

MACHAKOS UNIVERSITY

University Examinations 2018/2019

SCHOOL OF PURE AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS STATISTICS AND ACTUARIAL SCIENCE

FIRST YEAR SECOND SEMESTER EXAMINATION FOR

DIPLOMA IN ELECTRICAL AND ELECTRONICS. (TVET)

1260/103: ENGINEERING MATHEMATICS 1

DATE: 16/4/2019 TIME: 8:30 – 11:30 AM

INSTRUCTIONS:

The paper consists of **EIGHT** questions. Answer any **FIVE** questions.

ALL questions carry equal marks.

Show all your working

- 1. (a) Simplify the expressions;
 - i) $\frac{(1-x)^{\frac{1}{2}}-x(1-x)^{-\frac{1}{2}}}{1-x}$
 - ii) $\frac{log729-4log3+2log27}{log243-log27+log9}$ without using logarithm tables (7 marks)
 - b) Solve the equations;
 - i) $\log_2 x + 2\log_4(x+1) = 1$
 - ii) $4^x = 2 + 16^{\frac{x}{4}}$ (13 marks)
- 2. a) Determine the values of p, q, and r such that $4x^2 3x + 12 = p(x + q)^2 + r$ (5 marks)
 - b) The roots of the equation $ax^2 + bx + c = 0$ are α and $\alpha + 2$. Prove that

$$b^2 = 4(a^2 + ac)$$
. (7 marks)

c) Three currents in a d.c. circuit satisfy the simultaneous equations

$$I_1 + 2I_2 - I_3 = 1$$

$$I_1 + 3I_2 - 2I_3 = 0$$

$$I_1 + I_2 + I_3 = 4$$

Use the method of substitution to solve the equation

(8 marks)

- 3. a) Simplify the expression $5 \times 4^{3n+1} 20 \times 8^{2n}$ (4 marks)
 - b) Find the values of:

i)
$$\frac{log15625}{log25} - 2$$

ii)
$$\frac{8^{\frac{2}{3}} + 4^{\frac{3}{2}}}{16^{\frac{3}{4}}}$$
 (6 marks)

Given that $2\log 8N = p$, $\log 22N = q$ and that q - p = 4, determine the value of N.

(10 marks)

- 4. a) Given that SinA = $\frac{12}{13}$ and Cos B = $\frac{4}{5}$ where A is obtuse and B is acute, determine the values of;
 - i) Sin(A B)
 - ii) Tan(A + B)
 - b) Prove the identities:

i)
$$\frac{1-\cos\theta}{\sin\theta} + \frac{\sin\theta}{1-\cos\theta} = 2\text{Cosec}\theta$$

ii)
$$\tan 3x = \frac{3tanx - tan^3x}{1 - 3tan^2x}$$
 (8 marks)

- c) Given $t = tan22 \frac{1}{2}^0$
 - i) Show that $\tan 45^0 = \frac{2t}{1 t^2}$;
 - ii) Hence solve the equation:

$$t^2 + 2t - 1 = 0$$
, leaving your answer in surd form. (7 marks)

		i) $P_1(3 4)$ ii) $P_2(-5 -8)$	(6 marks)
	b)	Obtain the Cartesian equations of;	
		$i) r = 5(1 + 2\cos\theta)$	
		ii) $r = a \tan \theta$	(7 marks)
	c)	Find the cartesian equations of the loci;	
		i) $x = t^2 + 4$ and $y = t - 3$	
		ii) $x = 5\cos\theta$ and $y = 4\sin\theta$	(7 marks)
5.	a)	Solve the following equations for all values of θ between 0^0 and 360^0 .	
		$2\sin\theta - 3\cos\theta = 2$	(7 marks)
	b)	Solve for x in the following equations	
		i) $\log_3(2x-3) = -1$	(3 marks)
		ii) $3^{2x} = 4(3^x) + 3$	(4 marks)
	c)	Show that $\frac{1+tan^2B}{1+cot^2B} = tan^2B$	(6 marks)
7.	a)	Given that pCoshx + qSinhx = $3e^x - 2e^{-x}$, determine the values of p and	q. (7 marks)
	b)	Prove the identities: i) $Cosh2x = \frac{1+tanh^2x}{1-tanh^2x}$	(7 marks)
		ii) $\tanh 3x = \frac{3tanhx + tanh^3x}{1 + 3tanh^2x}$	(6 marks)
	c)	Solve the equation:	
		$3\cosh x - 7\sinh x = 2$	(7 marks)
3.	a)	Given the complex numbers $Z_1 = 4 + 3j$, $Z_2 = 1 + j$ and $Z_3 = 1 - 2j$, exp	ress
		$Z = Z_1 + \frac{Z_2 Z_3}{Z_2 + Z_3}$ in the form a + bj.	(8 marks)
	b)	Use De Moivre's theorem to prove that $\cos 3\theta = 4\cos^3\theta - 3\cos\theta$	(5 marks)
	c)	Given that $Z = j$ is one root of the equation $Z^4 - 2Z^3 + 3Z^2 - 2Z + 2 = 0$,	
		determine the other roots.	(7 marks)

Express in polar co-ordinates the position :

5.

a)