-
ing wedge placed in the field. Intensity-modulated radiation
therapy (IMRT) is achieved by stepping the collimator leaves
during exposure so that the fluence varies from square to
square in Fig. 16.45 (Goitein 2008; Khan 2010, Ch. 20)

It was originally hoped that CT reconstruction techniques
could be used to determine the collimator settings at differ-
ent angles. This does not work because it is impossible to
make the filtered radiation field negative, as the CT recon-
struction would demand. IMRT with conventional treatment
planning improves the dose pattern (Goitein (2008); Yu et al.
(2008)), providing better sparing of adjacent normal tissue
and allowing a boost in dose to the tumor.

One problem in radiation therapy is movement of organs
when the patient breathes. Four-dimensional CT records data
at a fixed point in the respiratory cycle. The radiotherapy
beam is turned on only at the same point in the cycle (Khan
2010, Ch. 25).
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Fig. 16.44 Isodose distribution for (a) three and (b) four radiation
fields, each designed to give a relative dose of 100 at the center of
the tumor. (From Khan 2003, p. 215. c© 2003 Lippincott Williams &
Wilkins)

Fig. 16.45 A multileaf collimator (MLC). The tungsten leaves are
shown in white; the opening is black

16.10.3 Charged Particles and Neutrons

Electrons, typically between 6 and 20 MeV, are also used
for therapy (Hogstrom and Almond (2006)). Because of the
range–energy relationship, the field falls nearly to zero in a

Fig. 16.46 Depth–dose curves for electrons of different energies, mea-
sured with a solid-state detector (diode) and an ionization chamber.
Both the range and the straggling increase with increasing energy.
(From F. M. Khan 1986). AAPM Monograph 15.

Fig. 16.47 Energy loss vs. depth for a 150 MeV proton beam in wa-
ter, with and without straggling. The Bragg peak enhances the energy
deposition at the end of the proton range. (Copyright c© 2005 W. D.
Newhauser, M. D. Anderson Cancer Center. Used by permission)

few centimeters. Electrons are used primarily for skin and lip
cancer, head and neck cancer, and irradiation of lymph nodes
near the surface. Figure 16.46 shows the dose vs. depth as a
percent of the maximum dose for electron beams of several
different energies.

Protons are also used to treat tumors (Khan 2010, Ch.
26; Goitein 2008). Their advantage is the increase of stop-
ping power at low energies. It is possible to make them
come to rest in the tissue to be destroyed, with an enhanced
dose relative to intervening tissue and almost no dose distally
(“downstream”) as shown by the Bragg peak in Fig. 16.47.
Placing an absorber in the proton beam before it strikes the
patient moves the Bragg peak closer to the surface. Various
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Fig. 16.48 Irradiating the patient through a number of absorbers of
different thickness spreads out the region of maximum dose. (Copyright
c© 2005 by W. D. Newhauser, M. D. Anderson Cancer Center. Used by

permission)

techniques, such as rotating a variable-thickness absorber
in the beam, are used to shape the field by spreading out
the Bragg peak (Fig. 16.48). The edges of proton fields are
sharper than for x-rays and electrons (Delaney and Kooy
2008). This can provide better tissue sparing, but it also
means that alignments must be more precise. Another tech-
nique is to extract the protons from the accelerator at the
desired energy and use magnets to sweep the resulting beam
across the desired region of the patient (Goitein 2008).

Sparing tissue reduces side effects immediately after
treatment. It also reduces the incidence of radiation-induced
second cancers many years later. These are particularly im-
portant in pediatric patients as the initial treatment proves
more successful and the patients survive longer. Miralbell et
al. (2002) estimated the incidence rate for secondary cancers
in certain pediatric cancers and found a reduced incidence
for proton therapy compared to both conventional x-ray and
IMRT.

Proton therapy is used in a number of diseases. Delaney
and Kooy (2008) provide an extensive review. Some insti-
tutions are experimenting with intensity-modulated proton
therapy (IMPT) (Xu et al. 2008).

Fast neutrons are used for therapy (Duncan 1994). The
dose is due to charged particles: protons, α particles (4He
nuclei), or recoil nuclei of oxygen and carbon that result from
interactions of the neutrons with the target tissue. All of these
have high LET, and the oxygen effect is less than for low-
LET radiation. Fast neutron therapy shows promise in some
salivary gland cancers (Douglas et al. 2003).

Boron neutron capture therapy (BNCT) is based on a nu-
clear reaction which occurs when the stable isotope 10B is

irradiated with neutrons, leading to the nuclear reaction (in
the notation of Chap. 17)

10
5 B +1

0 n →4
2 α +7

3 Li or 10
5 B(n, α)7

3Li.

Both the alpha particle and lithium are heavily ionizing and
travel only about one cell diameter. BNCT has been tried
since the 1950s; success requires boron-containing drugs that
accumulate in the tumor. The field has been reviewed by
Barth (2003).

Brachytherapy (brachy means short) involves the implan-
tation of radioactive isotopes in a tumor and will be discussed
in Chap. 17.

16.11 DoseMeasurement

It is important to measure radiation doses accurately for
radiation therapy in order to compare the effectiveness of
different treatment protocols and to ensure that the desired
protocol is indeed being followed. Accuracies of 2 % are
expected. An extensive literature about relating the dose in
the measuring instrument to the dose in surrounding tissue
exists.20 Here we describe one of the techniques that is used.

A basic problem in dosimetry is that the measuring instru-
ment has different properties than the medium in which it is
immersed. Imagine, for example, that a gas-filled ionization
chamber is placed in water. If the radiation field were very
large and uniform, one could in principle use an ionization
chamber whose dimensions are large compared to the range
of secondary electrons, and the interaction of the radiation
field with the chamber gas would be the dominant effect.
This is not practical. At the other extreme, we imagine an
ionization chamber that is so small that it does not alter the
radiation field of the water. That is, its dimensions must be
small compared to the range of the charged particles created
in the water and passing through it.

We saw in Sect. 15.16 that the absorbed dose in a par-
allel beam of charged particles with particle fluence Φ is
(Eq. 15.75)

D = Se

ρ
Φ.

Usually the beam consists of particles with different kinetic
energies T . Let ΦT be the energy spectrum:

Φ =
∫ Tmax

0
ΦT dT .

Then the dose is the integral of the number of particles with
energy T times the mass stopping power for particles of that

20 See Attix (1986), Chap. 10ff or Khan (2010), Chap. 8.
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energy:

D =
∫ Tmax

0
ΦT

Se

ρ
dT . (16.32)

We can define an average mass collision stopping power:

Se

ρ
= 1

Φ

∫ Tmax

0
ΦT

Se

ρ
dT (16.33)

so that

D = Φ
Se

ρ
. (16.34)

Let us apply this to the situation where a small detector
(“gas”) is introduced in a medium (“water”) in which we
want to know the dose. The charged particle fluence is not
altered by the detector because it is small compared to the
range of the charged particles. Applying Eq. 16.34 in both
media, we obtain

Dw

Dg

= (Se/ρ)w

(Se/ρ)g
≡ (Se/ρ)wg . (16.35)

This is the Bragg–Gray relationship for the absorbed dose
in the cavity. It is standard in the literature to denote the di-
mensionless ratio of the stopping powers in the two media by
(Se/ρ)wg [or, in some books, (Sc/ρ)wg ].

This equation is often used with ionization chambers. The
charge created in an ionization chamber of mass m is the
charge per ion pair e times the number of ion pairs formed
in mass m. The number of ion pairs is the energy deposited,
mDg , divided by the average energy required to produce an
ion pair, W :

q = e
mDg

W
. (16.36)

Combining this with Eq. 16.35 gives the dose in the medium
in terms of the charge created:

Dw = q

m

(
W

e

)

g

(Se/ρ)wg . (16.37)

The charge q created is usually greater than the charge col-
lected in the ion chamber because of recombination of ions
and electrons before collection. The collection efficiency
and the chamber mass are deduced from calibration of the
chamber. Once the chamber has been calibrated, the fac-
tor (Se/ρ)wg accounts for placing the chamber in different
media.

16.12 The Risk of Radiation

Exposure to radiation may or may not cause a noticeable ef-
fect. Effects can include a change, which may not be harmful;

damage to cells, which may not necessarily be deleterious to
the individual; or harm, which is clinically observable in the
subject or possibly a descendant (though current data sug-
gest that genetic changes are rare). It may take years before
the harm is observed. The International Commission on Ra-
diological Protection in ICRP (1991) defines the detriment to
an individual who receives a dose of radiation. It is a rather
complex combination of the probability of harm, the severity
of the harm, and the time of onset after exposure. It will be
discussed more below.

In this section we focus on the increased probability of
induction of cancer from an exposure to radiation. We have
considerably more information about human exposure to
ionizing radiation than we have for any other known or sus-
pected carcinogen (Boice 1996). Several studies at moderate
doses show that radiation is a relatively weak carcinogen,
though this is not the public view.

We have already seen that the biological effect of radiation
depends on the absorbed dose, the LET, the nature of the
tissue that is irradiated, and the dose rate. It also depends on
the age of the subject. This makes it very difficult to estimate
the detriment. Ideally, we would multiply the dose to each
organ or target in the body by the probability of a detriment to
that target from that kind of radiation now and in the future,
and sum over all the organs in the body. This is impossible:
we do not know enough. We must simplify the problem while
taking some of these differences into account.

16.12.1 Equivalent and Effective Dose

16.12.1.1 Equivalent Dose
Our first simplification assumes that the LET dependence is
the same for all target organs. ICRP defines the radiation
weighting factor WR for each radiation type R striking the
body. It depends on the radiation type and energy and is
independent of organ or tissue type. The radiation weight-
ing factor for x-rays is 1. WR is determined “with guidance”
from an earlier quantity, the relative biological effectiveness
of the radiation (RBE). The weighting factor for each radia-
tion WR is multiplied by the average dose to the target organ
or tissue DR,T and summed to give the equivalent dose21 to

21 The nomenclature here is quite confusing. ICRP used to define the
dose equivalent, also denoted by H , as QD, where Q was called the
quality factor of the radiation. The radiation weighting factor is very
similar, and essentially numerically equivalent, to the earlier quality fac-
tor, Q. Values of Q recommended by Nuclear Regulatory Commission
(NRC) are 1 for photons and electrons, 10 for neutrons of unknown en-
ergy and high-energy protons, and 20 for α particles, multiply charged
ions, fission fragments, and heavy particles of unknown charge. The
ICRP has its own recommendations, that differ slightly for protons and
neutrons. See McCollough and Schueler (2000).
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Table 16.4 Contribution of some organs to the whole-body radiation detriment. (From ICRP 1991, Table B-20)

Organ (T ) Cancer probability,
per Sv

Severe genetic
probability,
per Sv

Corrected for life
lost and nonfatal
cancers, per Sv

Tissue weighting
factor (WT )

Bladder 30 × 10−4 29.4 × 10−4 0.04
Breast 20 × 10−4 36.4 × 10−4 0.05
Stomach 110 × 10−4 100 × 10−4 0.14
Gonads 100 × 10−4 133 × 10−4 0.18
Total 500 × 10−4 752 × 10−4 1.00

the target organ, HT :

HT =
∑

R

WRDR,T . (16.38)

The unit of HT is the sievert (Sv).22

16.12.1.2 Detriment and Effective Dose
The detriment is a measure of the harm from an exposure to
radiation. It might be a genetic effect (relatively rare) or the
development of cancer some years later. If cancer, it might be
fatal, shortening life span, or it might cause discomfort and
inconvenience but not death. We want to estimate the detri-
ment when a certain equivalent dose has been delivered to
some target organs. We assume that the probability of devel-
oping cancer in a target organ depends on the dose to that
organ and not on the dose to any other part of the body. We
also assume that the probabilities are small, so that if sev-
eral organs have received a radiation dose, the probability
of developing cancer is the sum of the probabilities for each
organ.

Most of our information about the detriment comes from
extensive studies of atomic-bomb survivors, for whom the
entire body received a fairly uniform equivalent dose. These
survivors have now been followed for almost 70 years. Other
studies include patients who have been followed for decades
after receiving radiation therapy. ICRP (1991) estimates the
radiation detriment using these data and taking into account
the probability of a fatal cancer attributable to the radiation,
the weighted probability of an attributable nonfatal cancer,
the weighted probability of severe hereditary effects, and the
relative decrease in lifespan. Table 16.4 shows four of the
14 entries in Table B-20 of ICRP (1991). The details of the
various corrections are not shown; the point is to show how
each organ contributes to the total detriment.

If a uniform dose is given to the entire body, some organs
are more sensitive to the radiation than others. The effective

22 Both the sievert and the gray are J kg−1. Different names are used
to emphasize the fact that they are quite different quantities. One is
physical, and the other includes biological effects. An older unit for H

is the rem. 100 rem = 1 Sv.

Table 16.5 Major contributions to the effective dose from a typical CT
head scan

Organ WT HT WT HT

(mSv) (mSv)
Brain 0.025 36 0.90
Bone marrow (red) 0.12 3 0.36
Thyroid 0.05 5.5 0.28
Bone surface 0.01 14 0.14
All other organs 0.10
Effective dose 1.8

dose23 E is a sum over all irradiated organs:

E =
∑

T

WT HT =
∑

R,T

WT WRDR,T . (16.39)

The tissue weighting factor WT is the radiation detriment for
organ T from a whole body irradiation as a fraction of the
total radiation detriment. By definition, the sum of WT over
all organs equals unity. The last column of Table 16.4 shows
the WT assigned to each target organ in ICRP (1991). See
also the review by McCollough and Schueler (2000). Slightly
different values of WT are found in ICRP (2007), Table B.2.

As an example, consider a typical CT head scan, which
provides a significant equivalent dose to the brain, bone mar-
row, thyroid, and bone surface, as shown in Table 16.5.24

The effective dose is 1.8 mSv. The probability of developing
a radiation-induced cancer is 500 × 10−4 × 1.8 × 10−3 =
9 × 10−5. If the whole body were to receive an equivalent
dose of 36 mSv, the probability of a radiation-induced cancer
would be 500 × 10−4 × 36 × 10−3 = 1.8 × 10−3.

16.12.2 Comparison With Natural
Background

One way to express risk is to compare medical doses to the
natural background. We are continuously exposed to radia-
tion from natural sources. These include cosmic radiation,
which varies with altitude and latitude; rock, sand, brick, and

23 An older, related quantity is the effective dose equivalent, HE =
WT QD.
24 Values of HT were provided by C. McCollough.
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Table 16.6 Typical radiation doses from natural sources

Radiation source Detail Effective dose rate to target
organ (mSv year−1)

US population average effec-
tive dose rate in 2006 (mSv
year−1)a

Cosmic radiation New York city 0.30 0.33
Denver (1.6 km) 0.50
La Paz, Bolivia (3.65 km) 1.8
Flying at 40,000 ft 7 × 10−3 mSv hr−1

Terrestrial (radioactive minerals) 0.21
Over fresh water 0
Over sea water 0.2
Sandy soil 0.1–0.25
Granite 1.3–1.6

In the body 0.29
Inhalation of radon 2.28
Total 3.11
a NCRP Report 160 (2009) Table 1.1
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Fig. 16.49 Various doses on a logarithmic scale. Natural background
is per year; other doses are per exposure

concrete containing varying amounts of radioactive minerals;
the naturally occurring radionuclides in our bodies such as
14C and 40K; and radioactive progeny from radon gas from
the earth.25 In a typical adult, there are about 4 × 107 ra-
dioactive disintegrations per hour from all internal sources.
Table 16.6 and Fig. 16.49 summarize the various sources of
radiation exposure. The radon entry in Table 16.6 is based
on a WR of 20 for α particles from radon progeny, the value
used by NCRP.26 There is considerable uncertainty in this

25 Radon is chemically inert gas that escapes from the earth. Since it
is chemically inert, we breathe it in and out. When it decays in the
air (the decay scheme is described in Sect. 17.12), the decay products
attach themselves to dust particles in the air. When we breathe these dust
particles, some become attached to the lining of the lungs, irradiating
adjacent cells as they undergo further decay.
26 The dose to the lungs from radon progeny is about 1 mGy yr−1.
This is multiplied by Wr = 20 and WT = 0.12 (lungs) to arrive at an
effective dose of 2.4 mSv yr−1.

Table 16.7 Typical radiation equivalent doses for the population of the
USA. (From AAPM Report 96 2008, Table 2)

Procedure Equivalent dose (mSv)
Chest X-ray (Anterior Posterior) 0.1–0.2
Lumbar spine 0.5–1.5
Mammogram 0.3–0.6
Barium enema 3–6
Nuclear medicine cardiac 13–40
Head CT 1–2
Chest CT 5–7
Abdomen CT 5–7
Coronary CT angiography 5–15

determination: WR could be as low as 3, in which case radon
would contribute much less to the natural background.

Diagnostic procedures give doses that are in general com-
parable to the average annual background dose, as can be
seen in Table 16.7. Mettler et al. (2008) give a more extensive
set of doses. The higher CT doses correspond to pediatric
CT; see Fig. 16.52. One can explain to a patient that a chest
x-ray is equivalent to about 1 week of natural background,
and a mammogram is equivalent to a month or two. A con-
ventional fluoroscopic study of the lower digestive system is
equivalent to about a year of natural background. ICRU Re-
port No. 74 discusses patient dosimetry for medical imaging.
There is a wide range of doses for a given procedure (Mettler
2008). Patients are having more and more radiologic exami-
nations. Several steps are now taken to reduce the dose due to
CT procedures. The cross-section of the body is elliptical; the
x-ray tube current can be reduced when the path through the
body is shorter. The overall tube current can be reduced as
long as the photon-noise-limited resolution is good enough
to identify the anatomy of interest.
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16.12.3 Calculating Risk

Assessing the risk of radiation is complicated, since a
radiation-induced cancer, for example, may not appear for
many years. It is therefore necessary to specify how many
years one watches a population after exposure, age at expo-
sure, and current age. One also has to specify whether the
risk is of acquiring the disease or of dying from it. Whatever
criteria we use, we can define a risk r(H) that depends on the
equivalent dose. We then define the excess absolute risk as

EAR = r(H) − r(0) (16.40)

and the excess relative risk as

ERR = r(H) − r(0)

r(0)
= r(H)

r(0)
− 1 = EAR

r(0)
. (16.41)

The units of r and excess absolute risk can vary. The risk
might be per person per year, or it might be for a certain num-
ber of years or for a lifetime exposure. The excess relative
risk has the advantage of being dimensionless. It is frequently
reported, even though it can be difficult to understand intu-
itively. (Plots of EAR vs. dose for breast cancer in Japanese
women and women in the USA have nearly the same slope.
However, r(0) is smaller for Japanese women, leading to a
higher ERR).

Consider a rare disease, and suppose that the probability
of acquiring the disease over a lifetime is 2 × 10−3, while
in a population that has received a particular dose of some-
thing (which might be radiation, or a chemical, or a particular
behavior) the probability is 5 × 10−3. Then the excess abso-
lute risk is 3 × 10−3, while the excess relative risk is 150 %.
A person hearing that the relative risk has increased by 1.5
times might be unduly alarmed, not realizing that there are
only three additional cases in 1000 people.

Statistical fluctuations can make it quite difficult to mea-
sure excess risk. Suppose that we want to determine whether
r increases linearly with dose. Measurements at lower doses
to determine if the response is linear are difficult to make, re-
quiring large numbers of subjects, as the following simplified
example shows. Suppose that we have two measurements of
the probability of acquiring cancer: one at zero dose, which
gives r(0), the “spontaneous” probability due to nonradiation
causes, and one at a fairly large dose (say 0.25 Sv, repre-
sented by the vertical red line on the right in Fig. 16.50). At
some lower dose we want to make a measurement to distin-
guish between a linear increase of probability with dose and
a probability that remains at the “spontaneous” value because
we are below some threshold dose for carcinogenicity. The
probability p = r(H) of acquiring cancer is small, and the
total population N is large. This means that if the experiment
could be repeated several times on identical populations, the
number of persons acquiring cancer, n, would be Poisson
distributed with mean number m = Np = Nr(H) and
standard deviation σ = √

m. Figure 16.50 plots m vs. dose
for some value of N , with dotted lines to indicate m ± σ . A
measurement at the lower dose indicated by the vertical red
line on the left will not distinguish between the two curves.
The only way to reduce the width between the dotted lines
at m ± σ would be to use a larger population N .

To give a quantitative but overly simplified example, sup-
pose that r(H) = e + αH , with e = 0.044 and α =
0.013 Sv−1. At a dose of 0.25 Sv, r = 0.047. For 105 per-
sons, the constant curve (expected in the absence of radiation
or below threshold) gives m = 4400 ± 66, while the linear
curve gives m = 4730 ± 69. The two curves are distin-
guishable. At a dose of 0.01 Sv, m for the constant curve
is still 4400 ± 66, while for the linear case it is 4410 ± 66. It
is impossible to distinguish between the linear and constant
curves.

16.12.3.1 The Linear No-Threshold Model and
Collective Dose

In dealing with radiation to the population at large, or to
populations of radiation workers, the policy of the various
regulatory agencies has been to adopt the linear no-threshold
(LNT) model to extrapolate from what is known about the
excess risk of cancer at moderately high doses and high
dose rates, to low doses, including those below natural
background.

If the excess probability of acquiring a particular disease
is αH in a population N , the average number of extra persons
with the disease is

m = αNH. (16.42)

The product NH , expressed in person Sv, is called the col-
lective dose. It is widely used in radiation protection, but it
is meaningful only if the LNT assumption is correct. Small
doses to very large populations can give fairly large values of
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m, assuming that the value of α determined at large doses is
valid at small doses.

It has been suggested that there may in some cases be a
threshold for radiation-induced damage. If there is a thresh-
old, then the LNT model gives an overestimate. The latest
reports of expert panels continue to recommend the LNT
model (NCRP Report 136 2001; Upton 2003; BEIR Report
VII 2005), but their recommendation is still questioned (Hig-
son 2004; Tubiana et al. 2009). The debate about the LNT
model continues (Doss et al. 2014).

To help put the risk in perspective, consider the following
example from BEIR (2005), p. 15. Among 100 people, about
42 will be diagnosed with cancer during their lifetime in the
absence of any excess radiation. If they had all received a
dose of 0.1 Gy (100 mSv for low-LET radiation), there could
be one additional cancer in the group.

Even if the LNT model is correct, it can lead to regula-
tory decisions that are not reasonable. For example, Brooks
(2003) cites a study in which the process of cleaning up sev-
eral Department of Energy sites resulted in more fatal worker
accidents than the number of lives that were calculated to
have been saved, based on the LNT model.

The Health Physics Society (2010) issued a position state-
ment that radiogenic health effects have not been consistently
demonstrated below 100 mSv. They recommend that esti-
mates of risk should be limited to individuals who receive
a dose of 50 mSv in one year or 100 mSv in a lifetime.

16.12.3.2 Other Models
Figure 16.51 plots the excess effect vs. dose, showing four
possibilities for how some effect might depend on dose. By
definition, there is no excess effect when the dose is zero.
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Fig. 16.52 Excess relative risk for atomic bomb survivors who were
exposed to a dose of 150 mSv or less and followed for 55 years show
a small, but statistically significant increase in cancer incidence. The
range of doses from pediatric CT is also shown. (Redrawn from Hall
(2002, pp. 225–227). With kind permission of Springer Science and
Business Media)

The two data points represent the lowest doses at which the
effect has been measured. The LNT line is a linear interpo-
lation to zero from these points. Lines are also shown for
three other possibilities: (1) a threshold below which there
is no excess effect, (2) a supralinear response, which is
higher than predicted by the LNT model, and (3) hormesis.
In hormesis there is a limited range in which the excess ef-
fect is negative—a reduction in the effect. Hormesis has been
seen in the response of some organisms to chemicals and in
some cases to radiation. Two issues of Critical Reviews in
Toxicology, Vol. 31 No. 4–5 and Vol. 33, No. 3–4, have been
devoted to reviews of hormetic effects in all fields.

Some investigators feel that there is evidence for a thresh-
old dose, and that the LNT model overestimates the risk
(Kathren 1996; Kondo 1993; Cohen 2002). Mossman (2001)
argues against hormesis but agrees that the LNT model has
led to “enormous problems in radiation protection practice”
and unwarranted fears about radiation.

On the other hand, annual screening CTs (Brenner and
Elliston 2004) and CTs to children (Hall 2002) lead to doses
that are large enough so that there is a measured excess risk
of developing cancer in an individual; no LNT extrapolation
to lower doses is needed. This is shown in Fig. 16.52. A pedi-
atric CT study can lead to a dose in the range of 5–100 mSv.
This can be compared with data from the extensive study of
35,000 atomic bomb survivors who have been followed for
70 years. There is a small but statistically significant excess
risk of developing cancer.

A concerted effort is underway to reduce the dose from a
CT procedure to less than 1 mSv (McCollough et al. 2012).
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16.12.4 Radon

The question of a hormetic effect or a threshold effect has
received a great deal of attention for the case of radon, where
remediation at fairly low radon levels is now recommended.
Radon is produced naturally in many types of rock. It is a no-
ble gas, but its radioactive decay products can become lodged
in the lung. An excess of lung cancer has been well docu-
mented in uranium miners, who have been exposed to fairly
high radon concentrations as well as high dust levels and to-
bacco smoke. Radon at lower concentrations seeps from the
soil into buildings and contributes a large fraction of the ex-
posure to the general population. Radon concentrations in the
air are measured in the number of radioactive decays per sec-
ond per cubic meter of air. One becquerel (Bq) is one decay
per second.

Figure 16.53 shows a study by B. L. Cohen (1995) that
plots annual age-adjusted lung-cancer mortality rates in 1601
counties in the USA vs. the average radon concentration
measured in that county. The radon concentration is ex-
pressed as r/r0, where r0 is 37 Bq m−3 (1.0 pCi l−1 in old
units, which will be discussed in the next chapter). The upper
two panels are for males, and the lower two are for females.
The two panels on the right are corrected for the effects of
smoking, using the radon-and-smoking model from BEIR
Report V (1990). The dashed lines labeled Theory are based
on the LNT model. The mortality rate falls with increasing
radon concentration, though other studies have shown that it
rises at radon concentrations higher than shown here.

Epidemiological studies are difficult and can only be sug-
gestive. A number of authors have criticized Cohen’s study
for dealing with county-wide averages, and Cohen has de-
fended his results.27 Cohen argues that his data are valid
below about 150 Bq m−3. Lubin (1999) compares an LNT
fit and Cohen’s model to several other radon studies, shown
in Fig. 16.54. The error bars are much larger than in Cohen’s
figure because the populations are smaller. Lubin argues that
this is irrelevant because Cohen has systematic errors. Co-
hen’s data points are not inconsistent with those shown by
Lubin. Recall from Table 16.6 that the average annual dose
from radon is 2.28 mSv. ICRP (2007) uses the conversion
that 600 Bq m−3 of radon in a dwelling corresponds to an an-
nual dose of 10 mSv per year. This means that r0 corresponds
to 0.6 mSv per year.

Even if the LNT model for radon is correct, some of our
remediation efforts are misdirected. Ayotte et al. (1998) used
the LNT model to assess the lung cancer risk from radon
in Québec. They predicted a total of 109 deaths from lung

27 For example, see Lubin (1998a); Cohen (1998); Lubin (1998b);
Cohen (1999); Lubin (1999), BEIR VI (1999) and Cohen (2007).

Fig. 16.53 Lung-cancer mortality rates vs. mean radon level in 1601
US counties. Graphs a and b are for males; (textbfc and d are for fe-
males. Graphs b and d have been corrected for smoking levels. Error
bars show the standard deviation of the mean. The meaning of radon
level is discussed in the text. (From Cohen 1995, pp. 157–174. Used by
permission of the Health Physics Society)

Fig. 16.54 Relative risk (on a log scale) vs. radon concentration. The
data points are for several studies, not including Cohen’s. The horizontal
line shows a relative risk of 1. The dotted line is a linear extrapola-
tion from the miner study. The dashed quadratic line is Cohen’s model.
(From Lubin 1999, pp. 330–332. Used by permission)
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cancer in a population of 60,000. Mitigating radon in all res-
idences with concentrations of 200 Bq m−3 or more would
reduce this number from 109 to 105. The same number of
lives would be saved by reducing smoking by 0.04 %.

Symbols Used in Chapter 16
Symbol Use Units First

used
page

b Thickness of slice being scanned m 479
c Velocity of light m s−1 467
e Electron charge C 464
f Fraction of photons that interact or

detective quantum efficiency
475

f General function to be represented 478
g Incremental signal transfer

function
kg C−1 466

h Planck’s constant J s 462
j Total angular momentum quantum

number
461

k Minimum signal-to-noise ratio 476
kB Boltzmann factor J K−1 469
l Orbital angular momentum

quantum number
461

m Mass kg 464
me Mass of electron kg 467
m Mean number 475
n Principal quantum number 461
n Number of slices in a scan 479
n Number of moles of a substance mol 463
n Number of fractions 484
p Probability 485
q Charge C 464
r Distance m 471
r Risk or probability varies 493
r, r0 Radon concentrations Bq m−3 495
v Voltage difference V 468
w Width of picture element m 479
wi Mass fraction of ith constituent 471
x Photon energy/electron rest mass

energy
467

x, y, z Coordinates m 465
A Proportionality constant C m2 kg−1 475
C Constant J−1 m−2 463
C Capacitance F 468
Cin Exposure contrast 474
Cout Brightness contrast 474
D Absorbed dose Gy (J kg−1) 464
D0 Reciprocal of proportionality

constant α

Gy 482

DR,T Absorbed dose of radiation type R

to target organ T

Gy 491

E Energy J or eV 462
E Effective dose to an organ Sv (J kg−1) 491
F Projection (integral) of f along

some direction
478

G Radiation chemical yield mol J−1 463
G Large signal transfer factor kg C−1 466
H Hounsfield CT unit 478
H Dose equivalent Sv (J kg−1) 491

HE Effective dose equivalent Sv 491
HT Equivalent dose Sv (J kg−1) 491
Kc Collision kerma J kg−1 464
L Length of object m 476
N Number 464
OD Optical density 465
P Probability 484
Q Quality factor 491
R Resistance Ohm (Ω) 468
S Area m2 476
S Surviving fraction 484
Se(or
Sc)

Collision stopping power J m−1 490

T Kinetic energy J 462
T0 Initial kinetic energy J 464
T Optical transmission 465
T Temperature K 469
W Mean energy expended per ion

pair formed
J or eV 464

WR Radiation weight factor 491
WT Tissue weighting factor 491
X Exposure C kg−1 464
Z Atomic number 461
α Integral of attenuation 478
α Dose proportionality constant Gy−1 482
α Excess risk proportionality

constant
Gy−1 493

β Squared dose proportionality
constant

Gy−2 482

γ Film contrast 465
μ,μatten Attenuation coefficient m−1 471
μen Energy absorption coefficient m−1 464
ν, ν0 Frequency Hz 462
ρ Density kg m−3 464
σ Standard deviation 493
Φ Particle fluence m−2 463
ΦT Particle fluence per unit energy

interval
m−2 J−1 or
m−2 eV−1

490

Ψ Energy fluence J m−2 463

Problems

Section 16.1

Problem 1. Use Eqs. 15.2 and 16.2 to answer the follow-
ing questions. Then compare your answers to values given
in tables, such as those in the Handbook of Chemistry and
Physics. What is the minimum energy of electrons striking
a copper target that will cause the K x-ray lines to appear?
What is the approximate energy of the Kα line? Repeat for
iodine, molybdenum, and tungsten.
Problem 2. When tungsten is used for the anode of an x-ray
tube, the characteristic tungsten Kα line has a wavelength of
2.1×10−11 m. Yet a voltage of 69, 525 V must be applied to
the tube before the line appears. Explain the discrepancy in
terms of an energy-level diagram for tungsten.
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Problem 3. Henry Moseley first assigned atomic numbers to
elements by discovering that the square root of the frequency
of the Kα photon is linearly related to Z. Solve Eq. 16.2 for
Z and show that this is true. Plot Z vs. the square root of the
frequency and compare it to data you look up.
Problem 4. Equation 16.3b, indicating the number of pho-
tons of energy hν produced by bremsstrahlung, is known as
Kramer’s law, and is plotted as crosses in Fig. 16.5 (except
for the drop at low energies caused by attenuation that is not
included in Kramer’s law).
(a) Sketch a plot of dΦ/dE versus energy (0 < hν < hν0)

using Eq. 16.3b.
(b) Use Eq. 16.3b, integrate dΦ/dE over energy from 0 to

hν0, and show that Kramer’s law predicts that the num-
ber of photons goes to infinity if attenuation is not taken
into account.

(c) Integrate Eq. 16.3a from 0 to hν0 and show that the
energy of the bremsstrahlung radiation predicted by
Kramer’s law is finite, even if the number of pho-
tons is infinite. Explain how this is possible. Derive an
expression for the total bremsstrahlung energy.

Problem 5.
(a) The energy fluence spectrum for a thin target dΨ/d(hν)

in Fig. 16.3 is constant (call it C′) for hν < hν0 and zero
for higher energies. Calculate the photon particle fluence
rate dΦ/d(hν) and plot it vs. hν.

(b) Use the chain rule to express the photon particle fluence
rate dΦ/dλ for a thin target as a function of wavelength
λ and plot it.

(c) Express Eq. 16.3a, giving the energy fluence rate
dΨ/d(hν) for a thick target as a function of photon fre-
quency hν, as an equation for dΨ/dλ as a function of
wavelength λ, and plot it.

(d) Repeat the analysis in part (c) for Eq. 16.3b, giving the
photon fluence rate dΦ/dλ for a thick target. Plot it.

Section 16.2

Problem 6. A beam of 0.08-MeV photons passes through a
body of thickness L. Assume that the body is all muscle with
ρ = 1.0 × 103 kg m−3. The energy fluence of the beam is
Ψ J m−2.
(a) What is the skin dose where the beam enters the body?
(b) Assume the beam is attenuated by an amount e−μL as it

passes through the body. Calculate the average dose as a
function of the fluence, the body thickness, and μ.

(c) What is the limiting value of the average dose as μL →
0?

(d) What is the limiting value of the average dose as μL →
∞? Does the result make sense? Is it useful?

Problem 7. The obsolete unit, the roentgen (R), is defined as
2.08 × 109 ion pairs produced in 0.001293 g of dry air. (This

is 1 cm3 of dry air at standard temperature and pressure.)
Show that if the average energy required to produce an ion
pair in air is 33.7 eV (an old value), then 1 R corresponds to
an absorbed dose of 8.69×10−3 Gy and that 1 R is equivalent
to 2.58 × 10−4 C kg−1.
Problem 8. During the 1930s and 1940s it was popular to
have an x-ray fluoroscope unit in shoe stores to show children
and their parents that shoes were properly fit. These marvel-
lous units were operated by people who had no concept of
radiation safety and aimed a beam of x-rays upward through
the feet and right at the reproductive organs of the children!
A typical unit had an x-ray tube operating at 50 kVp with a
current of 5 mA.
(a) What is the radiation yield for 50-keV electrons on tung-

sten? How much photon energy is produced with a 5-mA
beam in a 30-s exposure?

(b) Assume that the x-rays are radiated uniformly in all di-
rections (this is not a good assumption) and that the
x-rays are all at an energy of 30 keV. (This is a very
poor assumption.) Use the appropriate values for striated
muscle to estimate the dose to the gonads if they are at
a distance of 50 cm from the x-ray tube. Your answer
will be an overestimate. Actual doses to the feet were
typically 0.014–0.16 Gy. Doses to the gonads would be
less because of 1/r2. Two of the early articles pointing
out the danger are Hempelmann (1949) and Williams
(1949).

Section 16.3

Problem 9. Rewrite Eq. 16.9 in terms of exponential de-
cay of the viewing light and relate the optical density to the
attenuation coefficient and thickness of the emulsion.
Problem 10. Derive the useful rule of thumb �(OD) =
0.43γ �X/X.
Problem 11. The atomic cross-sections for the materials in
a gadolinium oxysulfide screen for 50-keV photons are

Element Cross-section per atom (m2) A

Gd 1.00 × 10−25 157
S 3.11 × 10−27 32
O 5.66 × 10−28 16

(a) What is the cross-section per target molecule of GdO2S?
(b) How many target molecules per unit area are there in a

thickness ρdx of material?
(c) What is the probability that a photon interacts in travers-

ing 1.2 kg m−2 of GdO2S?
Problem 12. The film speed is often defined as the re-
ciprocal of the exposure (in roentgens) required to give an
optical density that is 1 greater than the base density. As-
sume that in Fig. 16.6 a relative exposure of 1 corresponds to
10−5 C kg−1. Calculate the film speed.
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Problem 13. A dose of 1.74 × 10−4 Gy was estimated for
part of the body just in front of an unscreened x-ray film.
Suppose that a screen permits the dose to be reduced by a
factor of 20. Calculate the skin dose on the other side of the
body (the entrance skin dose) assuming 50-keV photons and
a body thickness of 0.2 m. Ignore buildup, and assume that
only unattenuated photons are detected.
Problem 14. Find an expression for photon fluence per unit
absorbed dose in a beam of monoenergetic photons. Then
find the photon fluence for 50-keV photons that causes a dose
of 10−5 Gy in muscle.
Problem 15. A dose of 100 Gy might cause noticeable
radiation damage in a sodium iodide crystal. How long
would a beam of 100-keV photons have to continuously and
uniformly strike a crystal of 1-cm2 area at the rate of 104 pho-
ton s−1, in order to produce this absorbed dose? For NaI,
μen/ρ = 0.1158 m2 kg−1.
Problem 16. Another method to measure the absorbed dose
is by calorimetry. Show that if all the energy imparted warms
the sample, the temperature rise is 2.39 × 10−4 ◦C per Gy.

Section 16.4

Problem 17. Plot μ for lead, iodine, and barium from 10 to
200 keV.
Problem 18. Use a spreadsheet to make the following
calculations. Consider a photon beam with 100 kVp.
(a) Use Eq. 16.3b to calculate the photon fluence from a

thick target at 1, 10, 20, 30, 40, 50, 60, 70, 80, 90, and
100 keV.

(b) The specific gravity of aluminum is 2.7. Make a table
of the photon fluence at these energies emerging from
2 and 3 mm of aluminum. Compare the features of this
table to Fig. 16.15.

(c) Use trapezoidal integration to show that the average pho-
ton energy is 44 keV after 2-mm filtration and 47 keV
after 3-mm filtration.

(d) Repeat for 120 kVp and show that the average energies
after the same filtrations are 52 and 55 keV.

Problem 19. To get a qualitative understanding of Fig.
16.15, assume the photon particle fluence is given by
Eq. 16.3b multiplied by a factor exp(−BL/(hν)3), where
B is a constant, L is the thickness of the aluminum filtration
(in cm) and the 1/(hν)3 dependence on the photon energy
(in keV) arises from the photoelectric cross-section energy
dependence, Eq. 15.8.
(a) What are the units of B?
(b) Use some simple numerical method to estimate B from

Fig. 16.15. One method might be to calculate the max-
imum of the photon fluence curve and adjust B so the
maximum occurs at the correct photon energy.

(c) For the value of B you found in part (b), plot the three
relative photon fluence curves as a function of photon
energy, as shown in Fig. 16.15. Normalize the curves so
the peak of the 0.1-cm filtration curve is equal to 1.

Problem 20. X-ray beams have a spectrum of photon en-
ergies. It would be very laborious to measure the spectrum
every time we want to check the quality of the beam. In ad-
dition to kVp, one simple measurement that is used to check
beam quality (related to the energy spectrum) is the half-
value layer HVL–the thickness of a specified absorber (often
Cu or Al) that reduces the intensity of the beam to one-half.
(a) For a monoenergetic beam, relate HVL to the attenu-

ation coefficient. What is the HVL if the attenuation
coefficient is 0.46 mm−1?

(b) For a monoenergetic beam, how does the quarter-value
layer QVL relate to HVL?

(c) Suppose a beam has equal numbers of photons at two
different energies. The attenuation coefficients at these
energies are 0.46 mm−1 and 0.6 mm−1. Find the HVL
and QVL for this beam. You may need to plot a graph or
use a computer algebra program.

Problem 21. The half value layer (HVL) is often used to
characterize an x-ray beam. It is the thickness of a speci-
fied absorber that attenuates the beam to one-half the original
value. Figure 16.41 refers to a beam with a 3.0 mm Cu
HVL. What is the value of the attenuation coefficient? What
monoenergetic x-ray beam does this correspond to?
Problem 22. Assume an antiscatter grid is made of lead
sheets 3-mm long with a spacing between sheets of 0.3 mm.
Ignore the thickness of the sheets. If all photons hitting the
sheets are absorbed, what is the largest angle from the inci-
dent beam direction that a photon can be scattered and still
emerge?

Section 16.5

Problem 23. Suppose that two measurements are made: one
of the combination of signal and noise, y = s + n, and one
of just the noise n. One wishes to determine s = y − n.
(a) Find s − s in terms of y, y, n, and n.
(b) Show that if y and n are uncorrelated, (s − s)2 =

(y − y)2 + (n − n)2 and state the mathematical condi-
tion for being uncorrelated.

(c) If y and n are Poisson distributed, under what conditions
is the

√
2 factor of Footnote 13 needed?

Section 16.7

Problem 24. A molybdenum target is used in special x-ray
tubes for mammography. The electron energy levels in Mo
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are as follows:

K 20 000 eV LI 2886 eV MI 505 eV
LII 2625 eV MII 410 eV
LIII 2520 eV MIII 392 eV

MIV 230 eV
MV 227 eV

What is the energy of the Kα line(s)? The Kβ line(s) (defined
in Fig. 16.2)?
Problem 25. As a simple model for mammography, consider
two different tissues: a mixture of 2/3 fat and 1/3 water, with
a composition by weight of 12 % hydrogen, 52 % carbon and
36 % oxygen; and glandular tissue, composed of 11 % hy-
drogen, 33 % carbon, and 56 % oxygen. The density of the
fat and water combination is 940 kg m−3, and the density of
glandular tissue is 1020 kg m−3. What is the attenuation in
1 mm of the fat-water combination and in 1 mm of glandular
tissue for 50-keV photons? For 30-keV photons?

Section 16.8

Problem 26. It is often said that the number of photons that
must be detected in order to measure a difference in flu-
ence with a certain resolution can be calculated from N =
(�Φ/Φ)−2. (For example, if we want to detect a change
in Φ of 1 % we would need to count 104 photons.) Use
Eq. 16.20 to make this statement more quantitative. Discuss
the accuracy of the statement.
Problem 27. Spiral CT uses interpolation to calculate the
projections at a fixed value of z before reconstruction. This
has an effect on the noise. Let σ0 be the noise standard de-
viation in the raw projection data and σ be the noise in the
interpolated data. The interpolated signal, α, is the weighted
sum of two values: α = wα1 + (1 − w)α2.
(a) Show that the variance in α is σ 2 = w2σ 2

0 +(1−w)2σ 2
0 .

Plot σ/σ0 vs. w.
(b) Averaging over a 360 ◦ scan involves integrating uni-

formly over all weights:

σ 2 =
∫ 1

0

[
w2σ 2

0 + (1 − w)2σ 2
0

]
dw.

Find the ratio σ/σ0.
Problem 28. An experimental technique to measure cerebral
blood perfusion is to have the patient inhale xenon, a noble
gas with Z = 54, A = 131 (Suess et al. 1995). The solubility
of xenon is different in red cells than in plasma. The equation
used is

(arterial enhancement) = 5.15θXe

(μ/ρ)w/(μ/ρ)Xe
CXe(t),

where the arterial enhancement is in Hounsfield units, CXe is
the concentration of xenon in the lungs (end tidal volume),

and

θXe = (0.011)(Hct) + 0.10.

Hct is the hematocrit: the fraction of the blood volume
occupied by red cells. Discuss why the equation has this
form.

Section 16.9

Problem 29. Use Equations 16.30 and 16.31 to derive an
expression for the probability of eradicating a tumor (no sur-
viving tumor cells) as a function of dose for tumors contain-
ing different numbers of cells. Verify that your expression
reproduces Fig. 16.38.

Section 16.10

Problem 30. Geiger’s rule is an approximation to the range-
energy relationship:

R = AEp.

For protons in water A = 0.0022 when R is in cm and E is
in MeV. The exponent p = 1.77. This is a good approxima-
tion for E < 200 MeV. Use Geiger’s approximation to find
dE/dx as a function of R for 100 MeV protons. Make a plot
to show the Bragg peak when straggling is ignored.
Problem 31. Assume the stopping power of a particle, S =
−dT /dx, as a function of kinetic energy, T , is S = C/T .
(a) What are the units of C? From Fig. 15.17, estimate for

protons the range of kinetic energies over which S =
C/T is appropriate.

(b) If the initial kinetic energy at x = 0 is T0, find T (x).
(c) Determine the range R of the particle as a function of C

and T0. For protons in water, estimate C from Fig. 15.26.
(d) Plot S(x) vs. x. Compare the shape of the curve to Fig.

16.47. Does this plot contain a Bragg peak?
(e) Discuss the implications of the shape of S(x) for radia-

tion treatment using this particle.

Section 16.11

Problem 32. Calculate (Se/ρ)wg in argon for 0.1-, 1.0- and
10-MeV electrons. The values of Se/ρ for argon at these
energies are 2.918, 1.376, and 1.678 cm2 g−1.
Problem 33. An ion chamber contains 10 cm3 of air at stan-
dard temperature and pressure. Find q vs. D for 0.5-MeV
electrons.
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Section 16.12

Problem 34. Suppose that the probability p per year of
some event (death, mutations, cancer, etc.) consists of a
spontaneous component S and a component proportional to
the dose of something else, D: p = S + AD. The dose
may be radiation, chemicals, sunlight, etc. Investigations of
women given mammograms showed that if p is the prob-
ability of acquiring breast cancer, S = 1.91 × 10−3 and
A = 4 × 10−4 Gy−1. How many women had to be stud-
ied to distinguish between A = 0 and the value above if
D = 2 Gy? If D = 10−2 Gy?
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17Nuclear Physics and Nuclear Medicine

Each atom contains a nucleus about 100,000 times smaller
than the atom. The nuclear charge determines the number of
electrons in the neutral atom and hence its chemical prop-
erties. The nuclear mass determines the mass of the atom.
For a given nuclear charge there can be a number of nuclei
with different masses or isotopes. If an isotope is unstable, it
transforms into another nucleus through radioactive decay.

In this chapter we will consider some of the properties of
radioactive nuclei and their use for medical imaging and for
treatment, primarily of cancer (Ruth 2009; Williams 2008).

Four kinds of radioactivity measurements have proven
useful in medicine. The first involves no administration of
a radioactive substance to the patient. Rather, a sample
from the patient (usually blood) is mixed with a radioactive
substance in the laboratory, and the resulting chemical com-
pounds are separated and counted. This is the basis of various
competitive binding assays, such as those for measuring thy-
roid hormone and the availability of iron-binding sites. The
most common competitive binding technique is called ra-
dioimmunoassay. A wide range of proteins are measured in
this manner.

In the second kind of measurement, radioactive tracers are
administered to the patient in a way that allows the volume
of a compartment within the body to be measured. Examples
of such compartments are total body water, plasma volume,
and exchangeable sodium. Time-dependent measurements
include red-blood-cell survival and iron and calcium kinet-
ics. One can measure radioactivity from the whole body or
from blood or urine samples drawn at different times after
administration of the isotope.

For the third class of measurements, a gamma camera
generates an image of an organ from radioactive decay of
a drug that has been administered and taken up by the organ.
These images are often made as a function of time.

The fourth class is an extension of these in which to-
mographic reconstructions of body slices are made. These
include single-photon emission computed tomography and
positron emission tomography.

Radioactive isotopes are also used for therapy. The patient
is given a radiopharmaceutical that is selectively absorbed by
a particular organ (e.g., radioactive iodine for certain thyroid
diseases). The isotope emits charged particles that lose their
energy within a short distance, thereby giving a high dose
to the target organ. Isotopes are also used in self-contained
implants for brachytherapy.

The first five sections introduce some of the nuclear prop-
erties that are important: size, mass, the modes of radioactive
decay, and the amount of energy released.

It is important to know the dose to the patient from a
nuclear medicine procedure, and a standard technique for
calculating it has been developed by the Medical Internal Ra-
diation Dose (MIRD) Committee of the Society of Nuclear
Medicine and Molecular Imaging. Section 17.6 shows the
steps in making these calculations. Section 17.7 describes
some of the pharmacological considerations in selecting a
suitable isotope.

The next few sections describe various ways of form-
ing images. Section 17.8 describes the gamma camera, and
Sect. 17.9 extends this to single-photon emission tomogra-
phy. Section 17.10 describes positron emission tomography.

Radiotherapy is described in Sect. 17.11, including both
the relatively common brachytherapy and the less common
injection of isotopes that target particular organs.

The final section describes the nuclear decay of radon and
some of the considerations in calculating the dose and the
risk to the general population. It supplements the material
that was introduced in Sect. 16.12.

