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Abstract 

 

This paper implements the statistical modelling of the dependence structure of bivariate currency 

exchange rates using the concept of copulas. The GARCH-EVT-Copula model is applied to 

estimate the portfolio Value-at-Risk (VaR) of currency exchange rates. First the univariate ARMA-

GARCH model is used to filter the return series. The generalized Pareto distribution is then fitted 

to the tails of the standardized residuals to model the distributions marginal residuals. Dependences 

between transformed residuals are modeled using bivariate copulas. Finally the portfolio VaR is 

estimated based on Monte Carlo simulations on an equally weighted portfolio of four currency 

exchange rates. The empirical results demonstrate that the Student’s t copula provide the most 

appropriate representation of the dependence structure of the currency exchange rates. The 

backtesting results also demonstrate that the semi-parametric approach provide accurate estimates 

of portfolio risk on the basis of statistical coverage tests compared to benchmark GARCH models. 

 

Keywords: Backtesting, copulas, currency exchange rate, dependence modelling, GARCH-EVT-

Copula model, portfolio risk, Value-at-Risk. 

 

1. Introduction 

 

The currency exchange market plays an important role in determining the country’s economy and 

the financial system. In the recent past, the financial markets worldwide have experienced 

exponential growth coupled with significant extreme price movements such as the global financial 

crisis, currency crisis, and extreme default losses. The ever increasing financial uncertainties have 

challenged the financial market practitioners to improve the existing methodologies in measuring 

risk. Value-at-Risk (VaR) is the most commonly used risk measure by both regulators and 

practitioners to quantify market risk for purposes of internal financial risk management and 

regulatory economic capital allocations. For a given asset or portfolio of financial assets, 

probability and time horizon, VaR is defined as the worst expected loss due to change in value of 

the asset or portfolio of financial assets at a given confidence level over a specific time horizon 

(typically a day or 10 days) under the assumption of normal market conditions and no transaction 

costs in the assets.  
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The complexity in modeling VaR lies in making the appropriate assumption about the distribution 

of financial returns, which typically exhibits the stylized characteristics such as; non-normality, 

volatility clustering, fat tails, leptokurtosis and asymmetric conditional volatility.  Engle and 

Manganelli (2004) noted that the main difference among VaR models is how they deal with the 

difficulty of reliably describing the tail distribution of returns of an asset or portfolio. However, 

the main challenge lies in choosing an appropriate distribution of returns to capture the time 

varying conditional volatility of future return series. The popularity of VaR as a risk measure can 

be attributed to its theoretical and computational simplicity, flexibility and its ability to summarize 

into a single value several components of risk at firm level that can be easily communicated to the 

management for decision making.  

 

However, for a portfolio consisting of multiple assets, estimating the VaR for each asset within the 

portfolio is not sufficient to capture the portfolio risk since VaR doesn’t satisfy the sub-additive 

condition (Artzner et at. 1999). Therefore, there is need to evaluate the portfolio risk in a 

multivariate setting to account for the diversification benefits. While many researchers have 

conscientiously focused on univariate VaR forecasting, the multivariate case has challenges due to 

the complexity of modeling joint multivariate distributions. Conventionally, portfolio VaR 

estimation methods often assume that portfolio returns follow the multivariate normal or Student's 

t distributions. However, the stylized characteristics of financial time series data confirm that the 

return distributions are heavy tailed and exhibit excess kurtosis, hence cannot be modeled using 

multivariate normal distribution. 

 

Modelling portfolio VaR is also significantly affected by the tail distribution of returns. By 

applying the extreme value theory (EVT) to characterize the tail distributions of the return series 

the accuracy the portfolio VaR can be improved significantly. EVT assumes that the return series 

are independently and identically distributed but this is not always the case. In order to apply the 

EVT to the return series the two-step approach by McNeil and Frey (2000) is applied to generated 

the i.i.d. observations. First the GARCH model is fitted to the return series and then EVT is applied 

to the standardized residuals.   

 

Moreover, the non-linear dependence structure that exists between tails of asset returns can be 

modeled using copulas. Sklar (1959) introduced the concept of copulas in modeling the 

dependence structure between random variables. An increasing number of contributions in the 

development of copula theory and applications in several fields of research have appeared in 

literature. However, the motivation for increased interest by researchers to apply copulas is the 

discovery of the notation of copulas that is applicable in several applied fields. Embrechts et al. 

(1999) pioneered the application of copulas in financial research. McNeil et al. (2005) and Denuit 

et al. (2006) applied copula methods from a risk management perspective while Cherubini et al. 

(2004) and Cherubini et al. (2012) applied copulas from a mathematical finance perspective. 

Nelsen (2006) and Joe (1997) introduced the standard references for copula theory, providing 

comprehensive introductions to copulas and dependence modeling, while emphasizing the 

statistical foundations. 
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Recent studies have ascertained the superiority of copula-based models that capture the tail 

dependence and accurately estimate portfolio VaR, since they offer much more flexibility in 

constructing a suitable joint distribution when dealing with financial data which exhibits non-

normality. Rockinger and Jondeau (2006) introduced the Copula-GARCH combination to model 

the dependence structure between stock markets. Wang et al. (2010) applied the GARCH-EVT 

copula to study the portfolio risk of currency exchange rates. Ahmed Ghorbel and Trabelsi (2014) 

proposed a method for estimating the energy portfolio VaR based on the combinations of AR (FI)-

GARCH-GPD-copula model. Others include Tang et al. (2015) utilized the GARCH-EVT-copula 

model to estimate the portfolio risk of  natural gas portfolios and Huang et al. (2015) utilized the 

GARCH-EVT-copula-CVaR models in portfolio optimization. 