17.1 Nuclear Systematics

An atomic nucleus is composed of Z protons and N = A −
Z neutrons. We call Z the atomic number and A the mass
number. Neutrons and protons have very similar properties,
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Table 17.1 Properties of nucleons, the electron, and the neutral hydrogen atom

Property Neutron Proton Electron H atom
Massa 1.008664916 1.00727647 0.0005485799 1.007825032
Chargeb 0 +e −e 0
Rest energy m0c

2 (MeV) 939.565 938.272 0.5110 938.783
Half-life ≈ 12 min Stable Stable Stable

Spin 1
2

1
2

1
2 . . .

a1 u is the mass unit. The mass of 12C is 12.0000000 u by definition. 1 u= 1.660539 × 10−27 kg
be = 1.602177 × 10−19 C

as can be seen from Table 17.1. Therefore, they are classed
as two different charge states of one particle, the nucleon.

Table 17.1 lists the rest mass m0 and the rest energy, the
rest mass times the square of the speed of light, m0c

2. One
can show using special relativity that the total energy E of an
object with rest mass m0 is related to its speed v and kinetic
energy T by

E = m0c
2

(1 − v2/c2)1/2
= m0c

2 + T . (17.1)

The energy and mass of both the proton and neutral hydrogen
atom are given; the distinction will be important later.

It is customary to specify a nucleus by a symbol such as
the following for carbon (Z = 6, N = 6, A = 12):

A
ZC or 12

6 C.

The mass number used to be written as a superscript on the
right; however, this becomes confusing if the ionization state
of the atom must also be specified. It is now customary to
leave the right side of the symbol for atomic properties. Since
the element symbol corresponds to a specific atomic number,
Z is often omitted.

Different nuclei of the same element with different num-
bers of neutrons are called isotopes. Other isotopes of carbon
are 11C, which has five neutrons, and 13C, which has seven.

The sizes of atoms are roughly constant as one goes
through the periodic table, with exceptions as electron shells
are filled. On the other hand, the size of nuclei grows steadily
through the periodic table (Fig. 17.1). The nuclear radius R

and atomic mass number are related by

R = R0A
1/3. (17.2)

The precise value for R0 depends on how the nuclear radius
is measured. If it is measured from the charge distribution,
then

R0 = 1.07 × 10−15 m. (17.3)

The constancy of atomic size results from two competing
effects: as Z increases the outer electrons have a larger value
of the principal quantum number n. On the other hand, the

Fig. 17.1 Atomic radius and nuclear radius vs atomic number, show-
ing the relative constancy of the atomic radius and the systematic
increase of nuclear radius. Shell effects in atomic radii are quite pro-
nounced; slight shell effects in the nuclear radius are not shown. Atomic
data are from Table 7b–3 of The American Institute of Physics Hand-
book. New York, McGraw-Hill, 1957. Nuclear radii are from Eq. 17.2,
using the average atomic mass to estimate A from Z

greater charge means that Coulomb attraction makes the orbit
radius smaller for a given n.

The A1/3 dependence in the nuclear case means that the
nuclear density is independent of A. To see this, note that
the volume of a spherical nucleus is 4πR3/3 = 4πR3

0A/3.
Since the mass and volume are both proportional to A, the
density is constant. This implies that nucleons can get only so
close to one another, and that as more are added, the nuclear
volume increases. This constant density is the same effect we
see in the aggregation of atoms in a crystal or a drop of water.

Scattering experiments measure the force between two
nucleons. At large distances, there is no force between two
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Fig. 17.2 Stable nuclei. Solid squares represent nuclei which are sta-
ble and are found in nature. (From Eisberg and Resnick 1985, p. 524.
Reprinted with permission of John Wiley & Sons)

neutrons or between a neutron and a proton. (Between two
protons, of course, there is Coulomb repulsion.) As two nu-
cleons are brought close together, a strong attractive force
becomes important; at still closer distances, the nuclear force
becomes repulsive.

If we look at the nuclei that are stable against radioactive
decay and are therefore found in nature, we find that for light
elements, Z = N . As Z increases, the number of neutrons
becomes greater than Z; this can be seen in Fig. 17.2.

Equation 17.1 shows that when an object is at rest, its total
energy (which is its internal energy) is related to its rest mass
by

E = m0c
2. (17.4)

The measurement of nuclear masses has provided one way to
determine nuclear energies. It is necessary to supply energy
to a stable nucleus to break it up into its constituent nucleons
(or else it would not be stable). The binding energy (BE) of
the nucleus is the total energy of the constituent nucleons
minus the energy of the nucleus:

BE = Zmpc2 + (A − Z)mnc
2 − mnuclc

2. (17.5)

It represents the amount of energy that must be added to
the nucleus to separate it into its constituent neutrons and
protons.

Suppose we add Zmec
2 to the first term. Then we have

the energy of Z protons plus the energy of Z electrons. Ex-
cept for the BE of each electron, this is the same as the mass
of Z neutral hydrogen atoms, which we call Mpc2. Similarly,
we can add the mass of Z electrons to mnuclc

2 and neglect
the electron BE to obtain Matomc2. Capital M represents the
mass of a neutral atom, while m stands for the mass of a bare
nucleus. For the neutron, m = M . In Eq. 17.5, we can add

Fig. 17.3 The average binding energy per nucleon for stable nuclei.
(From Eisberg and Resnick 1985, p. 524. Reprinted with permission of
John Wiley & Sons)

Zmec
2 to the first term and add Zmec

2 to the last term, to
obtain the BE in terms of the masses of the corresponding
neutral particles:

BE = ZMpc
2 + (A − Z)Mnc

2 − Matomc2. (17.6)

This is fortunate, because neutral masses (or those for ions
carrying one or two charges) are the quantities actually
measured in mass spectroscopy.

Masses are measured in unified mass units u, defined so
that the mass of neutral 12C is exactly 12 u. Carbon is used
for the standard because hydrocarbons can be made in com-
binations to give masses close to any desired mass. The
carbon standard replaced one based on the naturally occur-
ring mixture of oxygen isotopes in the early 1960s. (One of
the troubles with the earlier standard was that the relative
abundance of the various oxygen isotopes varies with time
and with location on the earth.) The earlier unit was called
the atomic mass unit, amu. One still finds confusion in the
literature about which standard is being used, and the carbon
standard is sometimes called an amu.

One unified mass unit is related to the kilogram, the joule,
and the electron volt by

1 u = 1.66054 × 10−27 kg,

(1 u)(c2) =
{

1.49242 × 10−10 J
931.49 MeV.

(17.7)

A plot of the BE per nucleon versus mass number, as in
Fig. 17.3, shows that the BE per nucleon has a maximum near
A = 60, and that the average BE (except for light elements)
is about 8 MeV per nucleon. For less stable nuclei on either
side of the stable line plotted in Fig. 17.2, the BE is less than
that for the nuclei shown here.
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The maximum near A = 60 is what makes both fission
and fusion possible sources of energy. A heavy nucleus with
A near 240 can split roughly in half, giving two fission prod-
ucts. Since the nucleons in each of the products are more
tightly bound on the average than in the original nucleus,
energy is released. This energy difference comes almost en-
tirely from the Z2 dependence of the Coulomb repulsion of
the protons in the nuclei. In fusion, two nuclei of very low A

combine to give a nucleus of higher A, for which the BE per
nucleon is greater.

17.2 Nuclear Decay: Decay Rate and Half-Life

If a nucleus has more energy than it would if it were in its
ground state, it can decay. If the nucleus has sufficient en-
ergy, it can emit a proton, neutron, or cluster of nucleons
[α particle (4

2He), deuteron (2
1H), etc.]. When a nucleus has

enough excitation energy to decay by nuclear emission it
usually does so in such an extremely short time that the nu-
clei could never be introduced in the body after they were
produced. An exception is the α decay of a few elements
near the upper (high-Z) end of the periodic table. They are
found in nature, either because their lifetimes are very long
or because they are formed as the result of some other decay
process that has a long lifetime.

If a nucleus has just a small amount of excess energy, it
emits a γ ray, a photon analogous to the x-ray or visible pho-
tons emitted by an excited atom. Another process that can
occur is the emission of a positive or negative electron, with
the conversion of a proton to a neutron, or vice versa. This is
called β decay. γ and β decay will be described in detail in
the next two sections.

Each excited nucleus will decay or undergo a nuclear
transformation. There can be several transitions associ-
ated with each transformation. For example, there might
be a cascade of two or more successive gamma rays (γ1

and γ2 of Fig. 17.4), or competing pathways (branching)
(γ1, γ3, β−

2 , γ1 of Fig. 17.4).
An excited nucleus has a probability λdt of transform-

ing in time dt . When there are N nuclei present, the average
number decaying in time dt is1

−dN = Nλ dt.

This leads to the familiar exponential decay of Chap. 2:

N = N0e
−λt .

1 The decay constant is called λ in this chapter to conform to the usage
in nuclear medicine.

Fig. 17.4 Energy levels and decay data for the isotope 99mTc. The var-
ious features are discussed in the text. (These results were originally
published in Eckerman and Endo 2008, p. 232. c© by the Society of
Nuclear Medicine and Molecular Imaging, Inc.)

The activity, A(t), is the number of decays per second:

A(t) =
∣∣∣∣
dN

dt

∣∣∣∣ = λN.

The activity is measured in nuclear transformations per sec-
ond or becquerel (Bq). The total number of transformations
or cumulated activity is measured in bequerel seconds (Bq s).
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The half-life T1/2 is related to λ by Eq. 2.10:

T1/2 = 0.693

λ
. (17.8)

17.3 GammaDecay and Internal Conversion

When a nucleus is in an excited state, it can lose energy by
photon emission. The energy levels of the nucleus are char-
acterized by certain quantum numbers, and γ emission is
subject to selection rules analogous to those for x-ray emis-
sion by atoms. Half-lives for γ emission range from 10−20

to 10+8 s.
Figure 17.4 shows an energy level diagram for 99

43Tc (tech-
netium), an isotope widely used in nuclear medicine, along
with some tabular material that we will need as we progress
through this chapter. First, look at the energy level diagram.
There are two important levels to consider in 99

43Tc. The
ground state is not stable but decays by β− decay, considered
in Sect. 17.5. However, its decay rate is so small (half-life of
2.111 × 105 years) that we can ignore its decay. There is a
level at an excitation of 0.1427 MeV above the ground state
that has a half-life of 6.015 h for γ decay. This is an unusu-
ally long half-life; we call it a metastable state and denote it
by 99mTc. We see that there are two modes of gamma decay
from this state. The first is the emission of a 0.0022-MeV
γ ray (γ1) followed immediately by a 0.1405-MeV γ2. The
other, less common possibility, is the emission of γ3 of en-
ergy 0.1427 MeV. The 99mTc can also undergo beta decay,
considered in Sect. 17.5.

Whenever a nucleus loses energy by γ decay, there is a
competing process called internal conversion. The energy to
be lost in the transition, Eγ , is transferred directly to a bound
electron, which is then ejected with a kinetic energy

T = Eγ − B, (17.9)

where B is the binding energy of the electron.
We now turn to the tabular part of Fig. 17.4. Each line

describes a unique transition associated with the nuclear
transformation of the 99mTc.

The mean number per disintegration Y (i) in the table is
the mean number of times that the indicated transition be-
tween energy levels takes place per nuclear transformation.
(Think Y for yield.)

The first two lines in the table show that the only transi-
tions associated with γ1 are internal conversion of either an
M-shell or N-shell electron (ce stands for conversion elec-
tron). Gamma-ray 2 is emitted 0.891 times per nuclear trans-
formation, with internal conversion occurring 0.102 times
per transformation.

17.4 Atomic Deexcitation

Once internal conversion has created a hole in the electronic
structure of the atom, characteristic x rays and Auger and
Coster-Kronig (CK) electrons are emitted as described in
Sect. 15.9.

Characteristic x ray transitions have labels like K-L2

x ray. The labels for Auger and CK electrons show this
information:

KLM

�
an electron falls to a hole in the K shell

� from the L shell

�
with the emission of an Auger electron
from the M shell.

The Auger cascade means that several of these electrons are
emitted per transition. If a radionuclide is in a compound
that is bound to DNA, the effect of several electrons re-
leased in the same place is to cause as much damage per
unit dose as high-LET radiation. Linear energy transfer was
defined in Chap. 15. A series of reports on this effect have
been released by the American Association of Physicists in
Medicine (AAPM) (Sastry 1992; Howell 1992; Humm et al.
1994).

Many electrons (up to 25) can be emitted for one nuclear
transformation, depending on the decay scheme (Howell
1992). The electron energies vary from a few eV to a few
tens of keV. Corresponding electron ranges are from less
than 1 nm to 15 μm. The diameter of the DNA double he-
lix is about 2 nm. A number of experiments (reviewed in the
AAPM reports, and also in Kassis (2011)) show that when
the radioactive substance is in the cytoplasm the cell damage
is like that for low-LET radiation in Fig. 15.32 with relative
biological effectiveness (RBE) = 1. When it is bound to the
DNA, survival curves are much steeper, as with the α parti-
cles in Fig. 15.32 (RBE ≈ 8). When it is in the nucleus but
not bound to DNA the RBE is about 4. The fraction of the
Auger emitter that binds to the DNA depends on the chem-
ical agent to which the nuclide is attached. There is also a
significant bystander effect (Kassis 2011).

17.5 Beta Decay and Electron Capture

Nuclei that are not on the line of stability in Fig. 17.2 have
greater internal energy and are susceptible to some kind of
decay. They can lose energy by γ emission. In addition,
nuclei above the line of stability have too many protons rel-
ative to the number of neutrons; nuclei below the line have
relatively too many neutrons.
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Fig. 17.5 β− decay and β+ decay do not change A. They do change
N and Z to bring the nucleus closer to the stability line

Fig. 17.6 Energy of nuclei as a function of Z for an odd value of A

(A = 135). The only stable nucleus is 135
56 Ba; nuclei of lower Z un-

dergo β− emission; those of higher Z undergo β+ emission or electron
capture

Two modes of decay allow a nucleus to approach the
stable line. In beta (β− or electron) decay, a neutron is con-
verted into a proton. This keeps A constant, lowering N by
one and raising Z by one. In positron (β+) decay, a proton
is converted into a neutron. Again A remains unchanged, Z

decreases and N increases by 1. We find β+ decay for nuclei
above the line of stability and β− decay for nuclei below the
line. Figure 17.5 shows a portion of the line of stability, a line
of constant A (Z = A − N ), and the regions for β+ and β−
decay.

We can plot the energy of the neutral atom for different
nuclei along the line of constant A. Since there are one or two
stable nuclei, there is some value of Z and N for which the

Fig. 17.7 Energy of even-A nuclei (A = 102) as a function of Z. Nu-
clei with an odd number of protons and neutrons have higher energies
than those with an even number of each. This makes it possible for the
same nucleus to decay by either β− or β+ emission

energy is a minimum. The energy increases in either direc-
tion from this minimum. The first approximation to a curve
with a minimum is a parabola, as shown in Fig. 17.6 for a nu-
cleus of odd A.2 When Z is too small, a neutron is converted
to a proton by β− decay. If Z is too large, a proton changes
to a neutron by β+ decay or electron capture (to be described
below).

When A is odd, there are an even number of protons and
an odd number of neutrons (even–odd) or vice versa (odd–
even). When we plot the energies of even-A nuclei, we find
that the masses lie on two different parabolas (Fig. 17.7).
The one for which both Z and N are odd (odd–odd) has
greater energy than the parabola for which both are even.
The reason is that nucleons have lower energy when they
are paired with one another in such a way that their spins
are antiparallel. In the even–even case, the neutrons and the
protons are all paired off and have this lower energy; in the
odd–odd case there are both an unpaired proton and an un-
paired neutron, and the energy is higher. As we change Z by
one, we jump back and forth between the odd–odd and the
even–even parabolas. For odd-A nuclei, either the neutrons
are paired and one proton is not, or vice versa. There is al-
ways one unpaired nucleon as Z changes, so there is only
one parabola.

2 This parabola and the general behavior of the BE with Z and A can be
explained remarkably well by the semiempirical mass formula (Evans
1955, Chap. 11; Eisberg and Resnick 1985, p. 528).
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Fig. 17.8 A typical spectrum of β particles. In this case it is for the
β decay of 210

83 Bi. (From Eisberg and Resnick 1985, p. 566. Copyright
c©1985 John Wiley & Sons. Reproduced by permission of John Wiley

& Sons)

The existence of the two parabolas means that there are
usually (but not always) two stable nuclei with an odd–odd
nucleus between them that can decay by either β− or β+
emission.

The emission of a β− particle is accompanied by the
emission of a neutrino (strictly speaking, an antineutrino):

A
ZX → A

Z+1Y + β− + ν. (17.10)

The neutrino has no charge and no rest mass,3 so that like a
photon, it travels with velocity c and its energy and momen-
tum are related by E = pc. Neutrinos hardly interact with
matter at all, so they are quite difficult to detect. Neverthe-
less they have been detected through certain specific nuclear
reactions that take place on the rare occasions when a neu-
trino does interact with a nucleus. A particle that seemed
originally to be an invention to conserve energy and angular
momentum now has a strong experimental basis.

Suppose that β decay consisted of the ejection of only a
β particle. If the original nucleus was at rest,4 then the final
nucleus would recoil in the direction opposite the β particle
to conserve momentum; the ratio of its velocity to that of the
β particle would be given by their mass ratio. The recoil nu-
cleus and the β particle would each have a definite fraction
of the total energy available from the decay, and the β parti-
cles would all have the same energy. However, the observed
β-particle energy spectrum is not a line spectrum but a con-
tinuum ranging from zero to the expected energy, as shown in

3 Recent measurements indicate that the neutrino does have a rest mass,
but it is too small to affect our argument.
4 Its thermal energy of about 1

40 eV is negligible compared to the energy
released in decay.

Fig. 17.8. The missing energy is carried by the neutrino. The
different energies correspond to different angles of emission
of the neutrino relative to the direction of the β particle. This
kind of spectrum is characteristic of three bodies emerging
from the reaction.

The total kinetic energy for the three emerging particles is

Edecay = mZ,Ac2 − mZ+1,Ac2 − mec
2.

If we add and subtract Zmec
2, the result is unchanged:

Edecay = (mZ,Ac2 + Zmec
2) − (mZ+1,Ac2 (17.11)

+ Zmec
2 + mec

2)

= MZ,Ac2 − MZ+1,Ac2.

The energy released in the decay is given by the difference
in rest energies of the initial and final neutral atoms. This
energy is shared in different amounts by the three particles;
it is shared mainly by the neutrino and electron, since the
nucleus is so massive and its kinetic energy is p2/2m. The
maximum or end-point energy of the β spectrum in Fig. 17.8
corresponds to Edecay.

Figure 17.9 shows data for the decay of 24Na, an isotope
that has been used in nuclear medicine. The transition la-
beled β−

3 is overwhelmingly more common than β−
4 . The

β−
3 emission is followed by two γ rays. The average energy

of the β−
3 particle is 0.554 MeV, about 40 % of the end-point

energy, 1.392 MeV.
Emission of a positron converts a proton into a neutron,

and Z decreases by one. A neutrino is also emitted:

A
ZX →A

Z−1 Y + β+ + ν. (17.12)

The decay energy is again given by

Edecay = mZ,Ac2 − mZ−1,Ac2 − mec
2.

However, this time, when we add Zmec
2 to the first term and

subtract (Z − 1)mec
2 from the second term to convert these

to atomic masses, the electron masses do not cancel. Instead,
we get

Edecay = MZ,Ac2 − MZ−1,Ac2 − 2mec
2. (17.13)

Positron emission will not occur unless the initial neutral
atomic mass exceeds the final neutral atomic mass by at least
2mec

2.
Figure 17.10 shows the decay scheme for 18F, which

decays primarily by positron emission, with an average
positron energy of 0.2498 MeV. The decay line in the energy
level diagram is labelled EC1, β+

1 . EC stands for electron
capture, a process that competes with beta decay. Some of
the inner electrons of the atom are close enough to the nu-
cleus (quantum mechanically, the electron wave functions
overlap the nucleus enough) so that the electron is captured
by the nucleus, and a neutrino is emitted. In terms of nuclear
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Fig. 17.9 Energy levels and data for the β decay of 24Na. (These re-
sults were originally published in Eckerman and Endo 2008, p. 56. c©
by the Society of Nuclear Medicine and Molecular Imaging, Inc.)

masses, an electron rest energy is added to the parent nucleus
(we ignore its kinetic energy):

Ee.c. = mec
2 + mZ,Ac2 − mZ−1,Ac2.

If we add and subtract (Z − 1)mec
2, we have

Ee.c. = MZ,Ac2 − MZ−1,Ac2. (17.14)

A K electron is usually captured. The energy from the nu-
clear transition is given to a neutrino. No electron or positron
emerges from the nucleus, but there are K x rays and Auger
electrons, as there are any time a vacancy in the K shell
occurs, and these contribute to the radiation dose. Electron
capture and positron emission can both occur in proton-rich
isotopes. In the case of 18F (and many other low-atomic-
number isotopes) the decay is mainly by positron emission,
with relatively little electron capture. In many heavier nu-
clei, electron capture dominates over positron emission. For

Fig. 17.10 Energy levels and data for the β+ decay of 18F. (These
results were originally published in Eckerman and Endo 2008, p. 52. c©
by the Society of Nuclear Medicine and Molecular Imaging, Inc.)

instance, 125I decays by electron capture, and the resulting
cascade of Auger electrons makes a significant contribution
to the dose.

The second entry, labeled γ±, stands for annihilation ra-
diation. Once a positron has been emitted, it slows down like
any other charged particle. At some point it combines with an
electron (since the positron and electron constitute a particle–
antiparticle pair), and all of the rest energy of both particles
goes into two photons.5 The energy conservation equation is

2mec
2 = 2hν. (17.15)

For each original positron emitted, two photons are pro-
duced, each of energy mec

2 = 0.511 MeV. Note that Yi for
the annihilation gamma rays is twice the value for positron
emission.

17.6 Calculating the Absorbed Dose from
Radioactive Nuclei within the Body: the
MIRDMethod

When a radiopharmaceutical is given to a patient for either
diagnosis or therapy, the nuclei end up in different organs
in varying amounts; for example, 99mTc-labeled albumin

5 Three photons are occasionally emitted.
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microspheres injected intravenously lodge in the lungs. The
problem is to calculate the whole-body absorbed dose, the
dose to the lungs, and the dose to other organs.

The dose calculation in this chapter follows the technique
and notation recommended by the MIRD Committee of the
Society of Nuclear Medicine and Molecular Imaging (Lo-
evinger et al. 1988; ICRU 2002; Stabin et al. 2005; Stabin
2008; Bolch et al. 2009). It is carried out in the following
way:
1. Calculate the total number of nuclear transformations

or disintegrations in organ h. It is called the cumulated
activity Ãh or Nh.

2. Calculate the mean energy emitted per unit cumulated
activity for each type of photon or particle emitted.
a) If the radioactive nucleus can emit several types of

particles or photons per transformation, call Yi the
mean number of particles or photons of type i (tran-
sitions) emitted per transformation. These include γ

rays, electrons, x rays and Auger electrons. The data
are also available in electronic form (Eckerman et al.
1994; Stabin and da Luz 2002; RADAR (the Radi-
ation Group Assessment Resource), www.doseinfo-
radar.com; and the National Nuclear Data Center,
www.nndc.bnl.gov/mird/).

b) For each transition i determine Ei , the mean energy
per transition.

c) Calculate or look up �i = YiEi , the mean energy
emitted per unit cumulated activity, for each type of
particle or photon emitted. (In earlier MIRD litera-
ture, this was called the equilibrium absorbed dose
constant.)

3. Calculate φi(rk ← rh), the fraction of the radiation of
type i emitted in source region rh that is absorbed in target
region rk , and divide by the mass of the target region to
get the specific absorbed fraction

Φi(rk ← rh) = φi(rk ← rh)

mk

.

(Φ has the units of inverse mass.)
4. The mean absorbed dose in organ k due to activity in

organ h, D (in J kg−1 or Gy) is

D(rk ← rh) = Ãh

∑

i

�iΦi(rk ← rh). (17.16)

5. If several organs are radioactive, a sum must be taken over
each organ:

D(rk) =∑hÃh

∑
i�iΦi(rk ← rh). (17.17)

Some tables (Snyder et al. 1976, 1978) give values of Φi

for photons of various energies. It is necessary to multiply by

�i and sum for the isotope of interest. The sum is called the
mean absorbed dose per unit cumulated activity:

S(rk ← rh) =∑i�iΦi(rk ← rh), (17.18)

D(rk ← rh) = ÃhS(rk ← rh), (17.19)

D(rk) =∑hÃhS(rk ← rh). (17.20)

These sums must be repeated over and over again for
common radionuclides. A table of S for many common ra-
dionuclides is available (Snyder et al. 1976). The tables
cannot be summed over h because the values of Ãh depend
on how the isotope is administered. A computer program
OLINDA/EXM is most commonly used for these calcula-
tions (Stabin et al. 2005). These authors call S the dose
factor.

To discuss units, imagine there is only one type of radia-
tion. In SI units the dose is simply

D (Gy) =
[
Ã (dimensionless)

]
[�i (J)]

[
Φi (kg−1)

]
.

(17.21a)
In day-to-day calculations, it is often easier to use mixed
units and write

D (Gy) = k

(
Gy kg

MBq s MeV

)[
Ã (MBq s)

]
(17.21b)

× [�i (MeV)]
[
Φi (kg−1)

]
.

The numerical value of k in these units is 1.6 × 10−7. In an
older system of units, where the dose is in rad and the total
number of transitions is in microcurie-hour (see below), the
equation is

D (rad) =
[
Ã (μCi h)

] [
�i (g radμCi−1 h−1)

] [
Φi (g−1)

]
.

(17.21c)
The next three subsections discuss cumulated activity, the

mean energy emitted, and the absorbed fraction of the en-
ergy. Then all of these concepts are combined with examples
of absorbed dose calculations.

17.6.1 Activity and Cumulated Activity

The activity A(t) is the number of radioactive transitions (or
transformations or disintegrations) per second. The SI unit of
activity is the becquerel (Bq):

1 Bq = 1 transition s−1. (17.22)
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The earlier unit of activity, which is still used occasionally,
is the curie (Ci):

1 Ci = 3.7 × 1010 Bq,

1μCi = 3.7 × 104 Bq.
(17.23)

The cumulated activity Ã is the total number of transitions
that take place. The SI unit of cumulated activity is the tran-
sition or the Bq s. Both are dimensionless. The old unit of
cumulated activity is the μCi h:

1μCi h = 1.332 × 108 Bq s. (17.24)

Consider a sample of N0 radioactive nuclei at time t = 0.
The total number of nuclei remaining at time t is N(t) =
N0e

−λt , and the total activity is A(t) = λN(t) = A0e
−λt .

The cumulated activity between times t1 and t2 is

Ã(t1, t2) =
∫ t2

t1

A(t) dt = A0

λ

(
e−λt1 − e−λt2

)
(17.25)

= N(t1) − N(t2).

If all times are considered, t1 = 0 and t2 = ∞,

Ã = Ã(0,∞) = A0

λ
= A0T1/2

0.693
= 1.443A0T1/2. (17.26)

This is, as we would expect, N0.

17.6.1.1 The General Distribution Problem:
Residence Time

Suppose that a radioactive substance is introduced in the
body by breathing, ingestion, or injection. It may move into
and out of many organs before decaying, and it may even
leave the body. The details of how it moves depend on the
pharmaceutical to which it is attached.

The cumulated activity in organ h is the total number of
disintegrations in that organ:

Nh = Ãh =
∫ ∞

0
Ah(t) dt. (17.27)

The dose to organ k is then

Dk =∑hNhS(rk ← rh). (17.28)

The units of Nh are disintegrations (dimensionless) or
Bq s. If initial activity A0 (Bq) is administered to the patient,
the ratio Nh/A0 is called the residence time6

τh = Nh

A0
= Ãh

A0
= Ãh(0,∞)

A0
. (17.29)

6 Stabin (2008) says that residence time is confusing. He recommends
that the ratio Ãh/A0 should be called the normalized cumulative activity
which has units of Bq s per Bq administered.

The residence time is the length of time that activity at a con-
stant rate A0 would have to reside in the organ to give that
cumulated activity. The residence time for a given substance
and organ must be determined by measurement, guided by
the use of appropriate models. Many residence times have
been determined and published. The presence of an ab-
normality in some organ can drastically alter the residence
time.

We now calculate the cumulated activity and residence
time for some simple situations.

17.6.1.2 Immediate Uptake with No Biological
Excretion

This is the simplest example. A certain fraction of the ra-
diopharmaceutical is taken up very rapidly in some organ,
and it stays there. This is a good model for 99mTc–sulfur col-
loid, which is used for liver imaging. About 85 % is trapped
in the liver; the remainder goes to the spleen and elsewhere
(Loevinger et al. 1988, p. 23). The activity in the organ is
Ah(t) = Ahe

−λt . [Note the difference between the activity
in organ h as a function of time, Ah(t), the initial activ-
ity in organ h, Ah, and the cumulated activity in organ h,
Nh = Ãh.] Let the fraction of the activity in the organ be Fh.
The cumulated activity is

Ãh = Ah

∫ ∞

0
e−λt dt = Ah

λ
= FhA0

λ
.

The residence time is

τh = Ãh

A0
= Fh

λ
= 1.443FhT1/2. (17.30)

17.6.1.3 Immediate Uptake with Exponential
Biological Excretion

Suppose that in addition to physical decay with decay con-
stant λ, the pharmaceutical moves to another organ while it is
still radioactive. Such a process can be complicated, perhaps
involving storage in the gut or bladder. In other cases, the
disappearance from a particular organ may be close to expo-
nential with a biological disappearance constant λj . (Assume
for now that all the radioactive nuclei can disappear biolog-
ically. If some are bound in different chemical forms, this
might not be true.) If N is the number of radioactive nuclei
in the organ (not the total number originally administered),
then the rate of change of N is

dN

dt
= −(λ + λj )N,

the solution to which is N(t) = N0e
−(λ+λj )t . The activity is

λN , not |dN /dt |. Since it is proportional to N , we can again
write

Ah(t) = Ahe
−(λ+λj )t = λN0e

−(λ+λj )t . (17.31)
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Again, N0 = Ah/λ. The decay constant λ + λj is larger than
the physical decay constant. The effective half-life is

(
Tj

)
eff = 0.693

λ + λj

. (17.32)

In terms of the physical and biological half-lives T and Tj ,
this is

1
(
Tj

)
eff

= 1

T
+ 1

Tj

(17.33)

or
(
Tj

)
eff = T Tj

T + Tj

. (17.34)

The cumulated activity is

Ãh(t1, t2) = Ah

∫ t2

t1

e−(λ+λj )t dt

= Ah

λ + λj

(
e−(λ+λj )t1 − e−(λ+λj )t2

)
.

(17.35)

The cumulated activity for all time is

Ãh = Ah

λ + λj

= 1.443
(
Tj

)
eff Ah. (17.36)

17.6.1.4 Immediate Uptake Moving through Two
Compartments

Consider the simplest two-compartment model. A total of
N0 nuclei are administered that move immediately to the
first compartment. They then move exponentially from the
first compartment to the second but do not move back. The
number in the first compartment is given by

dN1

dt
= −(λ1 + λ)N1. (17.37)

The radioactive decay constant is λ and the biological dis-
appearance rate is λ1. In compartment 2, the substance
enters from compartment 1 and is biologically removed with
constant λ2:

dN2

dt
= +λ1N1 − (λ + λ2)N2. (17.38)

Suppose we start with no nuclei in either compartment and
inject N0 nuclei in compartment 1 at t = 0. Then one can
show (see Problem 13) that

N1(t) = N0e
−(λ+λ1)t (17.39)

so
dN2

dt
= λ1N0e

−(λ+λ1)t − (λ + λ2)N2, (17.40)

the solution to which is

N2(t) = N0
λ1

λ1 − λ2

(
e−(λ+λ2)t − e−(λ+λ1)t

)
. (17.41)
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Fig. 17.11 An example of two-compartment transfer when λ = 1,
λ1 = 2, and λ2 = 1

These solutions are worth examining. They are plotted in
Fig. 17.11 for λ = 1, λ1 = 2, and λ2 = 1. The number
of nuclei in compartment 1 is N0e

−3t . At first, many of the
particles leaving compartment 1 enter compartment 2, and
N2 rises. When there is no more of the substance entering
the second compartment from the first, N2 decays at a rate
λ + λ2 = 2. This corresponds to the vanishing of the second
term in Eq. 17.41. The larger the value of λ1, the faster the
second term vanishes. For very large values of λ1, the second
term vanishes quickly, the factor λ1/(λ1 − λ2) approaches
unity, and the decay is nearly N2(t) = N0e

−(λ+λ2)t . The case
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λ1 = λ2 is discussed in Problem 15. The activities are

A1(t) = λN1(t), A2(t) = λN2(t)

and the cumulated activities are obtained by integration:

Ã1 = A0

λ + λ1
,

Ã2 = A0λ1

(λ + λ1)(λ + λ2)
.

(17.42)

The residence times are

τ1 = 1

λ + λ1
,

τ2 = λ1

(λ + λ1)(λ + λ2)
.

(17.43)

17.6.1.5 More Complicated Situations
A number of more complicated situations are solved by
Loevinger et al. (1988). These include situations where sub-
stances move between compartments in both directions, the
experimental data for the activity have been fit with a se-
ries of exponentials, and convolution techniques are used.
All of these cases are for isotopes and pharmaceuticals used
in clinical practice.

17.6.1.6 Activity per Unit Mass
It is sometimes convenient to use the mean initial activity per
unit mass

Ch = Ah

mh

Bq kg−1 (17.44)

and the cumulated mean activity per unit mass

C̃h = Ãh

mh

= τhA0

mh

kg−1. (17.45)

Earlier units for these were μCi g−1 and μCi h g−1.

17.6.2 Mean Energy Emitted Per Unit
Cumulated Activity

The mean energy emitted per unit cumulated activity �i is
determined by knowing Yi and Ei for each particle or photon
that is emitted. For a given nuclear transformation, the Yi and
Ei must include all photons (whether γ rays or x rays) and
all electrons (betas, internal conversion electrons, and Auger
electrons). In SI units,

�i (in J) = YiEi (in J). (17.46a)

If Ei is expressed in MeV, we must use the conversion factor
1 MeV = 1.6 × 10−13 J. In the old system of units, there is
the conversion factor:

�i (g radμCi−1 h−1) = YiEi (MeV)

×(3.7 × 104 s−1 μCi−1)(1.6 × 10−13 J MeV−1)

×(107 erg J−1)(3.6 × 103 s h−1)(10−2 rad g erg−1)

�i = 2.13YiEi.

(17.46b)

17.6.3 Calculation of the Absorbed Fraction

The remaining part of the dose determination problem is the
most difficult: the calculation of φ(rk ← rh), the fraction
of the radiation of a certain type emitted in region rh that
is absorbed in region rk . A lot has been published on this
problem; this section provides only an introduction.

17.6.3.1 Nonpenetrating Radiation
The simplest case is for charged particles or photons of very
low energy that lose all their energy after traveling a short
distance. If the source volume is much larger than this dis-
tance, we can say that the target volume is the same as the
source volume:

φ(rk ← rh) =
{

0, rk �= rh
1, rk = rh.

(17.47)

17.6.3.2 Infinite Source in an Infinite Medium
Suppose that a radioactive source is distributed uniformly
throughout a region that is so large that edge effects can be
neglected. The activity per unit mass is C, so the total activ-
ity is Ã = MC̃, where M is the mass of the material. The
energy released is Ã�. This is absorbed in mass M , so the
fractional absorbed energy is 1, as in case 1. The dose is

D = MC̃�

M
= C̃�. (17.48)

(This is why � used to be called the equilibrium absorbed
dose constant.)

17.6.3.3 Point Source of Monoenergetic Photons
in Empty Space

Another simple case is a point source of monoenergetic pho-
tons in empty space. The total amount of energy released by
the source is Ã�i . If the energy of the radiation is Ei , the
number of photons is Ã�i /Ei . At distance r the number per
unit area is Ã�i/4πr2Ei . If a small amount of substance of
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Fig. 17.12 A small volume of absorbing material is introduced at
distance r from a point source of γ rays

area dS, density ρ, thickness dr , and energy absorption co-
efficient μen is introduced as in Fig. 17.12, the amount of
energy absorbed in it is Ei times the number of photons ab-
sorbed: δE = Ã�idS μendr/4πr2. Therefore, the absorbed
fraction is

φ = δE

Ã�i

= μen dr dS

4πr2
. (17.49)

This is exactly what we expect from the definition of φ. If
the source radiates its energy isotropically, the fraction pass-
ing through dS is dS/(4πr2). The fraction of that energy
absorbed in dr is μen dr . The specific absorbed fraction is

Φ = φ

M
= φ

ρdSdr
= μen

4πr2ρ
. (17.50)

17.6.3.4 Point Source of Monoenergetic Photons
in an Infinite Isotropic Absorber

If the source is not in empty space but in an infinite, homoge-
neous, isotropic absorbing medium, the number of photons
at distance r from the source is modified by the factor
e−μattenrB(r), where the buildup factor B(r) accounts for
secondary photons. Therefore,

φ = μen dr dS e−μattenr

4πr2
B(r) (17.51)

and

Φ = μen

ρ

e−μattenr

4πr2
B(r). (17.52)

See also Sect. 15.17. The buildup factor has been tabulated
for photons of various energies in water (Berger 1968).

17.6.3.5 More Complicated Cases—the MIRD
Tables

For more realistic geometries, the calculation of φ is quite
complicated. Tables for humans of average build have been

prepared by the MIRD Committee (Snyder et al. 1975, 1976,
1978) . A Monte Carlo computer calculation was used. The
description below shows how it works in principle; the ac-
tual calculations, though equivalent, are different in detail to
save computer time. The radioactive nuclei are assumed to be
distributed uniformly throughout the source organ. A point
within the source organ is picked. The model emits a pho-
ton of energy E in some direction, picked at random from all
possible directions. This photon is followed along its path;
for every element ds of its path, the probability of its inter-
acting, μattends, is calculated. The computer program then
“flips a coin” with this probability of having heads. If a head
occurs, the photon is considered to interact at that point. If
the interaction is Compton scattering, the angle is picked at
random with a relative probability given by the differential
cross section. The energy of a recoil electron for that scatter-
ing angle is calculated and deposited at the interaction site.
Similar procedures are followed for the photoelectric effect
and pair production. The scattered photon is then followed in
the same way. If a tail occurred on the first flip, the photon
is allowed to travel another distance ds and the probability
of interaction is again calculated. This procedure is repeated
until all the energy has been absorbed.

To determine what kind of material the photons are trav-
eling through, a model of the body called a phantom is used.
An example of a phantom is shown in Fig. 17.13.

This entire procedure is repeated many times for each or-
gan, until one has a map of the radiation deposited in all
organs by γ rays leaving that point in the source organ. The
procedure is described in much greater detail by Snyder et
al. (1976). Table 17.2 shows a portion of a table for φ. A
computer code (OLINDA/EXM) is usually used to make the
calculations (Stabin et al. 2005). Recently 3-d imaging has
made it possible to make patient-specific dose calculations
(Dewaraja et al. 2012).

Arqueros and Montesinos (2003) provide a pedagogical
discussion of Monte Carlo simulation of γ -ray transport. A
pedagogical program for whole-body Monte Carlo calcula-
tions has been developed by Hunt et al. (2004). It is available
through the RADAR (Radiation Dose Assessment Resource)
web site: www.doseinfo-radar.com.

Often most of the isotope is taken up in one or two organs,
and the rest of it distributes fairly uniformly through the rest
of the body. Using the subscript h for the organs with the
greatest activity, TB to mean total body, and RB to mean the
rest of the body,

ÃRB = ÃTB −∑hÃh. (17.53)

The dose is then

Dk =∑hÃhS(rk ← rh) + ÃRBS(rk ← RB). (17.54)
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Fig. 17.13 An early phantom used by the MIRD Committee for calculations of the absorbed fraction. a A view of the whole body. b Details of
the heart boundaries. (Reprinted by permission of the Society of Nuclear Medicine and Molecular Imaging from W. S. Snyder, M. R. Ford, G. G.
Warner, and H. L. Fisher. MIRD Pamphlet No. 5. Estimates of Absorbed Fractions for Monoenergetic Photon Sources Uniformly Distributed in
Various Organs of a Heterogeneous Phantom. J Nucl Med 1969; 10 (Suppl. 3): 5–52, Figs. 4 and 5)

The quantity S(rk ← RB) cannot easily be tabulated, since
it depends on what organs are included in the sum over h.
Substituting the tabulated quantity S(rk ← TB) introduces
errors because the “hot” organs that have significant activity
are included a second time. One solution to this problem is to
modify the cumulated activities (Coffey and Watson 1979).
First, define a uniform total body cumulated activity that has

the same cumulated activity per unit mass as the rest of the
body:

Ãu = mTB

mRB
ÃRB. (17.55)

This activity in the total body would give a dose

Dk = ÃuS(rk ← TB).
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Table 17.2 Absorbed fractions for a uniform source of 99mTc in the
lungs, calculated using the tables in Snyder et al. (1976)

Target organ φ

Adrenals 1.39 × 10−4

Bladder 8.83 × 10−5

GI(stomach) 2.58 × 10−3

GI(SI) 1.46 × 10−3

GI(ULI) 4.49 × 10−4

GI(LLI) 7.02 × 10−5

Heart 1.35 × 10−2

Kidneys 9.14 × 10−4

Liver 1.66 × 10−2

Lungs 4.95 × 10−2

Marrow 2.16 × 10−2

Pancreas 5.35 × 10−4

Skeleton (rib) 2.03 × 10−2

Skeleton (pelvis) 4.21 × 10−4

Skeleton (spine) 7.59 × 10−3

Skeleton(skull) 1.11 × 10−3

Skeleton (total) 5.21 × 10−2

Skin 5.43 × 10−3

Spleen 1.46 × 10−3

Thyroid 4.14 × 10−5

Uterus 1.55 × 10−5

Trunk 3.71 × 10−1

Legs 4.05 × 10−4

Head 7.70 × 10−3

Total body 3.79 × 10−1

Then define for each organ of interest the quantity Ã∗
h, which

is the difference between the actual activity in organ h and
that assuming the substance is uniformly distributed in the
total body:

Ã∗
h = Ãh − mh

mRB
ÃRB. (17.56)

Then the dose to organ k is

Dk =∑hÃ
∗
hS(rk ← rh) + ÃuS(rk ← TB). (17.57)

Problem 31 shows that Eqs. 17.55–17.57 are consistent with
Eqs. 17.53 and 17.54 if

mRB

mTB
S(rk ← RB) +

∑

h

mh

mTB
S(rk ← rh) = S(rk ← TB),

(17.58)
which is consistent with a uniform source Ãu distributed
throughout the body. The dose can be determined either by
calculating the modified activities and using the total body
S in Eq. 17.57, or by calculating S for the rest of the body
from Eq. 17.58 and using the unmodified activities. Problem
32 shows how these reformulations work in a simple case.

17.6.4 Sample Dose Calculation

We pull this discussion together by making a simplified cal-
culation of the dose to various organs from 99mTc-labeled

microspheres used in a lung scan. We assume that 37 MBq
of 99mTc is injected, that it all lodges in the capillaries of
the lung, and that it remains there long enough so that the
half-life is the physical half-life.7 The residence time is then
τh = 1.443T1/2 = (1.443)(6) = 8.658 h, so the cumu-
lated activity is Ãlung = (3.7 × 107)(8.658 × 60 × 60)

= 1.153 × 1012 Bq s (Table 17.3).
The dose to the lungs is considerably greater than in a

chest x ray; however, a chest x ray is almost useless for di-
agnosing a pulmonary embolus. The whole body dose is not
unreasonable.

Table 17.4 shows some typical doses from various nu-
clear medicine procedures. The effective dose is defined on
page 491.

17.7 Radiopharmaceuticals and Tracers

A radioactive nucleus by itself is not very useful. It must usu-
ally be attached to some substance that will give it the desired
biological properties, for example, to be preferentially ab-
sorbed in the region of interest. It must also be prepared in
a sterile form, free of toxins that produce a fever (pyrogens)
so that it can be injected in the patient. This section surveys
some of the properties of radiopharmaceuticals. Much more
detail can be found in Cherry et al. (2012) and Kowalsky and
Falen (2011).

The radioactive nuclei used in nuclear medicine are not
found in nature. They are produced by bombarding a sta-
ble isotope with neutrons (from a nuclear reactor) or protons
(from a cyclotron). The bombardment may yield fission frag-
ments or an isotope that is useful as produced. In other cases
the isotope produced has a half life that is long enough to
ship it to a hospital. Its decay product has a shorter half life
and is the isotope used in the pharmaceutical. See Cherry et
al. (2012), Chap. 5.

17.7.1 Physical Properties

The half-life must be short enough so that a reasonable frac-
tion of the radioactive decays take place during the diagnos-
tic procedure; any decays taking place later gives the patient
a dose that has no benefit. (This requirement can be relaxed if

7 The last is not a good assumption. The 99mTc leaches from the mi-
crospheres into the general circulation. A more accurate calculation
requires measurements and the use of a convolution integral, as de-
scribed in Loevinger et al. (1988, pp. 79–81). The principal residence
times are 4.3 h in the lung, 1.8 h in the extravascular space, 0.83 h in
the urine, 0.7 h in the kidney, and 0.6 h in the blood.
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Table 17.3 Values of �i, Ei, and φi for 99mTc in the lung

φi

i, Line in
Fig. 17.4

�i (J) Ei

(keV) (e
denotes an
electron)

Lung Heart Liver Head Whole body

1 2.42 × 10−16 e 1 0 0 0 1
2 4.52 × 10−17 e 1 0 0 0 1
3 2.00 × 10−14 140.5 0.0495 0.0135 0.0166 0.0077 0.3785
4 1.71 × 10−15 e 1 0 0 0 1
5 2.18 × 10−16 e 1 0 0 0 1
6 1.42 × 10−17 e 1 0 0 0 1
7 7.45 × 10−18 e 1 0 0 0 1
8 4.47 × 10−17 e 1 0 0 0 1
9 8.56 × 10−18 e 1 0 0 0 1
10 1.07 × 10−16 e 1 0 0 0 1
11 2.11 × 10−17 e 1 0 0 0 1
12 4.44 × 10−18 e 1 0 0 0 1
13 1.36 × 10−17 e 1 0 0 0 1
14 7.93 × 10−18 e 1 0 0 0 1
15 6.23 × 10−17 18.21 1 0 0 0 1
16 1.19 × 10−16 18.33 1 0 0 0 1
17 2.16 × 10−17 20.59 1 0 0 0 1
18 3.65 × 10−17 e 1 0 0 0 1
19 1.60 × 10−17 e 1 0 0 0 1
20 2.98 × 10−17 e 1 0 0 0 1
21 5.26 × 10−18 e 1 0 0 0 1
22 1.30 × 10−17 0.11 1 0 0 0 1
23 3.57 × 10−17 e 1 0 0 0 1
24 1.17 × 10−17 0.029 1 0 0 0 1∑

�iφi 3.79 × 10−15 2.70 × 10−16 3.32 × 10−16 1.54 × 10−16 1.04 × 10−14

m (kg) 0.999 0.603 1.833 5.278 70.036
S =∑�iφi/m 3.79 × 10−15 4.48 × 10−16 1.81 × 10−16 2.92 × 10−17 1.48 × 10−16

Dose (Gy) A0 = 37 MBq 4.37 × 10−3 5.16 × 10−4 2.09 × 10−4 3.36 × 10−5 1.71 × 10−4

Table 17.4 Some typical doses for nuclear medicine procedures. (Adapted from Table 9-3 in Zanzonico et al. 1995)

Study and agent A0 (MBq) Organ and highest
dose (mSv)

Total
body dose
(mSv)

Effective
dose
(mSv)

Bone 555 Bladder wall 51 2.0 4.4
99mTc–pyrophosphate
Heart 55 Kidneys 20 3.6 13
201Tl–chloride
Liver 185 Bladder wall 17 0.9 2.6
99mTc–sulfur colloid

the biological excretion is rapid.) On the other hand, the life-
time must be long enough so that the radiopharmaceutical
can be prepared and delivered to the patient.

For diagnostic work, the decay scheme should minimize
the amount of nonpenetrating radiation. Such radiation pro-
vides a dose to the patient but never reaches the detector. This
means that there should be as few charged particles (β parti-
cles) as possible. The ideal source then is a γ source, which
means that the nucleus is in an excited state (an isomer). Such
states are usually very short-lived. Not only should the nu-
cleus be a γ emitter, but the internal conversion coefficient
should be small, since internal conversion produces nonpen-
etrating electrons. Positron emitters are more desirable than

are β− emitters because the positrons produce 0.5-MeV ra-
diation that can reach an external detector. For therapy, on
the other hand, nonpenetrating radiation is ideal.

It is also necessary that the decay product have no undesir-
able radiations. If the decay is a β− or β+ decay, the product
has different chemical properties from the parent and may be
taken up selectively by a different organ. If it is also radioac-
tive, this can confuse a diagnosis and give an undesirable
dose to the other organ.

Ease of chemical separation of the radioactive substance
from whatever carrier it is produced with is also important.
It is necessary to remove the radioactive isotope from sta-
ble isotopes of the same element, because the chemicals are
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usually toxic. This toxicity is avoided by giving the chemical
in minute amounts, which can only be done if the specific
activity is high.

17.7.2 Biological Properties

For diagnostic work, a pharmaceutical is needed that is taken
up more by the diseased tissue to give a hot spot or taken up
less to give a cold spot. The former is easier to see with small
amounts of radioactivity, but both techniques are used. For
therapy one wishes to have selective absorption of the phar-
maceutical so that the radiations will destroy the target organ
but not the rest of the body. There are several mechanisms by
which a pharmaceutical may be localized.

1. Active transport. The drug is concentrated by a specific
organ against a concentration gradient. Examples are the
selective concentration of iodine in the thyroid, salivary,
and gastric glands. (It is rapidly excreted from the last
two but is retained in the thyroid). This technique is also
effective for certain drugs in the kidney.

2. Phagocytosis. Particles in the size range 1–1000 nm may
be phagocytized—taken up by specialized cells of the
reticuloendothelial system. This can take place in liver,
bone marrow, and spleen. Particles of size 1 nm go to the
Kupfer cells of the liver and to the marrow, while larger
particles (100–1000 nm) are gathered by phagocytes in
the liver and spleen.

3. Sequestration. Still larger particles, such as red blood
cells that have been denatured by heat, are gathered in the
spleen or liver by the process called sequestration. The
particles are trapped as the blood percolates through the
pulp of the spleen and are later phagocytized.

4. Capillary blockade. The capillaries have a diameter of 7-
10 μm. Particles from 20 to 40 μm diameter injected into
a vein will find progressively larger vessels as they work
their way through the right heart and will be stopped in
the capillaries of the lung.

5. Diffusion. It is also possible for a pharmaceutical to move
through a membrane to a region of lower concentration.
There is a blood–brain barrier between the blood and
the central nervous system that is relatively imperme-
able even to small ions. In a brain scan the chemical is
not concentrated in normal brain tissue but leaks into tis-
sue where the blood–brain barrier is compromised by a
lesion.

6. Compartmental localization. A suitable pharmaceutical
injected in the blood may remain there a long time, mix-
ing well and allowing the blood volume to be determined.

The most widely used isotope is 99mTc. As its name suggests,
it does not occur naturally on earth, since it has no stable iso-
topes. We consider it in some detail to show how an isotope
is actually used. Its decay scheme has been discussed above.

Fig. 17.14 A 99Mo–99mTc generator system. Molybdenum is trapped
in the aluminum oxide layer. Eluant introduced at the top flows through
and is collected at the bottom

There is a nearly monoenergetic 140-keV γ ray. Only about
10 % of the energy is in the form of nonpenetrating radia-
tion. The isotope is produced in the hospital from the decay
of its parent, 99Mo, which is a fission product of 235U and
can be separated from about 75 other fission products. The
99Mo decays to 99mTc.

Technetium is made available to hospitals through a gen-
erator that was developed at Brookhaven National Laborato-
ries in 1957 and is easily shipped. Isotope 99Mo, which has
a half-life of 67 h, is adsorbed on an alumina substrate in the
form of molybdate (MoO2−

4 ). From 8 to 100 GBq of 99Mo
can be provided. The heart of such a generator (without the
lead shielding) is shown in Fig. 17.14. As the 99Mo decays,
it becomes pertechnetate (TcO−

4 ). Sterile isotonic eluting so-
lution is introduced under pressure above the alumina and
passes through after filtration into an evacuated eluate con-
tainer. After removal of the technetium, the continued decay
of 99Mo causes the 99mTc concentration to build up again. A
generator lasts about a week.

Several steps must be taken to prepare the pertechnetate as
a radiopharmaceutical. First, it must be checked for break-
through of the 99Mo. The Nuclear Regulatory Commission
allows 1.5×10−4 Bq of 99Mo per Bq of 99mTc. The purity is
checked by placing the eluate in a lead sleeve that attenuates
the 99mTc γ ray much more than the ≈ 750-keV γ rays from
99Mo and measuring the activity. It is also checked with a
colorimetric test for the presence of aluminum ion.

The eluate can be used directly for imaging brain, thyroid,
salivary gland, urinary bladder, and blood pool, or it can be
combined with phosphate, albumin or aggregated albumin,
colloidal sulfur, or FeCl3. Commercial kits are available for
making these preparations.

For example, kits for labeling aggregated human albumin
are commercially available. A vial containing 10 ml of saline
solution is enough for ten doses. The aggregated albumin
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Fig. 17.15 A scintillator with a lead collimator to give directional
sensitivity

particles are 10–70 μm in diameter. Each milliliter of so-
lution contains (4 − 8) × 105 particles. Tin is attached to
the microspheres and serves to bind technetium. Up to 109

Bq of technetium pertechnetate is added to the vial by the
user. A typical adult dose is 10–40 MBq (3.51×105 albumin
particles). The problems consider attaching Tc to the micro-
spheres and what fraction of the capillaries are blocked by
this kind of study.

Other common isotopes are 201Tl, 67Ga, and 123I. Thal-
lium, produced in a cyclotron (see Sect. 8.1), is chemically
similar to potassium and is used in heart studies, though it is
being replaced by 99mTc–sestamibi and 99mTc–tetrofosmin.
Gallium is used to image infections and tumors. Iodine is
also produced in a cyclotron and is used for thyroid studies.
For many more details see Cherry et al. (2012) or Kowalsky
and Falen (2011).

17.8 Detectors; The Gamma Camera

Nuclear medicine images do not have the inherent spatial
resolution of diagnostic x-ray images; however, they provide
functional information: the increase and decrease of activity
as the radiopharmaceutical passes through the organ being
imaged (Zanzonico 2012).

Early measurements were done with single detectors such
as the scintillation detector8 shown in Fig. 17.15. Directional
sensitivity is provided by a collimator, which can be cylin-
drical or tapered. Single detectors are still used for in vitro
measurements and for thyroid uptake studies.

Two-dimensional images can be taken with the scintil-
lation camera or gamma camera shown in Figs. 17.16 and
17.17. The scintillator is 6–12 mm thick and about 60 cm

8 Scintillation detectors were discussed in Sect. 16.3.

Fig. 17.16 Side view of a scintillation camera. A collimator allows
photons from the patient to strike the scintillator directly above the
source. An array of photomultiplier tubes records the position and
energy of the detected photon

Fig. 17.17 A square scintillator viewed by an array of 67 photo-
multiplier tubes. The hexagonal arrangement of the tubes above the
scintillator gives the closest spacing between tubes

across. Modern scintillators are rectangular. The scintilla-
tor is viewed by an array of 50–100 photomultiplier tubes
arranged in a hexagonal array. The tube nearest where the
photon interacts receives the greatest signal. Signals from
each tube are combined to give the total energy signal and
x and y position signals.

The collimator is a critical component of the gamma cam-
era. The channels are usually hexagonal, with walls just thick
enough to stop most of the photons which do not pass down
the collimator opening. The collimator usually has parallel
channels. Single pinholes, diverging, and converging chan-
nels are sometimes used and can lead to geometric distortions
of the image (Cherry et al. 2012). The spatial resolution de-
pends on the distance from the source to the collimator, as
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Fig. 17.18 Modulation transfer function curves for a typical parallel-hole collimator for different source-to-collimator distances. Both linear and
log-log plots are shown. The source-to-collimator distances are 2.5, 7.5, and 15 cm. (Data are from Erhardt et al. 1978, p. 39)

shown for one collimator in Fig. 17.18. There are trade-
offs between sensitivity and resolution (Links and Engdahl
1995). Some of the aspects of collimator design are discussed
in Problems 49–51.

Figure 17.19 shows a bone scan of a child taken with a
gamma camera. The 99mTc–diphosphonate is taken up in ar-
eas of rapid bone growth. Bone growth at the epiphyses at
the end of each bone can be seen. There are also hot spots at
the injection site, in one kidney, and in the bladder.

Nuclear medicine can show physiologic function. For ex-
ample, if the isotope is uniformly distributed in the blood,
viewing the heart and synchronizing the data accumulation
with the electrocardiogram (gating) allows one to measure
blood volume in the heart when it is full and contracted,
and to calculate the ejection fraction, the fraction of blood
in the full left ventricle that is pumped out. Fig. 17.20, shows
pictures and contours of the heart at end-systole and end-
diastole. The imaging agent was 99mTc-labeled human red
blood cells.

Figure 17.21 shows a series of images taken at six differ-
ent angles around a patient who has had a lung transplant.
The left lung is new and shows considerably more activity
than the diseased right lung.

17.9 Single-Photon Emission Computed
Tomography

Still another detection scheme, single-photon emission com-
puted tomography (SPECT), is analogous to computed to-
mography (CT). The detector is sensitive to all radioactivity

Fig. 17.19 A scintillation camera bone scan of a 7-year-old male who
received a 99mTc–diphosphonate injection. An anterior view is on the
left, and a posterior view is on the right. The scan shows an area of
decreased uptake surrounded by a dark ring in the right anterior skull,
consistent with an eosinophilic granuloma. Identifiable hot regions are
the injection site in the right elbow, an attempted injection site in the
right hand, the bladder, and the left kidney, which is probably not
remarkable on this exam, along with the ends of the long bones. (Pho-
tograph courtesy of B. Hasselquist, Ph.D., Department of Diagnostic
Radiology, University of Minnesota)
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Fig. 17.20 Two gated-scintillation camera views of the heart, imaged
with 99mTc-labeled red blood cells. The dots outline the left ventricle.
On the left is end diastole (left ventricle filled with blood). On the right
is end systole (left ventricle at smallest volume). The ejection fraction
is 66 %. (Photograph courtesy of B. Hasselquist, Ph.D., Department of
Diagnostic Radiology, University of Minnesota)

Fig. 17.21 Lung scans of a patient who has received a lung trans-
plant. The upper left is a posterior view; each successive view is rotated
about the patient, ending with an anterior view on the lower right. The
left lung is the transplant. It has much more activity than the diseased
right lung. (Photograph courtesy of B. Hasselquist, Ph.D., Department
of Diagnostic Radiology, University of Minnesota)

Fig. 17.22 Single photon emission computed tomographic (SPECT)
slices of the heart. The patient was injected with 99mTc–tetrofosmin,
an agent that is taken up by myocardium. The images have been recon-
structed in planes parallel to the axis of the heart. The dark myocardium
surrounds the blood in the left ventricle. (Photograph courtesy of B.
Hasselquist, Ph.D., Department of Diagnostic Radiology, University of
Minnesota)
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Fig. 17.23 Projection perpendicular to the x axis for a radioac-
tive source of uniform concentration, including the effect of photon
attenuation

along a line passing through the patient. The counting rate
is thus proportional to a projection through the patient, and
a cross-sectional slice can be reconstructed from a series
of projections, just as was done with x-ray CT using the
techniques in Chap. 12. A series of images like those in
Fig. 17.21, but at more angles, are used to reconstruct a
three-dimensional image that can then be viewed from any
direction, with slices at any desired depth. A SPECT scan is
shown in Fig. 17.22. There are five reconstructed slices in
planes parallel to the long axis of the heart. The left ventricle
is prominent, and the right ventricle can be seen faintly in the
last few slices.

One of the problems with SPECT is photon attenuation
along the projection line. This is shown in Fig. 17.23 for a
cylindrical source with uniform activity throughout. Let AV

be the activity per unit volume, and ignore variations in 1/r2.
The projection F(x) is

F(x) =
∫ a

−a

AV (x, y)�x �z e−μ(y+a) dy, (17.59)

where dy �x �z is the volume detected. When AV (x, y)

is constant (a uniform activity distribution), this can be
integrated to give

F = AV �x�z

μ

(
1 − e−2μ(R2−x2)1/2

)
. (17.60)

This is plotted in Fig. 17.24 for μ = 0, μ = 10 m−1

(511-keV annihilation radiation) and μ = 15 m−1 (140-keV
99mTc). When μ = 0, F (x) = AV (2a�x�z), where 2a is
the thickness of the source along the projection. Corrections
for attenuation are made in a number of ways.9 Other nu-
clides used besides 99mTc are 81mKr, 133Xe, 131I, 67Ga, 123I,
and 201Tl.

9 See Cherry et al. (2012), pp. 288–303.
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More details can be found in Cherry et al. (2012) and
Zanzonico (2012).

17.10 Positron Emission Tomography

If a positron emitter is used as the radionuclide, the positron
comes to rest and annihilates an electron, emitting two anni-
hilation photons back to back. In positron emission tomogra-
phy (PET) these are detected in coincidence. This simplifies
the attenuation correction, because the total attenuation for
both photons is the same for all points of emission along
each γ ray through the body (see Problem 55); also the pho-
tons have a higher energy (511 keV) and lower attenuation
coefficient than those used in SPECT. Positron emitters are
short-lived, and it is necessary to have a cyclotron for pro-
ducing them in or near the hospital. This is proving to be less
of a problem than initially imagined. Commercial cyclotron
facilities deliver isotopes to a number of nearby hospitals.
Patterson and Mosley (2005) found that 97 % of the people
in the United States live within 75 miles of a clinical PET
facility. Muehllehner and Karp (2006) review the history and
uses of PET. See also Zanzonico (2004).

We have mentioned that nuclear medicine procedures
have the potential to measure function, as the molecules to

Table 17.5 Positron emitters used in nuclear medicine

Nuclide Half-life
11
6 C 20.3 min

13
7 N 10.0 min

15
8 O 2.1 min

18
9 F 109.7 min

which the isotopes are bound move from organ to organ in
the body. This is particularly true for some of the lighter
positron emitters, which have the advantage of being natu-
ral constituents of molecules in the body or similar to them
(Table 17.5). PET can provide a functional image with infor-
mation about metabolic activity. A very common positron
agent is 18F fluorodeoxyglucose—glucose in which a hy-
droxyl group has been replaced with 18F. The PET signal
is largest in those cells that have taken up the 18F because
they are actively metabolizing glucose. PET has become par-
ticularly important in studies of brain function, where active
neurons are detected by an increase in their metabolism, and
in locating metastatic cancer. The number of installed PET
scanners is growing very rapidly. Most of them have built-
in CT scanners to provide accurate fused PET/CT images
(Christian and Waterstram-Rich 2012).

There is great interest in using 11C, in spite of its
short (20-min) half life, because it can be incorporated in
molecules of biological interest.

A PET scan overlaid on a magnetic resonance (MRI)
image is shown in Fig. 17.25 The positron emitter is 15O-
labeled water (2.1-min half life). The views are described in
the caption. The subject is sequentially touching each fin-
ger of the left hand with the thumb. Activity can be seen
in the right cerebral sensorimotor cortex (slice, upper right)
and in the left cerebellum (slice, lower left). The technique is
described by Rehm et al. (1994) and Strother et al. (1995).

17.11 Brachytherapy and Internal
Radiotherapy

Brachytherapy (brachy means short) involves implanting di-
rectly in a tumor sources for which the radiation falls off
rapidly with distance because of attenuation, short range,
or 1/r2. Originally the radioactive sources (seeds) were im-
planted surgically, resulting in high doses to the operating
room personnel. In the afterloading technique, developed in
the 1960s, hollow catheters are implanted surgically and the
sources inserted after the surgery. Remote afterloading, de-
veloped in the 1980s, places the sources by remote control,
so that only the patient receives a radiation dose.

We saw in Chap. 16 that fractionation of the dose results
in better sparing of normal tissue for a given probability
of killing the tumor. Afterloading allows the sources to be
placed and removed, but it is often difficult for the patient to
tolerate the catheters for long periods of time. This has led to
the development of high-dose-rate brachytherapy (HDR), in
which the dose is given in one or a few fractions over the
course of a day or two (Nag 1994). Though this is much
easier for the patient, tissue sparing is not as great as with
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Fig. 17.25 A positron emission tomography (PET) scan is overlayed
on an MR image. At the upper left is a three dimensional MRI of the
brain viewed from above and to the right. At the bottom the image
has been sliced through the motor strip and cerebellum, and the two
pieces are separated. The PET image has been overlaid on the slice.
The positron emitter is 15O-labeled water. The subject is sequentially
touching each finger of the left hand with the thumb. Activity can be
seen in the right cerebral sensorimotor cortex (slice, upper right) and
in the left cerebellum (slice, lower left). (Image courtesy of Prof. Kelly
Rehm, University of Minnesota and the PET Imaging Service, Veterans
Administration Medical Center, Minneapolis)

a longer treatment. Current practice seeks to compensate
for this by meticulous treatment planning based on an ex-
tended version of the linear-quadratic model, and by making
sure that the tumor receives much higher doses than the
surrounding normal tissue.

Radium was the first brachytherapy source, but it has been
replaced by a number of nuclei that decay by β− emission
or electron capture. One common source is 137Cs. It under-
goes β− decay to a metastable state of 137Ba, which then
emits a 662-keV gamma ray. The β particles are absorbed in
the stainless steel tube enclosing the cesium, so the dose is
due to the gamma rays (Khan 2010, Chap. 15). Conventional
low-dose-rate brachytherapy is delivered at 0.4–1.0 Gy hr−1.
High dose rates are about 1 Gy min−1.

Patients with coronary artery disease are often treated
with balloon angioplasty, in which a coronary artery is di-
lated by inserting a balloon on the end of a catheter into
the femoral artery in the leg and from there through the
aorta and into the coronary artery. One problem is resteno-
sis or reclosure of the artery. Restenosis can be reduced by

placing a stent—a helical coil of wire—in the artery at the
time of the angioplasty. Restenosis sometimes occurs within
a stent, though the rate of recurrence is reduced by using a
stent which elutes (gives off) a restenosis-inhibiting drug. If
restenosis does occur, it can be treated by placing a string
of radioactive seeds in the stent. Treatments may use either a
gamma emitter, 192Ir, for 20 min, or a beta emitter (90Sr/90Y)
for 3 min (Kaluza and Raizner 2004; Fox 2002).

Internal radiotherapy treats the patient with a radionu-
clide in a chemical that is selectively taken up by the tumor.
The classic example is the administration by mouth of cap-
sules containing 131I for treatment of hyperthyroidism and
thyroid cancer. Other nuclides are being used for breast can-
cer, neuroendocrine tumors, and melanoma (Fritzberg and
Wessels 1995). A radionuclide for this purpose should emit
primarily nonpenetrating radiation, have a physical half-life
long compared to the biological half-life, have a large ac-
tivity per unit mass, and exhibit a high degree of specificity
for the tumor. If the nuclide can be delivered within the cell,
then Auger electrons can be exploited. One way to achieve
high concentrations in the tumor is radioimmunotherapy:
monoclonal antibodies are tagged with the radionuclide such
as 125I (see the special issue of Medical Physics edited by
Buchsbaum and Wessels 1993). It turns out that double-
strand DNA breaks from Auger cascades occur more often
than had been expected, and that the bystander effect is im-
portant. The use of Auger electrons from nuclides attached
to the appropriate antibodies for cancer therapy is under ac-
tive development; see Kassis (2011). The MIRD formulation
can be adapted to the dose calculations (Watson et al. 1993).
Radionuclide therapy is described for a general audience by
Coursey and Nath (2000).

17.12 Radon

The naturally occurring radioactive nuclei are either pro-
duced continuously by cosmic γ ray bombardment, or they
are the products in a decay chain from a nucleus whose
half-life is comparable to the age of the earth. Otherwise
they would have already decayed. There are three naturally-
occurring radioactive decay chains near the high-Z end of the
periodic table. One of these is the decay products from 238

92 U,
shown in Fig. 17.26. The half-life of 238U is 4.5 × 109 yr,
which is about the same as the age of the earth. A series of
α and β decays lead to radium, 226Ra, which undergoes α

decay with a half-life of 1620 yr to radon, 222Rn.
Uranium, and therefore radium and radon, are present in

most rocks and soil. Radon, a noble gas, percolates through
grainy rocks and soil and enters the air and water in differ-
ent concentrations. Although radon is a noble gas, its decay



17.12 Radon 525

136

137

138

139

140

141

142

143

86 87 88 89 90

144

145

146

91 92

Z

N

 92
238U

4.5 109yr

 90
234 Th

24.1day

 91
234Pa

1.2m

  92
234U

2.5 105yr

 88
226Ra

1620 yr

  86
222Rn

3.8 day

  90
230Th

8 104 yr

α

β
–

X

X

X

Fig. 17.26 Decay of 238U to radon

products have different chemical properties and attach to dust
or aerosol droplets which can collect in the lungs. High lev-
els of radon products in the lungs have been shown by both
epidemiological studies of uranium miners and by animal
studies to cause lung cancer (Committee on the Biologi-
cal Effects of Ionizing Radiations, BEIR IV 1988; BEIR VI
1999). The deposition process is quite complicated. A certain
fraction of the decay products attach to aerosol droplets. That
fraction is an important parameter in estimating the dose, be-
cause the unattached particles are deposited in the airways;
those that have attached to aerosols are also deposited in the
airways, the site depending on the droplet size. The rate at
which natural mucus clearing from the lungs removes them
is also variable.

The 222
86 Rn decay scheme is shown in Fig. 17.27. (Alter-

nate branches that occur very rarely are not shown.) The
shaded nuclides are the greatest contributors to the dose.
Radon is a noble gas; once it decays the other shaded nu-
clides decay shortly after. Radon dosimetry is described on
pp. 137–158 of BEIR IV (1988) and in BEIR VI (1999). Typ-
ical uranium activities in soil are 20 Bq kg−1 (range 7–40),
leading to radon concentrations in the air over average soil of
about 4 Bq m−3.
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The working level (WL) has been defined to be any com-
bination of the shaded isotopes in Fig. 17.27 in 1 l of air
at ambient temperature and pressure that results in the ulti-
mate emission of 1.3×105 MeV of α-particle energy. This is
about the energy liberated by the decay products in equilib-
rium with 100 pCi (3.7 Bq) of radon. Thus 1 WL corresponds
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to 3.7 Bq l−1 or 3700 Bq m−3. More recently, the activity of
radon and its decay products has been described by the Po-
tential Alpha Energy Concentration (PAEC) (BEIR VI 1999,
p. 179). Its units are J m−3.

The working-level month (WLM) measures the total
radon exposure and is 1 WL for 170 h (1 month of 40-h
work weeks). Another unit is the PAEC multiplied by the
number of hours exposure, measured in J h m−3. There are
3.5 × 10−3 J h m−3 per WLM.

Dose estimates for the miners and for the general pop-
ulation require models of aerosol size, unattached fraction,
target cells, exercise level, and occupancy factors that are de-
scribed in BEIR IV (1988). Averaging over all of these vari-
ables shows a dose in the lungs of about 6 mGy per WLM,
with a factor-of-2 uncertainty because of these variables.

The report uses a time-since-exposure model to estimate
the risk of lung cancer on the basis of four studies of groups
of miners. The model predicts a relative risk ratio that is unity
for no exposure and increases linearly to 3.5 for a continuous
exposure of 5 WLM per year over a lifetime.10 The report
uses the linear-no-threshold model to estimate risks to the
general population at small exposures. The issue of applying
the linear-no-threshold model was discussed in Sect. 16.12.
See particularly the data from the Cohen study in Fig. 16.53.
Typical radon concentrations in houses are usually less than
4r0 or 4 pCi l−1 (128 Bq m−3) or 0.04 WL. (We saw in
Sect. 16.12 that r0 = 37 Bq m−3 = 1 pCi l−1). Exposure
to r0 for 24 h per day for one year gives 0.5 WLM. The min-
ers had exposures of 5–100 WLM per year, over periods of
3–20 years.

Symbols Used in Chapter 17
Symbol Use Units First

used
page

a Distance m 522
b Source to collimator distance m 530
c Speed of light m s−1 504
d Width of collimator channel m 530
e Electron charge C 504
g Detector efficiency 530
h Planck’s constant J s 510
h, k Denote specific organs 511
l Collimator thickness m 530
m0 Rest mass kg 504
mx Rest mass of particle type x kg 505
p Momentum kg m s−1 509
rh, rk Source and target regions 511

10 BEIR IV (1988), Fig. 2.2. This is averaged by BEIR over smokers
and nonsmokers and by us over sex.

r Distance m 515
r0 Radon concentration unit Bq m−3 526
s Path length m 515
t Time s 506
t Collimator septum thickness m 530
v Speed m s−1 504
w Distance across collimator wall in the

direction of photon travel
m 530

x, y, z Position m 522
A Mass number 503
A,A0 Activity Bq 507
Ãh Cumulated activity in organ h Bq s 511
B Buildup factor 515
B,BK,BL Binding energy eV 507
Ch, C̃h Activity and cumulated activity per unit

mass in organ h

Bq kg−1;
kg−1

514

D Dose J kg−1

(Gy)
511

E,Eγ Energy J, eV 504
Fh Fraction of activity in organ h 512
F Projection Bq 522
K Geometric factor 530
M,MX Mass kg 509
N Neutron number 503
N,N0 Number of nuclei 506
R,R0 Nuclear radius m 504
R Radius of disk m 522
Rt , Ro True and observed counting rates s−1 530
S Mean absorbed dose per unit cumulated

activity
J kg−1 511

S Area m2 515
T Kinetic energy J, eV 504
T Time s 527
T1/2 Half-life s 507
Tj Half-life for j th biological

disappearance process
s 513

Yi Mean number (fraction) of transitions
of type i per transformation

511

Z Atomic number (number of protons) 503
αh Fraction of total activity in organ h 528
β−, β+ Electron and positron (in β decay) 507
λ Physical decay constant s−1 506
λj Decay constant for j th biological

process
s−1 512

μ Attenuation coefficient m−1 522
μen Energy absorption coefficient m−1 515
ν, ν Neutrino, antineutrino 509
ν Photon frequency Hz 510
ρ Density kg m−3 515
φi Absorbed fraction 511
τ Detector dead time s 530
τh Residence time in organ h s 512
�i Mean energy emitted in radiation type i J 511
Φj Specific absorbed fraction kg−1 511
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Problems

Section 17.1

Problem 1. In the 1940s, a pressing question in biology was
whether DNA or protein was responsible for the transmis-
sion of genetic information. A simple system to study this
is a bacteriophage, a virus that injects a substance into Es-
cherichia coli, thereby transforming the bacteria’s genetic
material. Design an experiment using radioactive tracers that
could determine whether DNA or protein was the injected
substance. Hint: DNA contains many phosphorus atoms but
no sulfur, whereas protein has many sulfur atoms but no
phosphorus. Alfred Hershey and Martha Chase performed
such an experiment in 1952.
Problem 2. An alpha particle is fired directly at a stationary
aluminum nucleus. Assume the only interaction is the elec-
trostatic repulsion between the alpha particle and the nucleus,
and the nucleus is so heavy that it is stationary. Calculate
the distance of their closest approach as a function of the
initial kinetic energy of the alpha particle. This calculation
is consistent with Ernest Rutherford’s famous alpha particle
scattering formula for energies lower than 3 MeV, but devi-
ates from his formula for energies higher than 3 MeV. If the
alpha particle enters the nucleus, the nuclear force dominates
and the formula no longer applies. Estimate the radius of the
aluminum nucleus.
Problem 3. The best current (2010) value for the mass of
the proton is 1.007276467 u. The mass of the electron is
5.485799095 × 10−4 u. The BE of the electron in the hy-
drogen atom is 13.6 eV. Calculate the mass of the neutral
hydrogen atom.
Problem 4. Solve Eq. 17.1 for the kinetic energy, T . Show
that when v 	 c, it reduces to the familiar T = m0v

2/2.
Problem 5. The rest energy of the 184

74 W nucleus is
171303 MeV. The average binding energies of the electrons
in each shell are

Shell Number of electrons BE per electron (eV)
K 2 69,525
L 8 11,015
M 18 2125
N 32 213
O 12 49
P 2 ≈ 6

Calculate the atomic rest energy of tungsten.

Section 17.5

Problem 6. Refer to Figs. 17.2 and 17.5. Uranium splits
roughly in half when it undergoes nuclear fission. Will the
fission fragments decay by β+ or β− emission?

Problem 7. The following nuclei of mass 15 are known:
15
6 C, 15

7 N, and 15
8 O. Of these, 15N is stable. How do the others

decay?
Problem 8. Look up the decay schemes of the following
isotopes (for example, in the Handbook of Chemistry and
Physics, CRC Press or at www.nndc.bnl.gov/). Comment on
their possible medical usefulness: 3H, 15O, 13N, 18F, 22Na,
68Ga, 64Cu, 11C, 123I, and 56Ni.
Problem 9. Look up the half lives of the isotopes in Fig. 17.6
(for instance in the Handbook of Chemistry and Physics.
CRC Press or at www.nndc.bnl.gov/). Relate qualitatively the
half life to the position of the isotope on the parabola.

Section 17.6

Problem 10. Calculate the conversion factor k of
Eq. 17.21b.

Section 17.6.1

Problem 11. Show that 1 μCi h = 1.332 × 108 disintegra-
tions or Bq s.
Problem 12. Obtain a numerical value for the residence
time for 99mTc-sulfur colloid in the liver if 85 % of the drug
injected is trapped in the liver and remains there until it
decays.
Problem 13. Derive Eqs. 17.39–17.41.
Problem 14. Calculate numerical solutions of Eqs. 17.39
and 17.41 and plot them on semilog paper. Use λ = 2, λ1 =
0.5, λ2 = 3.
Problem 15. Eq. 17.41 is not valid if λ1 = λ2. In that case,
try a solution of the form N2 = Bte−αt where α is to be
determined, and obtain a solution.
Problem 16. Derive Eqs. 17.42 and 17.43.
Problem 17. The biological half-life of iodine in the thyroid
is about 25 days. 125I has a half-life of 60 days. 132I has a
half-life of 2.3 h. Find the effective half-life in each case.
Problem 18. For Sect. 17.6.1.4, with λ = 0.05 h−1, λ1 =
1 h−1, and λ2 = 0.1 h−1, find Ã1 and Ã2 in terms of the
initial activity A0 and in terms of the initial number of nuclei
N0.
Problem 19. N0 radioactive nuclei with physical decay con-
stant λ are injected in a patient at t = 0. The nuclei move
into the kidney at a rate λ1, so that the number in the rest
of the body falls exponentially: N(t) = N0e

−(λ+λ1)t . Sup-
pose that the nuclei remain in the kidney for a time T before
moving out in the urine. (This is a crude model for the ra-
dioactive nuclei being filtered into the glomerulus and then
passing through the tubules before going to the bladder.)
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(a) Calculate the cumulated activity and the residence time
in the kidney by finding the total number of nuclei enter-
ing the kidney and multiplying by the probability that a
nucleus decays during the time T that it is in the kidney.

(b) Calculate the cumulated activity and residence time in
the bladder, assuming that the patient does not void.

Problem 20. Suppose that at t = 0, 99mTc with an activity
of 370 kBq enters a patient’s bladder and stays there for 2 h,
at which time the patient voids, eliminating all of it. What is
the cumulated activity? What is the cumulated activity if the
time is 4 h?
Problem 21. Suppose that the 99mTc of the previous prob-
lem does not enter the bladder abruptly at t = 0, but that it
accumulates linearly with time. At the end of 2 h the activity
is 370 kBq and the patient voids, eliminating all of it. What
is the cumulated activity?
Problem 22. A radioactive substance has half-life T1/2. It
is excreted from the body with biological half-life T1. N0

radioactive nuclei are introduced in the body at t = 0. Find
the total number that decay inside the body.
Problem 23. The fractional distribution function αh is the
fraction of the total activity that is in organ h: αh(t) =
Ah(t)/A(t) = Ah(t)/A0e

−λt .
(a) Show that τh = ∫∞

0 αh(t)e
−λtdt .

(b) Calculate α1(t) and α2(t) for Eqs. 17.39 and 17.41 and
show that integration of these expressions leads to Eqs.
17.43.

Problem 24. Suppose that the fractional distribution func-
tion (defined in the previous problem) is α(t) = 1, t < T ;
α(t) = b, t > T ; (b < 1). Find the residence time. This is a
simple model for the situation where a bolus (a fixed amount
in a short time) of some substance passes through an organ
once and is then distributed uniformly in the blood.
Problem 25. The distribution function qh(t) is defined to be
the activity in organ h corrected for radioactive decay to a
reference time. If the correction is from time t to time 0, find
an expression for qh(t) in terms of Ah(t).
Problem 26. The “official” definition of the fractional distri-
bution function αh(t) is the ratio of the distribution function
qh(t) produced by a bolus administration to the patient, di-
vided by the activity A0 in the bolus. Show that this is
equivalent to the definition in Problem 23.
Problem 27. Show that if the uptake in a compartment is not
instantaneous but exponential, with subsequent exponential
decay, the cumulated activity is Ã = 1.443A0(TeTue/Tu),
where Te is the effective half-life for excretion, and Tue =
TuT1/2/(Tu + T1/2). Hint: see Eq. 17.42.

Section 17.6.2

Problem 28. Rearrange the data of Fig. 17.4. Find the total
� for emission of photons below 30 keV and charged parti-
cles. Rank the radiations in the order they contribute to the
dose.

Problem 29. Nitrogen-13 has a half-life of 10 min. All of
the disintegrations emit a positron with end point energy
1.0 MeV (average energy 0.488 MeV). There is no electron
capture. Make a table of radiations that must be considered
for calculating the absorbed dose and determine Ei and �i

for each one.
Problem 30. A patient swallows 3.5 × 109 Bq of 131I. The
half-life of the iodine is 8 days. Ten min later the patient
vomits all of it. If none had yet left the stomach and all
was vomited, determine the cumulated activity and residence
time in the stomach.

Section 17.6.3

Problem 31. Derive Eq. 17.57 by substituting Eqs. 17.55
and 17.56 in Eq. 17.54. You will also have to justify and use
Eq. 17.58.
Problem 32. The body consists of two regions. Region 1
has mass m1 and cumulated activity Ã1. It is completely
surrounded by region 2 of mass m2 and cumulated activity
Ã2 = Ã0 − Ã1. We can say that the mass of the total body is
mT B = m1 + m2 = m1 + mRB. A single radiation is emitted
with disintegration energy �. The radiation is nonpenetrating
so that

φ(1 ← 1) = φ(2 ← 2) = 1,

φ(1 ← 2) = φ(2 ← 1) = 0.

(a) What are φ(TB← 1) and φ(TB← 2)?
(b) What are the corresponding values of Φ and S?
(c) Show that directly from the definition, Eq. 17.54

D1 = Ã1�/m1,

D2 = DRB = Ã2�/m2,

DTB = Ã0�/(m1 + m2)

(d) Calculate Ãu and Ã∗
1.

(e) What is S(1 ←TB)? Remember that φ is calculated for
activity uniformly distributed within the source region.

(f) Calculate the dose to region 1 using Eq. 17.57 and show
that it agrees with (c).

(g) Evaluate S(1 ←RB) using Eq. 17.58 and show that it
agrees with S(1 ← 2).

Problem 33. The body consists of two regions. Region 1
has mass m1 and cumulated activity Ã1. It is completely sur-
rounded by region 2 of mass m2 and cumulated activity Ã2.
A single radiation is emitted with disintegration energy �.
The characteristics of the radiation are such that

φ(1 ← 1) + φ(2 ← 1) = 1,

φ(1 ← 2) + φ(2 ← 2) + φ(0 ← 2) = 1,
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where φ(0 ← 2) represents energy from region 2 that has
escaped from the body. Obtain expressions for the dose to
each region and the whole body dose.
Problem 34. Consider the decay of a parent at rate λ1 to an
offspring that decays with rate λ2.
(a) Write a differential equation for the amount of offspring

present.
(b) Solve the equation.
(c) Discuss the solution when λ2 > λ1.
(d) Discuss the solution when λ2 < λ1.
(e) Plot the solution for a technetium generator that is eluted

every 24 h.
Problem 35. N0 nuclei of 99mTc are injected into the body.
What is the maximum activity for the decay of the metastable
state? When does the maximum activity for decay of the
ground state occur if no Tc atoms are excreted? What is
the ratio of the maximum metastable state activity to the
maximum ground-state activity?
Problem 36. If 1 μCi of 99mTc is injected in the blood and
stays there, relate the activity in a sample drawn time t later
to the volume of the sample and the total blood volume. If the
gamma rays are detected with 100 % efficiency, what will be
the counting rate for a 10-ml sample of blood if the blood
volume is 5 l? (Using non-SI units was intentional.)
Problem 37. Assume that aggregated human albumin is in
the form of microspheres. A typical dose of albumin micro-
spheres is 0.5 mg of microspheres containing 80 MBq of
99mTc and 15 μg of tin. There are 1.85 × 106 microspheres
per mg.
(a) How many 99mTc atoms are there per microsphere?
(b) How many tin atoms per microsphere?
(c) How many technetium atoms per tin atom?
(d) What fraction of the surface of a microsphere is covered

by tin? Assume the sphere has a density of 103 kg m−3.
Problem 38. It is estimated that the total capillary surface
area in the lung is 90 m2. Assume each capillary has 50
segments, each 10 μm long, and a radius of 5 μm.
(a) How many capillaries are there in the lung?
(b) There are about 3×108 alveoli in both lungs. How many

capillaries per alveolus are there?
(c) An alveolus is 150–300 μm in diameter. Are the above

answers consistent?
(d) A typical dose of albumin microspheres is 0.5 mg with

an average diameter of 25 μm. There are 1.85 × 106

spheres per mg. What fraction of the capillaries are
blocked if there is good mixing?

Section 17.6.4

Problem 39. Look up the decay schemes and half-lives for
123I and 131I. Explain why 123I is used to image the thyroid
and 131I is used to treat thyroid cancer.

Problem 40. Identify all the isotopes in Fig. 17.7 using
the A

ZSymbol notation. What are the stable isotopes? What
isotope can decay by both β− and β+ emission?
Problem 41. The half-life of 99mTc is 6.0 h. The half-life of
131I is 8.07 day. Assume that the same initial activity of each
is given to a patient and that all of the substance remains
within the body.
(a) Find the ratio of the cumulated activity for the two

isotopes.
(b) 99mTc emits 0.141-MeV photons. For each decay of 131I

the most important radiations are 0.89 β− of average
energy 0.192 MeV and 0.81 photons of 0.365 MeV. If
all of the decay energy were absorbed in the body, what
would be the ratio of doses for the same initial activity?

Problem 42. A patient is given an isotope that spreads uni-
formly through the lungs. It emits a single radiation: a γ ray
of energy 50 keV. There are no internal-conversion electrons.
The cumulated activity is 40 GBq s. Find the absorbed dose
in the liver (m = 1.83 kg).
Problem 43. The decay of 99mTc can be approximated by
lumping all of the decays into two categories:

Radiation Ei (MeV) �i (J)

γ 0.14 2 × 10−14

Electrons and soft x rays 2.76 × 10−15

Sulfur colloid labeled with 100 MBq of 99mTc is given to
a patient and is taken up immediately by the liver. Assume
it stays there. Find the dose to the liver, spleen, and whole
body. Use the following information:

Absorbed fraction for a source in the liver
Target organ Mass (kg) E(γ ) =

0.14 MeV

Liver 1.833 0.161
Spleen 0.176 0.000629
Whole body 70.0 0.431

Problem 44. An ionization type smoke detector contains
4.4 μCi of 241Am. This isotope emits α particles (which we
will ignore) and a 60-keV γ ray, for which n = 0.36. The
half-life is 458 yr.
(a) How many moles of 241Am are in the source?
(b) Ignoring attenuation, backscatter, and buildup in any

surrounding material (such as the cover of the smoke
detector), what is the absorbed dose in a small sample
of muscle located 2 m away, if the muscle is under the
detector for 8 h per day for 1 year?

Problem 45. One mCi of a radioactive substance lodges per-
manently in a patients lungs. The substance emits a single
80-keV γ ray. It has a half-life of 12 h. Find the cumulated
activity and the dose to the liver (mass 1833 g).
Problem 46. The dose calculation for microspheres in the
lung was an oversimplification because technetium leaches
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off the spheres. The footnote in Sect. 17.6.4 lists some more
realistic residence times. If none of the technetium is ex-
creted from the body, the sum of all the residence times will
still be 8.7 h. Assume that the residence time in the lungs is
4.3 h and the residence time in the rest of the body is 4.4 h.
(a) Show that Ãu = 4.46 × 3600 × A0 and Ã∗

lung = 4.24 ×
3600 × A0.

(b) For a source distributed uniformly throughout the to-
tal body, the absorbed fractions for 140-keV photons
are φ(lung←TB) = 0.0053, φ(TB←TB) = 0.3572.
Split the radiation into penetrating and nonpenetrating
components:

S(lung ← TB) = (φnonpen�nonpen

+ φpenetrating�penetrating)/mlung.

Remember that for activity uniformly distributed in the
total body, φ(lung←TB) = mlung/mTB and use some
of the information in Table 17.3 to show that

S(lung ← TB) = 1.463 × 10−16 J kg−1,

S(TB ← TB) = 1.414 × 10−16 J kg−1.

(c) Calculate the dose to the lungs and the total body dose
for an initial activity of 37 MBq. Compare the values to
those in Table 17.3.

Section 17.8

Problem 47. Nuclear counting follows Poisson statistics.
Show that for a fixed average counting rate R (counts per
second) the standard deviation of a sum of N measurements
each of length T is the same as a single measurement of dura-
tion NT . (Hint: You will first have to consider the situation
where one measures y = x1 + x2 + · · · and find the vari-
ance of y in terms of the variances of the xi when there is no
correlation between the xi .)
Problem 48. The interaction of a photon in a nuclear detec-
tor (an “event”) initiates a process in the detector that lasts
for a certain length of time. A second event occurring within
a time τ of the first event is not recorded as a separate event.
Suppose that the true counting rate is Rt . A counting rate Ro

is observed.
(a) A nonparalyzable counting system is “dead” for a time

τ after each recorded event. Additional events that occur
during this dead time are not recorded but do not prolong
the dead time. Show that Rt = Ro(1 − Roτ) and Ro =
Rt/(1 + Rtτ).

(b) A paralyzable counting system is unable to record a
second event unless a time τ has passed since the last
event. In other words, an event occurring during the dead
time is not only not recorded, it prolongs the dead time.
Show that in this case Ro = Rte

−Rt τ . (Hint: Use the

Poisson distribution of Appendix J to find the fraction of
events separated by a time greater than τ . The probabil-
ity that the next event occurs between t and t + dt is the
probability of no event during time t multiplied by the
probability of an event during dt .)

(c) Plot Ro vs Rt for the two cases when τ is fixed. The
easiest way to do this is to plot Roτ vs Rtτ .

Problem 49. Two channels of a collimator for a gamma
camera are shown in cross section, along with the path of a
photon that encounters the minimum thickness of collimator
septum (wall).

 w 

 t  d 

 l 

(a) Show that if (d + t)/ l 	 1, then w/t = l/(2d + t).
(b) If transmission through the septum is to be less than 5 %,

what is the relationship between t , d, l, and μ? Evaluate
this for 99mTc and for a positron emitter.

Problem 50. Photons from a point source a distance b be-
low a collimator pass through channels out to a distance a

from the perpendicular to the collimator passing through the
source.

 l 

 b 

 d 

Point Source

 a 

(a) Find an expression for a in terms of b, d, and l.
(b) Assume that a is related to the spatial frequency k for

which the modulation transfer function (MTF) = 0.5
in Fig. 17.18 by a = K/k, where K is a constant.
Calculate the thickness l of the collimator.
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Problem 51. The collimator efficiency of a gamma camera
is defined to be the fraction of the γ rays emitted isotropically
by a point source that pass through the collimator into the
scintillator.
(a) Consider a circular channel of diameter d in the colli-

mator directly over the source. Show that the fraction of
the photons striking the scintillator after passing through
that channel is d2/16(l + b)2. (Assume that any which
strike the septum are lost).

(b) Use the result of the previous problem to estimate the
number of channels through which at least some photons
from the point source pass. Assume that the fraction of
collimator area that is occupied by channels rather than
lead is

[
d/(d + t)

]2.
(c) Calculate the geometric efficiency g assuming that all

channels that pass any photons have the same efficiency
as the one on the perpendicular from the source. Show
that it is of the form

g = K2
(

d

l

)2 (
d

d + t

)2

and evaluate K . More detailed calculations show that K

is about 0.24 for a hexagonal array of round holes and
0.26 for hexagonal holes.11

(d) How does the detector efficiency relate to the collimator
resolution?

Section 17.9

Problem 52.
(a) Derive Eq. 17.60 from Eq. 17.59.
(b) Calculate the limit of Eq. 17.60 when there is no attenu-

ation.
Problem 53. The attenuation distortion for SPECT can be
reduced by making measurements on opposite sides of the
patient and taking the geometric mean. The geometric mean
of variables x1 and x2 is (x1x2)

1/2. Calculate the geometric
mean of two SPECT measurements on opposite sides of the
patient. Ignore possible 1/r2 effects.
Problem 54. Consider a radioactive source having a uniform
activity per unit volume AV and the square geometry shown
below.

11 Cherry et al. (2012, p. 222), Grenier et al. (1974).

x

y

R

(a) Calculate the projection F(x) including the effects of
attenuation with coefficient μ.

(b) Plot F(x) for μ = 0 and for μR = 3.

Section 17.10

Problem 55. Suppose that A positrons are emitted from a
point per second. They come to rest and annihilate within a
short distance of their source. When a positron annihilates,
two photons are emitted in opposite directions. Two pho-
ton detectors are set up on opposite sides of the source. The
source is distance r1 from the first detector, of area S1, and
r2 from the second detector of area S2. The area S2 is large
enough so that the second photon will definitely enter detec-
tor 2 if the first photon enters detector 1. Assume that both
detectors count with 100 % efficiency.

S1

S2

r1

a1
r2a2

(a) Show that the number of counts in the first detec-
tor would be 2AS1/4πr2

1 if there were no atten-
uation between source and detector, and that it is
(2AS1/4πr2

1 )e−μa1 if attenuation in a thickness a1 of
the body is considered.
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(b) Detector 2 detects the second photon for every photon
that strikes detector 1. Assuming a uniform attenuation
coefficient and body thickness a2, find an expression for
the number of events in which both photons are detected.

Problem 56. Positron emission tomography relies on simul-
taneous detection of the back-to-back annihilation gamma
rays (a coincidence). In addition to true coincidences, there
can be “scatter coincidences” in which annihilation photons
coming from a point that is not on the line between the two
detectors enter both detectors. There can also be “random
coincidences” which arise from photons from completely in-
dependent decays that occur nearly simultaneously. Consider
a ring of detectors around a patient. Make three drawings
showing true coincidences, scatter coincidences and random
coincidences.

Section 17.12

Problem 57. The half-life of 235U is 7 × 108 yr. The age of
the earth is 4.5 billion years. What fraction of the 235U that
existed on the earth when it was first formed is present now?
Problem 58. There are three naturally-occurring decay
series beginning with three long-lived isotopes: 238U
(Figs. 17.26 and 17.27), 235U, and 232Th. The 232Th series
begins with the α decay of 232Th (half life = 1.4 × 1010 yr)
to nucleus A which undergoes β− decay to nucleus B which
undergoes β− decay to nucleus C which undergoes α decay
to nucleus D which undergoes α decay to nucleus E, etc.
Make a chart like Fig. 17.26 showing the first five steps in
the series, and identify the five nuclei A–E.
Problem 59. One way to determine the age of biological re-
mains is carbon-14 dating. The common isotope of carbon
is stable 12C. The rare isotope 14C decays with a half-life
of 5370 yr. 14C is constantly created in the atmosphere by
cosmic rays. The equilibrium between production and decay
results in about 1 of every 1012 atoms of carbon in the atmo-
sphere being 14C, mostly as part of a CO2 molecule. As long
as the organism is alive, the ratio of 12C to 14C in the body is
the same as in the atmosphere. Once the organism dies, it no
longer incorporates 14C from the atmosphere, and the num-
ber of 14C nuclei begins to decrease. Suppose the remains of
an organism have one 14C for every 1013 12C nuclei. How
long has it been since the organism died?
Problem 60. Consider a fictitious two-step decay series
analogous to the more complex series shown in Fig. 17.26.
The series starts with isotope A which decays at rate λ1

to isotope B. Isotope B decays to isotope C with rate λ2.
Isotope C is stable.
(a) Derive the differential equation governing the number of

nuclei NA, NB , and NC . Where else in this chapter have
you seen the same equations?

(b) Solve the differential equations using the initial condi-
tions NA(0) = N, NB(0) = NC(0) = 0. Make sure
your solutions make sense for t → 0 and t → ∞.

(c) Find NB/NA in the limit λ2 � λ1. Ignore short times.
Also find activities AA and AB . Explain physically how
such a small number of nuclei NB can contribute so
much to the total activity.
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Magnetic resonance imaging (MRI) (formerly called nuclear
magnetic resonance imaging) provides very-high-resolution
images without ionizing radiation. There is also the potential
for more elaborate imaging, including flow, diffusion, and
the signature of particular atomic environments.

Magnetic resonance phenomena are more complicated
than x-ray attenuation or photon emission by a radioactive
nucleus. MRI depends upon the behavior of atomic nu-
clei in a magnetic field; in particular, the orientation and
motion of the nuclear magnetic moment in the field. The
patient is placed in a strong static magnetic field (typically
1–4 T). This is usually provided by a hollow cylindrical
(solenoidal) magnet, though some machines use other con-
figurations so that the physician can carry out procedures
on the patient while viewing the MRI image. Other coils
apply time-varying spatial gradients to the magnetic field,
along with radio-frequency signals that cause the magnetiza-
tion changes described below. Still other coils detect the very
weak radio-frequency signals resulting from these changes.

First, we must understand the property that we are mea-
suring. Section 18.1 describes the behavior of a magnetic
moment in a static magnetic field, and Sect. 18.2 shows
how the nuclear spin is related to the magnetic moment.
Section 18.3 introduces the concept of the magnetization
vector, which is the magnetic moment per unit volume, while
Sect. 18.4 develops the equations of motion for the magnetic
moment. In order to describe the motion of the magnetiza-
tion, it is convenient—in fact, almost essential—to use the
rotating coordinate system described in Sect. 18.5.

To make a measurement, the nuclear magnetic moments
originally aligned with the static magnetic field are made
to rotate or precess in a plane perpendicular to the static
field, after which the magnetization gradually returns to its
original value. This relaxation phenomenon is described in
Sect. 18.6. Sections 18.7 and 18.8 describe ways in which
the magnetization can be manipulated for measurement.

Imaging techniques are finally introduced in Sect. 18.9.
Sections 18.10 and 18.11 describe how chemical shifts and
blood flow can affect the image or can themselves be imaged.

The last two sections describe functional MRI (fMRI) and
diffusion effects.

18.1 Magnetic Moments in an External
Magnetic Field

Magnetic resonance imaging detects the magnetic dipoles in
the nuclei of atoms in the human body. We saw in Chap. 8
that isolated magnetic monopoles have never been observed
(see Eq. 8.8), and that magnetic fields are produced by mov-
ing charges or electric currents. In some cases, such as bar
magnets, the external field is the same as if there were mag-
netic charges occurring in pairs or dipoles.1 The strength of
a dipole is measured by its magnetic dipole moment μ. (In
Chap. 8 the magnetic dipole moment was called m to avoid
confusion with μ0. In this chapter we use μ to avoid confu-
sion with the quantum number m and to be consistent with
the literature in the field.) The magnetic dipole moment is
analogous to the electric dipole moment of Chap. 7; how-
ever, it is produced by a movement of charge, such as charge
moving in a circular path. The units of μ are J T−1 or A m2.
We saw that when a magnetic dipole is placed in a magnetic
field as in Fig. 18.1, it is necessary to apply an external torque
τ ext to keep it in equilibrium. This torque, which is required
to cancel the torque exerted by the magnetic field, vanishes
if the dipole is aligned with the field. The torque exerted on
the dipole by the magnetic field B is

τ = μ × B. (18.1)

(This is Eq. 8.4.)

1 Dipoles can be arranged so that their fields nearly cancel, giving rise
to still-higher-order moments such as the quadrupole moment or the oc-
tupole moment (see Chap. 7). A configuration for which the quadrupole
moment is important is two magnets in a line arranged as N-S-S-N.

R. K. Hobbie, B. J. Roth, Intermediate Physics for Medicine and Biology, 535
DOI 10.1007/978-3-319-12682-1_18, c© Springer International Publishing Switzerland 2015
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Fig. 18.1 A magnetic dipole in a magnetic field. The dipole can be
either a bar magnet or a current loop

The potential energy of the dipole is the work that must
be done by τ ext to change the dipole’s orientation in the mag-
netic field without changing any kinetic energy it might have.
To increase angle θ by an amount dθ requires that work be
done on the dipole-magnetic field system. This work is the
increase in potential energy of the system:

dU = μB sin θ dθ. (18.2)

This can be integrated to give the change in potential energy
when the angle changes from θ1 to θ2:

U(θ2) − U(θ1) = −μB(cos θ2 − cos θ1).

If the energy is considered to be zero when the dipole is at
right angles to B, then the potential energy is

U(θ) = −μB cos θ = −μ · B. (18.3)

In many cases the moving charges that give rise to the
magnetic moment of an object possess angular momentum
L. Often the magnetic moment is parallel to and proportional
to the angular momentum: μ = γ L. The proportionality
factor γ is called the gyromagnetic ratio (sometimes called
the magnetogyric ratio). When such an object is placed in
a uniform magnetic field, the resulting motion can be quite
complicated. The torque on the object is τ = μ × B =
γ L×B. It is not difficult to show (Problem 1) that the torque
is the rate of change of the angular momentum, τ = dL/dt .
Therefore the equation of motion is

γ (L × B) = dL
dt

(18.4a)

Fig. 18.2 A particle of charge q and mass m travels in a circular orbit.
It has a magnetic moment μ and angular momentum L. If the charge
is positive, μ and L are parallel; if it is negative they are in opposite
directions

or

γ (μ × B) = dμ

dt
. (18.4b)

Solutions to these equations are discussed in Sect. 18.4.

18.2 The Source of theMagnetic Moment

Atomic electrons and the protons and neutrons in the atomic
nucleus can possess both angular momentum and a mag-
netic moment. The magnetic moment of a particle is related
to its angular momentum. We can derive this relationship
for a charged particle moving in a circular orbit. We saw in
Chap. 8 that the magnitude of the magnetic moment of a cur-
rent loop is the product of the current i and the area of the
loop S:

|μ| = μ = iS. (18.5)

The direction of the vector is perpendicular to the plane of
the loop. Its direction is defined by a right-hand rule: curl the
fingers of your right hand in the direction of current flow and
your thumb will point in the direction of μ (see the right-
hand part of Fig. 18.1). This is the same right-hand rule that
relates the circular motion of a particle to the direction of its
angular momentum.

Suppose that a particle of charge q and mass m moves in
a circular orbit of radius r as in Fig. 18.2. The speed is v and
the magnitude of the angular momentum is L = mvr . The
effective current is the charge q multiplied by the number
of times it goes past a given point on the circumference of
the orbit in one second: i = qv/2πr . The magnetic moment
has magnitude μ = iS = iπr2 = qvr/2. Since the angular
momentum is L = mvr and μ and L are both perpendicular
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Table 18.1 Values of the spin and gyromagnetic ratio for a free
electron and various nuclei of interest

Particle Spin γ = ωLarmor/B ν/B

(s−1 T−1) (MHz T−1)

Electron 1
2 1.7608 × 1011 2.8025 × 104

Proton 1
2 2.6753 × 108 42.5781

Neutron 1
2 1.8326 × 108 29.1667

23Na 3
2 0.7076 × 108 11.2618

31P 1
2 1.0829 × 108 17.2349

to the plane of the orbit, we can write

μ =
( q

2m

)
L = γ L. (18.6)

The quantity γ = q/2m is the gyromagnetic ratio for this
system. The units γ of are T−1 s−1 (see Problem 2). The
magnetic moment and the orbital angular momentum are
parallel for a positive charge and antiparallel for a negative
charge.

An electron or a proton also has an intrinsic magnetic
moment quite separate from its orbital motion. It is associ-
ated with and proportional to the intrinsic or spin angular
momentum S of the particle. We write

μ = γ S. (18.7)

The value of γ for a spin is not equal to q/2m.
Two kinds of spin measurements have biological impor-

tance. One is associated with electron magnetic moments and
the other with the magnetic moments of nuclei. Most neutral
atoms in their ground state have no magnetic moment due
to the electrons. Exceptions are the transition elements that
exhibit paramagnetism. Free radicals, which are often of bio-
logical interest, have an unpaired electron and therefore have
a magnetic moment. In most cases this magnetic moment is
due almost entirely to the spin of the unpaired electron.

Magnetic resonance imaging is based on the magnetic
moments of atomic nuclei in the patient. The total angu-
lar momentum and magnetic moment of an atomic nucleus
are due to the spins of the protons and neutrons, as well as
any orbital angular momentum they have inside the nucleus.
Table 18.1 lists the spin and gyromagnetic ratio of the
electron and some nuclei of biological interest.

If the nuclear angular momentum is I with quantum num-
ber I , the possible values of the z component of I are m�,

where m = −I, (−I + 1), . . . , I . For I = 1
2 , the values are

−1/2 and 1/2, while for I = 3
2 they are −3/2,−1/2, 1/2,

and 3/2. The direction of the external magnetic field defines
the z axis, and the energy of a spin is given by −μ · B =
−γ I · B = −γm�B. The difference between adjacent en-
ergy levels is γB�, and the angular frequency of a photon
corresponding to that difference is ωphoton = γB.

18.3 TheMagnetization

The MR image depends on the magnetization of the tissue.
The magnetization of a sample, M, is the average magnetic
moment per unit volume. In the absence of an external mag-
netic field to align the nuclear spins, the magnetization is
zero. As an external magnetic field B is applied, the spins
tend to align in spite of their thermal motion, and the mag-
netization increases, proportional at first to the external field.
If the external field is strong enough, all of the nuclear mag-
netic moments are aligned, and the magnetization reaches its
saturation value.

We can calculate how the magnetization depends on B.
Consider a collection of spins of a single nuclear species in
an external magnetic field. This might be the hydrogen nu-
clei (protons) in a sample. The spins do not interact with each
other but are in thermal equilibrium with the surroundings,
which are at temperature T . We do not consider the mech-
anism by which they reach thermal equilibrium. Since the
magnetization is the average magnetic moment per unit vol-
ume, it is the number of spins per unit volume, N , times the
average magnetic moment of each spin: M = N 〈μ〉.

To obtain the average value of the z component of the
magnetic moment, we must consider each possible value
of quantum number m. We multiply the value of μz cor-
responding to each value of m by the probability that m

has that value. Since the spins are in thermal equilibrium
with the surroundings, the probability is proportional to the
Boltzmann factor of Chap. 3, e−(U/kBT ) = eγm�B/kBT . The
denominator in Eq. 18.8 normalizes the probability:

〈μz〉 =
γ�

I∑

m=−I

m eγm�B/kBT

I∑

m=−I

eγm�B/kBT

. (18.8)

At room temperature γ I�B/kBT 	 1 (see Problem 4), and
it is possible to make the approximation ex ≈ 1+x. The sum
in the numerator then has two terms:

I∑

m=−I

m + γ�B

kBT

I∑

m=−I

m2.

The first sum vanishes. The second is I (I + 1)(2I + 1)/3.
The denominator is

I∑

m=−I

1 + γ�B

kBT

I∑

m=−I

m.

The first term is 2I + 1; the second vanishes. Therefore we
obtain

〈μz〉 = γ 2
�

2I (I + 1)

3kBT
B. (18.9)
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Fig. 18.3 The system with initial magnetization M has been given just
enough additional angular momentum to precess about the direction of
the static magnetic field B. The rate of change of M is perpendicular to
both M and B. For short time intervals, �M = γ (M × B) �t

The z component of M is

Mz = N 〈μz〉 = Nγ 2
�

2I (I + 1)

3kBT
B, (18.10)

which is proportional to the applied field.

18.4 Behavior of theMagnetization Vector

A remarkable result of quantum mechanics is that the av-
erage or expectation value of a spin obeys the classical
Eq. 18.4b:

d 〈μ〉
dt

= γ (〈μ〉 × B) (18.11)

whether or not B is time dependent (Slichter 1990). Multi-
plying by the number of spins per unit volume we obtain

dM
dt

= γ (M × B) . (18.12)

This equation can lead to many different behaviors of M,
some of which are quite complicated.

The simplest motion occurs if M is parallel to B, in which
case M does not change because there is no torque. An-
other relatively simple motion, called precession, is shown
in Fig. 18.3. With the proper initial conditions M (and 〈μ〉)
precess about the direction of B. That is, they both rotate
about the direction of B with a constant angular velocity and
at a fixed angle θ with the direction of B. Since M × B is
always at right angles to M, dM/dt is at right angles to M,
and the angular momentum does not change magnitude. The

analytic solution can be investigated by writing Eq. 18.12 in
Cartesian coordinates when B is along the z axis:

dMx

dt
= γMyBz,

dMy

dt
= −γMxBz,

dMz

dt
= 0.

(18.13)

One possible solution to these equations is

Mz = M‖ = const,
Mx = M⊥ cos(−ωt),

My = M⊥ sin(−ωt).

(18.14)

You can verify that these are a solution for arbitrary values
of M⊥ and M‖ as long as ω = ω0 = γBz. This is called the
Larmor precession frequency. The minus sign means that for
positive γ the rotation is clockwise in the xy plane. The clas-
sical Larmor frequency is equal to the frequency of photons
corresponding to the energy difference given by successive
values of μ · B. For this solution the initial values of M at
t = 0 are Mx(0) = M⊥, My(0) = 0, and Mz(0) = M‖.

We need to modify the equation of motion, Eq. 18.12,
to include changes in M that occur because of effects other
than the magnetic field. Suppose that M has somehow been
changed so that it no longer points along the z axis with the
equilibrium value given by Eq. 18.10. Thermal agitation will
change the populations of the levels so that Mz returns to the
equilibrium value, which we call M0. We postulate that the
rate of exchange of energy with the reservoir is proportional
to how far the value of Mz is from equilibrium:

dMz

dt
= 1

T1
(M0 − Mz) .

The quantity T1, which is the inverse of the proportionality
constant, is called the longitudinal relaxation time or spin–
lattice relaxation time.

We also postulate an exponential disappearance of the x

and y components of M with a transverse relaxation time T2

(sometimes called the spin–spin relaxation time). (This as-
sumption is often not a good one. For example, the decay of
Mx and My in ice is more nearly Gaussian than exponential.)
The equations are

dMx

dt
= −Mx

T2
,

dMy

dt
= −My

T2
.

The transverse relaxation time is always shorter than T1.
Here is why. A change of Mz requires an exchange of en-
ergy with the reservoir. This is not necessary for changes
confined to the xy plane, since the potential energy (μ · B)
does not change in that case. Mx and My can change as Mz
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changes, but they can also change by other mechanisms, such
as when individual spins precess at slightly different frequen-
cies, a process known as dephasing. The angular velocity
of precession can be slightly different for different nuclear
spins because of local variations in the static magnetic field;
the angular velocity can also fluctuate as the field fluctuates
with time. These variations and fluctuations are caused by
neighboring atomic or nuclear magnetic moments or by inho-
mogeneities in the external magnetic field. Figure 18.4 shows
how dephasing occurs if several magnetic moments precess
at different rates.

Combining these approximate equations for relaxation in
the absence of an applied magnetic field with Eq. 18.12 for
the effect of a magnetic field gives the Bloch equations:2

dMz

dt
= 1

T1
(M0 − Mz) + γ (M × B)z ,

dMx

dt
= −Mx

T2
+ γ (M × B)x ,

dMy

dt
= −My

T2
+ γ (M × B)y .

(18.15)

While these equations are not rigorous and there is no reason
for the relaxation to be strictly exponential, they have proven
to be quite useful in explaining many facets of nuclear spin
magnetic resonance.

One can demonstrate by direct substitution the following
solution to Eqs. 18.15 for a static magnetic field B along the
z axis:

Mx = M0e
−t/T2 cos(−ω0t),

My = M0e
−t/T2 sin(−ω0t),

Mz = M0(1 − e−t/T1),

(18.16)

where ω0 = γB. This solution corresponds to what happens
if M is somehow made to precess in the xy plane. (We will
see how to accomplish this in Sect. 18.5.) The magnetization
in the xy plane is initially M0, and the amplitude decays ex-
ponentially with time constant T2. The initial value of Mz is
zero, and it decays back to M0 with time constant T1. A per-
spective plot of the trajectory of the tip of vector M is shown
in Fig. 18.5.

2 Felix Bloch and Edward Purcell shared the 1952 Nobel Prize in
physics for their discovery of nuclear magnetic resonance.

Fig. 18.4 If several spins precess in the xy plane at slightly different
rates, the total spin amplitude decreases due to dephasing
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Fig. 18.5 The locus of the tip of the magnetization M when it relaxes
according to Eqs. 18.16

x

y

θ

θ

M

My

Mx

M

y'

x'

x'

My'

Fig. 18.6 The vector M can be represented by components along x and
y or along x′ and y′

18.5 A Rotating Coordinate System

18.5.1 Transforming to the Rotating
Coordinate System

It is much easier to describe the motion of M in a coordi-
nate system that is rotating about the z axis at the Larmor
frequency. Figure 18.6 shows a vector M and two coordinate
systems, xy and x′y′. The z component of M is unchanged.
By considering the other components in Fig. 18.6, we see
that

Mx = Mx′ cos θ − My′ sin θ,

My = Mx′ sin θ + My′ cos θ, (18.17a)

Mz = Mz′ .
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This can also be written in matrix form. A rotation through
angle θ around the z axis gives M = RM′ or

⎛

⎝
Mx

My

Mz

⎞

⎠ =
⎛

⎝
cos θ − sin θ 0
sin θ cos θ 0

0 0 1

⎞

⎠

⎛

⎝
Mx′
My′
Mz′

⎞

⎠ .

(18.17b)

Rotations about the other axes are discussed in Problem 12.
Note that rotating the coordinate system that describes a fixed
vector is equivalent to rotating the vector in the opposite di-
rection, so the results quoted in Problem 12 apply to both
situations.

For a three-dimensional coordinate system rotating clock-
wise around the z axis, θ = −ωt , the z-component of M is
unchanged, and the transformation equations are

Mx = Mx′ cos(−ωt) − My′ sin(−ωt),

My = Mx′ sin(−ωt) + My′ cos(−ωt), (18.18)

Mz = Mz′ .

The time derivative of M is obtained by differentiating each
component and remembering that M′ can also depend on t :

dMx

dt
= dMx′

dt
cos(−ωt) − dMy′

dt
sin(−ωt)

+ ωMx′ sin(−ωt) + ωMy′ cos(−ωt),

dMy

dt
= dMx′

dt
sin(−ωt) + dMy′

dt
cos(−ωt) (18.19)

− ωMx′ cos(−ωt) + ωMy′ sin(−ωt),

dMz

dt
= dMz′

dt
.

We can use these expressions to write the equations of
motion in the rotating frame. First consider a system without
relaxation effects and with a static field Bz along the z axis.
We will show that the components of M in a system rotat-
ing at the Larmor frequency are constant. The equations of
motion are given in Eqs. 18.13. In terms of variables in the
rotating frame, the equation for dMx/dt becomes

dMx′

dt
cos(−ωt) − dMy′

dt
sin(−ωt) + ωMx′ sin(−ωt)

+ωMy′ cos(−ωt)

= γ
[
Mx′ sin(−ωt) + My′ cos(−ωt)

]
Bz.

If the frame rotates at the Larmor frequency ω0 = γBz, the
third and fourth terms on the left are equal to the right-hand
side. The equation becomes

dMx′

dt
cos(−ω0t) − dMy′

dt
sin(−ω0t) = 0.

Under the same circumstances, the equation for dMy/dt

gives

dMx′

dt
sin(−ω0t) + dMy′

dt
cos(−ω0t) = 0.

Solving these simultaneously shows that dMx′/dt = 0 and
dMy′/dt = 0. Therefore, in the rotating system Mx′ and My′
are constant. Equation 18.13 showed that Mz′ is constant, so
the components of M are constant in the frame rotating at the
Larmor frequency. Using Eqs. 18.18 to transform back to the
laboratory system gives the solution Eq. 18.14.3

18.5.2 An Additional Oscillating Field

The next problem we consider in the rotating coordinate
system is the addition of an oscillating magnetic field
B1 cos(ωt) along the x axis, fixed in the laboratory sys-
tem. We will show that if the applied field is at the Larmor
frequency, the equations of motion in the rotating system,
Eqs. 18.25, are quite simple but very important. They are
given below.

They are derived as follows. From the x component of
Eq. 18.12, and remembering that By = 0,

dMx

dt
= γMyBz,

we obtain (remembering that the x′y′ system is rotating at
the Larmor frequency ω0)

dMx′

dt
cos(−ω0t) − dMy′

dt
sin(−ω0t)

+ ω0Mx′ sin(−ω0t) + ω0My′ cos(−ω0t)

= γBz

[
Mx′ sin(−ω0t) + My′ cos(−ω0t)

]
.

Since ω0 = γBz, the last two terms on the left cancel the
terms on the right, leaving

dMx′

dt
cos(−ω0t) − dMy′

dt
sin(−ω0t) = 0. (18.20)

3 For those familiar with vector analysis, the general relationship be-
tween the time derivative of any vector M in the laboratory system and
a system rotating with angular velocity Ω is

(
dM
dt

)

lab
=
(

∂M
∂t

)

rot
+ Ω × M.

This can be applied to the magnetization combined with Eq. 18.12 to
give

(
∂M
∂t

)

rot
= γ (M × B) − Ω × M = γ M ×

(
B + Ω

γ

)
,

which vanishes if γ B = −Ω .
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Similarly, the y-component of Eq. 18.12,

dMy

dt
= γ (MzBx − MxBz),

transforms and reduces to (remembering that Mz = Mz′ )

dMx′

dt
sin(−ω0t) + dMy′

dt
cos(−ω0t) = γB1Mz′ cos(−ωt).

(18.21)
The z-component of Eq. 18.12 is, with By = 0

dMz

dt
= −γMyBx,

which transforms to

dMz′

dt
= −γB1Mx′ cos(ωt) sin(−ω0t)

−γB1My′ cos(ωt) cos(−ω0t). (18.22)

It is possible to eliminate Mx′ from Eqs. 18.20 and 18.21
by multiplying Eq. 18.20 by − sin(−ω0t), multiplying
Eq. 18.21 by cos(−ω0t), and adding. The result is

dMy′

dt
= γB1Mz′ cos(ωt) cos(−ω0t). (18.23)

A similar technique can be used to eliminate My′ from these
two equations:

dMx′

dt
= γB1Mz′ cos(ωt) sin(−ω0t). (18.24)

18.5.3 Nutation

Equations 18.22–18.24 are the equations of motion for the
components of M in the rotating system. If ω �= ω0, the
motion is complicated, but averaged over many Larmor pe-
riods the right-hand side of each equation is zero. If the
applied field oscillates at the Larmor frequency, ω = ω0,
then the cos2(−ω0t) factors average to 1

2 while factors like
sin(−ω0t) cos(−ω0t) average to zero.

The averaged equations are a very important result:

dMx′

dt
= 0, (18.25a)

dMy′

dt
= γB1

2
Mz′ , (18.25b)

dMz′

dt
= −γB1

2
My′ . (18.25c)

The first equation says that if Mx′ is initially zero, it remains
zero. Let us define a new angular frequency

ω1 = γB1

2
. (18.26)

It is the frequency of rotation caused by B1 oscillating at
the Larmor frequency. It is much lower than the Larmor fre-
quency because B1 	 Bz. In terms of ω1, Eqs. 18.25b and
18.25c become

dMz′

dt
= −ω1My′ ,

dMy′

dt
= ω1Mz′ .

These are a pair of coupled linear differential equations with
constant coefficients. Differentiating one and substituting it
in the other gives

d2Mz′

dt2
= −ω1

dMy′

dt
= −ω2

1Mz′ , (18.27)

which has a solution (a and b are constants of integration)

Mz′ = a sin(ω1t) + b cos(ω1t). (18.28)

From Eq. 18.25c we get

My′ = − 1

ω1

dMz′

dt
= −a cos(ω1t) + b sin(ω1t). (18.29)

The values of a and b are determined from the initial con-
ditions. For example, if M is initially along the z axis, a = 0
and b = M0. Then

Mx′ = 0,

My′ = M0 sin(ω1t), (18.30)

Mz′ = M0 cos(ω1t).

This kind of motion—precession about the z axis combined
with a change of the projection of M on z—is called nutation.

18.5.4 π andπ/2 Pulses

From Eqs. 18.30 it is easy to see that turning B1 on for
a quarter of a period of ω1 (a 90 ◦ pulse or π/2 pulse,
t = T/4 = π/2ω1) nutates M into the x′y′ plane, while
a 180 ◦ or π pulse nutates M to point along the −z axis. M
nutates about the rotating x′ axis. Shifting the phase of B1

changes the axis in the x′y′ plane about which M nutates. It
may seem strange that an oscillating magnetic field pointing
along an axis fixed in the laboratory frame causes rotation
about an axis in the rotating frame. The reason is that B1 is
also oscillating at the Larmor frequency, so that its ampli-
tude changes in just the right way to cause this behavior of
M. Figures 18.7 and 18.8 show this nutation in both the ro-
tating frame and the laboratory frame for a π/2 pulse and a
π pulse.

Figure 18.7c emphasizes the difference between nutation
and relaxation by plotting Mz vs. the projection of M in the
x′y′ plane. For nutation the components of M are given by
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Fig. 18.7 The locus of the tip of the magnetization M when an oscil-
lating magnetic field B1 is applied for a time t such that ω1t = π/2.
This is often called a “π/2” pulse. a The rotating frame. b The labo-
ratory frame. c Plots of Mz′ vs (M2

x′ + M2
y′ )1/2 showing the difference

between nutation and relaxation
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Fig. 18.8 A “π pulse” B1 is applied for a time t = π/ω1 and rotates
M to point along the −z axis. a The rotating frame. b The laboratory
frame

Eqs. 18.30, the magnitude of M is unchanged, and the lo-
cus is a circle. For relaxation the components are given by
Eqs. 18.16.

Another interesting solution is one for which the initial
value of M is

Mx′(0) = M0 cos α,

My′(0) = M0 sin α,

Mz′(0) = 0.

This corresponds to an M that has already been nutated
into the x′y′ plane. Substituting these values in Eqs. 18.28
and 18.29 shows that b = 0 and a = M0 sin α. Then the
solution is

Mx′(t) = M0 cos α,

My′(t) = M0 sin α cos(ω1t), (18.31)

Mz′(t) = −M0 sin α sin(ω1t).

This solution is plotted in Fig. 18.9 in both the rotating frame
and the laboratory frame for the case of a π pulse (a pulse of
duration π/ω1). The effect is to nutate M about the x′ axis in
the rotating coordinate system. We will see later that this is a
very useful pulse.

x

y

z

(a) (b)

x'

y'

z'

Fig. 18.9 A magnetic field B1 pointing along the laboratory x axis and
oscillating at the Larmor frequency causes nutation of M through an
angle π around the rotating x′ axis. In this case M was initially in the
x′y′ plane. The motion shown here is plotted from Eqs. 18.30 in the
rotating (a) and the laboratory (b) frames

18.6 Relaxation Times

Since longitudinal relaxation changes the value of Mz and
hence μ · B, it is associated with a change of energy of the
nucleus. The principal force that can do work on the nuclear
spin and change its energy arises from the fact that the nu-
cleus is in a fluctuating magnetic field due to neighboring
nuclei and the electrons in paramagnetic atoms.

One way to analyze the effect of this magnetic field is
to say that the change of spin energy E is accompanied
by the emission or absorption of a photon of frequency
νphoton = E/h, or ωphoton = ω0. An increase of spin energy
requires the absorption of a photon at the Larmor frequency
(stimulated absorption). This will have a high probability
if the fluctuating magnetic field has a large Fourier com-
ponent at the Larmor frequency. A decrease of spin energy
is accompanied by the emission of a photon. This can hap-
pen spontaneously in a vacuum (spontaneous emission), or
it can be stimulated by the presence of other photons at
the Larmor frequency (stimulated emission). These relative
probabilities can be calculated using quantum mechanics.
Stimulated emission or absorption is much more probable
than is spontaneous emission.

The random magnetic field at a nucleus fluctuates be-
cause of the movement of the nucleus in the magnetic field of
nearby atoms and nuclei. If the field changes rapidly enough,
it will have Fourier components at the Larmor frequency that
can induce transitions that cause Mz to change by absorption
or emission. To get an idea of the strength of the field in-
volved, consider the field at one hydrogen nucleus in a water
molecule due to the other hydrogen nucleus. The field due to
a magnetic dipole is given by

Br = μ0

4π

2μ

r3
cos θ,
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r
θ

μ

Br

Bθ

Fig. 18.10 The magnetic field components of a dipole in spherical
coordinates point in the directions shown

(a) (b)

Fig. 18.11 The z components of the magnetic moments of two protons
in a water molecule are shown for two different molecular orientations,
a and b. When the water molecule is fixed in space, as in ice, the mag-
netic field that one proton produces in the neighborhood of the other is
static. When the water molecule tumbles, as in a liquid or gas, the field
that one proton produces at the other changes with time

Bθ = μ0

4π

μ

r3
sin θ, (18.32)

Bφ = 0,

where angle θ is defined in Fig. 18.10. (The factor μ0/4π ≡
10−7 T m A−1 is required in SI units.) The magnetic field
at one hydrogen nucleus in a water molecule due to the other
hydrogen nucleus is about 4×10−4 T (see Problem 14). Con-
sider the water molecule shown in Fig. 18.11. We refer to
each hydrogen nucleus as a proton. The z components of the
proton magnetic moments are shown. If the water molecule
is oriented as in Fig. 18.11a, the field at one proton due to
the other has a certain value. If the water molecule remains
fixed in space, as in ice, the field is constant with time. If
the molecule is tumbling, as in liquid water, the orientation
changes as in Fig. 18.11b, and the field changes with time.

When the molecules are moving randomly, the fluctuat-
ing magnetic field components are best described by their
autocorrelation functions. The simplest assumption one can

make4 is that the autocorrelation function φ11 of each mag-
netic field component is exponential and that each field
component has the same correlation time τC :

φ11(τ ) ∝ e−|τ |/τC . (18.33)

The Fourier transform of the autocorrelation function gives
the power at different frequencies. It has only cosine terms
because the autocorrelation is even. Comparison with the
Fourier transform pair of Eq. 11.101 shows that the power
at frequency ω is proportional to τC/(1 + ω2τ 2

C). With the
assumption that the transition rate, which is 1/T1, is propor-
tional to the power at the Larmor frequency, we have (see
also Slichter 1990 or Levitt 2008)

1

T1
= CτC

1 + ω2
0τ

2
C

, (18.34)

where C is the proportionality constant.
The correlation time in a solid is much longer than in

a liquid. For example, in liquid water at 20 ◦C it is about
3.5×10−12 s; in ice it is about 2×10−6 s. Figure 18.12 shows
the behavior of T1 as a function of correlation time, plotted
from Eq. 18.34 with C = 5.43 × 1010 s−2. For short cor-
relation times T1 does not depend on the Larmor frequency.
At long correlation times T1 is proportional to the square of
the Larmor frequency, as can be seen from Eq. 18.34. The
minimum in T1 occurs when ω0 = 1/τC in this model.

Table 18.2 shows some typical values of the relaxation
times for a Larmor frequency of 20 MHz. Neighboring para-
magnetic atoms reduce the relaxation time by causing a
fluctuating magnetic field. For example, adding 20 ppm of
Fe3+ to pure water reduces T1 from 3000 to 20 ms.

Differences in relaxation time are easily detected in an
image. Different tissues have different relaxation times.
A contrast agent containing gadolinium (Gd3+), which is
strongly paramagnetic, is often used in magnetic resonance
imaging. It is combined with many of the same pharmaceu-
ticals used with 99mTc, and it reduces the relaxation time of
nearby nuclei. Gadolinium has been used to assess ischemic
myocardium (Sakuma 2007). Iron oxide nanoparticles are
sometimes used to create contrast in magnetic resonance
images (Kim et al. 2011).

The hemoglobin that carries oxygen in the blood exists
in two forms: oxyhemoglobin and deoxyhemoglobin. The
former is diamagnetic and the latter is paramagnetic, so the
relaxation time in blood depends on the amount of oxygen in
the hemoglobin. The imaging technique that exploits this is
called BOLD (blood oxygen level dependent).

4 A more complete model recognizes that different atoms experience
fluctuating fields with different correlation times and that frequency
components at twice the Larmor frequency also contribute.
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Fig. 18.12 Plot of T1 and T2 vs correlation time of the fluctuating mag-
netic field at the nucleus. The dashed lines are for a Larmor frequency
of 29 MHz; the solid lines are for 10 MHz. Experimental points are
shown for water (open dot) and ice (solid dots)

Table 18.2 Approximate relaxation times at 20 MHz

T1 (ms) T2 (ms)
Whole blood 900 200
Muscle 500 35
Fat 200 60
Water 3000 3000

The same model for the fluctuating fields which led to
Eq. 18.34 gives an expression for T2:

1

T2
= CτC

2
+ 1

2T1
, (18.35)

T2 = 2

CτC

[
1 + ω2

0τ
2
C

2 + ω2
0τ

2
C

]

.

There is a slight frequency dependency to T2 for values of
the correlation time close to the reciprocal of the Larmor
frequency.

Another effect that causes the magnetization to rapidly
decrease is dephasing. Dephasing across the sample occurs
because of inhomogeneities in the externally applied field.
Suppose that the spread in Larmor frequency and the trans-
verse relaxation time are related by T2�ω = K . (Usually K

is taken to be 2.) The spread in Larmor frequencies �ω is
due to a spread in magnetic field �B experienced by the nu-
clear spins in different atoms. The total variation in B is due
to fluctuations caused by the magnetic field of neighbors and

to variation in the applied magnetic field across the sample:

�Btot = �Binternal + �Bexternal.

Therefore

�ωtot = �ωinternal + �ωexternal.

The total spread is associated with the experimental relax-
ation time, T ∗

2 = K/�ωtot. The true or nonrecoverable
relaxation time T2 = K/�ωinternal is due to the fluctuations
in the magnetic field intrinsic to the sample. Therefore

1

T ∗
2

= 1

T2
+ γ�Bexternal

K
. (18.36)

T2 is called the nonrecoverable relaxation time because var-
ious experimental techniques can be used to compensate for
the external inhomogeneities, but not the internal atomic
ones.

18.7 Detecting the Magnetic Resonance
Signal

We have now seen that a sample of nuclear spins in a strong
magnetic field has an induced magnetic moment; that it
is possible to apply a sinusoidally varying magnetic field
and nutate the magnetic moment to precess at any arbitrary
angle with respect to the static field; and that the magneti-
zation then relaxes or returns to its original state with two
characteristic time constants, the longitudinal and transverse
relaxation times. We next consider how a useful signal can
be obtained from these spins. This is done by measuring
the weak magnetic field generated by the magnetization as
it precesses in the xy plane.

Suppose that a sample is at the origin. The motions plotted
in Fig. 18.7 suggest that one way to produce a magnetiza-
tion rotating in the xy plane is to have a static field along
the z axis, combined with a coil in the yz plane (perpendic-
ular to the x axis) connected to a generator of alternating
current at frequency ω0. Turning on the generator for a time
�t = π/2ω1 = π/γB1 rotates the magnetization into the
xy plane (a 90 ◦ or π/2 pulse). If the generator is then turned
off, the same coil can be used to detect the changing magnetic
flux due to the rotating magnetic moments. The resulting sig-
nal, an exponentially damped sine wave, is called the free
induction decay (FID).

To estimate the size of the signal induced in the coil, imag-
ine a magnetic moment μ = M�V rotating in the xy plane
as shown in Fig. 18.13. The voltage v induced in a one-turn
coil in the yz plane is the rate of change of the magnetic flux
through the coil:

v = −∂Φ

∂t
= − ∂

∂t

�
B · dS.
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Fig. 18.13 A magnetic moment rotating in the xy plane induces a volt-
age in a pickup coil in the yz plane. The coil is viewed from slightly to
the right of the coil
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Fig. 18.14 A dipole along the x axis generates a flux through the
shaded circle in the yz plane that is equal and opposite to that through
the hemispherical cap. The drawing is viewed from slightly to the right
of the yz plane

The magnetic field far from a magnetic dipole can be
written most simply in spherical coordinates (Eqs. 18.32).
We need the flux through the coil of radius a in the yz

plane. However, Eqs. 18.32 are not valid close to the dipole.
Since a fundamental property of the magnetic field is that
for a closed surface

�
B · dS = 0, the flux through the

coil in Fig. 18.13 is the negative of the flux Φ through the

hemispherical cap in Fig. 18.14:

Φ = −
∫

Br2πa2 sin θ dθ = −μ0

4π

4πμx

a

∫ π/2

0
cos θ sin θ dθ

= −μ0

4π

2πμx

a
. (18.37)

At any instant μ can be resolved into components along x

and y. The component pointing along y contributes no net
flux through the spherical cap of Fig. 18.14. Therefore, the
flux for a magnetic moment μ = M�V , where M is given
by Eqs. 18.16, is

Φ = −μ0

4π

2πM0�V

a
e−t/T2 cos(−ω0t).

The induced voltage is −∂Φ/∂t :

v = μ0

4π

2πM0�V

a
e−t/T2

(
− 1

T2
cos(−ω0t) + ω0 sin(−ω0t)

)
.

Since 1/T2 	 ω0, this can be simplified to

v = −μ0

4π

ω0

a
2πM0�V e−t/T2 sin(−ω0t).

If the value of Mz which exists at thermal equilibrium has
been nutated into the xy plane, then M0 is given by the Mz

of Eq. 18.10. For a spin- 1
2 particle (and using the fact that

ω0 = γB0) we obtain

v = −μ0

4π

πN �V γ 3
�

2B2
0

2kBT a
e−t/T2 sin(−ω0t). (18.38)

Here N �V is the total number of nuclear spins involved,
B0 is the field along the z axis, and a is the radius of the
coil that detects the free-induction-decay signal. For a vol-
ume element of fixed size, as in magnetic resonance imaging,
the sensitivity is inversely proportional to the coil radius. If
the sample fills the coil, as in most laboratory spectrometers,
then �V ∝ a2 and the sensitivity is proportional to a. Be-
cause the signal in Eq. 18.38 is proportional to the square of
the magnetic field B0, there has been a push for higher and
higher magnetic field strengths; 7 T is typical for high B0

studies (Robitaille and Berliner 2006).

18.8 Some Useful Pulse Sequences

Many different ways of applying radio-frequency pulses to
generate B1 have been developed by nuclear magnetic reso-
nance spectroscopists for measuring relaxation times. There
are five “classic” sequences, which also form the basis for
magnetic resonance imaging.
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Fig. 18.15 Pulse sequence and signal for a free-induction-decay mea-
surement

18.8.1 Free-Induction-Decay (FID) Sequence

Free induction decay was described in Sect. 18.7. A π/2
pulse nutates M into the xy plane, where its precession in-
duces a signal in a pickup coil. The signal is of the form
e−(t/T ∗

2 ) sin(−ω0t), where T ∗
2 is the experimental transverse

relaxation time, including magnetic field inhomogeneities
due to the apparatus as well as those intrinsic to the sam-
ple. Figure 18.15 shows the pulse sequence, the value of Mx ,
and the value of Mz. The signal is proportional to Mx . The
pulses can be repeated after time TR for signal averaging. It
is necessary for TR to be greater than, say, 5T1 in order for
Mz to return nearly to its equilibrium value between pulses.

18.8.2 Inversion-Recovery (IR) Sequence

The inversion-recovery sequence allows measurement of T1.
A π pulse causes M to point along the −z axis. There is
not yet any signal at this time. Mz returns to equilibrium
according to Mz = M0

[
1 − 2e−(t/T1)

]
. A π/2 interroga-

tion pulse at time TI rotates the instantaneous value of Mz

into the xy plane, thereby giving a signal proportional to
M0
[
1 − 2e−(TI /T1)

]
, as shown in Fig. 18.16. The process can

be repeated; again the repeat time must exceed 5T1.
You can see from Fig. 18.16 that there will be no signal

at all if TI /T1 = 0.693. If TI is less than this, the Mx signal
will be inverted (negative). Unless special detector circuits
are used which allow one to determine that Mx is negative,
the results can be confusing.

Pulse
π/2

π

 TR 

π
π/2

 TI 

Mz 

Mx

Fig. 18.16 The inversion recovery sequence allows determination
of T1 by making successive measurements at various values of the
interrogation time TI

Inversion recovery images take a long time to acquire and
there is ambiguity in the sign of the signal. There are also
problems with the use of a π pulse for slice selection (defined
in Sect. 18.9; the details of the problems are found in Joseph
et al. 1984).

18.8.3 Spin-Echo (SE) Sequence

The pulse sequence shown in Fig. 18.17 can be used to
determine T2 rather than T ∗

2 . Initially a π/2 pulse nutates
M about the x′ axis so that all spins lie along the rotating y′
axis. Figure 18.17a shows two such spins. Spin a continues
to precess at the same frequency as the rotating coordinate
system; spin b is subject to a slightly smaller magnetic field
and precesses at a slightly lower frequency, so that at time
TE/2 it has moved clockwise in the rotating frame by angle
θ , as shown in Fig. 18.17b. At this time a π pulse is applied
that rotates all spins around the x′ axis. Spin a then points
along the −y′ axis; spin b rotates to the angle shown in
Fig. 18.17c. If spin b still experiences the smaller magnetic
field, it continues to precess clockwise in the rotating frame.
At time TE both spins are in phase again, pointing along −y′
as shown in Fig. 18.17d. The resulting signal is called an
echo, and the process for producing it is called a spin-echo
sequence. The formation of an echo depends only on the
fact that the magnetic field at the nucleus remained the
same before and after the π pulse; it does not depend on the
specific value of the dephasing angle. Therefore all of the
spin dephasing that has been caused by a time-independent
magnetic field is reversed in this process. There remains
only the dephasing caused by fluctuating magnetic fields.
Figure 18.18 shows the pulse sequence and signal.
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Fig. 18.17 Two magnetic moments are shown in the x′y′ plane in the
rotating coordinate system. Moment a rotates at the Larmor frequency
and remains aligned along the y′ axis. Moment b rotates clockwise with
respect to moment a. a Both moments are initially in phase. b After time
TE/2 moment b is clockwise from moment a. c A π pulse nutates both
moments about the x′ axis. d At time TE both moments are in phase
again

Fig. 18.18 The pulse sequence and magnetization components for a
spin-echo sequence

18.8.4 Carr–Purcell (CP) Sequence

When a sequence of π pulses that nutate M about the x′
axis are applied at TE/2, 3TE/2, 5TE/2, etc., a sequence
of echoes are formed, the amplitudes of which decay with
relaxation time T2. This is shown in Fig. 18.19. Referring to
Fig. 18.17, one can see that the echoes are aligned alternately

Fig. 18.19 The Carr–Purcell pulse sequence. All pulses nutate about
the x′ axis. Echoes alternate sign. The envelope of echoes decays as
e−t/T2 , where T2 is the unrecoverable transverse relaxation time

along the −y′ and +y′ axes. One advantage of the Carr–
Purcell sequence is that it allows one to determine rapidly
many points on the decay curve. Another advantage relates
to diffusion. The molecules that contain the excited nuclei
may diffuse. If the external magnetic field B0 is not uni-
form, the molecules can diffuse to another region where the
magnetic field is slightly different. As a result the rephasing
after a pulse does not completely cancel the initial dephas-
ing. This effect is reduced by the Carr–Purcell sequence (see
Problem 47).

18.8.5 Carr–Purcell–Meiboom–Gill (CPMG)
Sequence

One disadvantage of the CP sequence is that the π pulse
must be very accurate or a cumulative error builds up in suc-
cessive pulses. The Carr–Purcell–Meiboom–Gill sequence
overcomes this problem. The initial π/2 pulse nutates M
about the x′ axis as before, but the subsequent pulses are
shifted a quarter cycle in time, which causes them to rotate
about the y′ axis. This is shown in Fig. 18.20. To see why this
pulse sequence (Fig. 18.21) is less sensitive to errors in the
duration of the π pulses, consider moment a. In the CP se-
quence, Fig. 18.17, a π pulse that is too long will nutate a too
far, and it will have a smaller component in the x′y′ plane.
The next pulse will nutate it even further. In Fig. 18.20, the π

pulses will not affect moment a at all. This is explored further
in Problems 29 and 30.
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Fig. 18.20 The effect of the Carr–Purcell–Meiboom–Gill pulse se-
quence on the magnetization. This is similar to Fig. 18.17 except that
the π pulses rotate around the y′ axis. Moment b rotates clockwise
in the x′y′ plane. a Both moments are initially in phase. b After time
TE/2 moment b is clockwise from moment a. c A π pulse rotates both
moments about the y′ axis. d At time TE both moments are in phase
again

Fig. 18.21 The CPMG pulse sequence

18.9 Imaging

Many more techniques are available for imaging with
magnetic resonance than for x-ray computed tomography.
They are described by Brown et al. (1994), by Choet al.
(1993), by Vlaardingerbroek and den Boer (2004), and by
Liang and Lauterbur (2000). One of these authors, Paul
C. Lauterbur, shared with Sir Peter Mansfield the 2003

Nobel Prize in physiology or medicine for the invention of
magnetic resonance imaging.

Creation of the images requires the application of gradi-
ents in the static magnetic field Bz which cause the Larmor
frequency to vary with position. The first gradient is ap-
plied in the z direction during the π/2 pulse so that only
the spins in a slice in the patient are selected (nutated into
the xy plane). Slice selection is followed by gradients of
Bz in the x and y directions. These also change the Larmor
frequency. If the gradient is applied during the readout, the
Larmor frequency of the signal varies as Bz varies with po-
sition. If the gradient is applied before the readout, it causes
a position-dependent phase shift in the signal which can be
detected.

We discuss several reconstruction methods here. Projec-
tion reconstruction is similar to CT reconstruction, but it is
slow and rarely used. A two-dimensional Fourier technique
known as spin warp or phase encoding forms the basis of the
techniques used in most machines. We also describe briefly
some techniques that are even faster. Finally, we discuss how
the image contrast can be modified by changing the pulse
sequence parameters.

Our initial discussion is based on a spin-echo pulse se-
quence, repeated with a repetition time TR as shown in
Fig. 18.18.

18.9.1 Slice Selection

First, suppose we simply apply a π/2 pulse to the en-
tire sample in a 1.5-T machine (ω0 = 401 × 106 s−1;
ν0 = 63.9 MHz). If the duration of this pulse is to be, say,
5 ms, it requires a constant amplitude of the radio-frequency
magnetic field

B1 = π/γ�t = 2.35 × 10−6 T. (18.39)

The pulse lasts for 3 × 105 cycles at the Larmor frequency.
The frequency spread of the pulse is about 200 Hz. This
excites all the proton spins in the entire sample.

For MR imaging, we want to select a thin slice in the sam-
ple. In order to select a thin slice (say �z = 1 cm) we apply
a magnetic field gradient in the z direction while applying a
specially shaped B1 signal. In a static magnetic field B0, the
field lines are parallel. The field strength is proportional to
the number of lines per unit area and does not change. With
the gradient applied in the volume of interest, the field lines
converge, and the field increases linearly with z as shown in
Fig. 18.22a, b:

Bz(z) = B0 + Gzz. (18.40)
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Fig. 18.22 a Magnetic field lines for a magnetic field that increases in
the z direction. b A plot of Bz vs z with and without a gradient. c After
application of a field gradient in the z direction during the specially
shaped rf pulse, all of the spins in the shaded slice are excited, that is,
they are precessing in the xy plane

We adopt a notation in which G represents a partial derivative
of the z component of the magnetic field:

G =
⎛

⎝
Gx

Gy

Gz

⎞

⎠ =
⎛

⎝
∂Bz/∂x

∂Bz/∂y

∂Bz/∂z

⎞

⎠ . (18.41)

In a typical machine, Gz = 5×10−3 T m−1. For a slice thick-
ness �z = 0.01 m, the Larmor frequency across the slice
varies from ω0 −�ω to ω0 +�ω, where �ω = γGz�z/2 =
6.68 × 103 s−1 (�f = 1.064 kHz).

It is possible to make the signal Bx(t) consist of a uniform
distribution of frequencies between ω0 − �ω and ω0 + �ω,
so that all protons are excited in a slice of thickness �z from
−�z/2 to +�z/2. Let the amplitude of Bx in the interval
(ω, dω) be A. Using Eq. 11.57, Bx(t) is given by

Bx(t) = A

2π

∫ ω0+�ω

ω0−�ω

cos(ωt) dω

= A�ω

π

sin(�ωt)

�ωt
cos(ω0t). (18.42)

This has the form B1(t) cos(ω0t), where B1(t) =
(A�ω/π) sin(�ωt)/(�ωt). The function sin(x)/x has its
maximum value of 1 at x = 0. It is also called the sinc(x)

function. The angle φ through which the spins are nutated is

φ =
∫ ∞

−∞
ω1(t) dt = γ

2

∫ ∞

−∞
B1(t) dt

= γA�ω

2π

∫ ∞

−∞
sin(�ωt)

�ωt
dt

= γA

2
.

B1(t)

t
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= Δω/γ = Gz Δz/2
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= ω0 + γ GzΔz/2

Fig. 18.23 a The Bx(t) signal shown is used to selectively excite a
slice. It consists of cos(ω0t) modulated by a sinc(x) or sin(x)/x pulse
B1(t). b The frequency spectrum contains a uniform distribution of
frequencies

Bx
π/2 π

Mx

Gz

Fig. 18.24 A slice selection pulse sequence. While a gradient Gz is
applied, a π/2 Bx (rf) pulse nutates the spins in a slice of thickness
�z into the xy plane. A negative Gz gradient restores the phase of the
precessing spins. The echo after the π pulse is from the entire slice

For a π/2 pulse, A = π/γ . The maximum value of B1 is
therefore �ω/γ = Gz�z/2, as shown in Fig. 18.23. The Bx

pulse does not have an abrupt beginning; it grows and decays
as shown. In practice, it is truncated at some distance from
the peak where the lobes are small.

While the gradient is applied, the transverse components
of spins at different values of z precess at different rates (see
Problem 35). Therefore it is necessary to apply a gradient
Gz of opposite sign after the π/2 pulse is finished in order
to bring the spins back to the phase they had at the peak of
the slice selection signal. The gradient is removed when all
of the spins in the slice shown in Fig. 18.22c are back in
phase. They then continue to precess in the xy plane at the
Larmor frequency. This gives the first Mx pulse in Fig. 18.24.
The complicated behavior of Mx during the slice selection
gradient is not shown. This initial free-induction-decay pulse
is not used for imaging.
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Fig. 18.25 A gradient in Bz causes the Larmor frequency to vary with
position. If the signal is measured while the gradient is applied, the
Larmor frequency varies with position. If the signal is measured after
the gradient has been applied and removed, a position-dependent phase
shift remains

The voltage induced in the pickup coil surrounding the
sample is proportional to the free induction decay of M
in the entire slice. That is, the voltage signal induced in
the pickup coil is proportional to

∫
M(x, y, z) cos(−ω0t)

f (t) dV , where M(x, y, z) is the magnetization per unit vol-
ume that was nutated into the xy plane, cos(−ω0t) represents
the change in signal as M rotates in the xy plane at the Lar-
mor frequency, and f (t) represents relaxation, signal buildup
during an echo, and so on. Figure 18.24 shows the echo after
a subsequent π pulse, applied with Gz on, and which also
has the form of a sinc function to affect only those spins in
the slice of interest.

We assume that changes in f (t) are slow compared to
the Larmor frequency and neglect them here. Then the signal
from an element dxdy in the slice is

v(t) = Adx dy �z M(x, y, z) cos(−ω0t). (18.43)

Constant A includes all the details of the detecting coils and
receiver.

18.9.2 Readout in the Direction

We now need to extract x and y position information from
v(t). This is done by creating gradients of Bz in the x or y

directions. As shown in Fig. 18.25, if the signal is measured
while a gradient is applied, the Larmor frequency varies
with position. Suppose that Bz is given a gradient Gx in
the x direction during the echo signal readout, as shown in
Fig. 18.26. Gx is called the readout or frequency encoding
gradient. The spins that echo in the shaded slice between x

and x + dx in Fig. 18.27 will be precessing with a Larmor
frequency between ω and ω + dω, where ω = ω0 + γGxx.

Fig. 18.26 A gradient Gx is applied during x readout. The echo signal
between ω and ω + dω is proportional to the magnetization in a strip
between x and x + dx, integrated over all values of y

x

Bz

Fig. 18.27 Because the gradient Gx is applied during readout, the
Larmor frequency of all spins in the shaded slice is between ω and
ω + dω

The signal from the entire slice is

v(t) = A�z

∫
dx

(∫
dy M(x, y, z)

)
cos[−ω(x)t].

(18.44)
We use the fact that ω(x) = ω0 +γGxx to write the signal as

v(t) = A�z

∫
dx

[(∫
dy M(x, y, z)

)

cos(−ω0t − γGxxt)

]
. (18.45)

Since the z slice has already been selected, let us simplify
the notation by dropping the z dependence of M. The elec-
tronics in the detector multiply v(t) by cos(ω0t) or sin(ω0t)

and average over many cycles at the Larmor frequency.
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Fig. 18.28 Projection reconstruction techniques can be used to form
an image. A series of measurements are taken, each with simultaneous
gradients Gx and Gy

The results are two signals that form the basis for construct-
ing the image:

sc(t) = v(t) cos(ω0t) ∝ �
dx dy M(x, y) cos(−γGxxt),

ss(t) = v(t) sin(ω0t) ∝ �
dx dy M(x, y) sin(−γGxxt).

(18.46)
The time average is over many cycles at the Larmor fre-
quency but a time short compared to 2π/γGxxmax.

18.9.3 Projection Reconstruction

By inspecting Eq. 18.46 and remembering the relationship
between ω and x, we see that the Fourier transforms of sc(t)

and ss(t) are both proportional to
∫

M(x, y) dy. (Of course,
the signals are digitized and one actually deals with discrete
transforms.) This means that sc or ss can be Fourier analyzed
to determine the amount of signal in the frequency inter-
val (ω, dω) corresponding to (x, dx), which is proportional
to the projection

∫
M(x, y) dy along the shaded strip. In

Sect. 12.5 we learned how to reconstruct an image from a set
of projections. The entire readout process can therefore be re-
peated with the gradient rotated slightly in the xy plane (that
is, with a combination of Gx and Gy during readout). This
is indicated in Fig. 18.28, which indicates many scans, with
different values of Gx and Gy , related by Gy/Gx = tan θ ,
where θ is the angle between the projection and the x axis.
All of the techniques for reconstruction from projections that
were developed for computed tomography can be used to

reconstruct M(x, y). Sending the proper combination of cur-
rents through the x and y gradient coils rotates the gradient;
no rotating mechanical components are needed.

18.9.4 Phase Encoding

Techniques are available for magnetic resonance imaging
that are not available for computed tomography. They are
based on determining directly the Fourier coefficients in two
or three dimensions. The basic technique is called spin warp
or phase encoding. We saw in Fig. 18.25 that if a gradient
is applied after the π/2 slice-selection pulse, a position-
dependent phase shift remains even after the gradient is
turned off. Let us make this quantitative. We wish to con-
struct an image of M(x, y), modified by the function f (t)

that accounts for relaxation, etc. For simplicity of notation
we again assume f is unity and suppress the z dependence,
since slice selection has already been done. We will construct
M(x, y) from its Fourier transform. The Fourier transform of
M(x, y) is given by Eqs. 12.9:

M(x, y) =
(

1

2π

)2 ∫ ∞

−∞
dkx

∫ ∞

−∞
dky[C(kx, ky) cos(kxx + kyy)

+ S(kx, ky) sin(kxx + kyy)]. (18.47a)

with the coefficients given by

C(kx, ky) =
∫ ∞

−∞
dx

∫ ∞

−∞
dy M(x, y) cos(kxx + kyy),

(18.47b)

S(kx, ky) =
∫ ∞

−∞
dx

∫ ∞

−∞
dy M(x, y) sin(kxx + kyy).

(18.47c)
Our problem is to determine C and S and from them
construct the image.

The information from the x readout gives us C(kx, 0)

and S(kx, 0) directly. We show this for the cosine transform.
From Eq. 18.47b

C(kx, 0) =
∫ ∞

−∞
dx

(∫ ∞

−∞
dy M(x, y)

)
cos(kxx).

(18.48)
Comparing this to the expression for sc(t) in Eq. 18.46, we
see that

C(kx, 0) ∝ sc(kx/γGx). (18.49a)

Similarly,

S(kx, 0) ∝ ss(kx/γGx). (18.49b)
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Fig. 18.29 a The signal measured while the x gradient is applied gives
the spatial Fourier transform of the image along the kx axis. b The addi-
tion of a phase-encoding gradient sets a nonzero value for ky so that the
readout determines the spatial Fourier transform along a line parallel to
the kx axis. c Phase encoding along the x axis as well shifts the line
along which the coefficients are determined

The times at which sc and ss are measured and therefore
the values of kx are, of course, discrete. The discussion in
Sect. 12.3 shows that the values of kx are multiples of the
lowest spatial frequency: kx = m �k = mk0 = 2πm/Lx .
The corresponding times to measure the signal are tm =
2πm/LxγGx . The spatial extent of the image in the x di-
rection or field of view Lx determines the spacing �kx . The
desired pixel size determines the maximum value of kx or m:
�x = π/kmax = Lx/2mmax. The discrete values of kx are
shown in Fig. 18.29a.

The next problem is to make a similar determination for
nonzero values of ky . To do so, a gradient Gy = ∂Bz/∂y

is applied at some time between slice selection and readout.
This makes the Larmor frequency vary in the y direction. If
the phase-encoding pulse is due to a uniform gradient that

Bx
π/2 π

Mx

Gz

Gx

Gy

Fig. 18.30 The signals in a standard phase encoding. The pulse
sequence is repeated for each value of ky

lasts for a time Tp, the total phase change is

�φ =
∫

ω(t) dt = γGyTpy = kyy. (18.50)

The readout signal, Eq. 18.44, is replaced by

v(t) = A�z

∫
dx

∫
dy M(x, y) cos[ω(x)t + kyy].

(18.51)
Note that the added phase does not depend on t because Gy

is not on during readout. However, the cosine term must now
be included in both the x and y integrals. Carrying through
the mathematics of the detection process shows that temporal
Fourier transformation of the signals determines C(kx, ky)

and S(kx, ky) for all values of kx and for the particular value
of ky determined by the Gy phase selection pulse. Different
values of the Gy pulse give the coefficients for different val-
ues of ky , as shown in Fig. 18.29. Both positive and negative
gradients are used to give both positive and negative values of
ky . Application of a gradient Gx during the phase-encoding
time (in addition to the readout gradient) changes the start-
ing value of kx . This allows one to determine the coefficients
for negative values of kx . This figure has been drawn without
taking into account that the application of a π pulse changes
kx to −kx and ky to −ky . The gradients and signals for this
spin-echo determination are shown in Fig. 18.30. The coeffi-
cients are substituted in Eq. 18.47a to reconstruct M(x, y, z)

for the z slice in question.
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Fig. 18.31 A fast spin-echo sequence uses a single π/2 slice selection
pulse followed by multiple echo rephasing pulses. A correction must be
made for the transverse decay

18.9.5 Other Pulse Sequences

Dozens of other pulse sequences have been invented, all of
which are based on the fundamentals presented here. We
mention only a few, and there are many variations of these.
For details, see Bernstein et al. (2004).

Fast spin echo or turbo spin echo uses a single π/2 pulse,
followed by a series of π pulses, as shown in Fig. 18.31. Each
π pulse produces an echo, though the echo amplitudes decay
and a correction for this must be made in the image recon-
struction. Each Gy pulse increments or winds the phase by a
fixed amount. A negative Gx pulse resets the positions of the
kx values. Faster image acquisition sequences not only save
time, but they may allow the image to be obtained while the
patient’s breath is held, thereby eliminating motion artifacts.

The major problem with conventional spin echo
(Fig. 18.30) is that one must wait a time TR � T1 between
measurements for different values of ky . One way to speed
things up is to use the intervening time to make measure-
ments in a slice at a different value of z. Another technique is
to use a flip angle smaller than π/2. Suppose the flip angle is
α = 20 ◦. This gives a transverse magnetization proportional
to sin 20 ◦ = 0.34 while reducing the longitudinal magneti-
zation only slightly, to cos 20 ◦ = 0.94. Thus, k space can
be sampled until the transverse signal has decayed and an-
other α flip pulse can immediately be applied to restore the
transverse magnetization.

Fig. 18.32 Echo planar imaging uses a very uniform magnet and elim-
inates the rephasing π pulses. In Fig. 18.31 the decay of the individual
echoes was determined by T ∗

2 , and the slower decay of the amplitude of
the subsequent echoes was determined by T2. In this figure the decay of
the individual echoes is determined by the size of the gradient and the
slower decay of the amplitude of the subsequent echoes is determined
by T ∗

2

Echo-planar imaging (EPI) eliminates the π pulses. It re-
quires a magnet with a very uniform magnetic field, so that
T2 (in the absence of a gradient) is only slightly greater than
T ∗

2 . The gradient fields are larger, and the gradient pulse du-
rations shorter, than in conventional imaging. The goal is
to complete all the k-space measurements in a time com-
parable to T ∗

2 . In EPI the echoes are not created using π

pulses. Instead, they are created by dephasing the spins at
different positions along the x axis using a Gx gradient, and
then reversing that gradient to rephase the spins, as shown in
Fig. 18.32. Whenever the integral of Gx(t) is zero, the spins
are all in phase and the signal appears. A large negative Gy

pulse sets the initial value of ky to be negative; small positive
Gy pulses (“blips”) then increase the value of ky for each
successive kx readout. Echo-planar imaging requires strong
gradients—at least five times those for normal studies—so
that the data can be acquired quickly. Moreover, the rise-
and fall-times of these pulses are short, which induces large
voltages in the coils. Eddy currents are also induced in the
patient, and it is necessary to keep these below the thresh-
old for neural activation. These problems can be reduced
by using sinusoidally-varying gradient currents. The engi-
neering problems are discussed in Schmitt et al. (1998); in
Vlaardingerbroek and den Boer (2004); and in Bernsteinet
al. (2004).
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High spatial frequencies give the sharp edge detail in an
image; the lowest spatial frequencies give the overall con-
trast. (We saw this in Figs. 12.9 and 12.10.) Changing the
order of sampling points in k space can be useful. For ex-
ample, when the image may be distorted by blood flow (see
Sect. 18.11), it is possible to change the gradients in such a
way that the values of k near zero are measured right after the
excitation. This gives the proper signal within the volume of
the vessel. The higher spatial frequencies, which show vessel
edges, are less sensitive to blood flow and are acquired later.

A three-dimensional Fourier transform of the image
can be obtained by selecting the entire sample and then
phase encoding in both the y and z directions while doing
frequency readout along x. One must step through all values
of ky for each value of kz. This is one way to image very
small samples with very high resolution (MRI microscopy)
(Callaghan 1994).

18.9.6 Image Contrast and the Pulse
Parameters

The appearance of an MR image can be changed drastically
by adjusting the repetition time and the echo time. Prob-
lem 27 derives a general expression for the amplitude of the
echo signal when a series of π/2 pulses are repeated ev-
ery TR seconds. The magnetic moment in the sample at the
time of the measurement, considering both longitudinal and
transverse relaxation, is

M(TR, TE) (18.52)

= M0

(
1 − 2e−TR/T1+TE/2T1 + e−TR/T1

)
e−TE/T2 ,

where M0 is proportional to the number of proton spins per
unit volume N , as shown in Eq. 18.10. If TR � TE , this
simplifies to

M(TR, TE) = M0(1 − e−TR/T1)e−TE/T2 , (18.53)

We consider an example that compares muscle (M0 = 1.02
in arbitrary units, T1 = 500 ms, and T2 = 35 ms) with fat
(M0 = 1.24, T1 = 200 ms, and T2 = 60 ms).

Figure 18.33 shows two examples where TR is relatively
long and M0 returns nearly to its initial value between pulses.
If the echo time is short, then the image is nearly independent
of both T1 and T2 and it is called a density-weighted image. If
TE is longer, then the transverse decay term dominates and it
is called a T2-weighted image. The signal is often weak and
therefore noisy because there has been so much decay.

Figure 18.34 shows what happens if the repetition time
is made small compared to T1. This is a T1-weighted image
because the differences in T1 are responsible for most of the
difference in signal intensity. Notice also that the very first

Fig. 18.33 The intensity of the signal from different tissues depends
on the relationship between the repetition time and echo times of the
pulse sequence, and the relaxation times of the tissues being imaged.
This figure and the next show the magnetization curves for two tissues:
muscle (relative proton density 1.02, T1 = 500 ms, T2 = 35 ms) and fat
(relative proton density 1.24, T1 = 200 ms, T2 = 60 ms). The repetition
time is 1500 ms, which is long compared to the longitudinal relaxation
times. A long echo time gives an image density that is very sensitive to
T2 values. A short echo time (even shorter than shown) gives an image
that depends primarily on the spin density

Fig. 18.34 The tissue parameters are the same as in Fig. 18.33. The
repetition time is short compared to the longitudinal relaxation time.
As a result, the first echo must be ignored. With a short TE , the image
density depends strongly on the value of T1

pulse nutates the full M0 into the transverse plane, so an echo
after the first pulse would give an anomalous reading. Echoes
are measured only for the second and later pulses.
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Fig. 18.35 Spin-echo images taken with short and long values of TE ,
showing the difference in T2 values for different parts of the brain.
(Photograph courtesy of R. Morin, Ph.D., Department of Diagnostic
Radiology, University of Minnesota)

Suppose that the value of T2 for fat had been shorter than
the value for muscle. Then there would have been a value
of TE for which the two transverse magnetization curves
crossed, and the two tissues would have been indistinguish-
able in the image. At larger values of TE , their relative
brightnesses would have been reversed. Figure 18.35 shows
spin-echo images taken with two different values of TE , for
which the relative brightnesses are quite different.

18.9.7 Safety

Safety issues in MRI include forces on magnetic objects
in and around the patient such as aneurysm clips, hairpins,
pacemakers, wheel chairs, and gas cylinders (Kanal et al.
2007), absorbed radio-frequency energy (Problem 21), and
induced currents from rapidly-changing magnetic field gra-
dients. The rapid changes of magnetic field can stimulate
nerves and muscles, cause heating in electrical leads and
certain tattoos, and possibly induce ventricular fibrillation.
Induced fields are reviewed by Schaefer et al. (2000). Car-
diac pacemakers are being designed to be immune to the
strong—and rapidly varying—magnetic and rf fields (Santini
et al. 2013).

18.10 Chemical Shift

If the external magnetic field is very homogeneous, it is
possible to detect a shift of the Larmor frequency due to a
reduction of the magnetic field at the nucleus because of dia-
magnetic shielding by the surrounding electron cloud. The
modified Larmor frequency can be written as

ω = γB0(1 − σ). (18.54)

Fig. 18.36 A chemical shift spectrum for 31P taken from the visual
cortex at the back of the brain using a 7-tesla machine. (From Lei et al.
2003. Used by permission. Image courtesy of Prof. Kamil Ugurbil)

Typical values of σ are in the range 10−5 to 10−6. They
are independent of B0, as expected for a diamagnetic ef-
fect proportional to B0. Measurements are made by Fourier
transformation of the free-induction-decay signal, averaged
over many repetitions if necessary to provide the resolution
required to detect the shift.

A great deal of work has been done with 31P, because
of its presence in adenosine triphosphate and adenosine
diphosphate (ATP and ADP). Free energy is supplied for
many processes in the body by the conversion of ATP to
ADP. Fig. 18.36 shows a very high resolution chemical
shift spectrum from the human visual cortex taken with a
7-tesla machine.

It is also possible to make chemical shift images. Fig-
ure 18.37 shows a series of 31P spectra from the brain. An
image of the slice from which these data are obtained is
shown below the spectra. The slice on the left cuts through
the cerebellum and temporal lobes of the brain. It also in-
cludes some skeletal muscle. The slice on the right is through
brain only.

18.11 Flow Effects

Flow effects can distort a magnetic resonance image. Spins
initially prepared with one value of M can flow out of a slice
before the echo and be replaced by spins that had a different
initial value of M. This is called washout. Spins that have
been shifted in phase by a field gradient can flow to another
location before the readout pulse is applied. This causes arti-
facts and can also be used to measure blood flow (Axel 1984;
Battocletti et al. 1981).

To understand the washout effect consider a simple model
in which a blood vessel is perpendicular to the slice, as shown
in Fig. 18.38. To simplify further, assume that all the blood
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Fig. 18.37 The image on the left displays 31P chemical shift data as
spectra from individual voxels. The image of the slice from which these
data are obtained is shown below the spectra. The slice cuts through the
cerebellum and temporal lobes of the brain (solid outline). The dashed
lines mark skeletal muscle which also contains phosphorylated metabo-
lites, with a higher creatine phosphate level (PCr) compared to brain.
The slice on the right is through the brain only. (Image courtesy of Prof.
Kamil Ugurbil, University of Minnesota)

v

vt
Δz

Fig. 18.38 A blood vessel is perpendicular to the slice. The model de-
veloped in the text assumes plug flow, that is, all of the blood is flowing
with the same speed v

flows with the same speed v, independent of where it is in
the vessel. This is called plug flow.

First consider washout of the excited spins. Suppose that
at time TE/2 a π pulse is applied to the slice in Fig. 18.38
and that the echo is measured at time TE . The shaded area
in the vessel represents new blood that flows in during time
t . If the flow velocity is zero, no new blood flows in, all of
the blood in the slice was excited, and the signal has full
strength. If the velocity is greater than 2�z/TE , all of the

spins that were flipped by the pulse will leave the sensitive
region by the time of the echo, and there will be no signal.
Because we assume plug flow, the fraction washed out is a
linear function of velocity up to the critical value of v. The
fraction of excited spins remaining at TE is given by

f =

⎧
⎪⎨

⎪⎩

1 − vTE

2�z
, v < 2�z/TE

0, v ≥ 2�z/TE.

(18.55)

Now consider washout of spins between pulses. We saw
that the effect of repetition and echo times on the MRI sig-
nal is given by Eq. 18.52, which, if TR � TE , simplifies to
Eq. 18.53. For low velocities (v < �z/TR) there is an en-
hancement of the signal because blood with a larger value of
Mz flows into the sensitive region. For vTR < �z, the factor
in parentheses in Eq. 18.53 is replaced by

vTR

�z
+
(

1 − vTR

�z

)(
1 − e−TR/T1

)
.

The first term represents spins that flow in and the sec-
ond those that still remain and that are still affected by the
previous pulse. This can be rearranged as

(
1 − e−TR/T1

)
+ vTR

�z
e−TR/T1 . (18.56)

This factor has the value 1 − e−TR/T1 for small v and is pro-
portional to v when v � �z/TR . More complicated models
can be developed. Phase changes because the blood flows
through magnetic field gradients are also important.

Blood perfusion in the brain can be monitored using arte-
rial spin labeling (Wolf and Detre 2007). A π pulse inverts
the spins in a slice just upstream of the region of interest.
Blood flow carries these labeled spins into the slice to be
imaged. A second image of the slice is acquired without
labeling the spins. The difference between the two images
provides information about perfusion.

In addition to blood flow, MRI can also be used to image
motion of the tissue. In magnetic resonance elastography, an
acoustic signal is applied to the tissue (typically 0.1-1 kHz),
creating a shear wave (Chap. 13). A magnetic resonance im-
age is then obtained, using a magnetic field gradient that
oscillates at the same frequency as the acoustic wave. In
stationary tissue, the positive and negative phases produced
by an oscillating gradient cancel to produce no net phase
change, but in the oscillating tissue the phase shifts accu-
mulate. Thus, information about the amplitude of the tissue
motion is encoded in the phase of the magnetic resonance
signal. When the applied signal and tissue response are both
known, the shear modulus (Chap. 1) can be determined. If,
for instance, a tumor is stiffer than the surrounding tissue, it
will be imaged as a region of high shear modulus (Mariappan
et al. 2010).
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Fig. 18.39 Functional MRI in three planes: a sagittal (side) view; b
coronal (front) view; c axial view (from below). The layers viewed in b
and c are indicated by the lines in a. Bright spots superimposed on the
image show activity in the visual cortex and in some structures between
the eye and the visual cortex. The magnetic field is 4 T. (Adapted from
Chen et al. 1998. Image supplied by Prof. Kamil Ugurbil)

18.12 Functional MRI

Magnetic resonance imaging provides excellent structural
information. Various contrast agents can provide informa-
tion about physiologic function. For example, contrast agents
containing gadolinium are injected intravenously (Hao et al.
2012). They leak through a damaged blood-tissue barrier
and accumulate in the damaged region. At small concentra-
tions T1 is shortened. One can also inject a contrast agent
and watch its first pass through the circulatory system. Such
an agent typically changes the magnetic susceptibility and
shortens T2.

The term functional magnetic resonance imaging (fMRI)
usually refers to a technique developed in the 1990s that
allows one to study structure and function simultaneously.
The basis for fMRI is inhomogeneities in the magnetic field
caused by the differences in the magnetic properties of oxy-
genated and deoxygenated hemoglobin. No external contrast
agent is required. Oxygenated hemoglobin is less paramag-
netic than deoxyhemoglobin. If we make images before and
after a change in the blood flow to a small region of tissue
(perhaps caused by a change in its metabolic activity), the
difference between the two images is due mainly to changes
in the blood oxygenation. One usually sees an increase in
blood flow to a region of the brain when that region is active.
This BOLD contrast in the two images provides information
about the metabolic state of the tissue, and therefore about
the tissue function (Ogawa et al. 1990; Kwong et al. 1992).

An image of the brain during visual stimulation is shown
in Fig. 18.39. In addition to the visual cortex in part c, ac-
tivity is seen in the lateral geniculate nucleus (parts b and
c), which is on the pathway from the eye to the visual cor-
tex. Functional MRI provides functional information similar
to that from PET (Sect. 17.10), but without the need for
radionuclides.

Other contrast agents, usually a complex molecule shield-
ing a gadolinium atom, are being developed to measure pH,
ions such as zinc, calcium, and copper, and certain enzymes
(Louie 2013). The stable isotope 19F is being tested as an
alternative to gadolinium (Ahrens and Zhong 2013).

Another recent technique that can be classified as func-
tional is the detection of prostate cancer that has metastasized
to a lymph node when the metastasis is not yet apparent by
other imaging techniques. Monocrystalline iron oxide parti-
cles injected in the blood will be taken up by normal lymph
nodes but not those with metastases. The technique is effec-
tive for lymph nodes larger than 5 mm (Harisinghani et al.
2003; see also the commentary by Koh et al. 2003).

Much recent research has focused on using MRI to image
neural activity directly, rather than through changes in blood
flow (Bandettini et al. 2005). Two methods have been pro-
posed to do this. In one, the biomagnetic field produced by
neural activity (Chap. 8) acts as the contrast agent, perturbing
the magnetic resonance signal. Images with and without the
biomagnetic field present provide information about the dis-
tribution of neural action currents. In an alternative method,
the Lorentz force (Eq. 8.2) acting on the action currents in
the presence of a magnetic field causes the nerve to move
slightly. If a magnetic field gradient is also present, the nerve
may move into a region having a different Larmor frequency.
Again, images taken with and without the action currents
present provide information about neural activity. Unfor-
tunately, both the biomagnetic field and the displacement
caused by the Lorentz force are tiny, and neither of these
methods has yet proved useful for neural imaging. However,
if these methods could be developed, they would provide
information about brain activity similar to that from the mag-
netoencephalogram, but without requiring the solution of an
ill-posed inverse problem that makes the MEG so difficult
to interpret.

18.13 Diffusion and Diffusion Tensor MRI

Our analysis of MRI so far assumes that the nuclei are sta-
tionary except for the rotation of their spin axis or their
motion with the blood to create flow effects. In practice, these
nuclei are also free to diffuse throughout the tissue (Chap. 4).
The magnetization M depends on the total number of par-
ticles per unit volume with average spin components 〈μx〉,
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〈
μy

〉
, and 〈μz〉. In the rotating coordinate system there is no

precession. In the absence of relaxation effects 〈μ〉 does not
change. In that case changes in M depend on changes in the
concentration of particles with particular components of 〈μ〉,
so the rate of change of each component of 〈μ〉 is given by a
diffusion equation. For example, for Mx ,

∂Mx

∂t
= D∇2Mx.

If the processes are linear, this diffusion term can be added
to the other terms in the Bloch equations. The details are
explored in Problem 47.

In a spin–echo pulse sequence, the amplitude of the echo
will be smaller if the spins have diffused to different loca-
tions within the tissue between the time of the excitation
pulse and the echo. This artifact degrades the signal during
traditional MRI, but can be valuable if one wants to mea-
sure the diffusion constant. The rate of diffusion depends
sensitively on temperature, so measurements of the diffu-
sion constant provide a way to monitor internal temperatures
noninvasively (Delannoy et al. 1991). Moseley et al. (1990)
showed that diffusion MRI is valuable for detecting regional
cerebral ischemia, and it has become a useful tool in stroke
research.

Diffusion can be monitored during a spin-echo sequence
by applying magnetic field gradients of the same magni-
tude and duration before and after the π pulse, as shown in
Fig. 18.40. If a spin is stationary, these gradients have no ef-
fect: they shift the phase of the spins in one direction before
the π pulse, but shift the phase in the other direction after
the π pulse, restoring the original phase. However, for spins
that diffuse from one location to another between the appli-
cation of the gradients, the phase shift of the first gradient
is not cancelled by an opposite phase shift in the second, so
the gradients introduce a net phase shift. This shift lowers the
echo amplitude, with the reduction depending on the square
of the gradient and the diffusion constant (Prob. 47).

In some tissues diffusion is anisotropic, meaning that the
diffusion constant depends on direction. In such cases the ef-
fect of diffusion depends on the direction of the magnetic
field gradient. Basser et al. (1994) extended diffusion MRI
so that the entire diffusion tensor is measured. The diffusion
tensor (or matrix) is similar to the conductivity tensor dis-
cussed in Sect. 7.9. Using matrix notation, the fluence rate of
diffusing particles with aligned nuclear spins is related to the
particle concentration by

⎛

⎝
jx

jy

jz

⎞

⎠ = −
⎛

⎝
Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

⎞

⎠

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎜
⎝

∂C

∂x

∂C

∂y

∂C

∂z

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎟
⎠

. (18.57)

Fig. 18.40 A silmplified pulse sequence for diffusion tensor imaging.
The sequence is similar to that shown in Fig. 18.30 for two-dimensional
imaging using phase encoding. The Mx signal is shown only during
readout. The diffusion gradients, shown in gray, are applied before and
after the π pulse. For stationary spins, any phase shift produced by the
first diffusion gradient is canceled by an opposite phase shift produced
by the second diffusion gradient. Spins that diffuse during this pulse
sequence are affected differently by the first and second diffusion gradi-
ents, which affects the signal. For diffusion tensor imaging the gradients
must be applied in all three directions. For more details, see Mattiello
et al. (1994)

One can show that the diffusion matrix is always symmetric:
Dyx = Dxy , etc.

Diffusion is usually greater along the direction of the
nerve or muscle fibers. Since the orientation of the fibers
changes throughout the body, the elements of the diffusion
tensor vary as well. However, some features of the diffusion
tensor, such as the trace (see Prob. 49), are independent of the
fiber direction, and are particularly useful when monitoring
diffusion in anisotropic tissue, such as the white matter of the
brain. In addition, the diffusion tensor contains information
about the fiber direction, allowing one to map fiber tract tra-
jectories noninvasively using MRI (Basser et al. 2000). See
also the review by Thomas et al. (2000).

18.14 HyperpolarizedMRI of the Lung

The lung is difficult to image using MRI because of its low
proton density. A new way to monitor lung function is to
image the isotope 129Xe inhaled into the lungs. The density
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of 129Xe is small, but the magnetization can be increased dra-
matically using the technique of hyperpolarization (Mugler
and Altes 2013). In this two-step process, a laser is used to
generate electron-spin polarization in a vapor of alkali metal
such as rubidium subject to a magnetic field. Then colli-
sions with the rubidium molecules transfer the polarization
to the 129Xe. This technique increases the polarization by
a factor of about 1000 beyond what it would be in thermal
equilibrium.

Symbols Used in Chapter 18
Symbol Use Units First

used
page

a Loop radius m 545
a, b Constants J T−1 m−3 541
f Fraction 556
h Planck’s constant J s 542
� Planck’s constant (reduced) J s 537
i Current A 536
jx ,jy ,jz fluence rate m−2 s−1 558
kB Boltzmann constant J K−1 537
kx, ky, kz Spatial frequency m−1 551
m Mass kg 537
m Azimuthal quantum number 537
m Integer 552
q Electric charge C 537
r Radius m 537
s Signal V 551
t Time s 536
v Velocity m s−1 537
v Voltage difference V 544
x Dimensionless variable 549
x, y, z Axes m 538
x′, y′, z′ Axes (rotating) m 540
�z Slice thickness m 549
A Amplitude T s 550
A Constant V T J−1 550
B, B Magnetic field T 535
B1 Oscillating magnetic field T 540
C Constant in expression for

relaxation time
s−2 543

C(k), S(k) Fourier transforms J T−1 m−1 551
C Concentration m−3 558
Dxx , etc. Components of diffusion tensor m2 s−1 558
E Energy J 542
Gx,Gy,Gz Gradient of Bz in the x, y, or z

direction
T m−1 549

I Nuclear angular momentum kg m2 s−1 537
I Nuclear angular momentum

quantum number
537

K Constant 544
L, L Orbital angular momentum kg m2 s−1 536
M, M Magnetization J T−1 m−3 537

N Number of spins per unit volume m−3 537
R Rotation matrix 540
S Area m2 536
S Spin angular momentum kg m2 s−1 537
T Temperature K 537
T Period s 541
TE Time of echo s 547
TI Interrogation time s 546
TR Repetition time between pulse

sequences
s 548

T1 Longitudinal relaxation time s 538
T2 Transverse relaxation time s 538
T ∗

2 Experimental transverse relaxation
time

s 544

Tp Length of gradient pulse s 552
U Potential energy J 536
V Volume m3 545
α Arbitrary angle 542
γ Gyromagnetic ratio T−1 s−1 536
μ,μ Magnetic moment J T−1 535
μ0 Magnetic permeability of space T m A−1 535
ν Frequency Hz 537
θ Angle 536
σ Chemical shift factor 555
τ, τ Torque N m 535
τ Shift time for autocorrelation s 543
τC Correlation time s 543
ω Angular frequency s−1 537
ω1 Angular frequency for B1 rotation s−1 541
ω0 Larmor angular frequency s−1 539
φ Azimuthal angle 543
φ Phase 552
φ11 Autocorrelation function 543
Φ Magnetic flux weber

(T m2)
545

Ω Angular velocity vector s−1 540

Problems

Section 18.1

Problem 1. Show that for a particle of mass m located at
position r with respect to the origin, the torque about the ori-
gin is the rate of change of the angular momentum about the
origin.

Section 18.2

Problem 2. Show that the units of γ are T−1 s−1.
Problem 3. Find the ratio of the gyromagnetic ratio in
Table 18.1 to the value q/2m for the electron and proton.

Section 18.3

Problem 4. Evaluate the quantity γm�B/kBT and the
Larmor frequency for electron spins and proton spins in
magnetic fields of 0.5 and 4.0 T at body temperature (310 K).
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Problem 5. Verify that
∑

1 = 2I + 1,
∑

m = 0, and∑
m2 = I (I + 1)(2I + 1)/3, when the sums are taken from

−I to I , in the cases that I = 1
2 , 1, and 3

2 .
Problem 6. Obtain an expression for the magnetization anal-
ogous to Eq. 18.10 in the case I = 1

2 when one cannot make
the assumption γ�B/kBT 	 1.
Problem 7. Calculate the coefficient of B in Eq. 18.10 for a
collection of hydrogen nuclei at 310 K when the number of
hydrogen nuclei per unit volume is the same as in water.

Section 18.4

Problem 8. Verify that Eqs. 18.16 are a solution of
Eqs. 18.15.
Problem 9. Calculate the value of M2

x + M2
y + M2

z for
relaxation Eqs. 18.16 when T1 = T2.
Problem 10. Equations 18.16 correspond to a solution of
the Bloch equations in the presence of a static field B for one
initial condition: Mx = M0, My = 0, Mz = 0. Solve the
Bloch equations for a different initial condition: Mx = 0,

My = 0, and Mz = −M0.

Section 18.5

Problem 11. (a) Use Fig. 18.6 to derive Eq. 18.18.
(b) Show that

Mx′ = Mx cos θ + My sin θ,

My′ = −Mx sin θ + My cos θ.

(c) Combine these equations with the equations for Mx and
My to show that the application of both transformations
brings one back to the starting point.

Problem 12. Equation 18.17 shows how to transform the
components of a vector in the primed system (rotated an
angle θ clockwise from the unprimed system) into the un-
primed system. Use the arguments of Section 18.5 to derive
the following transformation matrices for counterclockwise
rotations.

(a) Angle α about the x axis:

⎛

⎝
1 0 0
0 cos α sin α

0 − sin α cos α

⎞

⎠

(b) Angle β about the y axis:

⎛

⎝
cos β 0 − sin β

0 1 0
sin β 0 cos β

⎞

⎠ ,

(c) Angle θ about the z axis:
⎛

⎝
cos θ sin θ 0

− sin θ cos θ 0
0 0 1

⎞

⎠ .

Why are the minus signs different from those in Eq. 18.17b?
Problem 13. Calculate M2 = M2

x + M2
y + M2

z for the solu-
tion of Eqs. 18.30 and compare it to the results of Problem 9.

Section 18.6

Problem 14. Use Eqs. 18.32 to find the magnetic field at one
proton due to the other proton in a water molecule when both
proton spins are parallel to each other and perpendicular to
the line between the protons. The two protons form an angle
of 104.5 ◦ and are each 96.5 × 10−12 m from the oxygen.
Problem 15. The magnetic field at a distance of 0.15 nm
from a proton is 4 × 10−4 T. What change in Larmor fre-
quency does this �B cause? How long will it take for a phase
difference of π radians to occur between a precessing spin
feeling this extra field and one that is not?
Problem 16. Consider a collection of spins that are aligned
along the x axis at t = 0. They precess in the xy plane with
different angular frequencies spread uniformly between ω −
�ω/2 and ω + �ω/2. If the total magnetic moment per unit
volume is M0 at t = 0, show that at time T = 4/�ω it is
M0 sin(2)/2 = 0.455M0.
Problem 17. What is the contribution to the transverse relax-
ation time for a magnetic field of 1.5 T with a uniformity of
1 ppm? The nonrecoverable relaxation time of brain is about
2.5 ms. What dominates the measured transverse relaxation
in brain?
Problem 18. Suppose the two dipoles of the water molecule
shown below point in the z direction while the line be-
tween them makes an angle θ with the x axis. De-
termine the angle θ for which the magnetic field of
one dipole is perpendicular to the dipole moment of
the other. For this angle the interaction energy is zero.
This θ is called the magic angle and is used when
studying anisotropic tissue such as cartilage (Xia 2000).

Problem 19. Using Eq. 18.34, determine the value of the
minimum correlation time as a function of the Larmor
frequency ω0.
Problem 20. Redraw the plot in Fig. 18.12, assuming pro-
tons and your static magnetic field is either 1.5 or 4 T. If the
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correlation time is approximately 3 ns, estimate T1 and T2.
Explain how T1 and T2 depend on the magnetic field.

Section 18.7

Problem 21. In solving this problem, you will develop
a simple model for estimating the radio-frequency energy
absorption in a patient undergoing an MRI procedure.
(a) Consider a uniform conductor with electrical conduc-

tivity σ . If it is subject to a changing magnetic field
B1(t) = B1 cos(ω0t), apply Eq. 8.21 to a circular path
of radius R at right angles to the field to show that the
electric field at radius R has amplitude E0 = Rω0B1/2.

(Because this is proportional to R, the model gives the
skin dose, along the path for which R is largest.)

(b) Use Ohm’s law in the form j = σE to show that the
time average power dissipated per unit volume of mate-
rial is p = σE2

0/2 = σR2ω2
0B

2
1/8 and that if the mass

density of the material is ρ, the specific absorption rate
(SAR) or dose rate is SAR = σR2ω2

0B
2
1/8ρ.

(c) If the radio-frequency signal is not continuous but is
pulsed, show that this must be modified by the duty cy-
cle factor �t/TR , where �t is the pulse duration and TR

is the repetition period.
(d) Combine these results with the fact that rotation through

an angle θ (usually π or π/2) in time �t requires
B1 = 2θ/γ�t and that ω0 = γB0, to obtain SAR =
(1/TR�t)(σ/2ρ)R2B2

0θ2.
(e) Use typical values for the human body—R = 0.17 m,

σ = 0.3 S m−1—to evaluate this expression for a π/2
pulse.

(f) For B0 = 0.5 T and SAR < 0.4 W kg−1 determine the
minimum value of �t for TR = 1 s. Also find B1.

(g) For π pulses, what is the dose in Gy? (This should not be
compared to an x-ray dose because this is nonionizing
radiation.)

Problem 22. Use Eq. 18.38 to calculate the initial amplitude
of a signal induced in a one-turn coil of radius 0.5 m for
protons in a 1-mm cube of water at 310 K in a magnetic field
of 1.0 T. (The answer will be a signal too small to be useful;
multiple-turn coils must be used.)
Problem 23. Consider increasing B0 from 4 T to 7 T.
Discuss what changes this will make in
(a) The frequency of the RF pulse,
(b) the signal recorded by the detection coil,
(c) the specific absorption rate (see Problem 21),
(d) the skin depth for magnetic field penetration (see

Chap. 8, Problem 29), and
(e) the values of T1 and T2.

Section 18.8

Problem 24. Plot the maximum amplitude of an inversion
recovery signal vs the interrogation time if the detector is
sensitive to the sign of the signal and if it is not.
Problem 25. (a) Obtain an analytic expression for the max-

imum value of the first and second echo amplitudes in a
Carr–Purcell pulse sequence in terms of T2 and TE .

(b) Repeat for a CPMG pulse sequence.
Problem 26. Consider the behavior of Mz in Figs. 18.19 and
18.21. The general equation for Mz is Mz = M0 + Ae−t/T1 .
After several π pulses, the value of Mz is flipping from −b

to b. Find the value of b.
Problem 27. Consider a spin–echo pulse sequence
(Fig. 18.18). Find
(a) Mz just before the π pulse at TE/2,
(b) Mz just after the π pulse at TE/2,
(c) Mz just before the π/2 pulse at TR , and
(d) the first and second echo amplitudes as a function of TE ,

TR , T1 and T2. (The second amplitude is the same as all
subsequent amplitudes.)

Problem 28. This problem uses matrices to analyze the
spin-echo pulse sequence. Use the rotation matrices given in
Problem 12. Start with M = (0, 0,M0). Rotate M about x′
by π/2, then about z′ by θ , then about x′ by π, and finally
about z′ by θ . What are the final components of M? Iden-
tify what pulse sequence or physical process corresponds to
each rotation. Why would θ be nonzero in the rotating refer-
ence frame? What would be the significance if the final M is
independent of θ?
Problem 29. (a) Make a three-dimensional sketch of

Fig. 18.17. Assume spin a is initially aligned with the
y′ axis and spin b is 30 ◦ clockwise from spin a. Then
make similar sketches for a Carr–Purcell sequence that
rotates the spins about the x′ axis at the following times:
just before the π pulse at TE/2, just after the π pulse at
TE/2, at TE, just before the π pulse at 3TE/2, just after
the π pulse at 3TE/2, and at 2TE . Assume that the π

pulse rotates the spins exactly 180 ◦ . Then make sketches
when the π pulses rotate the spins by 185 ◦.

(b) Repeat for a CPMG pulse sequence that rotates spin a

and spin b around the y′ axis. Again, consider two cases:
the π pulses rotate by 180 ◦ and 185 ◦. Your sketches
will show the advantage of the CPMG pulse sequence
when there is an error in the duration of the π pulse.

Problem 30. This problem uses the matrices introduced
in Problem 12 to examine the difference between the
Carr–Purcell and the Carr–Purcell–Meiboom–Gill pulse se-
quences.
(a) Start with M = (0, 0,M0). Rotate about x′ by π/2,

about z′ by θ , about x′ by π, about z′ by 2θ , about x′
by π, and about z′ by θ . What is the final result? This
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process corresponds to the first two echoes produced by
a Carr–Purcell pulse sequence.

(b) Repeat the analysis of part (a), but change the two π

rotations about x′ to two π + δ rotations about x′. As-
sume δ 	 π and use the approximations cos(π + δ) =
− cos δ ≈ −1 and sin(π + δ) = − sin δ ≈ −δ to sim-
plify your result. Keep only terms in order δ. What is
your final result? This process corresponds to the first
two echoes produced by a Carr–Purcell pulse sequence
in which the π pulses have slightly wrong amplitudes.

(c) Repeat the analysis of part (b) but change the rotations
about x′ to be rotations about y′. What are the dif-
ferences between the CP and CPMG pulse sequences?
Explain why the CPMG pulse sequence is superior to
the CP pulse sequence.

Section 18.9

Problem 31. Show that an alternative expression for the field
amplitude required for a π/2 pulse is B1 = B0π/ω0�t =
B0/2ν�t .
Problem 32. A certain MRI machine has a static magnetic
field of 1.0 T. Spins are excited while applying a field gra-
dient of 3 mT m−1. If the slice is to be 5 mm thick, what is
the Larmor frequency and the spread in frequencies that is
required?
Problem 33. Consider a pair of gradient coils of radius a

perpendicular to the z axis and located at z = ±√
3a/2.

The current flows in the opposite direction in each single-turn
coil.
(a) Use the results of Problem 8.10 to obtain an expression

for Bz along the z axis.
(b) For a gradient of 5 mT m−1 at the origin and a = 10

cm, find the current required in a single-turn coil.
Problem 34. Find a linear approximation for Eq. 18.53 for
very small values of TE and TR , and discuss why it is called
a T1-weighted image.
Problem 35. The slice selection gradient Gz must be applied
for a time τ which is at least as long as the duration of the B1

pulse. Suppose that τ = 6 × 2π/(γGz�z) (see Fig. 18.23).
How much has the phase at the top of the slice (z = �z)
changed with respect to the middle of the slice (z = 0)?
Problem 36. Relate the resolution in the y direction to Gy

and Tp.
Problem 37. Discuss the length of time required to obtain a
256 × 256 image in terms of TR and TE . The field of view
is 15 cm square. Consider both projection reconstruction and
spin warp images. Introduce any other parameters you need.
Problem 38. The limiting noise in a well-designed ma-
chine is due to thermal currents in the body. The noise
is proportional to B0 and the volume Vn sampled by the

radio-frequency pickup coil. The noise is also proportional
to T −1/2, where T is the time it takes to acquire the
image. Show that the signal-to-noise ratio is proportional
to B0T

1/2Vv/Vn, where Vv is the volume of the picture
element.
Problem 39. Explain in words why in Fig. 18.24 a negative
lobe for Gz to eliminate unwanted phase shifts is not needed
following the π pulse, although it is needed following the
initial π/2 pulse.
Problem 40. The readout gradient Gx shown in Fig. 18.26
not only resolves the echo into its frequency components, but
also introduces a phase shift. In more detailed analyses the
readout gradient consists of two parts: a prephasing lobe and
a readout lobe. Modify Fig. 18.26 to include a prephasing
lobe in Gx between the π/2 and π pulses, so that the net
phase shit at the peak of the echo caused by Gx is zero. Pay
attention to the amplitude, duration, and polarity of the pulse.
Problem 41. In this book, gradient pulses are drawn as rect-
angles when showing a pulse sequence. However, there is
often a limit, called the maximum slew rate, to how fast a gra-
dient can change. Consider a trapezoidal pulse (linear rise,
then constant, then linear fall). What is the shortest rise time
of the pulse if it has a peak gradient of 30 mT m−1 and a
maximum slew rate of 100 T m−1 s−1?
Problem 42. Suppose one is imaging using the projection
reconstruction algorithm shown in Fig. 18.28. After the echo
from the initial gradient, when one is ready to repeat the
sequence using a different gradient, there may be some resid-
ual transverse magnetization that could affect the subsequent
signal. Explain why a large Gx gradient, called a spoiler gra-
dient, applied after the echo in Fig. 18.28 would eliminate
any remaining transverse magnetization.

Section 18.10

Problem 43. The chemical shift difference between water
and fat is �σ = 3.5 ppm. This can cause a spatial shift of
the images from fat and water if the readout gradients are
large. Estimate this shift for a 1.5 T machine and a gradient
of 5 mT m−1.

Section 18.11

Problem 44. Use the model of Sect. 18.11 to plot the flow
correction as a function of velocity for TE = 10 ms, T1 =
900 ms, and T2 = 400 ms, when (a) TR = 50 ms, (b) TR =
200 ms.
Problem 45. Excite the spins using a sinc π/2 pulse and a
Gz1 gradient so that spins in slice z1 are in resonance. Then
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apply a π pulse, but with a different gradient Gz2 so the spins
are flipped in a different, nonoverlapping slice z2.
(a) If the spins are stationary, what signal do you observe?
(b) If the spins move (for instance are carried by flowing

blood) from z1 to z2 during the time between the two
RF pulses, what signal do you see?

(c) Design a pulse sequence for performing this experiment.
Problem 46. Suppose your median nerve (the primary nerve
in your arm) carries a current I along its length L.
(a) You are having a magnetic resonance image taken, and

the steady uniform magnetic field B is directed perpen-
dicular to the nerve. Derive an expression for F , the
magnitude of the magnetic force on the nerve. Draw a
picture showing the directions of I, B, and F.

(b) Assume this nerve is held in position by an elastic force
per unit length with magnitude equal to kr , where k is
the spring constant per unit length and r is the distance
the nerve is displaced from its equilibrium position.
Find an expression for the displacement of the nerve.

(c) Assume that a magnetic field gradient G is present, so
that when the nerve moves a distance r it leaves a region
with magnetic field strength B and enters a region of
magnetic field strength B+Gr . Derive an expression for
the change in resonance angular frequency �ω caused
by the displacement, in terms of G, B, I , k, and the gy-
romagnetic ratio of the proton, γ . (Hint: �ω = γ�B).
If the gradient and current last for time T , what is the
change in phase of the MRI signal?

(d) Calculate the distance that the axon moves if B0 = 4 T,
I = 0.1 mA, and k = 40, 000 N m−2. Calculate the
resulting phase shift (in degrees) if G = 36 mT m−1,
T = 10 ms, and γ = 2.68 × 108 rad s−1 T−1.

Section 18.13

Problem 47. This problem shows how to extend the Bloch
equations to include the effect of diffusion of the molecules
containing the nuclear spins in an inhomogeneous external
magnetic field. Since M is the magnetization per unit vol-
ume, it depends on the total number of particles per unit
volume with average spin components 〈μx〉,

〈
μy

〉
, and 〈μz〉.

In the rotating coordinate system there is no precession. In
the absence of relaxation effects 〈μ〉 does not change. In that
case changes in M depend on changes in the concentration
of particles with particular components of 〈μ〉, so the rate
of change of each component of 〈μ〉 is given by a diffusion
equation. For example, for Mx ,

∂Mx′

∂t
= D∇2Mx′ .

If the processes are linear this diffusion term can be added to
the other terms in the Bloch equations. Suppose that there is
a uniform gradient in Bz, Gz, and that the coordinate system
rotates with the Larmor frequency for z = 0. When z is not
zero, the rotation term does not quite cancel the (M × B)z
term.
(a) Show that the x and y Bloch equations become

∂Mx′

∂t
= +γGzzMy′ − Mx′

T2
+ D∇2Mx′ ,

∂My′

∂t
= −γGzzMx′ − My′

T2
+ D∇2My′ .

(b) Show that in the absence of diffusion

Mx′ = M(0)e−t/T2 cos(γGzzt),

My′ = −M(0)e−t/T2 sin(γGzzt).

(c) Suppose that M is uniform in all directions. At t = 0 all
spins are aligned. Spins that have been rotating faster
in the plane at z + �z will diffuse into plane z. Equal
numbers of slower spins will diffuse in from plane
z − �z. Show that this means that the phase of M will
not change but the amplitude will.

(d) It is reasonable to assume that the amplitude of the
diffusion-induced decay will not depend on z as long as
we are far from boundaries. Therefore try a solution of
the form

Mx′ = M(0)e−t/T2 cos(γGzzt) A(t),

My′ = M(0)e−t/T2 sin(γGzzt) A(t),

and show that A must obey the differential equation

1

A

dA

dt
= −Dγ 2G2

zt
2,

which has a solution A(t) = exp(−Dγ 2G2
zt

3/3).
(e) Show that if there is a rotation about y′ at time TE/2,

then at time TE , Mx is given by

Mx(TE) = −M0 exp(−TE/T2) exp(−Dγ 2G2
zT

3
E/12).

Hint: This can be done formally from the differential
equations. However it is much easier to think physically
about the meaning of each factor in the expressions shown
in (d) for Mx′ and My′ . This result means that a CPMG
sequence with short TE intervals can reduce the effect of
diffusion when there is an external gradient.
Problem 48. A commercial MRI machine is operated with
a magnetic gradient of 3 mT m−1 while a slice is being
selected. What is the effect of diffusion? Use the diffusion
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constant for self-diffusion in water and the results of Prob-
lem 47. Compare the correction factor to exp(−TE/T2) when
T2 = 75 ms.
Problem 49. When a coordinate system is rotated as in
Fig. 18.6, the diffusion tensor or diffusion matrix, which is
always symmetric, transforms as

(
Dx′x′ Dx′y′
Dx′y′ Dy′y′

)
=
(

cos θ sin θ

− sin θ cos θ

)

×
(

Dxx Dxy

Dxy Dyy

)(
cos θ − sin θ

sin θ cos θ

)
.

We have not proved this; note that the right-most matrix is
the same one that would be seen if Eq. 18.17 were written in
matrix form:

(
Mx

My

)
=
(

cos θ − sin θ

sin θ cos θ

)(
Mx′
My′

)
.

(a) Perform the matrix multiplication and find expressions
for Dx′x′ , Dx′y′ , and Dy′y′ in terms of Dxx , Dxy , Dyy ,
and θ .

(b) Find the angle θ such that Dx′y′ is zero (the diffusion
tensor is diagonal). This is equivalent to finding the
orientation of the fibers in the tissue.

(c) The trace of a matrix is the sum of its diagonal elements.
Show that the trace of the diffusion matrix in the rotated
coordinates, Dx′x′ + Dy′y′ , is equal to the trace of the
diffusion matrix in the original coordinates, Dxx +Dyy .
Thus, the trace of the diffusion tensor is independent of
fiber direction.
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Appendix A
Plane and Solid Angles

A.1 Plane Angles

The angle θ between two intersecting lines is shown in
Fig. A.1. It is measured by drawing a circle centered on the
vertex or point of intersection. The arc length s on that part
of the circle contained between the lines measures the angle.
In daily work, the angle is marked off in degrees.

In some cases, there are advantages to measuring the an-
gle in radians. This is particularly true when trigonometric
functions have to be differentiated or integrated. The angle
in radians is defined by

θ = s

r
. (A.1)

Since the circumference of a circle is 2πr , the angle corre-
sponding to a complete rotation of 360 ◦ is 2πr/r = 2π.
Other equivalences are

Degrees Radians
360 2π

180 π

57.2958 1
1 0.01745

(A.2)

Since the angle in radians is the ratio of two distances, it is di-
mensionless. Nevertheless, it is sometimes useful to specify
that something is measured in radians to avoid confusion.

Fig. A.1 A plane angle θ is measured by the arc length s on a circle of
radius r centered at the vertex of the lines defining the angle

1.0

0.8

0.6

0.4

0.2

0.0

y

806040200

θ (degrees)

y = tan θ
y = sin  θ 

y = θ  (radians)

Fig. A.2 Comparison of y = tan θ , y = θ (radians), and y = sin θ

One of the advantages of radian measure can be seen in
Fig. A.2. The functions sin θ , tan θ , and θ in radians are plot-
ted vs. angle for angles less than 80 ◦. For angles less than
15 ◦, y = θ is a good approximation to both y = tan θ (2.3 %
error at 15 ◦) and y = sin θ (1.2 % error at 15 ◦).

A.2 Solid Angles

A plane angle measures the diverging of two lines in two
dimensions. Solid angles measure the diverging of a cone of
lines in three dimensions. Figure A.3 shows a series of rays
diverging from a point and forming a cone. The solid angle
Ω is measured by constructing a sphere of radius r centered
at the vertex and taking the ratio of the surface area S on the
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Fig. A.3 A cone of rays in three dimensions

Fig. A.4 The solid angle of this cone is Ω = S/r2. S is the surface
area on a sphere of radius r centered at the vertex

Fig. A.5 For small angles, the arc length is very nearly equal to the
length of the tangent to the circle

sphere enclosed by the cone to r2:

Ω = S

r2
. (A.3)

This is shown in Fig. A.4 for a cone consisting of the planes
defined by adjacent pairs of the four rays shown. The unit of
solid angle is the steradian (sr). A complete sphere subtends
a solid angle of 4π steradians, since the surface area of a
sphere is 4πr2.

When the included angle in the cone is small, the differ-
ence between the surface area of a plane tangent to the sphere
and the sphere itself is small. (This is difficult to draw in three
dimensions. Imagine that Fig. A.5 represents a slice through
a cone; the difference in length between the circular arc and
the tangent to it is small.) This approximation is often useful.
A 3 × 5-in. card at a distance of 6 ft (72 in.) subtends a solid
angle which is approximately

3 × 5

722
= 2.9 × 10−3 sr.

It is not necessary to calculate the surface area on a sphere of
72-in. radius.

Problems

Problem 1. Convert 0.1 radians to degrees. Convert 7.5 ◦ to
radians.
Problem 2. Use the fact that sin θ ≈ θ ≈ tan θ to estimate
the sine and tangent of 3 ◦. Look up the values in a table and
see how accurate the approximation is.
Problem 3. What is the solid angle subtended by the pupil
of the eye (radius = 3 mm) at a source of light 30 m away?
Problem 4. Figure A.2 suggests that y = θ is a bet-
ter approximation to sin θ than to tan θ and that y = θ

overestimates sin θ and underestimates tan θ . Calculate (See
Appendix D) or look up the Taylor expansions of sin θ and
tan θ and use the first two nonzero terms in each expansion
to verify this behavior.
Problem 5. What is the solid angle subtended by the “cap”
of a sphere from the sphere center, where the “cap” is defined
using spherical coordinates (Appendix L) as the surface of
the sphere between θ = 0 and θ = 30 ◦. Hint: In spherical
coordinates an element of surface area on a sphere is dS =
r2 sin θdθdφ.



Appendix B
Vectors; Displacement, Velocity, and Acceleration

B.1 Vectors and Vector Addition

A displacement describes how to get from one point to an-
other. A displacement has a magnitude (how far point 2 is
from point 1 in Fig. B.1) and a direction (the direction one
has to go from point 1 to get to point 2). The displacement
of point 2 from point 1 is labeled A. Displacements can be
added: displacement B from point 2 puts an object at point 3.
The displacement from point 1 to point 3 is C and is the sum
of displacements A and B:

C = A + B. (B.1)

A displacement is a special example of a more general
quantity called a vector. One often finds a vector defined as
a quantity having a magnitude and a direction. However, the
complete definition of a vector also includes the requirement
that vectors add like displacements. The rule for adding two
vectors is to place the tail of the second vector at the head of
the first; the sum is the vector from the tail of the first to the
head of the second.

A displacement is a change of position so far in such a
direction. It is independent of the starting point. To know
where an object is, it is necessary to specify the starting point
as well as its displacement from that point.

Displacements can be added in any order. In Fig. B.2,
either of the vectors A represents the same displacement.

Fig. B.1 Displacement C is equivalent to displacement A followed by
displacement B: C = A + B

Fig. B.2 Vectors A and B can be added in either order

1

2

3

4

5 Sum

Fig. B.3 Addition of several vectors

Displacement B can first be made from point 1 to point 4,
followed by displacement A from 4 to 3. The sum is still C:

C = A + B = B + A. (B.2)

The sum of several vectors can be obtained by first adding
two of them, then adding the third to that sum, and so forth.
This is equivalent to placing the tail of each vector at the head
of the previous one, as shown in Fig. B.3. The sum then goes
from the tail of the first vector to the head of the last.

The negative of vector A is that vector which, added to A,
yields zero:

A + (−A) = 0. (B.3)

It has the same magnitude as A and points in the opposite
direction.
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Fig. B.4 Vector A has components Ax and Ay

Multiplying a vector A by a scalar (a number with no
associated direction) multiplies the magnitude of vector A
by that number and leaves its direction unchanged.

B.2 Components of Vectors

Consider a vector in a plane. If we set up two perpendicular
axes, we can regard vector A as being the sum of vectors
parallel to each of these axes. These vectors, Ax and Ay in
Fig. B.4, are called the components of A along each axis1. If
vector A makes an angle θ with the x axis and its magnitude
is A, then the magnitudes of the components are

Ax = A cos θ,

Ay = A sin θ.
(B.4)

The sum of the squares of the components is A2
x + A2

y =
A2 cos2 θ + A2 sin2 θ = A2(sin2 θ + cos2 θ). Since, by
Pythagoras’ theorem, this must be A2, we obtain the trigono-
metric identity

cos2 θ + sin2 θ = 1. (B.5)

In three dimensions, A = Ax + Ay + Az. The magnitudes
can again be related using Pythagoras’ theorem, as shown
in Fig. B.5. From triangle OPQ, A2

xy = A2
x + A2

y . From
triangle OQR,

A2 = A2
xy + A2

z = A2
x + A2

y + A2
z. (B.6)

In our notation, Ax means a vector pointing in the x direc-
tion, while Ax is the magnitude of that vector. It can become
difficult to keep the distinction straight. Therefore, it is cus-
tomary to write x̂, ŷ, and ẑ to mean vectors of unit length

1 Some texts define the component to be a scalar, the magnitude of the
component defined here.

Fig. B.5 Addition of components in three dimensions

pointing in the x, y, and z directions. (In some books, the unit
vectors are denoted by î, ĵ, and k̂ instead of x̂, ŷ, and ẑ.) With
this notation, instead of Ax , one would always write Ax x̂.

The addition of vectors is often made easier by using
components. The sum A + B = C can be written as

Ax x̂ + Ay ŷ + Azẑ + Bx x̂ + By ŷ + Bzẑ

= Cx x̂ + Cy ŷ + Czẑ.

Like components can be grouped to give

(Ax + Bx)x̂ + (Ay + By)ŷ + (Az + Bz)ẑ

= Cx x̂ + Cy ŷ + Czẑ.

Therefore, the magnitudes of the components can be added
separately:

Cx = Ax + Bx,

Cy = Ay + By,

Cz = Az + Bz.

(B.7)

B.3 Position, Velocity, and Acceleration

The position of an object at time t is defined by specifying
its displacement from an agreed-upon origin:

R(t) = x(t)x̂ + y(t)ŷ + z(t)ẑ.

The average velocity vav(t1, t2) between times t1 and t2 is
defined to be

vav(t1, t2) = R(t2) − R(t1)

t2 − t1
.

This can be written in terms of the components as

vav =
(
x(t2) − x(t1)

t2 − t1

)
x̂+
(
y(t2) − y(t1)

t2 − t1

)
ŷ+
(
z(t2) − z(t1)

t2 − t1

)
ẑ.

The instantaneous velocity is

v(t) = dR
dt

= dx

dt
x̂ + dy

dt
ŷ + dz

dt
ẑ
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= vx(t)x̂ + vy(t)ŷ + vz(t)ẑ. (B.8)

The x component of the velocity tells how rapidly the x

component of the position is changing.
The acceleration is the rate of change of the velocity with

time. The instantaneous acceleration is

a(t) = dv
dt

= dvx

dt
x̂ + dvy

dt
ŷ + dvz

dt
ẑ.

Problems

Problem 1. At t = 0, the position of an object is given by
R = 10x̂ + 5ŷ, where R is in meters. At t = 3 s, the position
is R = 16x̂ − 10ŷ. What was the average velocity between

t = 0 and 3 s?
Problem 2. The position of an object as a function of time
is R(t) = (20 + 4t)x̂ + (10 + 5t − 49t2)ŷ. Determine the
instantaneous velocity and acceleration as functions of time.
Problem 3. The electric field E is a vector (see Chap. 6).
E1 has a magnitude of 30 V m−1 and is directed along the
y axis. E2 has a magnitude of 15 V m−1 and is directed at
an angle of +30 ◦ from the x axis. Calculate E = E1 + E2.
Express your answer in two ways: give the magnitude and
direction of E, and give Ex and Ey .



Appendix C
Properties of Exponents and Logarithms

In the expression am, a is called the base and m is called the
exponent. Since a2 = a × a, a3 = a × a × a, and

am = (a × a × a × · · · × a)
m times

,

it is easy to show that

aman = (a × a × a × · · · × a)
m times

(a × a × a × · · · × a)
n times

,

aman = am+n. (C.1)

If m > n, the same technique can be used to show that

am

an
= am−n. (C.2)

If m = n, this gives

1 = am

am
= am−m = a0,

a0 = 1. (C.3)

The rules also work for m < n and for negative exponents.
For example,

(a−n)(an) = 1

so

a−n = 1

an
. (C.4)

Finally,
(
am
)n = (am × am × am × · · · × am)

n times
,

(am)n = amn. (C.5)

If y = ax , then by definition, x is the logarithm of y to the
base a: x = loga(y). If the base is 10, since 100 = 102, 2 =

log10(100). Similarly, 3 = log10(1000), 4 = log10(10, 000),
and so forth.

The most useful property of logarithms can be derived by
letting

y = am,

z = an,

w = am+n,

so that

m = loga y,

n = loga z,

m + n = loga w.

Then, since am+n = aman,

w = yz,

loga(yz) = loga w = loga y + loga z. (C.6)

This result can be used to show that

log(ym) = log(y × y × y × · · · × y)

= log(y) + log(y) + log(y) + · · · + log(y),

log(ym) = m log y.

(C.7)

All logarithms in this book, unless labeled with a specific
base, are to base e (see Chap. 2). These are the so-called
natural logarithms. We will denote the natural logarithm by
ln, using log10 when we want logarithms to the base 10.

Problems

Problem 1. What is log2(8)?
Problem 2. If log10(2) = 0.3, what is log10(200)? log10(2×
105)?
Problem 3. What is log10(

√
10)?
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Appendix D
Taylor’s Series

Consider the function y(x) shown in Fig. D.1. The value of
the function at x1, y1 = y(x1), is known. We wish to estimate
y(x1 + �x).

The simplest estimate, labeled approximation 0 in
Fig. D.1, is to assume that y does not change: y(x1 +
�x) ≈ y(x1). A better estimate can be obtained if we as-
sume that y changes everywhere at the same rate it does at
x1. Approximation 1 is

y(x1 + �x) ≈ y(x1) + dy

dx

∣
∣∣∣
x1

�x.

The derivative is evaluated at point x1.
An even better estimate is shown in Fig. D.2. Instead of

fitting the curve by the straight line that has the proper first
derivative at x1, we fit it by a parabola that matches both the
first and second derivatives. The approximation is

y(x1 + �x) ≈ y(x1) + dy

dx

∣
∣∣∣
x1

�x + 1

2

d2y

dx2

∣
∣∣∣
x1

(�x)2.

y

xx1

y1

y(x)

Approximation 0

Approximation 1

Actual

x1 + Δx

(dy/dx)|x1
Δx

Fig. D.1 The zeroth-order and first-order approximations to y(x)

y

x

y(x)

Approximation 2

x1 x1 + Δx

(dy/dx)|x1
Δx 

   + (1/2)(d2y/dx2)|x1
(Δx)2 

Fig. D.2 The second-order approximation fits y(x) with a parabola

That this is the best approximation can be derived in the
following way. Suppose the desired approximation is more
general and uses terms up to (�x)n = (x − x1)

n:

yapprox = A0+A1(x−x1)+A2(x−x1)
2+· · ·+An(x−x1)

n.

(D.1)
The constants A0, A1, . . . , An are determined by making the
value of yapprox and its first n derivatives agree with the value
of y and its first n derivatives at x = x1. When x = x1, all
terms with x − x1 in yapprox vanish, so that

yapprox(x1) = A0.

The first derivative of yapprox is

d(yapprox)

dx
= A1 + 2A2(x − x1)

+ 3A3(x − x1)
2 + · · · + nAn(x − x1)

n−1.
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Table D.1 y = e2x and its derivatives

Function or derivative Value at x1 =
0

y = e2x 1

dy

dx
= 2e2x 2

d2y

dx2
= 4e2x 4

d3y

dx3
= 8e2x 8

Table D.2 Values of y and successive approximations

x y = e2x 1 + 2x 1+2x +2x2 1 + 2x

+2x2 + 4
3 x3

−2 0.0183 −3.0 5.0 −5.67
−1.5 0.0498 −2.0 2.5 −2.0
−1 0.1353 −1.0 1.0 −0.33
−0.4 0.4493 0.2000 0.5200 0.4347
−0.2 0.6703 0.6000 0.6800 0.6693
−0.1 0.8187 0.8000 0.8200 0.8187
0 1.0000 1.0000 1.0000 1.0000
0.1 1.2214 1.2000 1.2200 1.2213
0.2 1.4918 1.4000 1.4800 1.4907
0.4 2.2255 1.8000 2.1200 2.2053
1.0 7.389 3.0000 5.0000 6.33
2.0 54.60 5.0 13.0 23.67

The second derivative is

2A2 + 3 × 2A3(x − x1) + · · · + n(n − 1)An(x − x1)
n−2,

and the nth derivative is

n(n − 1)(n − 2) · · · 2An = n!An.

Evaluating these at x = x1 gives

d(yapprox)

dx

∣∣
∣∣
x1

= A1,

d2(yapprox)

dx2

∣∣∣∣∣
x1

= 2 × 1 × A2,

d3(yapprox)

dx3

∣∣∣
∣∣
x1

= 3 × 2 × 1 × A3,

dn(yapprox)

dxn

∣∣∣∣
x1

= n!An.

Combining these expressions for An with Eq. D.1, we get

y(x1 + �x) ≈ y(x1) +
N∑

n=1

1

n!
dny

dxn

∣
∣∣∣
x1

(�x)n. (D.2)

Tables D.1 and D.2 and Figs. D.3 and D.4 show how the
Taylor’s series approximation gets better over a larger and

20

15
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5

0

-5

y

543210-1-2
x

y = 1

y = 1 + 2x

y = 1 + 2x + 2x2

y = 1 + 2x + 2x2 + 4x3/3 

y = e2x

Fig. D.3 The function y = e2x with Taylor’s series expansions about
x = 0 of degree 0, 1, 2, and 3
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0.5
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1.00.50.0-0.5
x

y = 1

y = 1 + 2x

y = 1 + 2x + 2x2

y = 1 + 2x + 2x2 + 4x3/3

y = e2x

Fig. D.4 An enlargement of Fig. D.3 near x = 0

larger region about x1 as more terms are added. The function
being approximated is y = e2x . The derivatives are given in
Table D.1. The expansion is made about x1 = 0.

Finally, the Taylor’s series expansion for y = ex about
x = 0 is often useful. Since all derivatives of ex are ex , the
value of y and each derivative at x = 0 is 1. The series is

ex = 1 + x + 1

2!x
2 + 1

3!x
3 + · · · =

∞∑

m=0

xm

m! . (D.3)

(Note that 0! = 1 by definition.)
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Problems

Problem 1. Make a Taylor’s series expansion of y = a +
bx + cx2 about x = 0. Show that the expansion exactly
reproduces the function.
Problem 2. Repeat the previous problem, making the expan-
sion about x = 1.
Problem 3. (a) Make a Taylor’s series expansion of the co-
sine function about x = 0. Remember that d(sin x)/dx =
cos x and d(cos x)/dx = − sin x.
(b) Make a Taylor’s series expansion of the sine function.
Problem 4. The “sinc” function is defined as sin x/x. Make
a Taylor’s series expansion of the sinc function about x = 0.

Hint: first make a Taylor series expansion of sin x and then
divide by x.
Problem 5. Derive a Taylor’s series of y = 1/(1 − x)

about x = 0. Plot y(x) vs x including approximation 0,
approximation 1, and approximation 2 as in Figs. D.1 and
D.2.
Problem 6. Derive a Taylor’s series of y(x) = ln(1 + x)

about x = 0. Plot y(x) vs x, including approximation 0,
approximation 1, and approximation 2, as in Figs. D.1 and
D.2.



Appendix E
Some Integrals of Sines and Cosines

The average of a function of x with period T is defined to be

〈f 〉 = 1

T

∫ x′+T

x′
f (x) dx. (E.1)

The sine function is plotted in Fig. E.1a. The integral over
a period is zero, and its average value is zero. The area above
the axis is equal to the area below the axis. Figure E.1b shows
a plot of sin2 x. Since sin x varies between −1 and +1, sin2 x

varies between 0 (when sin x = 0) and +1 (when sin x =
±1). Its average value, from inspection of Fig. E.1b is 1

2 . If
you do not want to trust the drawing to convince yourself of
this, recall the identity sin2 θ + cos2 θ = 1. Since the sine
function and the cosine function look the same, but are just
shifted along the axis, their squares must also look similar.
Therefore, sin2 θ and cos2 θ must have the same average. But
if their sum is always 1, the sum of their averages must be 1.
If the two averages are the same, then each must be 1

2 .
These same results could have been obtained analytically

by using the trigonometric identity

sin2 x = 1

2
− 1

2
cos 2x. (E.2)

The integrals of sin x and cos x are
∫

sin ax dx = −1

a
cos ax,

∫
cos ax dx = 1

a
sin ax.

(E.3)

-1

0

1

Av = 1/2

-1

0

1

Av = 0

Fig. E.1 a Plot of y = sin x. b Plot of y = sin2 x

-1

0

1

0 2π

(a) (b)

Fig. E.2 Plot of one period of a y = sin x sin 2x; b y = sin x cos x

These could be used to show that the average value of sin x

or cos x is zero. Then Eq. E.2 could be used to show that the
average of sin2 x is 1

2 .
The integral of sin2 x over a period is its average value

times the length of the period:

∫ T

0
sin2 x dx =

∫ T

0
cos2 x dx = T

2
. (E.4)

We will also encounter integrals like

∫ T

0
sin mx sin nx dx, m �= n,

∫ T

0
cos mx cos nx dx, m �= n, (E.5)

∫ T

0
cos mx sin nx dx, m = n, m �= n.

All these integrals are zero. This can be shown using in-
tegral tables. Or, you can see why the integrals vanish by
considering the specific examples plotted in Fig. E.2. Each
integrand has equal positive and negative contributions to the
total integral.
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Problems

Problem 1. Plot the following functions over the range 0
to 2π as in Fig. E.2, and show by inspection that the neg-
ative and positive areas cancel, giving an integral of zero:
cos θ sin 2θ , sin 2θ sin 3θ , cos θ cos 2θ , and cos 2θ sin 2θ .

Problem 2. Use the trigonometric relationship

sin A sin B = 1

2
[cos(A − B) − cos(A + B)],

cos A cos B = 1

2
[cos(A − B) + cos(A + B)],

sin A cos B = 1

2
[sin(A − B) + sin(A + B)],

to verify that all of the integrals in Eq. E.5 are zero.



Appendix F
Linear Differential Equations with Constant
Coefficients

The equation

dy

dt
+ by = a (F.1)

is called a linear differential equation because each term in-
volves only y or its derivatives (not y(dy/dt) or (dy/dt)2,
etc.). A more general equation of this kind has the form

dNy

dtN
+ bN−1

dN−1y

dtN−1
+ · · · + b1

dy

dt
+ b0y = f (t). (F.2)

The highest derivative is the N th derivative, so the equation
is of order N . It has been written in standard form by di-
viding through by any bN that was there originally, so that
the coefficient of the highest term is one. If all the bs are
constants, this is a linear differential equation with constant
coefficients. The right-hand side may be a function of the
independent variable t , but not of y. If f (t) = 0, it is a homo-
geneous equation; if f (t) is not zero, it is an inhomogeneous
equation.

Consider first the homogeneous equation

dNy

dtN
+ bN−1

dN−1y

dtN−1
+ · · · + b1

dy

dt
+ b0y = 0. (F.3)

The exponential est (where s is a constant) has the property
that d(est )/dt = sest , d2(est )/dt2 = s2est , dn(est )/dtn =
snest . The function y = Aest satisfies Eq. F.3 for any value
of A and certain values of s. The equation becomes

A
(
sNest + bN−1s

N−1est + · · · + b1se
st + b0e

st
)

= 0,

A
(
sN + bN−1s

N−1 + · · · + b1s + b0

)
est = 0.

This equation is satisfied if the polynomial in parentheses is
equal to zero. The equation

sN + bN−1s
N−1 + · · · + b1s + b0 = 0 (F.4)

is called the characteristic equation of this differential equa-
tion. It can be written in a much more compact form using
summation notation:

N∑

n=0

bns
n = 0, (F.5)

with bN = 1.
For Eq. F.1, the characteristic equation is s + b = 0 or

s = −b, and a solution to the homogeneous equation is y =
Ae−bt .

If the characteristic equation is a polynomial, it can have
up to N roots. For each distinct root sn, y = Ane

snt is a so-
lution to the differential equation. (The question of solutions
when there are not N distinct roots will be taken up below.)
This is still not the solution to the inhomogeneous equation.
However, one can prove1 that the most general solution to
the inhomogeneous equation is the sum of the homogeneous
solution,

y =
N∑

n=1

Ane
snt ,

and any solution to the inhomogeneous equation. The val-
ues of the arbitrary constants An are picked to satisfy some
other conditions that are imposed on the problem. If we can
guess the solution to the inhomogeneous equation, that is
fine. However we get it, we need only one such solution
to the inhomogeneous equation. We will not prove this as-
sertion, but we will apply it to the first- and second-order
equations and see how it works.

1 See any calculus text.
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F.1 First-Order Equation

The homogeneous equation corresponding to Eq. F.1 has
solution y = Ae−bt . There is one solution to the inhomoge-
neous equation that is particularly easy to write down: when
y is constant, with the value y = a/b, the time derivative
vanishes and the inhomogeneous equation is satisfied. The
most general solution is therefore of the form

y = Ae−bt + a

b
.

If the initial condition is y(0) = 0, then A can be determined
from 0 = Ae−b0 + a/b. Since e0 = 1, this gives A = −a/b.
Therefore,

y = a

b

(
1 − e−bt

)
. (F.6)

A physical example of this is given in Sect. 2.8.

F.2 Second-Order Equation

The second-order equation

d2y

dt2
+ b1

dy

dt
+ b0y = 0 (F.7)

has a characteristic equation s2 + b1s + b0 = 0 with roots

s =
−b1 ±

√
b2

1 − 4b0

2
. (F.8)

This equation may have zero, one, or two solutions.
If it has two solutions s1 and s2, then the general solution

of the homogeneous equation is y = A1e
s1t + A2e

s2t .
If b2

1 −4b0 is negative, there is no solution to the equation
for a real value of s. However, a solution of the form y =
Ae−αt sin(ωt +φ) will satisfy the equation. This can be seen
by direct substitution. Differentiating this twice shows that

dy

dt
= −αAe−αt sin(ωt + φ) + ωAe−αt cos(ωt + φ),

d2y

dt2
= α2Ae−αt sin(ωt + φ)

− 2αωAe−αt cos(ωt + φ) − ω2Ae−αt sin(ωt + φ).

If these derivatives are substituted in Eq. F.7, one gets the
following results. The terms are written in two columns. One
column contains the coefficients of terms with sin(ωt + φ),
and the other column contains the coefficients of terms with

cos(ωt + φ). The rows are labeled on the left by which term
of the differential equation they came from.

Term Coefficients
sin(ωt + φ) cos(ωt + φ)

d2y/dt2 α2 − ω2 −2αω

b1(dy/dt) −b1α b1ω

b0y b0 0

The only way that the equation can be satisfied for all times is
if the coefficient of the sin(ωt + φ) term and the coefficient
of the cos(ωt + φ) term separately are equal to zero. This
means that we have two equations that must be satisfied (call
b0 = ω2

0):

2αω = b1ω,

α2 − ω2 − b1α + ω2
0 = 0.

From the first equation 2α = b1, while from this and the
second, α2 − ω2 − 2α2 + ω2

0 = 0, or ω2 = ω2
0 − α2. Thus,

the solution to the equation

d2y

dt2
+ 2α

dy

dt
+ ω2

0y = 0 (F.9)

is

y = Ae−αt sin(ωt + φ) (F.10a)

where

ω2 = ω2
0 − α2, α < ω0. (F.10b)

Solution F.10 is a decaying exponential multiplied by a
sinusoidally varying term. The initial amplitude A and the
phase angle φ are arbitrary and are determined by other con-
ditions in the problem. The constant α is called the damping.
Parameter ω0 is the undamped frequency, the frequency of
oscillation when α = 0. ω is the damped frequency.

When the damping becomes so large that α = ω0, then the
solution given above does not work. In that case, the solution
is given by

y = (A + Bt)e−αt , α = ω0. (F.11)

This case is called critical damping and represents the case
in which y returns to zero most rapidly and without multiple
oscillations. The solution can be verified by substitution.

If α > ω0, then the solution is the sum of the two
exponentials that satisfy Eq. F.8:

y = Ae−at + Be−bt , (F.12a)

where

a = α +
√

α2 − ω2
0, (F.12b)

b = α −
√

α2 − ω2
0. (F.12c)
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Fig. F.1 Different starting points on the sine wave give different
combinations of the initial position and the initial velocity

When α = 0, the equation is

d2y

dt2
+ ω2

0y = 0. (F.13)

The solution may be written either as

y = C sin(ω0t + φ) (F.14a)

or as

y = A cos(ω0t) + B sin(ω0t). (F.14b)

The simplest physical example of this equation is a mass
on a spring. There will be an equilibrium position of the mass
(y = 0) at which there is no net force on the mass. If the mass
is displaced toward either positive or negative y, a force back
toward the origin results. The force is proportional to the dis-
placement and is given by F = −ky. The proportionality
constant k is called the spring constant. Newton’s second
law, F = ma, is m(d2y/dt2) = −ky or, defining ω2

0 = k/m,

d2y

dt2
+ ω2

0y = 0.

This (as well as the equation with α �= 0) is a second-order
differential equation. Integrating it twice introduces two
constants of integration: C and φ, or A and B. They are
usually found from two initial conditions. For the mass
on the spring, they are often the initial velocity and initial
position of the mass.

The equivalence of the two solutions can be demonstrated
by using Eqs. F.14a and a trigonometric identity to write

Table F.1 Solutions of the harmonic oscillator equation

d2y

dt2
+ 2α

dy

dt
+ ω2

0y = 0

Case Criterion Solution

Underdamped α < ω0 y = Ae−αt sin(ωt + φ)

ω2 = ω2
0 − α2

Critically
damped

α = ω0 y = (A + Bt)e−αt

Overdamped α > ω0 y = Ae−at + Be−bt

a = α + (α2 − ω2
0)

1/2

b = α − (α2 − ω2
0)

1/2

C sin(ω0t + φ) = C[sin ω0t cos φ + cos ω0t sin φ]. Compar-
ison with Eq. F.14b shows that B = C cos φ, A = C sin φ.
Squaring and adding these gives C2 = A2 + B2, while
dividing one by the other shows that tan φ = A/B.

Changing the initial phase angle changes the relative val-
ues of the initial position and velocity. This can be seen from
the three plots of Fig. F.1, which show phase angles 0, π/4,
and π/2. When φ = 0, the initial position is zero, while the
initial velocity has its maximum value. When φ = π/4, the
initial position has a positive value, and so does the initial
velocity. When φ = π/2, the initial position has its max-
imum value and the initial velocity is zero. The values of
A and B are determined from the initial position and veloc-
ity. At t = 0, Eq. F.14b and its derivative give y(0) = A,
dy/dt (0) = ω0B.

The term in the differential equation equal to 2α(dy/dt)

corresponds to a drag force acting on the mass and damping
the motion. Increasing the damping coefficient α increases
the rate at which the oscillatory behavior decays. Figure F.2
shows plots of y and dy/dt for different values of α.

The second-order equation we have just studied is called
the harmonic oscillator equation. Its solution is summarized
in Table F.1.

t

Overdamped

t

Critically damped

t

Underdamped

Fig. F.2 Plot of y(t) (solid line) and dy/dt (dashed line) for different values of α
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Problems

Problem 1. From Eq. F.14 with ω0 = 10, find A, B, C, and
φ for the following cases:
(a) y(0) = 5, (dy/dt)(0) = 0.
(b) y(0) = 5, (dy/dt)(0) = 5.

(c) y(0) = 0, (dy/dt)(0) = 50.

(d) What values of A, B, and C would be needed to have
the same φ as in case (b) and the same amplitude as in
case (a)?

Problem 2. Verify Eq. F.11 in the critically damped case.
Problem 3. Find the general solution of the equation

d2y

dt2
+ 2α

dy

dt
+ ω2

0y =
{

0, t ≤ 0
ω2

0y0, t ≥ 0

subject to the initial conditions y(0) = 0, (dy/dt)(0) = 0

(a) for critical damping, α = ω0,
(b) for no damping, and
(c) for overdamping, α = 2ω0.
Problem 4. Show using numerical examples or physical ar-
guments that the overdamped and critically damped solutions
can cross the y = 0 axis at most once. Draw a plot of one
such case.
Problem 5. Start with Eq. F.9. Add the function f (t) =
sin ω1t to the right-hand side so you have an inhomogeneous
equation. Search for a solution to the inhomogeneous equa-
tion (sometimes called a particular solution) by guessing that
y(t) = A sin ω1t +B cos ω1t . Put this back in the differential
equation and find values of A and B that satisfy the equation.
For what values of ω1 will A and B be largest? This is an ex-
ample of resonance: when the system is driven at its natural
frequency, the response is largest.



Appendix G
TheMean and Standard Deviation

In many measurements in physics or biology there may be
several possible outcomes to the measurement. Different val-
ues are obtained when the measurement is repeated. For
example, the measurement might be the number of red cells
in a certain small volume of blood, whether a person is right
handed or left handed, the number of radioactive disintegra-
tions of a certain sample during a 5-min interval, or the scores
on a test.

Table G.1 gives the scores on an examination admin-
istered to 30 people. These results are also plotted as a
histogram in Fig. G.1.

Table G.1 Quiz scores

Student No. Score Student No. Score
1 80 16 71
2 68 17 83
3 90 18 88
4 72 19 75
5 65 20 69
6 81 21 50
7 85 22 81
8 93 23 94
9 76 24 73
10 86 25 79
11 80 26 82
12 88 27 78
13 81 28 84
14 72 29 74
15 67 30 70
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Fig. G.1 Histogram of the quiz scores in Table G.1

The table and the histogram give all the information that
there is to know about the experiment unless the result de-
pends on some variable that was not recorded, such as the age
of the student or where the student was sitting during the test.

In many cases the frequency distribution gives more in-
formation than we need. It is convenient to invent some
quantities that will answer the questions: Around what val-
ues do the results cluster? How wide is the distribution of
results? Many different quantities have been invented for an-
swering these questions. Some are easier to calculate or have
more useful properties than others.

The mean or average shows where the distribution is cen-
tered. It is familiar to everyone: add up all the scores and
divide by the number of students. For the data given above,
the mean is x = 77.8.

It is often convenient to group the data by the value ob-
tained, along with the frequency of that value. The data of
Table G.1 are grouped this way in Table G.2. The mean is
calculated as

x = 1

N

∑

i

fixi =
∑

i fixi∑
i fi

,

where the sum is over the different values of the test scores
that occur. For the example in Table G.2, the sums are∑

i fi = 30,
∑

i fixi = 2335, so x = 2335/30 = 77.8.

If a large number of trials are made, fi/N can be called the
probability pi of getting result xi . Then

x =
∑

i

xipi . (G.1)

Note that
∑

pi = 1.
The average of some function of x is

g(x) =
∑

i

g(xi)pi . (G.2)

For example,

x2 =
∑

i

(xi)
2pi.
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Table G.2 Quiz scores grouped by score

Score
number i

Score xi Frequency of
score, fi fixi

1 50 1 50
2 65 1 65
3 67 1 67
4 68 1 68
5 69 1 69
6 70 1 70
7 71 1 71
8 72 2 144
9 73 1 73
10 74 1 74
11 75 1 75
12 76 1 76
13 78 1 78
14 79 1 79
15 80 2 160
16 81 3 243
17 82 1 82
18 83 1 83
19 84 1 84
20 85 1 85
21 86 1 86
22 88 2 176
23 90 1 90
24 93 1 93
25 94 1 94

The width of the distribution is often characterized by the
dispersion or variance:

(�x)2 = (x − x)2 =
∑

i

pi(xi − x)2. (G.3)

This is also sometimes called the mean square variation: the
mean of the square of the variation of x from the mean. A
measure of the width is the square root of this, which is called
the standard deviation σ . The need for taking the square root
is easy to see since x may have units associated with it. If x

is in meters, then the variance has the units of square meters.
The width of the distribution in x must be in meters.

A very useful result is

(x − x)2 = x2 − x2.

To prove this, note that (xi − x)2 = x2
i − 2xix + x2. The

variance is then

(�x)2 =
∑

i

pix
2
i − 2

∑

i

xi x pi +
∑

i

pix
2.

The first sum is the definition of x2. The second sum has a
number x in every term. It can be factored in front of the sum,
to make the second term −2x

∑
xipi , which is just −2(x)2.

The last term is (x)2∑pi = (x)2. Combining all three sums

gives Eq. G.4. In summary,

σ =
√

(�x)2,

σ 2 = (�x)2 = (x − x)2 = x2 − x2.

(G.4)

This equation is true as long as the pis are accurately known.
If the pis have only been estimated from N experimental
observations, the best estimate of σ 2 is N/(N − 1) times the
value calculated from Eq. G.4.

For the data of Fig. G.1, σ = 9.4. This width is shown
along with the mean at the top of the figure.

Problems

Problem 1. Calculate the variance and standard deviation
for the data in Table G.2.
Problem 2. Use the data in Table G.1 to calculate the mean
of the squares and then verify that σ 2 = x2 − x2.
Problem 3. Another way to characterize the distribution of
values is the mode: the most common value recorded, or the
one with the highest probability. Find the mode of the data in
Table G.1.
Problem 4. Still another way to describe a distribution is
the median: line up all the values in order from the smallest
to largest, and find the middle value. (If you have an even
number of values, average the middle two.) Find the median
of the data in Table G.1.
Problem 5. Find the mean and standard deviation of the fol-
lowing data: 14, 8, 12, 13, 7, 7, 11 and 9. You do not have
enough data to know the probabilities accurately, so use the
factor N/(N − 1) to calculate the variance.
Problem 6. Imagine that the data in Table G.1 represent
30 measurements of some quantity. The measurements con-
tain errors, which explain why the values are not all the
same. One property of the mean and standard deviation is
that approximately two-third of the measurements should
fall within the range x ± σ . (This is true for a Gaussian
distribution of data and is approximately true for many oth-
ers.) Check whether this is approximately true for the data in
Table G.1.
Problem 7. Suppose that you make a set of measurements
that have mean x and standard deviation σ . You now repeat
this set of measurements N times, so that you have N mean
values. These mean values will have a distribution that is
narrower than the distribution of the values in a single set
of measurements. The standard deviation of the mean is de-
noted by σmean = σ/

√
N . Calculate the standard deviation

of the mean for the data in Table G.1.



Appendix H
The Binomial Probability Distribution

Consider an experiment with two mutually exclusive out-
comes, which is repeated N times, with each repetition being
independent of every other. One of the outcomes is labeled
“success”; the other is called “failure.” The experiment could
be throwing a die with success being a three, flipping a coin
with success being a head, or placing a particle in a box with
success being that the particle is located in a subvolume v.

In a single try, call the probability of success p and the
probability of failure q. Since one outcome must occur and
both cannot occur at the same time,

p + q = 1. (H.1)

Suppose that the experiment is repeated N times. The prob-
ability of n successes out of N tries is given by the binomial
probability distribution, which is stated here without proof.1

We can call the probability P(n;N), since it is a function
of n and depends on the parameter N . Strictly speaking, it
depends on two parameters, N and p: P(n;N,p). It is2

P(n;N) = P(n;N,p) =
(

N !
n!(N − n)!

)
pn(1 − p)N−n.

(H.2)
The factor N !/[n!(N −n)!] counts the number of different

ways that one can get n successful outcomes; the probabil-
ity of each of these ways is pn(1 − p)N−n. In the example
of three particles in Sect. 3.1, there are three ways to have
one particle in the left-hand side. The particle can be either
particle a or particle b or particle c. The factor gives directly

(
N !

n!(N − n)!
)

= 3!
1!2! = 3 × 2 × 1

(1)(2 × 1)
= 6

2
= 3.

1 A detailed proof can be found in many places. See, for example, F.
Reif (1964). Statistical Physics. Berkeley Physics Course, Vol. 5. New
York, McGraw-Hill, p. 67.
2 N ! is N factorial and is N(N −1)(N −2) · · · 1. By definition, 0! = 1.

The remaining factor, pn(1 − p)N−n, is the probability of
taking n tries in a row and having success and taking N − n

tries in a row and having failure.
The binomial distribution applies if each “try” is indepen-

dent of every other try. Such processes are called Bernoulli
processes (and the binomial distribution is often called the
Bernoulli distribution). In contrast, if the probability of an
outcome depends on the results of the previous try, the ran-
dom process is called a Markov process. Although such
processes are important, they are more difficult to deal with
and are not discussed here.

Some examples of the use of the binomial distribution are
given in Chap. 3. As another example, consider the prob-
lem of performing several laboratory tests on a patient. In
the 1970s it became common to use automated machines
for blood-chemistry evaluations of patients; such machines
automatically performed (and reported) 6, 12, 20, or more
tests on one small sample of a patient’s blood serum, for less
cost than doing just one or two of the tests. But this meant
that the physician got a large number of results—many more
than would have been asked for if the tests were done one at
a time. When such test batteries were first done, physicians
were surprised to find that patients had many more abnormal
tests than they expected. This was in part because some tests
were not known to be abnormal in certain diseases, because
no one had ever looked at them in that disease. But there still
was a problem that some tests were abnormal in patients who
appeared to be perfectly healthy.

We can understand why by considering the following ide-
alized situation. Suppose that we do N independent tests,
and suppose that in healthy people, the probability that each
test is abnormal is p. (In our vocabulary, having an abnor-
mal test is “success”!). The probability of not having the test
abnormal is q = 1 − p. In a perfect test, p would be 0 for
healthy people and would be 1 in sick people; however, very
few tests are that discriminating. The definition of normal
vs abnormal involves a compromise between false positives
(abnormal test results in healthy people) and false negatives
(normal test results in sick people). Good reviews of this
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Fig. H.1 Measurement of the probability that a clinically normal pa-
tient having a battery of 12 tests done has n abnormal tests (solid line)
and a calculation based on the binomial distribution (dashed line). The
calculation assumes that p = 0.05 and that all 12 tests are independent.
Several of the tests in this battery are not independent, but the general
features are reproduced

problem have been written by Murphy and Abbey3 and by
Feinstein.4 In many cases, p is about 0.05. Now suppose that
p is the same for all the tests and that the tests are indepen-
dent. Neither of these assumptions is very good, but they will
show what the basic problem is. Then, the probability for all
of the N tests to be normal in a healthy patient is given by
the binomial probability distribution:

P(0;N,p) = N !
0!N !p

0qN = qN .

If p = 0.05, then q = 0.95, and P(0;N,p) = 0.95N . Typ-
ical values are P(0; 12) = 0.54 and P(0; 20) = 0.36. If the
assumptions about p and independence are right, then only
36 % of healthy patients will have all their tests normal if 20
tests are done.

Figure H.1 shows a plot of the number of patients in a se-
ries who were clinically normal but who had abnormal tests.
The data have the general features predicted by this simple
model.

We can derive simple expressions to give the mean and
standard deviation if the probability distribution is binomial.
The mean value of n is defined to be

3 E. A. Murphy and H. Abbey (1967). The normal range—a common
misuse. J Chronic Dis 20: 79.
4 A. R. Feinstein (1975). Clinical biostatistics XXVII. The derange-
ments of the normal range. Clin Pharmacol Therap 15: 528.

n =
N∑

n=0

nP (n;N) =
N∑

n=0

N !n
n!(N − n)!p

n(1 − p)N−n.

The first term of each sum is for n = 0. Since each term is
multiplied by n, the first term vanishes, and the limits of the
sum can be rewritten as

N∑

n=1

N !n
n!(N − n)!p

n(1 − p)N−n.

To evaluate this sum, we use a trick. Let m = n−1 and M =
N − 1. Then we can rewrite various parts of this expression
as follows:

n

n! = 1

(n − 1)! = 1

m! ,

pn = ppm,

N ! = (N)(N − 1)!,
(N − n)! = [N − 1 − (n − 1)]! = (M − m)!.

The limits of summation are n = 1 or m = 0, and n = N or
m = M . With these substitutions

n = Np

M∑

m=0

M!
m!(M − m)!p

m(1 − p)M−m.

This sum is exactly the sum of a binomial distribution over
all possible values of m and is equal to one. We have the
result that, for a binomial distribution,

n = Np. (H.3)

This says that the average number of successes is the total
number of tries times the probability of a success on each
try. If 100 particles are placed in a box and we look at half
the box so that p = 1

2 , the average number of particles in
that half is 100 × 1

2 = 50. If we put 500 particles in the box
and look at 1

10 of the box, the average number of particles
in the volume is also 50. If we have 100,000 particles and
v/V = p = 1/2000, the average number is still 50.

For the binomial distribution, the variance σ 2 can be ex-
pressed in terms of N and p using Eq. G.4. The average of
n2 is

n2 =
∑

n

P (n;N)n2 =
N∑

n=0

N !
n!(N − n)!n

2pn(1 − p)N−n.

The trick to evaluate this is to write n2 = n(n − 1) + n. With
this substitution we get two sums:

n2 =
N∑

n=0

N !
n!(N − n)!n(n − 1)pnqN−n

+
N∑

n=0

N !n
n!(N − n)!p

nqN−n.
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The second sum is n = Np. The first sum is rewritten by
noticing that the terms for n = 0 and n = 1 both vanish. Let
m = n − 2 and M = N − 2:

n2 = Np + N(N − 1)

M∑

m=0

M!
m!(M − m)!p

2pmqM−m

= Np + N(N − 1)p2 = Np + N2p2 − Np2.

Therefore,

(�n)2 = n2 − n2 = Np − Np2 = Np(1 − p) = Npq.

For the binomial distribution, then,

σ = √Npq = √nq.

The standard deviation for the binomial distribution for
fixed p goes as N1/2. For fixed N , it is proportional to√

p(1 − p), which is plotted in Fig. H.2. The maximum
value of σ occurs when p = q = 1

2 . If p is very small,
the event happens rarely; if p is close to 1, the event nearly
always happens. In either case, the variation is reduced. On
the other hand, if N becomes large while p becomes small in
such a way as to keep n fixed, then σ increases to a maximum
value of

√
n. This variation of σ with N and p is demon-

strated in Fig. H.3. Figure H.3a–c shows how σ changes as
N is held fixed and p is varied. For N = 100, p is 0.05, 0.5,
and 0.95. Both the mean and σ change. Comparing Fig. H.3b
with H.3d shows two different cases where n = 50. When p

is very small because N is very large in Fig. H.3d, σ is larger
than in Fig. H.3b.

Problems

Problem 1. Calculate the probability of throwing 0, 1, . . . , 9
heads out of a total of nine throws of a coin.
Problem 2. Assume that males and females are born with
equal probability. What is the probability that a couple will
have four children, all of whom are girls? The couple has
had three girls. What is the probability that they will have a
fourth girl? Why are these probabilities so different?
Problem 3. The Mayo Clinic reported that a single stool
specimen in a patient known to have an intestinal parasite
yields positive results only about 90 % of the time (R. B.
Thomson, R. A. Haas, and J. H. Thompson, Jr. (1984). In-
testinal parasites: The necessity of examining multiple stool
specimens. Mayo Clin Proc 59: 641–642). What is the prob-
ability of a false negative if two specimens are examined?
Three?
Problem 4. The Minneapolis Tribune on October 31, 1974,
listed the following incidence rates for cancer in the Twin
Cities greater metropolitan area, which at that time had a to-
tal population of 1.4 million. These rates are compared to
those in nine other areas of the country whose total popula-
tion is 15 million. Assume that each study was for 1 year. Are
the differences statistically significant? Show calculations to
support your answer. How would your answer differ if the
study were for several years?

Type of cancer Incidence per 100,000 per year
Twin Cities Other

Colon 35.6 30.9
Lung (women) 34.2 40.0
Lung (men) 63.6 72.0
Breast (women) 81.3 73.8
Prostate (men) 69.9 60.8
Overall 313.8 300.0

Problem 5. The probability that a patient with cystic fibro-
sis gets a bad lung illness is 0.5 % per day. With treatment,
which is time consuming and not pleasant, the daily probabil-
ity is ten times less.5 Show that the probability of not having
an illness in a year is 16 % without treatment and 83 % with
treatment.

5 These numbers are from W. Warwick, MD, private communication.
See also A. Gawande, The bell curve. The New Yorker, December 6,
2004, pp. 82–91.
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Fig. H.3 Examples of the variation of σ with N and p. (a), (b), and (c) show variations of σ with p when N is held fixed. The maximum value
of σ occurs when p = 0.5. Note that (a) and (c) are both in the top panel. Comparison of (b) and (d) shows the variation of σ as p and N change
together in such a way that n remains equal to 50



Appendix I
The Gaussian Probability Distribution

Appendix H considered a process that had two mutually
exclusive outcomes and was repeated N times, with the
probability of “success” on one try being p. If each try is in-
dependent, then the probability of n occurrences of success
in N tries is

P(n;N,p) = N !
n!(N − n)!p

n(1 − p)N−n. (I.1)

This probability distribution depends on two parameters N

and p. We have seen two other parameters, the mean, which
roughly locates the center of the distribution, and the stan-
dard deviation, which measures its width. These parameters,
n and σ , are related to N and p by the equations

n = Np,

σ 2 = Np(1 − p).

It is possible to write the binomial distribution formula in
terms of the new parameters instead of N and p. At best,
however, it is cumbersome, because of the need to evaluate
so many factorial functions. We will now develop an approx-
imation that is valid when N is large and which allows the
probability to be calculated more easily.

The procedure is to take the log of the probability, y =
ln(P ) and expand it in a Taylor’s series (Appendix D) about
some point. Since there is a value of n for which P has a
maximum and since the logarithmic function is monotonic,
y has a maximum for the same value of n. We will expand
about that point; call it n0. Then the form of y is

y = y(n0) + dy

dn

∣∣∣
∣
n0

(n − n0) + 1

2

d2y

dn2

∣∣∣
∣
n0

(n − n0)
2 + · · · .

Since y is a maximum at n0, the first derivative vanishes and
it is necessary to keep the quadratic term in the expansion.

To take the logarithm of Eq. I.1, we need a way to handle
the factorials. There is a very useful approximation to the
factorial, called Stirling’s approximation:

ln(n!) ≈ n ln n − n. (I.2)

3

2

1

0

y

1412108642
m

y=ln(m)

Fig. I.1 Plot of y = ln m used to derive Stirling’s approximation

Table I.1 Accuracy of Stirling’s approximation

n n! ln(n!) n ln n − n Error % Error
5 120 4.7875 3.047 1.74 36
10 3.6 × 106 15.104 13.026 2.08 14
20 2.4 × 1018 42.336 39.915 2.42 6
100 9.3 × 10157 363.74 360.51 3.23 0.8

To derive it, write ln(n!) as

ln(n!) = ln 1 + ln 2 + · · · + ln n =
n∑

m=1

ln m.

The sum is the same as the total area of the rectangles in
Fig. I.1, where the height of each rectangle is ln m and the
width of the base is one. The area of all the rectangles is
approximately the area under the smooth curve, which is a
plot of ln m. The area is approximately

∫ n

1
ln m dm = [m ln m − m]n1 = n ln n − n + 1.

This completes the proof of Eq. I.2. Table I.1 shows values of
n! and Stirling’s approximation for various values of n. The
approximation is not too bad for n > 100.

We can now return to the task of deriving the binomial
distribution. Taking logarithms of Eq. I.1, we get

y = ln P = ln(N !) − ln(n!) − ln(N − n)!
+n ln p + (N − n) ln(1 − p).

R. K. Hobbie, B. J. Roth, Intermediate Physics for Medicine and Biology, 591
DOI 10.1007/978-3-319-12682-1, c© Springer International Publishing Switzerland 2015
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With Stirling’s approximation, this becomes

y = N ln N − n ln n − N ln(N − n)

+ n ln(N − n) + n ln p + (N − n) ln(1 − p). (I.3)

The derivative with respect to n is

dy

dn
= − ln n + ln(N − n) + ln p − ln(1 − p).

The second derivative is

d2y

dn2
= −1

n
− 1

N − n
.

The point of expansion n0 is found by making the first
derivative vanish:

0 = ln
(N − n)p

n(1 − p)
.

Since ln 1 = 0, this is equivalent to (N − n0)p = n0(1 − p)

or n0 = Np. The maximum of y occurs when n is equal to
the mean. At n = n0, the value of the second derivative is

d2y

dn2
= − 1

Np
− 1

N(1 − p)
= − 1

Np(1 − p)
.

It is still necessary to evaluate y0 = y(n0). If we try to
do this by substitution of n = n0 in Eq. I.3, we get zero. The
reason is that the Stirling approximation we used is too crude
for this purpose. (There are additional terms in Stirling’s ap-
proximation that make it more accurate.) The easiest way to
find y(n0) is to call it y0 for now and determine it from the re-
quirement that the probability be normalized. Therefore, we
have

y = y0 − 1

2Np(1 − p)
(n − Np)2

so that, in this approximation,

P(n) = ey = ey0e−(n−Np)2/[2Np(1−p)].

With Np = n, ey0 = C0, and Np(1 − p) = σ 2, this is

P(n) = C0e
−(n−n)2/2σ 2

.

To evaluate C0, note that the sum of P(n) for all n

is the area of all the rectangles in Fig. I.2. This area is
approximately the area under the smooth curve, so that

1 = C0

∫ ∞

−∞
e−(n−n)2/2σ 2

dn.

It is shown in Appendix K that half of this integral is

∫ ∞

0
dx e−bx2 = 1

2

√
π

b
.

Fig. I.2 Evaluating the normalization constant

Fig. I.3 The allowed values of x are closely spaced in this case

Therefore the normalization integral is (letting x = n − n)
∫ ∞

−∞
e−x2/2σ 2

dx =
√

2πσ 2.

The normalization constant is C0 = 1/
√

2πσ 2, so that the
Gaussian or normal probability distribution is

P(n) = 1√
2πσ 2

e−(n−n)2/2σ 2
. (I.4)

It is possible, as in the case of the random-walk problem,
that the measured quantity x is proportional to n with a very
small proportionality constant, x = kn, so that the values
of x appear to form a continuum. As shown in Fig. I.3, the
number of different values of n (each with about the same
value of P(n)) in the interval dx is proportional to dx. The
easiest way to write down the Gaussian distribution in the
continuous case is to recognize that the mean is x = kn, and
the standard deviation is σ 2

x = (x − x)2 = x2 − x2 = k2n2

−k2n2 = k2σ 2. The term P(x)dx is given by P(n) times the
number of different values of n in dx. This number is dx/k.
Therefore,

P(x)dx = P(n)
dx

k
= dx

1

k
√

2πσ 2
e−(x/k−x/k)2/2σ 2

= dx
1√

2πσx

e−(x−x)2/2σ 2
x . (I.5)

To recapitulate: the binomial distribution in the case of
large N can be approximated by Eq. I.4, the Gaussian
or normal distribution, or Eq. I.5 for continuous variables.
The original parameters N and p are replaced in these
approximations by n (or x) and σ .
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Problems

Problem 1. An improved approximation to Stirling’s for-
mula1 is

ln n! ≈ n ln n − n + ln(2πn)

2

1 For more about Stirling’s formula, see N. D. Mermin (1994) Stirling’s
formula! Am J Phys 52: 362–365.

Expand Table I.1 to include entries using this approximation.
Problem 2. Let y = (x − x)/σ . Express the Gaussian prob-
ability distribution as a function of y. Calculate the mean and
standard deviation of this distribution.



Appendix J
The Poisson Distribution

Appendix H discussed the binomial probability distribution.
If an experiment is repeated N times, and has two possi-
ble outcomes, with “success” occurring with probability p

in each try, the probability of getting that outcome x times in
N tries is

P(x;N,p) = N !
x!(N − x)!p

x(1 − p)N−x.

The distribution of possible values of x is characterized by a
mean value x = Np and a variance σ 2 = Np(1 − p). It is
possible to specify x and σ 2 instead of N and p to define the
distribution.

Appendix I showed that it is easier to work with the Gaus-
sian or normal distribution when N is large. It is specified in
terms of the parameters x and σ 2 instead of N and p:

P(x; x, σ 2) = 1

(2πσ 2)1/2
e−(x−x)2/2σ 2

.

The Poisson distribution is an approximation to the bino-
mial distribution that is valid for large N and for small p

(when N gets large and p gets small in such a way that their
product remains finite). To derive it, rewrite the binomial
probability in terms of p = x/N :

P(x) = N !
x!(N − x)! (x/N)x(1 − x/N)N−x

= N !
x!(N − x)!

1

Nx
xx

(
1 − x

N

)N (
1 − x

N

)−x

.

(J.1)

It is necessary next to consider the behavior of some of
these factors as N becomes very large. The factor (1−x/N)N

approaches e−x as N → ∞, by definition (see p. 34). The
factor N !/(N − x)! can be written out as

N(N − 1)(N − 2) · · · 1

(N − x)(N − x − 1) · · · 1
= N(N−1)(N−2) · · · (N−x+1).

If these factors are multiplied out, the first term is Nx , fol-
lowed by terms containing Nx−1, Nx−2, . . ., down to N1.
But there is also a factor Nx in the denominator of the
expression for P , which, combined with this gives

1 + (something)N−1 + (something)N−2 + · · · .

As long as N is very large, all terms but the first can be
neglected. With these substitutions, Eq. J.1 takes the form

P(x) = 1

x!x
xe−x

(
1 − x

N

)−x

. (J.2)

The values of x for which P(x) is not zero are near x,
which is much less than N . Therefore, the last term, which
is really

[
1/(1 − p)

]x , can be approximated by one, while
such a term raised to the N th power had to be approximated
by e−x . If this is difficult to understand, consider the fol-
lowing numerical example. Let N=10,000 and p = 0.001,
so x = 10. The two terms we are considering are (1 −
10/10, 000)10,000 = 4.517×10−5, which is approximated by
e−10 = 4.54 × 10−5, and terms like (1 − 10/10, 000)−10 =
1.001, which are approximated by 1.

With these approximations, the probability is P(x) =
[(x)x/x!]e−x or, calling x = m,

P(x) = mx

x! e−m. (J.3)

This is the Poisson distribution and is an approximation to
the binomial distribution for large N and small p, such that
the mean x = m = Np is defined (that is, it does not go to
infinity or zero as N gets large and p gets small).

This probability, when summed over all values of x,
should be unity. This is easily verified. Write

∞∑

x=0

P(x) = e−m
∞∑

x=0

mx

x! .
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Table J.1 Comparison of the binomial, Gaussian, and Poisson
distributions

Binomial P(x; N,p) = N !
x!(N − x)!p

x(1 − p)N−x

x = m = Np

σ 2 = Np(1 − p) = m(1 − p)

Gaussian P(x; m, σ) = 1

(2πσ 2)1/2
e−(x−m)2/2σ 2

Poisson P(x; m) = mx

x! e−m

m = Np

σ 2 = m

But the sum on the right is the series for em and e−mem = 1.

The same trick can be used to verify that the mean is m:

∞∑

x=0

xP (x) =
∞∑

x=0

x
mx

x! e−m =
∞∑

x=1

x
mx

x! e−m.

The index of summation can be changed from x to y = x−1:

∞∑

x=0

xP (x) =
∞∑

y=0

(y + 1)

(y + 1)!m
yme−m = m

∞∑

y=0

my

y! e−m = m.

One can show that the variance for the Poisson distribution
is σ 2 = (x − m)2 = m.

Table J.1 compares the binomial, Gaussian, and Poisson
distributions. The principal difference between the binomial
and Gaussian distributions is that the latter is valid for large
N and is expressed in terms of the mean and standard devi-
ation instead of N and p. Since the Poisson distribution is
valid for very small p, there is only one parameter left, and
σ 2 = m rather than m(1 − p).

The Poisson distribution can be used to answer questions
like the following:
1. How many red cells are there in a small square in a hemo-

cytometer? The number of cells N is large; the probability
p of each cell falling in a particular square is small. The
variable x is the number of cells per square.

2. How many gas molecules are found in a small volume of
gas in a large container? The number of tries is the total
number of molecules. The probability that an individual
molecule is in the smaller volume is p = V/V0, where
V is the small volume and V0 is the volume of the entire
box.

3. How many radioactive nuclei (or excited atoms) decay
(or emit light) during a time dt? The probability of decay
during time dt is proportional to how long dt is: p =
λdt . The number of tries is the N nuclei that might decay
during that time.
The last example is worth considering in greater detail.

The probability p that each nucleus decays in time dt is

1.0

0.8

0.6

0.4

0.2

0.0

P

6543210

m = Νλt

P(0)

P(1)
P(2)

P(3)

Fig. J.1 Plot of P(0) through P(3) vs. Nλt

proportional to the length of the time interval: p = λdt .
The average number of decays if many time intervals are
examined is

m = Np = Nλ dt.

The probability of x decays in time dt is

P(x) = (Nλdt)x

x! e−Nλdt .

As dt → 0, the exponential approaches one, and

P(x) → (Nλdt)x

x! .

The overwhelming probability for dt → 0 is for there to be
no decays: P(0) ≈ (Nλdt)0/0! = 1. The probability of a
single decay is P(1) = Ndt ; the probability of two decays
during dt is (Nλdt)2/2, and so forth.

If time interval t is finite, it is still possible for the Poisson
criterion to be satisfied, as long as p = λt is small. Then the
probability of no decays is

P(0) = e−m = e−Nλt .

The probability of one decay is

P(1) = (Nλt)e−Nλt .

This probability increases linearly with t at first and then de-
creases as the exponential term begins to decay. The reason
for the lowered probability of one decay is that it is now more
probable for two or more decays to take place in this longer
time interval. As t increases, it is more probable that there
are two decays than one or none; for still longer times, even
more decays become more probable. The probability that n

decays occur in time t is P(n). Figure J.1 shows plots of
P(0), P(1), P(2), and P(3), vs m = Nλt .
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Problems

Problem 1. In the USA 400,000 people were killed or in-
jured one year in automobile accidents. The total population
was 200,000,000. If the probability of being killed or injured
is independent of time, what is the probability that you will
escape unharmed from 70 years of driving?
Problem 2. Large proteins consist of a number of smaller
subunits that are stuck together. Suppose that an error is made
in inserting an amino acid once in every 105 tries; p = 10−5.
If a chain has length 1000, what is the probability of making
a chain with no mistakes? If the chain length is 105?
Problem 3. The muscle end plate has an electrical response
whenever the nerve connected to it is stimulated. I. A. Boyd
and A. R. Martin (The end plate potential in mammalian
muscle. J Physiol 132: 74–91 (1956)) found that the electri-
cal response could be interpreted as resulting from the release
of packets of acetylcholine by the nerve. In terms of this
model, they obtained the following data:

Number of packets
reaching the end plate

Number of times observed

0 18
1 44
2 55
3 36
4 25
5 12
6 5
7 2
8 1
9 0

Analyze these data in terms of a Poisson distribution.



Appendix K
Integrals Involving e−ax2

Integrals involving e−ax2
appear in the Gaussian distribution.

The integral

I =
∫ ∞

−∞
e−ax2

dx

can also be written with y as the dummy variable:

I =
∫ ∞

−∞
e−ay2

dy.

These can be multiplied together to get

I 2 =
∫ ∞

−∞

∫ ∞

−∞
dxdy e−ax2

e−ay2

=
∫ ∞

−∞

∫ ∞

−∞
dxdy e−a(x2+y2).

A point in the xy plane can also be specified by the polar
coordinates r and θ (Fig. K.1). The element of area dxdy is
replaced by the element rdrdθ :

I 2 =
∫ 2π

0
dθ

∫ ∞

0
r dr e−ar2 = 2π

∫ ∞

0
r dr e−ar2

.

To continue, make the substitution u = ar2, so that du =
2ardr . Then

I 2 = 2π

∫ ∞

0

1

2a
e−u du = π

a

[−e−u
]∞

0 = π

a
.

Fig. K.1 An element of area in polar coordinates

The desired integral is, therefore,

I =
∫ ∞

−∞
e−ax2

dx =
√

π

a
. (K.1)

This integral is one of a sequence of integrals of the
general form

In =
∫ ∞

0
xne−ax2

dx.

From Eq. K.1, we see that

I0 = I

2
= 1

2

√
π

a
. (K.2)

The next integral in the sequence can be integrated di-
rectly with the substitution u = ax2:

I1 =
∫ ∞

0
xe−ax2

dx = 1

2a

∫ ∞

0
e−udu = 1

2a
. (K.3)

A value for I2 can be obtained by integrating by parts:

I2 =
∫ ∞

0
x2e−ax2

dx.

Let u = x and dv = xe−ax2
dx = −(1/2a)d(e−ax2

).
Since

∫
udv = uv − ∫ vdu,

∫ ∞

0
x3e−ax2

dx = −xe−ax2

2a
+ 1

2a

∫
e−ax2

dx.

This expression is evaluated at the limits 0 and ∞. The term
xe−ax2

vanishes at both limits. The second term is I0/2a.
Therefore,

I2 = 1

2 × 2a

√
π

a
.

This process can be repeated to get other integrals in the
sequence. The even members build on I0; the odd members
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build on I1. General expressions can be written. Note that 2n

and 2n+1 are used below to assure even and odd exponents:

∫ ∞

0
x2ne−ax2

dx = 1 × 3 × 5 × (2n − 1)

2n+1an

√
π

a
, (K.4)

∫ ∞

0
x2n+1e−ax2

dx = n!
2an+1

, (a > 0). (K.5)

The integrals in Appendix I are of the form
∫ ∞

−∞
e−x2/2σ 2

dx.

This integral is 2I0 with a = 1/(2σ 2). Therefore, the integral
is

√
2πσ 2.

Integrals of the form

J =
∫ ∞

0
xne−axdx,

can be transformed to the forms above with the substitution
y = x1/2, x = y2, dx = 2y dy. Then

J =
∫ ∞

0
y2ne−ay2

2y dy = 2
∫ ∞

0
y2n+1e−ay2

dy.

Therefore,
∫ ∞

0
xne−axdx = n!

an+1
= Γ (n + 1)

an+1
. (K.6)

The gamma function Γ (n) = (n − 1)! if n is an integer.
Unlike n!, it is also defined for noninteger values. Although
we have not shown it, Eq. K.6 is correct for noninteger values
of n as well, as long as a > 0 and n > −1.

Problems

Problem 1. Use integration by parts to evaluate

I3 =
∫ ∞

0
x3e−ax2

dx.

Compare this result with Eq. K.5.
Problem 2. Show that

∫∞
−∞ xe−ax2

dx = 0. Note the lower
limit is −∞, not 0. There is a hard way and an easy way to
show this. Try to find the easy way.



Appendix L
Spherical and Cylindrical Coordinates

It is possible to use coordinate systems other than the rect-
angular (or Cartesian) (x, y, z): In spherical coordinates
(Fig. L.1), the coordinates are radius r and angles θ and φ:

x = r sin θ cos φ,

y = r sin θ sin φ, (L.1)

z = r cos θ.

In Cartesian coordinates a volume element is defined by
surfaces on which x is constant (at x and x + dx), y is
constant, and z is constant. The volume element is a cube
with edges dx, dy, and dz. In spherical coordinates, the cube
has faces defined by surfaces of constant r , constant θ , and
constant φ (Fig. L.2). A volume element is then

dV = (dr)(r dθ)(r sin θ dφ) = r2 sin θ dθ dφ dr. (L.2)

To calculate the divergence of vector J, resolve it into
components Jr , Jθ , and Jφ , as shown in Fig. L.2. These
components are parallel to the vectors defined by small
displacements in the r , θ , and φ directions. A detailed

Fig. L.1 Spherical coordinates.

calculation1 shows that the divergence is

div J = ∇ · J = 1

r2

∂

∂r
(r2Jr) + 1

r sin θ

∂

∂θ
(sin θ Jθ )

+ 1

r sin θ

∂

∂φ
(Jφ). (L.3)

The gradient, which appears in the three-dimensional dif-
fusion equation (Fick’s first law), can also be written in
spherical coordinates. The components are

(∇C)r = ∂C

∂r
,

(∇C)θ = 1

r

∂C

∂θ
, (L.4)

(∇C)φ = 1

r sin θ

∂C

∂φ
.

Figure L.2 also shows that the element of area on the sur-
face of the sphere is (r dθ)(r sin θ dφ) = r2 sin θ dθ dφ. The
element of solid angle is therefore

dΩ = sin θ dθ dφ.

This is easily integrated to show that the surface area of a
sphere is 4πr2 or that the solid angle is 4π sr.

S = r2
∫ π

0
sin θ dθ

∫ 2π

0
dφ = 2πr2

∫ π

0
sin θ dθ

= 2πr2 [− cos θ ]π0 = 4πr2.

Similar results can be written down in cylindrical coordi-
nates (r, φ, z), shown in Fig. L.3.

Table L.1 shows the divergence, gradient, and curl in rect-
angular, cylindrical, and spherical coordinates, along with
the Laplacian operator ∇2.

1 H. M. Schey (2005). Div, Grad, Curl, and All That. 4th. ed. New York,
Norton.
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Fig. L.2 The volume element and element of surface area in spherical coordinates

Fig. L.3 A cylindrical coordinate system
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Table L.1 The vector operators in rectangular, cylindrical, and spherical coordinates

Rectangular x, y, z Cylindrical r, φ, z Spherical r, θ, φ

Gradient

(∇C)x = ∂C

∂x
(∇C)r = ∂C

∂r
(∇C)r = ∂C

∂r

(∇C)y = ∂C

∂y
(∇C)φ = 1

r

∂C

∂φ
(∇C)θ = 1

r

∂C

∂θ

(∇C)z = ∂C

∂z
(∇C)z = ∂C

∂z
(∇C)φ = 1

r sin θ

∂C

∂φ

Laplacian

∇2C = ∂2C

∂x2
+ ∂2C

∂y2
+ ∂2C

∂z2
∇2C = 1

r

∂

∂r

(
r
∂C

∂r

)
+ 1

r2

∂2C

∂φ2
+ ∂2C

∂z2
∇2C = 1

r2

∂

∂r

(
r2 ∂C

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂C

∂θ

)

+ 1

r2 sin2 θ

∂2C

∂φ2

Divergence

∇ · j = ∂jx

∂x
+ ∂jy

∂y
+ ∂jz

∂z
∇ · j = 1

r

∂(rjr )

∂r
+ 1

r

∂jφ

∂φ
+ ∂jz

∂z
∇ · j = 1

r2

∂(r2jr )

∂r
+ 1

r sin θ

∂(sin θjθ )

∂θ
+ 1

r sin θ

∂jφ

∂φ

Curl

(∇ × j)x = ∂jz

∂y
− ∂jy

∂z
(∇ × j)r = 1

r

∂jz

∂φ
− ∂jφ

∂z
(∇ × j)r = 1

r sin θ
×
[

∂(sin θ jφ)

∂θ
− ∂(jθ )

∂φ

]

(∇ × j)y = ∂jx

∂z
− ∂jz

∂x
(∇ × j)φ = ∂jr

∂z
− ∂jz

∂r
(∇ × j)θ = 1

r sin θ
×
[

∂jr

∂φ
− sin θ∂(rjφ)

∂r

]

(∇ × j)z = ∂jy

∂x
− ∂jx

∂y
(∇ × j)z = 1

r

∂(rjφ)

∂r
− 1

r

∂jr

∂φ
(∇ × j)∂φ = 1

r

[
∂(rjθ )

∂r
− ∂jr

∂θ

]



Appendix M
Joint Probability Distributions

In both physics and medicine, the question often arises of
what is the probability that x has a certain value xi while y

has the value yj . This is called a joint probability. Joint prob-
ability can be extended to several variables. This appendix
derives some properties of joint probabilities for discrete and
continuous variables.

M.1 Discrete Variables

Consider two variables. For simplicity assume that each can
have only two values. The first might be the patient’s health
with values healthy and sick; the other might be the results
of some laboratory test, with results normal and abnormal.
Table M.1 shows the values of the two variables for a sample
of 100 patients. The joint probability that a patient is healthy
and has a normal test result is P(x = 0, y = 0) = 0.6;
the probability that a patient is sick and has an abnormal
test is P(1, 1) = 0.15. The probability of a false positive
test is P(0, 1) = 0.20; the probability of a false negative is
P(1, 0) = 0.05.

The probability that a patient is healthy regardless of the
test result is obtained by a summing over all possible test
outcomes: P(x = 0) = P(0, 0)+P(0, 1) = 0.6+0.2 = 0.8.

In a more general case, we can call the joint proba-
bility P(x, y), the probability that x has a certain value

Table M.1 The results of measurements on 100 patients showing
whether they are healthy or sick and whether a laboratory test was
normal or abnormal

Healthy (x = 0) Sick (x = 1)
Normal test (y = 0) 60 5
Abnormal test (y = 1) 20 15

Fig. M.1 The results of measuring two continuous variables simulta-
neously. Each experimental result is shown as a point

independent of y, Px(x), and so forth. Then

Px(x) =∑y P (x, y)

Py(y) =∑x P (x, y).
(M.1)

Since any measurement must give some value for x and y,
we can write

1 =∑x Px(x) =∑x

∑
y P (x, y),

1 =∑y Py(y) =∑y

∑
x P (x, y).

(M.2)

M.2 Continuous Variables

When a variable can take on a continuous range of values,
it is quite unlikely that the variable will have precisely the
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value x. Instead, there is a probability that it is in the interval
(x, dx), meaning that it is between x and x + dx. For small
values of dx, the probability that the value is in the interval
is proportional to the width of the interval. We will call it
px(x)dx. The extension to joint probability in two dimen-
sions is p(x, y)dxdy. This is the probability that x is in the
interval (x, dx) and y is in the interval (y, dy). Figure M.1
shows each outcome of a joint measurement as a dot in the
xy plane. The probability that x is in (x, dx) regardless of
the value of y is

px(x)dx =
(∫

p(x, y)dy

)
dx. (M.3)

It is proportional to the total number of dots in the vertical
strip in Fig. M.1. Normalization requires that

1 =
∫

px(x)dx =
∫

dx

∫
dy p(x, y). (M.4)

The first strip could be taken horizontally:

1 =
∫

py(y)dy =
∫

dy

∫
dx p(x, y).

Figure M.2 shows a perspective drawing of p(x, y). The
volume of the shaded column is p(x, y)dxdy. The volume
of the slice is px(x)dx. The entire volume under the surface
is equal to 1.

Fig. M.2 Perspective drawing of p(x, y)



Appendix N
Partial Derivatives

When a function depends on several variables, we may want
to know how the value of the function changes when one or
more of the variables is changed. For example, the volume of
a cylinder is

V = πr2h.

How does V change when r is changed while the height of
the cylinder is kept fixed?

V (r + �r) = π(r + �r)2h = π(r2 + 2r�r + �r2)h.

Subtracting the original volume, we have

�V = π(2r�r + �r2)h.

In the limit of small �r , this is

dV = 2πhrdr.

This is the same answer we would have gotten if h had
been regarded as a constant. The partial derivative of V with
respect to r is defined to be

(
∂V

∂r

)

h

= lim
�r→0

(
V (r + �r, h) − V (r, h)

�r

)
= 2πrh.

The subscript h in the partial derivative symbol means that h

is held fixed during the differentiation. Sometimes it is omit-
ted; when it is not there, it is understood that all variables
except the one following the ∂ are held fixed.

If the cylinder radius is held fixed while the height is
varied, we can write

�V = V (r, h + �h) − V (r, h) = πr2�h.

The partial derivative is

(
∂V

∂h

)

r

= lim
�h→0

(
V (r, h + �h) − V (r, h)

�h

)
= πr2.

Suppose now that we allow small changes in both r and h.
The difference in volume is

�V = V (r + �r, h + �h) − V (r, h).

We can add and subtract the term V (r, h + �h):

�V = V (r + �r, h + �h) − V (r, h + �h)

+ V (r, h + �h) − V (r, h)

= V (r + �r, h + �h) − V (r, h + �h)

�r
�r

+ V (r, h + �h) − V (r, h)

�h
�h.

In the limit as �r and �h → 0, the first term is
(

∂V

∂r

)

h

�r,

evaluated at h+�h. If the derivatives are continuous at (r, h),
the derivative evaluated at (r, h + �h) is negligibly differ-
ent from the derivative evaluated at (r, h). Therefore, we can
write

dV =
(

∂V

∂r

)

h

dr +
(

∂V

∂h

)

r

dh.

This result is true for several variables. For a function
w(x, y, z),

dw =
(

∂w

∂x

)

y,z

dx +
(

∂w

∂y

)

x,z

dy +
(

∂w

∂z

)

x,y

dz. (N.1)

The derivatives are evaluated as though the variables
being held fixed were ordinary constants. If w = 3x2yz4,

(
∂w

∂x

)

y,z

= 6xyz4,

(
∂w

∂y

)

x,z

= 3x2z4,

(
∂w

∂z

)

x,y

= 12x2yz3.
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It is also possible to take higher derivatives, such as
∂2w/∂x2 or ∂2w/∂x∂y. One important result is that the or-
der of differentiation is unimportant, if the function, its first
derivatives, and the derivatives in question are continuous at
the point where they are evaluated. Without filling in all the
details of a rigorous proof, we will simply note that

f = ∂w

∂x
= lim

�x→0

(
w(x + �x, y) − w(x, y)

�x

)

g = ∂w

∂y
= lim

�y→0

(
w(x, y + �y) − w(x, y)

�y

)
.

The mixed partials are

∂2w

∂y∂x
= ∂f

∂y
= lim

�y→0

(
f (x, y + �y) − f (x, y)

�y

)

= lim
�x→0
�y→0

(
w(x + �x, y + �y) − w(x, y + �y) − w(x + �x, y) + w(x, y)

�x �y

)

∂2w

∂x∂y
= ∂g

∂x

= lim
�y→0
�x→0

(
w(x + �x, y + �y) − w(x + �x, y) − w(x, y + �y) + w(x, y)

�x �y

)
.

The right side of each of these equations is the same, except
for the order of the terms. Thus,

∂

∂x

∂w

∂y
= ∂

∂y

∂w

∂x
.

Problems

Problem 1. If w = 12x3y + z, find the three partial
derivatives ∂w/∂x, ∂w/∂y, and ∂w/∂z.
Problem 2. If V = xyz and x = 5, y = 6, z = 2, find
dV when dx = 0.01, dy = 0.02, and dz = 0.03. Make a
geometrical interpretation of each term.



Appendix O
Some Fundamental Constants and Conversion
Factors

The values of the fundamental constants are from the 2010 least-squares adjustment, available at http://www.nist.gov/pml/data/index.cfm

Symbol Constant Value SI units

c Velocity of light in vacuum 2.997925 × 108 m s−1

e Elementary charge 1.602177 × 10−19 C
F Faraday constant 9.64853 × 104 C mol−1

g Standard acceleration of free fall 9.80665 m s−2

h Planck’s constant 6.626070 × 10−34 J s
� Planck’s constant (reduced) 1.054572 × 10−34 J s

6.582119 × 10−16 eV s
kB Boltzmann’s constant 1.380649 × 10−23 J K−1

8.617343 × 10−5 eV K−1

me Electron rest mass 9.109383 × 10−31 kg
mec

2 Electron rest energy 8.187105 × 10−14 J
5.10999 × 105 eV

mp Proton rest mass 1.672622 × 10−27 kg
NA Avogadro’s number 6.022141 × 1023 mol−1

re Classical electron radius 2.817940 × 10−15 m
R Gas constant 8.31446 J mol−1 K−1

u Mass unit (12C standard) 1.660539 × 10−27 kg
uc2 Mass unit (energy units) 9.31494 × 108 eV
ε0 Electrical permittivity of free space 8.85419 × 10−12 C2 N−1 m−2

1/4πε0 8.98755 × 109 N m2 C−2

σSB Stefan Boltzmann constant 5.67037 × 10−8 W m−2 K−4

λC Compton wavelength of electron 2.42631 × 10−12 m
μB Bohr magneton 9.274010 × 10−24 J T−1

μ0 Magnetic permeability 4π × 10−7 T m A−1

of space ≈ 12.566 × 10−7

μN Nuclear magneton 5.050784 × 10−27 J T−1
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Some of the more useful conversion factors for converting from older units to SI units are listed. (Taken from Standard for Metric Practice, ASTM
E 380-76, Copyright 1976 by the American Society for Testing and Materials, Philadelphia)

To convert from To Multiply by

Angstrom Meter 1.000000 × 10−10

Atmosphere (standard) Pascal 1.013250 × 105

Bar Pascal 1.000000 × 105

Barn Meter2 1.000000 × 10−28

Calorie (thermochemical) Joule 4.184000
Centimeter of mercury (0 ◦C) Pascal 1.33322 × 103

Centimeter of water (4 ◦C) Pascal 9.80638 × 101

Centipoise Pascal second 1.000000 × 10−3

Curie Becquerel 3.700000 × 1010

Dyne Newton 1.000000 × 10−5

Electron volt Joule 1.60218 × 10−19

Erg Joule 1.000000 × 10−7

Fermi (femtometer) Meter 1.000000 × 10−15

Gauss Tesla 1.000000 × 10−4

Liter Meter3 1.000000 × 10−3

Mho Siemens 1.000000
Millimeter of mercury Pascal 1.33322 × 102

Poise Pascal second 1.000000 × 10−1

Roentgen Coulomb per kilogram 2.58 × 10−4

Torr Pascal 1.33322 × 102



Index

A scan, 373
AAPM, 405, 406, 421, 469, 507
AAPM Report 96, 492
Abbey, H., 588
Abduct, 7
Abductor muscle, 7
Aberration

chromatic, 412
spherical, 412

Ablation, 404
Able, K. P., 229
Able, M. A., 229
Abraham, R., 277
Abramowitz, M., 209, 263, 359, 361, 362
Absolute temperature, 61, 62
Absorbed dose, 452
Absorption coefficient, 387
Absorption edge, 428
Acceleration, 571
Accommodation, 412
Acetabulum, 8
Acetylcholine, 110, 143, 194, 597
ACHD, 399
Achilles tendon, 6
Acoustic impedance, 366
Acoustic shadow, 378
Actin, 85
Actinometry, 405
Action potential, 141

foot, 181
Gaussian approximation, 190
propagating, 166
space-clamped, 165

Activating function, 209
Active transport, 519
Activity, 81, 506, 511

cumulated, 511, 512
Activity vector, 188
Acton, F. S., 340
Adair, R. K., 256, 257, 260, 337
Adenosine triphosphate (ATP), 3
Adiabatic approximation, 440
Adiabatic process, 58
ADP, 72, 555
Adrenal gland, 294
Afterloading, 523

Agre, P., 118
Ahlen, S. P., 442, 444, 448
Ahrens, E. T., 557
Air

acoustic impedance, 367
attenuation, 371
density and specific heat, 65
speed of sound, 366

Air bladder, 27
Alberts, B., 481
Albumin, 136
Aldosterone, 294
Algae, 229
Aliasing, 314, 329

in an image, 350
Allen, A. P., 51
Allen, R. D., 108
Almond, P. R., 488
α particle, 448, 506, 525
Alternans, 298
Altes, T. A., 559
Alveoli, 1, 20, 82, 110, 270
Alzheimer’s disease, 226
American Association of Physicists in

Medicine, see AAPM
Ampere (unit), 151
Ampere’s law, 216, 225, 227

and Biot-Savart law, 232
Amplitude attenuation coefficient, 370
Ampullae of Lorenzini, 256, 266
Anaplasia, 401
Anderka, M., 313
Anderson K. E., 422
Anderson, H. L., 379
Anderson, J. R., 533
Anesthetic, 169
Aneurysm, 27
Angiography, 399, 476
Angioplasty, 524
Angioscopy, 399
Angstrom, 3
Angular Frequency, 308
Angular momentum, 536
Angular wave number, 346
Anisotropy, 28, 200, 201
Annihilation radiation, 438, 510

Anode, 202
Anode-break excitation, 181, 210
Anomalous rectification, 264
Antidiuretic hormone, 294
Antineutrino, 509
Antiscatter grid, 474
Antonini, E., 81
Anumonwo, J. B., 172
Aorta, 21, 479
Apoptosis, 480
Appa Y., 422
Aquaporins, 118
Aquaspirillum magnetotacticum, 228
Aqueous, 411
Arakane K., 423
Armato, S. G., 470
Armstrong, B. K., 402
Armstrong, C. M., 394, 421
Arqueros, F., 450, 515, 532
Arterial spin labeling, 556
Arteriole, 21
Artificial insemination, 77
Artificial kidney, 126
Asano H., 423
Ascites, 122
Ashcroft, F., 250
Astigmatism, 412
Astumian, R. D., 256, 259, 260, 265, 337, 338
Ataxia-tangliectasia, 483
Atherosclerosis, 399
Atkins, P. W., 75, 83
Atmosphere, 46

pressure variation, 64, 80
Atmosphere (pressure unit), 14
Atomic deexcitation, 434
Atomic energy levels, 425
Atomic number, 503
Atoms per unit volume, 388
ATP, 3, 71, 555
Atrioventricular node, see see AV node
Atrium, 193
Attenuation

of sound wave, 370
water, 371

Attenuation coefficient, 387
amplitude, 370
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effective, 391
intensity, 370
linear, 433
mass, 433

Attenunator
ladder, 179

Attix, F. H., 430, 431, 438, 444, 446, 450,
453, 455, 462, 464, 469, 489

Attractor, 276, 284
Auditory evoked response, 328
Auger electron, 435, 449, 507, 524

cascade, 436, 461, 507
Augmented limb leads, 197
Autocorrelation function, 318, 543

of exponential pulse, 325
and energy spectrum, 325
and power spectrum, 320
of noise, 334
of sine wave, 319
of square wave, 319

AV node, 194, 203
Average, 585

ensemble, 56
time, 57

Average reference recording, 205, 211
Avogadro’s number, 64, 89, 433

definition in SI units, 388
Axel, L., 546, 555
Axelrod, D., 101, 114, 115
Axial vector, 6
Axon, 2, 141

cable model, 156
electric field, 154
membrane capacitance, 155, 169
membrane capacitance and conductance,

157
membrane equivalent circuit, 162
membrane time constant, 156
myelinated, 142, 167
potassium gate, 164
potassium Nernst potential, 162
potential outside, 185
sodium conductance, 164
sodium gate, 165
sodium Nernst potential, 162
space-clamped, 161, 165
surface charge density, 155
unmyelinated, 142, 167
voltage-clamped, 161

Axoplasm, 142
Ayotte, P., 495

B scan, 373, 378
Background

natural, 492
Backscatter

factor, 455
Backx, P. H., 194
Bacteria, 2

magnetotactic, 228, 235
orientation in a magnetic field, 235

Bacteriophage, 2, 527
Badeer, H. S., 19, 31
Bagavathiappan, S., 422
Bainton, C. R., 276

Balloon angioplasty, 524
Bambynek, W., 435
Banavar, J. R., 45, 51
Bandettini, P. A., 557
Bar (unit), 13
Barach, J. P., 223, 229, 232
Barium, 472
Barium fluorobromide, 470
Barker, A. T., 226
Barlow, H. B., 415, 421
Barn (unit), 428
Barnes, F. S., 257, 266
Barold, S. S., 203
Barr M. L., 422
Barr, G., 91, 114
Barr, R. C., 161, 167
Barrett, H. H., 345, 353, 362
Barrett, J. N., 251
Bart K., 115
Bartels, L. W., 379
Barth, R. F., 489
Bartlett, A. A., 42, 51, 289
Barysch M. J., 421
Barysch, M. J., 403
Basal cell, 401, 403
Basal cell carcinoma (BCC), 402, 403, 486
Basal metabolic rate, 65
Base, 573
Basford, J., 27, 30
Basilar membrane, 370
Basin of attraction, 281
Bass, M., 422, 423
Basser, P. J., 110, 115, 136, 558
Bastian, J., 256
Battocletti, J. H., 555
Baylor, D. A., 415, 422
Bazylinski, D. A., 228
Beam hardening, 471
Bean, C. P., 91, 115, 129, 133, 134, 177
Beaurepaire, E., 423
Beck, R. E., 134
Becklund, O. A., 348, 362
Becquerel (unit), 495, 506, 511
Beer’s law, 388
Bees, 229, 235
Begon, M., 281
BEIR, 494, 495, 525, 526, 532
Belousov–Zhabotinsky reaction, 290
Bénard, H., 296
Bender, M. A., 531
Benedek, G. B., 11, 15, 30, 95, 105, 115
Bennison, L. J., 48
Bequerel second, 506
Berg, H. C., 85, 101, 115
Berg, M. J., 48, 51
Berg, W. A., 379
Berger, M. J., 515, 532
Bergmanson, J. P. G., 403, 421
Berliner, L. J., 545
Berlinger, W. G., 51
Berne, B. J., 393, 422
Bernoulli equation, 19, 29
Bernoulli process, 587
Bernstein, M. A., 553
Berry, E., 422, 423
Berwick M., 422

Bessel function, 263, 359, 361, 372
modified, 208

Beta decay, 506, 508
spectrum, 509

Bethe, H., 442
Bethe–Bloch formula, 444
Bevington, P. R., 307
Beyer, R. T., 371, 379
Bianchi, A. M., 328, 329
Bidomain model, 200, 201, 205, 208, 233
Bieber, M. T., 113, 115
Biersack, J. P., 439, 442, 445, 446, 448
Bifocal lenses, 412
Bifurcation, 282

diagram, 285
Bilderback D., 115
Bilinear interpolation, 360
Bilirubin, 400
Binding energy

electronic, 507
nuclear, 505
per nucleon, 505

Binkert, C. A., 379
Binomial probability distribution, 55, 106,

587
Bioheat equation, 404
Biomagnetism, 213
Biot-Savart law, 216

and Ampere’s law, 232
and magnetic field around an axon, 219
current in, 218

Bipolar electrode, 203
Birch, R., 463
Bird, R. B., 94
Birds, 229
Birefringence, 393
Births, 341

spontaneous, 313, 314
Bistable systems, 298
Blackbody, 395
Blackbody radiation

and heat loss, 398
vs. frequency, 397
vs. wavelength, 396

Blackman, R. B., 314
Blackman-Tukey method, 329
Blagoev, K. B., 3
Blair, D. F., 101, 115
Blakemore, N., 228
Blakemore, R. P., 228
Bland, E. F., 39, 51
Bloch equations, 539
Bloch, F., 442, 539
Blood flow

pulmonary artery, 316
Blood pressure, 269
Blood-brain barrier, 123, 519
Blount, W. P., 11
Blue (color), 415
Blume, S., 399, 422
Boas, D. A., 422
Boccara, A. C., 423
Bockris, J. O’M., 247
Bodurka, J., 557
Bohr, N., 383, 442
Boice, J. D., 490
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Bolch, W. E., 511, 532
BOLD (Blood Oxygen Level Dependent),

543, 557
Boltzmann factor, 58, 62–65, 67, 89, 239, 395,

537
Boltzmann’s constant, 61
Bone scan, 521
Boone, J. M., 438
Born charging energy, 151, 247
Born, C. G., 488
Boron neutron capture therapy (BNCT), 489
Bouma, B. E., 422, 423
Boundary layer, 23
Boundary-element method, 200
Bourland, J. D., 202, 555
Boyd, I. A., 597
Bracewell, R. N., 315, 321
Brachytherapy, 484, 489, 523

high-dose-rate, 523
Bradshaw, P., 24, 30
Bradycardia, 203
Bragg peak, 489, 499
Bragg rule, 446
Bragg-Gray relationship, 490
Bramson, M. A., 422
Braun, T. J., 289
Breathing

energy loss due to, 65
Bremsstrahlung, 437, 441, 461, 462

energy fluence, 462
Bren, S. P. A., 258
Brenner, D. J., 494
Březina, V., 314
Brezinski, M. E., 392, 422
Brightness contrast, 474
Brill, A. B., 532
Brink, S., 39, 51
Broad, W. J., 478
Broad-beam geometry, 432
Bronzino, J. D., 328, 329
Brooks, A. L., 494, 500
Brooks, R. A., 478, 480
Brown, J. H., 45, 51
Brown, J. H. U., 423
Brown, R., 89, 108
Brown, R. W., 548
Brownian motion, 65, 89, 108, 332
Buchanan, J. W., 533
Buchsbaum, D., 524
Bucky, G., 474
Budd, T., 449
Budinger, T. F., 511, 512, 514, 517, 533
buffer, 110
Bui, T-A., 51
Buildup factor, 454, 515
Buka, R.L., 403, 422
Bulk modulus, 15
Bundle branch block, 198
Bundle of His, 194
Buonocore, M. H., 350, 362
Buoyancy, 15
Burch, W. M., 109
Burnes, J. E., 200
Bystander effect, 483, 507

Cable equation, 156, 159
and ladder attenuator, 179

Calcaneus, 6, 7
Calcium, 295

-induced calcium release, 111
buffer, 110
diffusion, 110
waves, 111

Callaghan, P., 554
Calland, C. H., 126
Calorie, 58, 80

dietary, see Kilocalorie
Calorimetry, 498
Cameron, J. R., 369
Cancer

and power-line-frequency fields, 257
prostate, 557

Candela (unit), 410
Capacitance, 149

concentric cylinders, 176
cylindrical membrane, 182
membrane, 169
resistance and diffusion, 172

Capillary, 2, 21, 110, 121
Capillary blockade, 519
Carbohydrate, 3
11C, 523
14C dating, 532
Carbon dioxide

production, 270
regulation, 271, 273, 275

Carbon monoxide, 79
Carbonyl group, 252
Carcinoma

basal cell, 402, 486
squamous cell, 402

Cardiac arrest, 76
Cardiac cell, 1
Cardiac output, 22
Carlsson, G. A., 431
Caro, C. G., 24, 30
Carr–Purcell (CP) Sequence, 547
Carr–Purcell–Meiboom–Gill (CPMG)

Sequence, 547
Carslaw, H. S., 96, 99, 105, 112, 115
Carson, P. L., 371, 379
Carstensen, E. L., 258
Cartilage

articular, 136
Castelli, W. P., 51
Catalyst, 79
Cataracts, 118, 480
Catfish, 256
Catheter, 399
Cathode, 202

virtual, 203
“dog bone”, 205

Cathode-break excitation, 210
Cathode-ray tube, 213
Cavitation, 375
Cavity radiation, see Blackbody radiation
Cebeci, T., 24, 30
Cell

eukaryotic, 2
membrane, 2
producing or absorbing a substance, 101

prokaryotic, 2
size, 2
sorting, 236

Cell culture, 480
Cell survival

fractionation curve, 482
Cellular automata, 291, 298
Center of gravity, 4
Center of mass, 385
Central slice theorem, 351
Centrifuge, 27, 28, 79
Centripetal acceleration, 27, 215
Cerebral cortex, 223
Cerutti, S., 328, 329
Cesium iodide, 470
Chamberlain, J. M., 422, 423
Chance, B., 389, 392, 422, 423
Chandler, W. K., 263
Chang, W., 422
Channel

selectivity, 252
Channelopathies, 250
Channels

calcium, 250
chloride, 251
delayed rectifier, 250
ion, 143
potassium, 250
sodium, 250
two-state model, 252

Chaos, 335
deterministic, 279, 285
in heart cells, 291

Chaotic behavior, 284
Characteristic x rays, 461
Charcoal, activated, 48
Charge

free and bound, 150
Charge distribution

cylindrically symmetric, 145
line, 145
on cell membrane, 147
plane sheet, 145
point, 145
spherically symmetric, 145

Charge inversion, 245
Charge screening, 426
Charged-particle equilibrium, 453, 464
Charman, W. N., 413, 422
Chase, M., 527
Chavez, A. E., 438
Cheeseman, J., 403, 422
Chemical dosimeter, 469
Chemical potential, 66, 92, 120, 121

ideal gas, 67
solute, 67, 73
water, 73

Chemical shift, 555, 562
images, 555

Chemostat, 40
Chemotaxis, 98, 101
Chemotherapy, 46
Chen, J., 422
Chen, W., 557
Cherry, S. R., 517, 520, 522, 523, 531
Cheyne–Stokes respiration, 289
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Chick, W. L., 295
Chittka, L., 422
Cho, Z.-H., 351, 357, 362, 548
Cholesterol

Raman spectrum, 393
Christian, P., 523, 532
Chromatic aberration, 412
Chromosome, 481, 482
Chronaxie, 179, 202
Chronic granulocytic leukemia, 290
CIE, 401, 409
Cilia, 370
Circadian rhythm, 341
Circulation, 20, 294
Circulatory system, 20
Clark, J., 190–192, 200, 208, 220
Clark, V. A., 39, 51
Clarke, J., 230
Classical electron radius, 430, 443
Clausius-Clapeyron equation, 83
Clearance, 40, 293, 404
Clement, G. T., 375, 379
Clostridium, 153
Cloud chamber, 449
Cochlea, 369
Cochlear duct, 370
Cochlear implant, 202, 370
Cochran, W. W., 229
Coffey, J. L., 516
Cohen, A., 329
Cohen, B. L., 494, 495, 526
Cohen, D., 228
Cohen, L. G., 225
Coherence, 393
Coherent scattering, 427, 431
Cole C., 422
Collagen, 136
Collective dose, 493
Collett B., 115
Collimator, 471

gamma camera, 520, 530
multi-leaf, 487

Collision kerma, 464
Collision time, 90
Color blindness, 76, 415
Color flow imaging, 375
Color vision, 415
Colyvan, M., 297
Commission Internationale de l’Eclairage, see

CIE
Common bundle, 194
Compass

in birds, 229
Competitive binding assay, 503
Complex exponential, 311
Complex notation, 322
Complex numbers, 311
Compound interest, 33
Compound microscope, 420
Compounds and mixtures, 434
Compressibility, 15, 364
Compressive strength, 13
Compton scattering, 427, 428, 466

cross section, 430
differential cross section, 430

Compton wavelength, 429

Computed Radiography (CR), 470, 474
Computed tomography

spiral, 478
Concentration

and potential difference, 240
Concentration work, 67
Conductance, 151
Conduction system, 194, 203
Conduction velocity

myelinated, 167, 169
unmyelinated, 167, 168

Conductivity
anisotropic, 200, 201
interior and exterior, 189
non-uniform, 200
tensor, 200

Conductor, 148
Cones (retinal), 409, 413
Conformal radiation therapy

three-dimensional, 487
Congestive heart failure, 38
Conjunctivitis, 403
Constant-field model, 248
Contact lens, 113, 403
Continuity equation, 86

differential form, 88
integral form, 87
with creation or destruction, 89

Continuous slowing down approximation, 447
Contrast

brightness, 474
exposure, 474
film, 465
noise brightness, 475
noise exposure, 475

Contrast agent, 472
Control system, 278
Convection coefficient, 80
Conversion factors, 610
Convolution, 346

theorem, 346, 348
Cook, G., 82, 83
Cook, G. J. R., 557
Cooley, J. W., 315
Coordinate system

rotating, 539
64Cu, 48
Cormack, A. M., 478
Cornea, 113, 403, 411
Cornsweet, T. N., 413, 422
Correlation function, 317
Cortisol, 340
Cosgrove, D. O., 379
Coster-Kronig transition, 435, 507
Coulomb, 143
Coulomb’s Law, 143
Coulter counter, 177
Coulter, W. H., 177
Countercurrent exchange

and heat loss, 138
Countercurrent transport, 127
Coupling medium, 377
Couriel D. R., 422
Coursey, B. M., 524, 532
Covino, B. G., 169
Cowen, A. R., 470

Cox, J. D., 486
Crank, J., 96, 105, 115
Crank-Nicolson method, 111
Creatinine clearance test, 47
Cristy, M., 532
Critical damping, 582
Cross correlation

and signal averaging, 328
Cross product, 6
Cross section, 90, 388

differential, 388
energy transfer, 431
scattering, 388
total, 388

Cross-correlation function, 318
Crouzy, S. C., 255
Crowder, S. W., 142
Crowe, E., 511, 515, 533
Crowell, J. W., 289
CSDA, 447
CT, 478
Cuevas, J. M., 521
Cumulated activity, 511, 512
Cumulated mean activity per unit mass, 514
Curie (unit), 512
Curie temperature, 228
Curl, 224
Curl in different coordinate systems, 601
Curran, P. F., 126
Current

bound, 227
electric, 151
free, 227
total, 17
volume, 17, 85

Current density, 17
electric, 151

Current dipole, 187
electric and magnetic measurements

compared, 222
in spherical conductor, 233

Current dipole moment, 188
of the heart, 195

Current source, 186
potential due to, 186

Cyan, 415
Cyclic GMP, 415
Cyclotron, 215
Cyclotron frequency, 215
Cylindrical coordinates, 601
Cystic fibrosis, 589
Cytokinesis, 481

da Luz, L. C. Q. P., 511, 533
da Silva, F. C., 515, 533
Damage, see Radiation damage
Dasari, R. R., 422
Data

surrogate, 336, 337
Davis, L., 160
de Araujo, F. F., 229
de Boer J. F., 422
de Boer, J. F., 393
de Broglie, L., 383
de Jong, N., 379
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Dead-time correction, 530
Death rate, 38, 41, 46, 47
DeBlois, R. W., 177
Debye (unit), 175
Debye length, 242
Debye–Hückel model, 244
Decay

constant, 35
exponential, 35
Multiple paths, 41
rate, 35

variable, 38
with constant input, 41

Decibel, 331, 368
Deckers, R., 379
Deexcitation

atomic, 434
DeFelice, L. J., 254, 327
Deffeyes, K. S., 49, 51, 229
Defibrillation, 76
Defibrillator, 202, 204
Deformation, 12
Degeneracy, 63
Degrees of freedom, 57, 59, 280
Delaney, C., 352, 362
Delaney, T. F., 489
Delannoy, J., 558
Delay-differential equation, 288, 290
Delayed rectifier channels, 250
Delmar, M., 193
Delta function, 323
Delta rays, 449
Deltoid muscle, 25
Demand pacemaker, 209
Demir, S. S., 165, 172
den Boer, J. A., 548, 553
Dendrites, 141

in cerebral cortex, 223
Denier van der Gon, J. J., 203
Denk, W., 256
Denny, M. W., 15, 30, 65, 80, 82, 83, 113–115,

366, 367, 371, 379, 418, 421, 422
Density

current, 17
optical, 465

Density effect, 444, 446
Density gradient separation, 27
Density of states factor, 63
Density-weighted image, 554
Deoxyhemoglobin, 543
Deoxyribonucleic acid (DNA), 3, 25
Department of Energy, 494
Dephasing, 539, 544
Depolarization, 142
Depression, 226
Depth of field, 412
Derivative control, 279
Derivative, partial, 61
Dermis, 402
Detecting weak magnetic fields, 229
Detective quantum efficiency (DQE), 476
Detector

thin-film transistor, 474
Deterministic effects, 480
Detriment, 490, 491
Deuteron, 506

DeVita, V. T., 485
Dewaraja, Y. K., 515, 532
DeWerd, L. A., 471
Dextrose, 136
Diabetes, 295
Diabetes insipidus, 118
Dialysis, 123

renal, 126
Diamagnetism, 227
Diamantopoulos, L., 423
Diastole, 20
Diastolic interval, 298
Diatomic molecule, 385
DiChiro, G., 478, 480
Dichromate vision, 415
Dickerson, R. H., 82, 83
Dielectric, 149

saturation, 245
Dielectric constant, 150

lipid, 151
lipid bilayer, 169
water, 151

Diem, M., 393, 422
Differential equation, 35

characteristic equation, 581
homogeneous and inhomogeneous, 581
linear, 581
nonlinear, 279
second order, 582

Diffey, B. L., 401, 403, 422
Diffusion, 89, 125, 563

and capacitance, 172
and chemical reaction, 111
and drift, 102
and electrotonus, 179
anisotropic, 110
as random walk, 106
between concentric spheres, 173
between two spheres, 174
circular disk, 174
constant, 92
in one dimension, 98
in three dimensions, 98, 107
in two dimensions, 98, 106
of photons, 390
of spins in MRI, 558
self, 94
sphere to infinity, 173
tensor, 110, 558
time-dependent, 391
to a cell producing or absorbing a

substance, 101
to or from a disk, 99, 112
to or from a spherical cell, 98
trace (of tensor), 558, 564
with a buffer, 110

Diffusion constant
and viscosity, 94
determination of, 105
effective, 111
photon, 390
vs. molecular weight, 94

Diffusion equation, 95
general solution, 104

DiFrancesco, D., 172
Digital detector, 470

storage phosphor, 470
thin-film transistor, 470

Digital subtraction angiography, 476
Dimensional analysis, 30
Dimethylchlortetracycline, 402
Diopter (unit), 412
Dipole

energy in a magnetic field, 536
magnetic, 535

Dipole moment
electric, 175, 245

Dirac, P. A. M., 323
Direct Radiography (DR), 470, 474
Discrete Fourier transform, 311
Disease, incidence and prevalence, 47
Dispersion, 586
Displacement, 3, 569
Displacement current, 217
Ditto, W. L., 291
Diuresis, 123
Divergence, 88
Divergence in different coordinate systems,

601
Divergence theorem, 108
Diving, 15
DNA, 78, 481, 483, 507
Dobson unit, 401
Dog bone, 205
Dogfish, 256
Doi, K., 470, 474
Domains, 227
Donnan equilibrium, 239
Doppler effect, 374, 393
Dore, C. J., 379
dos Santos, D. S., 533
Dosdall, D. J., 202
Dose

absorbed, 452
effective, 491
entrance, 465
equivalent, 491
exit, 465

Dose equivalent, 490
Dose factor, 511
Dose fractions, 484
Dose rate

in photochemistry, 419
Doss, M., 494
Dot product, 12
Doubling time, 36
Douglas, J. G., 489
Doyle, D. A., 252
Drexler, W., 422
Drift, 89

and diffusion, 102
Driving force, 92, 94
Driving pressure, 121, 124
Droplet keratopathy, 403
Drosophilia melanogaster, 252
Dubois, A., 423
Ducros M. G., 422
Duderstadt, J. J., 390, 422
Dummer R., 421
Duncan, W., 489
Durbin, R. P., 133
Duty cycle, 561
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Dye
voltage-sensitive, 205

Dyer, A. G., 422
Dynamic pressure, 19
Dynamical system, 280
Dysplasia, 401

e, definition of, 34
Eames, C. and R., 31
Eames, M., 379
Ear, 369

canal, 369
drum, 369
external, middle, inner, 369
inner, 256
mechanoreceptors, 256
ossicles, 369
sensitivity, 368

Early-responding tissue, 483, 484
Echo planar imaging (EPI), 553
Eckerman, K. F., 511, 532
Eddy currents, 225
Edema, 122

and osmotic pressure, 122
cerebral, 123, 136
pulmonary, 125

Eder, 237
Eder, S. H. K., 229
Edge spread function, 349
EEG, see Electroencephalogram
Effective dose, 491
Efimov, I. R., 205
Ehman, R. L., 556
Einstein (unit), 417
Einthoven’s triangle, 197
Eisberg, R., 227, 230, 383, 386, 387, 422, 505,

508, 509
Eisenman, G., 115
Ejection fraction, 521
El-Samad, H., 279
Elastic recoil pressure, 20
Elastography, 375, 399, 556
Electric dipole moment, 245
Electric displacement, 217
Electric field

definition, 144
Electrical potential, 147
Electrical stimulation, 202
Electrocardiogram, 185

and solid angle theorem, 207
leads, 196
left ventricular hypertrophy, 198
normal, 198
R-R interval, 208
right bundle branch block, 199
right ventricular hypertrophy, 198

Electrode
anodal, 203, 209
cathodic, 203, 209
pacing, 203, 209
spherical, 177

Electrode heating
during magnetic stimulation, 234
in a changing magnetic field, 234

Electroencephalogram, 185, 205, 210, 211,
223, 329

average reference recording, 205
Electromagnetic spectrum, 382
Electromagnetic wave, 382
Electromotive force, 225
Electromyogram, 185, 202, 329
Electron

Auger, 435
classical radius, 430
for radiation therapy, 488
rest energy, 432
rest mass, 432

Electron capture, 509
Electron microscope, 383
Electron volt (unit), 62, 151, 382
Electroporation, 257
Electrosurgery, 177
Electrotonus, 159, 167
Elementary charge, 63
Elias, W. J., 379
Elliott, D. M., 28, 30
Ellis, S., 375, 379
Elliston, C. D., 494
Elson, H. R., 488
Embedding, 335

dimension, 335
time lag, 335

Emission
spontaneous and stimulated, 542

Emissivity, 395, 398
of skin, 398

Emmer, M., 379
Emmetropia, 412
End-plate potential, 597
Endo, A., 532
Endocardial and epicardial membrane

currents, 193
Endoplasmic reticulum, 111
Energy

equipartition theorem, 65
fluence, 404, 406, 407
fluence rate, 406, 408
imparted, 450, 452
ionization, 384, 426
kinetic, 11
lost and imparted, 447
radiant, 407
transferred, 450

net, 452
Energy exchange, 60
Energy levels, 57, 60, 383

atomic electron, 425
band, 395
hydrogen atom, 383
rotational, 385
splitting, 395
vibrational, 386

Energy spectrum
of a pulse, 324
of exponential pulse, 325

Energy-momentum relationship
relativistic, 429

Engdahl, J. C., 521, 533
Enquist, B. J., 51
Ensemble, 54

Ensemble and time averages, 60
Ensemble average, 56
Enthalpy, 73
Entrainment, 282, 296
Entropy, 62, 68

ideal gas, 81
of mixing, 72

Entry region, 24
Enzyme, 79
Eosinophilic granuloma, 521
Epicardium, 200
Epidemiological studies, 257
Epidermis, 401
Epiphyses, 521
Epiphysis, 8–10, 521
Epstein, A. E., 291, 292
Equal anisotropy ratios, 201
Equilibrium

approach to, 273
charged-particle, 453

transient, 453
diffusive, 66
in volume exchange, 68
particle, 66
radiation, 452
rotational, 4
thermal, 60, 66
translational, 4

Equilibrium absorbed dose constant, 511, 514
Equilibrium and steady state

distinction, 59
Equilibrium constant, 71
Equilibrium state, 57
Equipartition of energy, 65
Equivalent dose, 491
Erector spinae muscle, 26
Ergodic hypothesis, 60
Erhardt, J. C., 521
Error

mean square, 304
Error function, 105, 160, 179, 202, 209
Erythema, 401, 419
Erythrocyte, 2, 123
Escape peak, 466
Escherichia coli, 527
Escherichia coli, 2, 85, 101
Esenaliev, R. O., 393, 422
Essenpreis, M., 422
Ethanol, 48
Eukaryotes, 2
Eustachian tube, 369
Evans, R. D., 508, 532
Even function, 308
Evoked response, 205, 224, 328
Excess absolute risk, 493
Excess relative risk, 493
Exchange term, 446
Excitable media, 298

waves in, 290
Exit dose, 465
Exitance, 406, 408
Expectation value, 390
Exponent, 573
Exponential

complex, 311
decay, 35
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function, 34
growth, 33

Exponentials, fitting, 42
Exposure, 464
Exposure contrast, 474
Extensive variables, 69
Exterior potential

and electrocardiogram, 188
and solid angle, 189
arbitrary pulse, 190
cardiac depolarization, 187
from action potential, 189
from depolarization, 188
general case far from axon, 190
nerve impulse, 187
ratio to interior, 188

Extinction coefficient, 417
Extracellular fluid, 142
Extracorporeal photopheresis, 404
Eye

emmetropic (normal), 412
human, 410
hypermetropic (farsighted), 412
insect, 410
myopic (nearsighted), 412
resolution, 413
under water, 421

Factorial, 587
Faez, T., 371, 379
Fainting, 203
Falen, S. W., 517, 520, 533
False negative, 587, 605
False positive, 587, 605
Far field, 372
Farad (unit), 149
Faraday constant, 64
Faraday induction law, 224, 544
Faraday, M., 224
Farmer, J., 392, 422
Farrell, T. J., 422
Fast Fourier Transform (FFT), 315, 341
Fatt, I., 113, 115
Fédération CECOS, 76
Feedback

carbon dioxide regulation, 270
loop, 269
negative, 269
one time constant, 273
positive, 269
steady-state conditions, 270
summary, 288
time constant and fixed delay, 287
two time constants, 276

Feinstein, A. R., 588
Feld, M. S., 422
Femur, 8
Feng, T.-C., 422
Fenster, A., 371, 379
Fercher, A. F., 392, 422
Ferrara J. L. M., 422
Ferrimagnetism, 227
Ferromagnetism, 227
Ferrous sulfate, 469
Feynman’s ratchet, 337

Feynman, R., 337
Fibrillation

ventricular, 204
Fibula, 6, 7
Fick tracer method, 108
Fick’s first law, 92
Fick’s second law, 95, 104, 242, 390, 404
Field of view, 349
Film

as x-ray detector, 465
gamma, 465
speed, 465

Film-screen combination, 474
Filtration

of x-rays, 471
Filtration coefficient, 123
Finegold, L., 228
Finlay, J. C., 399, 423
First law of thermodynamics, 57
Fish

breathing, 80
gills, 128

Fisher, H. L., 516, 533
Fishman, H. M., 256, 266
Fishman, R. A., 123
Fission

nuclear, 506, 519
Fit

linear, 304
polynomial, 305

Fitzgerald, A. J., 394, 422, 423
FitzHugh-Nagumo model, 296
Fitzmaurice, M., 422
Fixed point

stable, 276
unstable, 276

Flannery, B. P., 84, 115, 362
Fletcher D. A., 115
Fletcher, D. A., 85
Flotte, T., 422
Flounder

ocean, 256
Flow

laminar, 15
Poiseuille, 17
total, 17

Flow (mathematical), one dimensional, 276
Flow effects (in MRI), 555
Flow rate, 85
Fluence

energy, 404, 436
particle, 85, 390, 436
photon, 390
volume, 85

Fluence rate, 85, 390
volume, 17, 123

Fluid
Newtonian, 16, 91

Fluorescein, 402
Fluorescence, 205, 386, 427, 435
Fluorescence yield, 435, 437
18F, 215, 510, 523
19F, 557
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Goldman–Hodgkin–Katz equations, 249
Gompertz mortality function, 47
Goodsell, D. S., 3, 30
Gorby, Y., 228
Gou, S-y., 101, 115
Gould, J. L., 229
Gouy-Chapman model, 241
Gradient, 92, 148

diffusion, 558
magnetic, 549
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Impedance

acoustic, 366
characteristic, 367
reactive component, 367
transformation in middle ear, 369

Impulse approximation, 440, 443
Impulse function, 323
Impulse response, 331, 345
Incidence, 402
Incidence of disease, 47
Incoherent scattering, 427, 431
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Nernst equation, 64, 155, 239

sodium, 161
Nernst potential

calcium, 178
potassium, 162
sodium, 162

Nernst-Planck equation, 247
Nerve cell, 79
Nerves

Sympathetic and parasympathetic, 194
Nesson, M. H., 260
Neuromagnetic current probe, 229
Neurotransmitter, 143
Neutrino, 509
Neutron therapy, 489
Newhauser, W. D., 488, 489
Newman D., 115
Newman, E. B., 369, 379
Newton (unit), 4
Newton’s law of cooling, 80
Newton’s second law, 11, 53
Newton’s third law, 12
Newton, I., 381
Newtonian fluid, 16, 24, 91
Nicholls, A., 243
Nicholls, J. G., 141
Nichols, C. G., 264
Nickell, S., 389, 422
Nielsen, P., 228
Nioka, S., 423
NIST, 433, 438, 448, 465
13N, 523
Nitrogen narcosis, 15
No-slip boundary condition, 15
Noble, D., 172
Nodal escape beats, 194
Node of Ranvier, 142, 167
Noise, 80, 254, 326, 327

1/f, 335
autocorrelation function, 334
Johnson, 255, 332, 333
pink, 335
power spectrum, 333
quantum, 475
shot, 254, 332, 475
source, 332
white, 333

Noise brightness contrast, 475
Noise equivalent quanta, 476
Noise exposure contrast, 475
Nolte, J., 143
Noninvasive electrocardiographic imaging,

200
Nonlinear least squares, 306
Nonmelanoma skin cancer (NMSC), 402
Norepinephrine, 194
Normal distribution, 592
Nuclear force, 505
Nuclear scattering, 445
Nunez, P. L., 205
Nutation, 541, 549
Nyenhuis, J. A., 555
Nyquist frequency, 329
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Nyquist sampling criterion, 309
Nyquist, H., 333

O’Brien, D., 44, 51
O’Reardon, J. P., 226
O’Sullivan N., 422
O’Sullivan, N., 403
OATZ, 228
Oberly, L. W., 521
Ocean flounder, 256
Odd function, 308
Oellrich, R. G., 400, 422
Oersted, H. C., 213
Ogawa, S., 557
Ohm (unit), 151
Ohm’s law, 151, 190, 199

and current density, 152
anisotropic medium, 200

Oldendorf, W., 478
OLINDA/EXM, 511, 515
One-dimensional flow (mathematical), 276
Open-loop gain, 272
Operating point, 271

approach to, 273
Optical coherence microscopy, 393
Optical coherence tomography (OCT), 392
Optical density, 465

and exposure, 497
Optical mapping, 205
Optical transfer function, 348
Orbital magnetic moment, 227
Orbital quantum number, 425
Orear, J., 306
Organelle, 2
Orthogonality relations

for trigonometric functions, 315
Orton, C., 379, 485, 494
Osmolality, 121
Osmolarity, 121
Osmoreceptors, 294
Osmosis

in ideal gas, 118
in liquid, 121, 123
reverse, 125

Osmotic diuresis, 123
Osmotic flow

difference from diffusion, 117
Osmotic pressure

and capillaries, 121
and chemical potential, 120
and driving pressure, 121
and interstitial fluid, 121
in ideal gas, 120
in liquid, 121

Ossicles, 369
Osteoarthritis, 136, 263
Othmer, J. G., 111, 115
Oudit, G. Y., 194
Oval window, 369
Øverbø, I., 428
Oxic-anoxic transition zone, 228
15O, 523
18O, 215
Oxygen consumption, 270
Oxyhemoglobin, 543

Ozone, 400

P wave, 195, 203
31P, 555
Pacemaker, 202, 203, 282
Pacing electrode, 203
Packard, G. C., 308
Page, C. H., 225
Paine, P. L., 91, 115
Pair production, 428, 432

free electron, 432
Pallotta, B. S., 251
Pancreas, 295
Panfilov, A. V., 291
Pankhurst, Q. A., 229
Paramagnetism, 227
Paramecium, 1
Parasympathetic nerves, 194
Parathyroid hormone, 295
Parisi, A. V., 422
Parisi, M., 118
Parkinson, J. S., 101, 115
Parseval’s theorem, 324
Partial derivative, 61, 607

order of differentiation, 608
Particle exchange

equilibrium, 66
Particular solution, 584
Pascal (unit), 13
Patch-clamp recording, 251
Patterson, J. C., 523, 533
Patterson, M. S., 391, 399, 422, 423
Patton, H. D., 21, 31, 123, 128, 141, 143, 155,

271
Pauli exclusion principle, 384, 446
Pauli promotion, 446
Payandeh, J., 252
Payne, J. T., 357
Pearle P., 115
Pearle, P., 108
Peckham, P. H., 202
Péclet number, 113
Pecora, R., 393, 422
Pedley, T. J., 30
Peng, Q., 417, 422
Perfumes, 402
Perfusion, 404
Period doubling, 285

in heart cells, 291
Periodogram, 329
Perkins, D. H., 448, 449
Permeability

hydraulic, 123
magnetic, 227
membrane, 125

Perrin, J., 89, 108, 115
PET, 557
Peters, R. H., 45, 51
Petridou, N., 557
Phagocytosis, 519
Phantom, 515
Phase, 308

resetting, 280–282
singularity, 299
space, 277

Phase encoding, 548, 551
Phase transfer function, 348
Phased array, 373
Phelps, M. E., 517, 520, 522, 523, 531, 532
Phenobarbital, 48
Phenothiazines, 402
Philip, J., 422
Phlebotomy, 125
Phosphate, 293
Phosphorescence, 387
Photochemotherapy, 404
Photodynamic therapy, 399
Photoelectric effect, 426, 428
Photographic emulsion, 448
Photometry, 405
Photomultiplier tube, 520
Photon, 382

attenuation coefficient, 433
characteristic, 435
diffusion constant, 390
exitance, 406
fluence, 406
fluence rate, 406
fluorescence, 435
flux, 406
flux exposure, 406
flux intensity, 406
flux irradiance, 406
flux radiance, 406
secondary, 436, 437, 454

Photon absorption, 387
Photon scattering, 387
Photons, 257
Photopheresis, 404
Photopic vision, 409
Photosynthesis, 72, 314

in aquatic plants, 418
Physiological recruitment, 209
π, 541
π/2, 544
Pickard, W. F., 256
Piezoelectric transducer, 371
Pigeon, 229, 235
Pillsbury, D. M., 401
Pinna, 369
Pirenne, M. H., 413, 414, 422
Pisano, E. D., 477
Pituitary, 270, 292
Planck’s constant, 230, 257, 382
Planck, M., 396
Plane wave, 363, 409
Plank, G., 205
Plaque, 399

vulnerable, 399
Plasma, 40
Plasma membrane, 239
Plasmon, 442
Plasticity, 205
Platzman, R. L., 464
Plonsey, R., 21, 160, 161, 167, 185, 190–192,

200, 202, 208, 220
Plug flow, 556
Pneumothorax, 472
Pogue, B. W., 391, 422
Poikilotherms, 45
Poincaré, J. H., 279
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Point charge, 145
Point-spread function, 347, 413

for an ideal imaging system, 347
Poise (unit of viscosity), 16
Poiseuille flow, 17, 21, 128

departures from, 22
Poiseuille, J. L. M., 17
Poisson distribution, 389, 414, 595

and shot noise, 255
Poisson equation, 242
Poisson statistics

in cancer incidence, 493
in cell survival, 485
in image, 475
in photon fluence, 480
in radiation damage, 482

Poisson’s ratio, 28
Poisson-Boltzmann equation, 242

analytic solution, 263
linearized, 242

Polarization, 394
electric, 246
of dielectric, 149

Polarized light, 393
Polk, C., 257, 259–261
Polynomial

regression, 306
Population inversion, 417
Positron, 428, 432, 438

decay, 508
Positron Emission Tomography (PET), 215,

523
Postulates of statistical mechanics, 59
Potassium channels

shaker, 254
slow, 193

Potassium conductance, 163
Potassium gate, 164
Potassium Nernst potential, 162
Potential

electric, 147
outside axon, 185
transmembrane, 205

Potential Alpha Energy Concentration (PAEC)
(unit), 526

Potential difference, 148
and ion concentration, 240

Potential energy, 147
Powell, C. F., 448, 449
Power, 11, 153
Power law, 43
Power spectral density (PSD), 328

Blackman-Tukey method, 329
magnetic noise, 334
periodogram, 329

Power spectrum, 317
Power, average, 324
Prausnitz, J. M., 72, 83, 91, 115
Precession, 538
Precordial leads, 197
Predator-prey problem, 49
Prephasing lobe, 562
Press, W. H., 76, 84, 111, 115, 191, 211, 219,

220, 303, 307, 314, 315, 328, 329, 360,
362

Pressure, 14

diastolic, 20
dynamic, 19
systolic, 20

Preston, G. M., 118
Prevalence of disease, 47
Prickle layer, 401
Primary colors, 415
Principal quantum number, 425
Probability, 54

binomial, 55
Product

cross, 6
dot, 12
scalar, 12
vector, 6

Projection, 522
Projection reconstruction, 548, 551
Projection theorem, 351
Projections, 351
Prokaryotes, 2
Proportional control, 279
Proportional counter, 468
Protein, 2
Proton therapy, 488
Protoplast, 2
Protozoans, 1
PRU (peripheral resistance unit), 21
Pryde, J. A., 91, 115
Pseudovector, 6
Psoralen, 404
Psoriasis, 403
Pterygium, 403
Puliafito, C. A., 422
Pulmonary embolus, 517
Pulse echo techniques, 373
Pulse oximeter, 392
Pupil, 411
Pupil size, 289
Purcell, E. M., 23, 31, 101, 114, 115, 213,

218, 539
Purkinje fibers, 194, 282
PUVA, 404
Pyramidal cells, 233
Pyroelectric crystal, 399

Q10, 79, 164, 165
QRS wave, 195, 203
Quadrupole

magnetic, 535
Quality factor, 490
Quantum mottle, 475
Quantum number, 57
Quantum numbers

atomic electrons, 383
rotational, 385
vibrational, 386

Quasiperiodicity, 286
Quatrefoil pattern, 222
Québec, 495
Quinine water, 402

R project, 307
RADAR (Radiation Group Assessment

Resource), 511, 515

Radial isochron clock, 3, 281, 296
Radian, 567
Radiance, 406–408
Radiant

energy, 406, 407
exposure, 406
flux, 406
intensity, 406, 407
power, 406, 407

Radiation
biological effects, 480
electromagnetic, 257
natural background, 492
risk, 490
weighting factor, 490

Radiation chemical yield, 463
Radiation damage

type A, 482, 484
type B, 482, 484

Radiation equilibrium, 452
Radiation risk model

hormesis, 494
linear no-threshold, 493
threshold, 494

Radiation therapy, 486
conformal, 487
electron, 488
intensity-modulated, 487

Radiation yield, 448, 461, 462
Radiative transition, 435
Radiobiology, 480
Radiochromic film, 469
Radiograph, 470
Radiographic signal, 475
Radioimmunoassay, 503
Radioimmunotherapy, 524
Radiometry, 405
Radiopharmaceuticals, 517
Radiotherapy

internal, 524
226Ra, 524
Radius

atomic, 504
nuclear, 504

Radon, 492, 495
222Rn, 524, 525
Radon transformation, 353
Railroad tracks, 46
Raizner, A. E., 524, 533
Ramachandran, G. N., 357, 362
Raman scattering, 393
Raman spectroscopy, 399
Raman, C. V., 393
Random walk, 106
Range, 439, 447
Ranvier

node of, 142
Rao, D. V., 533
Ratchet and pawl, 337
Ratliff, S. T., 485
Rattay, F., 209
Rayleigh, 296
Rayleigh scattering, 431
RBE, 490
Reactance, 367
Reaction-diffusion process, 111
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Receptor
mechanical, 142
stretch, 141
temperature, 141

Receptor field, 413
Reconstruction from projections

filtered back projections, 352
Fourier transform, 351

Recruitment
physiological, 209

Rectifier channels, 248
Red (color), 415
Red blood cell, 2, 25, 123
Reddy, A. K. N., 247
Reduced mass, 385
Reduced scattering coefficient, 389
Reentrant circuit, 194, 204, 207
Reference action spectrum, 401
Reflection, 411

total internal, 421
Reflection at a boundary, 367
Reflection coefficient, 124, 125, 367

pore model, 133
Refraction, 411
Refractory period, 165, 181, 194
Regression

linear, 304
polynomial, 306

Rehm, K., 523, 524, 533
Reich, P., 50, 51
Reif, F., 54, 57, 59, 60, 68, 72, 84, 90, 115,

385, 587
Reinisch W., 422
Relative biological effectiveness, 490
Relative risk, 257
Relativity

special, see Special relativity
Relaxation oscillator, 194
Relaxation time

experimental, 544
longitudinal, 538, 543
non-recoverable, 544
spin-lattice, see Relaxation time,

longitudinal
spin-spin, see Relaxation time, transverse
thermal, 405
transverse, 538, 544

Rem (unit), 490
Remanent magnetic field, 227
Renal arteries, 479
Renal dialysis, 123
Renal tubules, 128
Repeller, 276
Repolarization, 142, 194
Reservoir, 62, 70
Residence time, 512
Residuals, 304
Resistance, 151

parallel and series, 154
vascular, 21

Resistive pulse technique, 177
Resnick, R., 227, 230, 383, 386, 387, 398,

505, 508, 509, 532
Resolution

and spatial frequency, 349
Resonance, 584

Respiration of glucose, 72
Response

impulse, 345
Rest energy, 504
Rest mass, 429
Restenosis, 524
Resting potential, 142

atrial and ventricular cells, 193
Restitution, 298
Restricted linear collision stopping power, 447
Retina, 403, 411
Reverberation echo, 378
Reversal potential, 249, 250, 264
Reverse osmosis, 125
Reversible process, 69
Reynolds number, 22, 30, 49
Rheobase, 179, 202
Rieke, F., 415, 422
Rieke, V., 379
Rigel D., 422
Riggs, D. S., 42, 51, 270, 293, 295
Right ventricular hypertrophy, 198
Rinaldo, A., 51
Ripplinger, C. M., 205
Risk

excess, 493
models, 493
relative, 257

Ritenour, E. R., 363, 373, 376, 379, 471, 474,
477, 479

Roberson, P., 532
Robinson, D. K., 307
Robitaille, P.-M., 545
Rodieck, R. W., 410, 413, 423
Rodriguez, J., 352, 362
Rods (retinal), 409, 413
Roentgen (unit), 464, 497
Roentgen, W., 465
Rohs, R., 243
Roll-off, 331
Rollins, A. M., 394
Romberg integration, 191, 220
Romer, R. H., 46, 225
Rook A. H., 422
Rose, A., 415, 423
Rosenbaum, D. S., 205
Rossi, S., 225
Rossi-Fanelli, A., 81
Rotating coordinate system, 539
Rotation matrices, 540, 560
Roth, B. J., 201, 205, 210, 219, 223, 226, 229,

232–234, 236, 418, 423
Rottenberg, D. A., 533
Round window, 370
Rowlands, J. A., 470
Rudy, Y., 165, 193, 200
Ruohonen, J., 226
Rushton, W. A. H., 160, 167, 179
Ruska, E., 383
Ruth, T. J., 503, 533
Rutherford, E., 527
RVH, see Right ventricular hypertrophy
Rydberg constant, 417
Ryman, J. C., 532

SA node, 172, 194, 203
Sacks, O., 370, 379
Saedi, N., 375, 379
Safety in MRI, 555
Saint-Jalmes, H., 393, 423
Sakitt, B., 415, 423
Sakmann, B., 251
Salmelin, R., 224
Saltatory conduction, 167
Samuels S., 115
Santini, L., 555
Sap flow, 29
SAR, see Specific absorption rate
Sarcoplasmic reticulum, 111
Sarvas, J., 233
Sastry, K. S. R., 507
Sato, S., 236
Saturation, 227
Savage, V. M., 51
Savannah sparrow, 229
Scalar, 570
Scalar product, 12
Scaling, 43
Scattering

coherent, 427, 431
Compton, 427, 428
incoherent, 427, 431
inelastic, 427
nuclear, 445
Raman, 427
Rayleigh, 431
Thomson, 430

Scattering coefficient
reduced, 389

Scattering cross section, see Cross section
Schaefer, D. J., 555
Schaefer-Prokop, C., 470
Schaper, K. A., 533
Scher, A. M., 31, 294
Scherr, P., 91, 115
Schey, H. M., 88, 93, 102, 115, 144, 601
Schiff, G., 379
Schlichting, H., 23, 31
Schlomka, J. P., 472
Schmidt, C. W., 403, 423
Schmidt-Nielsen, K., 50, 51, 128, 138
Schmitt, F., 553
Schmitt, J. M., 392, 423
Schmitt, O. H., 258
Schrödinger equation, 53
Schroeder, D. V., 54, 84, 385, 396, 423
Schroter, S. T., 30
Schueler, B. A., 490, 491
Schultz, J. S., 134
Schulz, R. J., 485
Schuman, J. S., 422
Schwan, H. P., 258
Schwartz, D., 76, 77
Schwarz T., 422
Schwiegerling, J., 422
Scintillation camera, 520
Scintillation detector, 466, 520
Scotopic vision, 409, 413
Scott, A. C., 156, 161
Scott, G. C., 233
Scott, R. L., 72, 83, 91, 115, 121
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Screen, intensifying, 465
Screening

atomic electron (charge), 426
SCUBA, 15
Second law of thermodynamics, 75
Sedimentation velocity, 27
Seed, W. A., 30
Seibert, J. A., 470
Selection rules, 384–386, 461
Self-diffusion, 94
Self-similarity, 286
Seltzer, S. M., 438, 472
Semicircular canals, 369
Semiconductor detector, 469
Semiempirical mass formula, 508
Semilog paper, 36
Semipermeable membrane, 117
Separation, 23
Sequestration, 519
Serruys, P. W., 423
Serway, R. A., 7, 148, 423
Setton, L. A., 30
Sevick, E. M., 391, 423
Seymour, R. S., 45, 51
Sgouros, G., 532
Shadowitz, A., 218
Shafer, K. E., 422
Shaker channels, 252
Shani, G., 469, 470
Shapiro, E. M., 263
Shapiro, L., 101, 115
Shark

and earth’s magnetic field, 231
Shaw, C. D., 277
Shaw, R., 349, 362
Shear modulus, 13
Shear rate, 16
Shear strain, 13
Shear stress, 13
Shear wave, 365
Sheehan, J., 379
Shells

atomic, 426
Sheppard, A. R., 261
Sherwood number, 114
Shlaer, S., 413, 414, 422
Shot noise, 254, 332
Shrier, A., 291
SI system, 1, 226
Sick sinus syndrome, 203, 209
Sidtis, J. J., 533
Siegel, J. A., 524, 533
Siemens (unit), 151
Sievert (unit), 490, 491
Signal, 80, 326

and noise, 327
radiographic, 475

Signal averaging, 328
Signal-to-noise ratio, 476
Sigworth, F. J., 252–255
Silicon, 469
Silver halide, 465
Silver, H. K., 44, 51
Silverstein, M. E., 125
Sinc function, 549
Singh, M., 362, 548

Single-channel recording, 251
Single-photon emission computed

tomography, 521
Sink, 276
Sinoatrial node, see see SA node
Sinogram, 353
Sinus exit block, 209
Skin depth, 234
Skofronick, J. G., 369
Slice selection, 548
Slichter, C. P., 538, 543
Slide projector, 420
Smith, M. A., 422
Smye, S. W., 394, 423
Smythe, W. R., 174
Snell’s law, 411
Snell, J., 379
Sneyd, J., 270, 291
Snow blindness, 403
Snyder, W. S., 511, 515, 516, 533
Sobol, W. T., 471
Söderberg, P. G., 403, 421
Sodium

-potassium pump, 155
Nernst potential, 162

24Na, 509, 510
Sodium gate, 164
Sodium spectral line, 394
Soffer, B. H., 410, 423
Solar constant, 400, 419
Soleus, 6, 7
Solid angle, 189, 389, 568

defined, 567
theorem, 207

Solute, 72, 73
permeability, 125

Solute permeability
pore model, 134

Solute transport, 125, 128
pore model, 133

Solution
ideal, 121

Solvent, 72
Solvent drag, 89, 125

in an electric field, 247
Sonoda, E., 51
Sorenson, J. A., 517, 520, 522, 523, 531, 532
Sorgen, P. L., 193
Sound level measurement

weighting, 369
Source, 276
Space clamp, 161
Space invariance, 347
Spano, M. L., 291
Sparks, R. B., 511, 515, 533
Spatial frequency, 346, 349

and field of view, 349
and resolution, 349

Special relativity, 213, 231, 234, 429, 504
Specific absorbed fraction, 511
Specific absorption rate (SAR), 555, 561
Specific heat

water, 80
Specific heat capacity, 65, 404
Specific metabolic rate, 50
SPECT, 521

Spector, R., 51
Spectral efficiency function, 409
Spectroscopy

infrared, 391
Spectrum

beta decay, 509
Wiener, 475

Spherical aberration, 412
Spherical coordinates, 601
Spherocytosis, 123
Spheroid degeneration of the eye, 403
Sphincter, pre-capillary, 21
Sphygmomanometer, 20
Spider’s thread, 26
Spin

electron, 227, 384
nuclear, 536

Spin echo (SE), 546, 548
fast or turbo, 553

Spin quantum number, 425
Spin warp encoding, 548
Spiral CT, 478
Spiral wave, 195, 291, 299
Spoiler gradient, 562
Spontaneous births, 314
Spontaneous emission, 542
Spring constant, 583
Squamous cell carcinoma (SCC), 402, 403
SQUID, 230, 236
Squid, 2

giant axon, 161
SRIM, 439, 446, 448
Srinivas S. M., 422
Srinivasan, R., 205
Stabin, M. G., 511, 515, 524, 533
Stahlhofen, W., 228
Standard deviation, 586
Standard deviation of the mean, 586
Standing wave, 366
Stanfield J., 422
Stanley, P. C., 200
Stapes, 369
Stark, L., 270, 290, 413, 423
State space, 277
Stationarity, 347
Stationary random process, 327
Stationary system, 346
Statistical mechanics, 54

postulates, 59
Staton, D. J., 222, 223
Steady state and equilibrium

distinction, 59
Steel, G. G., 482
Stefan-Boltzmann law, 396
Stegun, I. A., 209, 263, 359, 361, 362
Stehling, M. K., 553
Steiner, R. F., 31
Steinmuller, D. R., 136
Steketee, J., 398, 423
Stenosis, 399
Stent, 524

drug-eluting, 524
Steradian, 568
Stereocilia, 256
Steric factor, 125, 133
Stern, R. S., 404, 423
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Steroid-eluting electrode, 204
Stewart, W. E., 94
Stimulated emission, 417, 542
Stimulus

brain, 205
current density, 172
strength-duration curve, 179
strength-interval curve, 181

Stinson, W. G., 422
Stirling’s approximation, 591
Stochastic resonance, 337
Stocker, H., 189
Stokes’ law, 23, 91, 94, 260
Stopping cross section, 439
Stopping interaction strength, 444
Stopping number

per atomic electron, 444
Stopping power, 439

electronic, 440
for compounds, 446
for electrons and positrons, 446
mass, 439
nuclear, 440
radiative, 440

Storment, C. W., 142
Straggling, 447
Straight-line fit, 303, 304
Strain, 364

normal, 12
shear, 13

Strasburger, J. F., 222
Stratum corneum, 401
Stratum granulosum, 401
Streamline, 15, 18
Strength-duration curve, 179, 202
Strength-interval curve, 181
Stress, 12, 364

normal, 12
shear, 13

Strogatz, S. H., 276, 277, 280, 286
Stroink, G., 222, 225, 228
90Sr, 524
Strother, S. C., 523, 533
Structure mottle, 475
Subchoroidal neovascular membrane, 394
Subexcitation, 464
Subshells

atomic, 426
Suess, C., 499
Sulfides, 228
Sulfonamides, 402
Sulfonureas, 402
Sun protection factor (SPF), 403
Superconducting quantum interference device,

see SQUID
Superconductor, 230
Superparamagnetic particles, 236
Superposition, 345
Surface tension, 69, 82
Surface-to-volume ratio, 200
Surfactant, 82
Surrogate data, 336, 337
Surroundings, 56
Survival curve, 480
Susceptibility

electric, 149

Sutoh, Y., 423
Svassand, L. O., 422
Svedberg (unit), 28
Swanson, E. A., 422
Sweating, 293
Swihart, J. C., 249
Swinney, K. R., 219, 220
Sympathetic nerves, 194
Synapse, 110, 141, 143
Syncope, 203
Syncytium, 193
Synolakis, C. E., 19, 31
Synthesis, 481
System, 56

linear, 345
stationary, 346

System dynamics, 280
Systole, 19, 20
Szabo, A., 101, 115
Szabo, Z., 533

T rays, 394
T wave, 195
T-cell lymphoma, 404
T1-weighted image, 554
T2-weighted image, 554
Tachycardia

ventricular, 195
Tack, D., 480
Tai, C., 209
Tait C., 422
Tait, C., 403
Takano, M., 422
Takata, M., 51
Takeda, S., 51
Talus, 6, 7
Tan, G. A., 222
Tanelian, D. L., 142
Tang, Y-h., 111, 115
Target entity, 388
Taylor’s series, 575

of exponential function, 576
Taylor, A. E., 121
Tearney, G. J., 422, 423
99mTc

diphosphonate, 521
pyrophosphate, 518
sulfur colloid, 518
tetrofosmin, 522

99mTc, 35, 507, 519, 522
albumin, 519
diphosphonate, 521
generator, 519
pertechnetate, 519
red blood cells, 521
sestamibi, 520
sulfur colloid, 512, 529
tetrofosmin, 520

Tectorial membrane, 370
Telegrapher’s equation, 159
Temperature

absolute, 61, 62
centigrade or celsius, 62
negative, 78

Temperature regulation, 293

“10-20” system for EEG leads, 205
Tendon

Achilles, 6, 7
Tenforde, T. S., 257
Tensile strength, 13
Terahertz radiation, 382, 394
Teramura T., 423
Teramura, T., 403
Tesla (unit), 213
Tetley, I. J., 109
Tetrodotoxin, 251
Teukolsky, S. A., 84, 115, 362
TFT, 470
Thalamotomy, 379
201Tl, 518, 520, 522
Theodoridis, G. C., 413, 423
Theriot J. A., 115
Theriot, J. A., 85
Thermal conductivity, 109, 404
Thermal equilibrium, 60, 61
Thermal noise

retinal, 415
Thermal penetration depth, 405
Thermal relaxation time, 405
Thermodynamic identity, 69
Thermodynamic relationship, general, 69
Thermodynamics

first law, 57
second law, 75

Thermography, 399
Thermoluminescent dosimeter, 469
Thiazide diuretics, 402
Thin-film transistor, 470, 474
Thin-lens equation, 411
Thomas, D. L., 558
Thomas, L., 126
Thomas, S. R., 532
Thompson, D. J., 281
Thompson, J. H., 589
Thomson scattering, 430
Thomson, R. B., 589
232Th, 532
Three-dimensional conformal radiation

therapy, 487
Threshold detection, 337
Threshold stimulus strength, 181
Thyroid, 270

stimulating hormone (TSH), 270, 292
Thyroid hormone, 293

Thyroxine (T4), 270, 292
Tri-iodothyronine (T3), 270

Tibia, 6, 7
Time gain compensation, 378
Tissue weighting factor, 491
Tittel, F. K., 422
TMS, 225
Tobacco, photosynthesis, 314
Tomography

computed, 478
optical coherence, 392

Tooby, P. F., 27, 31
Torque, 5, 535

on rotating sphere, 260
Torr (unit), 14, 20
Total angular momentum quantum number,

425
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Total internal reflection, 421
Total linear attenuation coefficient, see

Attenuation coefficient
Toy model, 3
Trace of a matrix, 110
Transcranial magnetic stimulation, 225
Transducer, 141

piezoelectric, 371
Transfer factor, 466
Transfer function, 330

modulation, 348
optical, 348
phase, 348

Transformation, 506, 507
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Turner, R., 553
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Ungar, I. J., 209
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van den Bongard, H. J., 379
van den Bosch, M. A., 379
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van der Steen, A. F. W., 379
van Eijk, C. W. E., 468
van Ginneken, B., 470
van Langenhove, G., 423
van’t Hoff’s law, 121, 124
Vapor pressure, 79, 83
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Surface area, 69
volume, 69

Variance, 586
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Vasodilation, 122
Vasopressin, 294
Vecchia, P., 261
Vector, 4, 569
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components, 570
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Vector operators in different coordinate
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Vector product, 6
Velocity

average, 570
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root-mean-square, 89

Velocity gradient, 16
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Ventilation rate, 270
Ventricle, 193
Ventricular fibrillation, 204, 291, 292, 298
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Vergence, 411
Verheye, S., 399, 423
Versluis, M., 379
Vestibular chamber, 370
Vetterling, W. T., 84, 115, 362
Villars, F. M. H., 11, 15, 30, 95, 105, 115
Virtual cathode, 203

“dog-bone”, 205
Virtual image, 420
Virus, 2
Viscoelasticity, 13
Viscosity, 13, 16, 91

of water, 94
Viscous torque on a rotating sphere, 260
Visscher, P. B., 315
Visual cortex, 555, 557
Visual evoked response, 328

Vitreous, 411
Vlaardingerbroek, M. T., 548, 553
Vogel R. I., 422
Vogel, S. V., 16, 20, 23, 27, 30, 31
Vollrath, F., 26, 31
Volt (unit), 148
Voltage clamp, 161
Voltage difference, 147
Voltage divider, 154
Voltage source

ideal, 332
Voltage-sensitive dye, 205
Volume transport, 128

pore model, 133
through a membrane, 123

Voorhees, C. R., 202, 203
Vreugdenburg T. D., 423
Vreugdenburg, T. D., 399

Wagner, H. N., 467, 533
Wagner, J., 111, 115
Wagner, R. F., 474, 476
Walcott, C. J., 229
Walker, G. C., 422
Walker, M. M., 229
Wang, D., 101, 115
Wang, H., 49, 51
Wang, L., 422
Wang, M. D., 114
Warburg equation, 113
Warloe, T., 422
Warner, G. G., 516, 533
Warshaw E. M., 422
Warwick, W., 589
Washout (in MRI), 555
Wassermann, E., 226
Watanabe, A., 190, 191, 220
Water, 3

acoustic impedance, 367
compressibility, 366
density, 366
dielectric constant, 151
speed of sound, 366
transmission vs. wavelength, 410

Water molecule
dipole moment, 245

Waterstram-Rich, K. M., 523, 532
Watson, E. E., 511, 512, 514, 516, 517, 524,

532, 533
Watson, S. B., 533
Watt (unit), 11, 153
Wave

longitudinal, 363
plane, 363
standing, 366
traveling, 366

Wave equation, 181, 363, 364
Wave number, 346, 366
Weaver, J. C., 256, 257, 259, 260, 265, 337
Weaver, W., 54, 84
Weaver, W. D., 76
Webb, W. W., 256
Weber (unit), 224
Webster, J. G., 177, 392, 422, 423
Weighting factor
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Weiss, J. N., 291
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Wells, P. N. T., 371, 379
Werner, B., 379
Wessels, B. W., 524, 532
West, G. B., 45, 51
Westfall, R. J., 532
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White noise, 333
White, C. R., 45, 51
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White, R. J., 123
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Wick, G. L., 27, 31
Wieben, O., 392, 423
Wiener spectrum, 475
Wiener theorem for random signals, 328
Wiesenfeld, K., 337
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month, 526

Worthington, C. R., 171
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X-ray absorption edge, 428
X-ray spectrum

bremsstrahlung, 461
characteristic, 461
thick target, 463
thin target, 462

X-ray tube, 470
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Xia, Y., 560
Xu, X. G., 489
Xu, Y., 235
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