The main objective of this paper is to fit the appropriate copulas model the dependence structure 

of currency exchange rates and to estimate one-day-ahead VaR via Monte Carlo simulations of an 

equally weighted currency exchange portfolio using GARCH-EVT-Copula approach. The 

GARCH-EVT-Copula modelling framework integrates the asymmetric GJR-GARCH models for 

modelling heteroscedasticity in return distributions, extreme value theory for modelling tail 

distributions, and selected bivariate copulas for modelling the dependence structure for all the 

exchange rates. Monte Carlo based simulation is then performed to compute portfolio VaR based 

on the GARCH-EVT-Copula model.  Finally, statistical backtesting techniques are employed to 

ascertain and analyze the performance of the GARCH-EVT-Copula model.  

The rest of the paper is organized as follows. Section 2 briefly reviews the copulas. In section 3 

describes the two-step estimation approach for modelling the marginal distributions of the currency 

return series. In section 4 implements the portfolio VaR forecasting using GARCH-EVT-copula 

model. The empirical and backtesting results are presented in Sections 5. Finally, Section 6 gives 

the conclusion. 

 

2. Copulas 

Copulas are important tool for modelling the dependence structure between random variables. 

Since the seminal paper of Sklar (Sklar, 1959) the concept of copulas has become popular in 

statistical modelling. Copulas combine, link or couple univariate marginal distributions to a 

multivariate joint distribution. The theory of copula is based on the Sklar’s theorem, which states 

that a multivariate distribution can be divided into its d marginal distributions and a d-dimensional 

copula, which completely characterizes the dependence between the variables. A d -dimensional 

copula is a multivariate distribution function ( )duuC ,,1 K defined on the unit cube [ ]d
 1,0 , with 

uniform marginal distributions that satisfies the following properties; (Nelsen, 1999) 

 )];1,0[(]1,0[: →dC  

 C - is grounded and −d increasing 

 C - has margins iC  which satisfy uuuCi == )1,,1,,1,,1()( LL  for all ].1,0[∈u  

Let ( )dxxF ,,1 K  be a continuous d-variate cumulative distribution function with univariate 

margins ( )ixF , by Sklar's theorem there exists a copula function C, which maps [ ] [ ]1,01,0:     C
d →  

such that 

   ( ) ( ) ( )( ) xFxFCxxF dXXd d
,...,,..., 11 1

=
    

 (1) 
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holds for any ( ) .,...,1

d

d Rxx ∈      

For continuous marginals dFF ,...,1  the copula C  is unique and is defined as: 

   
( ) ( ))(,),(,, 1

11

1

11 dd xFxFFxxC
−−= KK

.    (2) 

In addition, if F is absolutely continuous then the copula density is given by 
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    (3) 

Sklar theorem implies that for multivariate distribution functions the univariate margins and the 

dependence structure can be separated. 

 

For purposes of dependence structure modelling, many copula classes have been developed in 

literature e.g. elliptical, Archimedean and extreme-value copulas. In this paper, the following 

elliptical and Archimedean copulas are considered; Gaussian copula, Student-t copula, Clayton 

copula, Frank copula, Gumbel copula and Joe copula. 

 

Gaussian copula 
The bivariate Gaussian (or normal) copula is the function 
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where ρΦ is the standard bivariate normal distribution function with linear correlation coefficient 

ρ  between the two random variables X and Y, 1−Φ  is the inverse of the standard bivariate normal 

distribution function. The Gaussian copula has zero tail dependence. 

 

Student-t copula 
The Student-t copula (or t-copula) is defined analogous to the Gaussian copula using a Student-t 

distribution. The bivariate Student-t copula with ν degrees of freedom is the function 
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where ρν ,t  is the bivariate Student’s t distribution with ν degrees of freedom, 1−
νt  

is the inverse 

function of Student’s t-distribution, and ρ is the Pearson’s correlation coefficient between the 

random variables X and Y for 2>ν .  The t-copula allows for some flexibility in covariance 

structure and exhibits symmetric tail dependence. 

 

Clayton copula 

The Clayton copula is an asymmetric Archimedean copula and also a left-tailed extreme value 

copula that exhibits strong left (lower) tail dependence compared to the right (upper) tail. The 
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generator function of the copula is ( ) ( )1
1 −= −θ

θ
ϕ uu , hence ( ) ( ) θθϕ /11 1

−− += uu , it is completely 

monotonic if the permissible parameter range is ( )∞∈ ,0θ .The bivariate Clayton copula is the 

function: 

    ( ) ( ){ },0,1max;,
/1

2121

θθθθ −−− −+= uuuuC    (6) 

where θ  is the copula parameter value, the lower tail dependence is θλ /12−=L and the upper tail 

dependence is zero, i.e., 0=Uλ . As the copula parameter θ  tends to infinity, the dependence 

becomes maximal while the limiting case 0=θ  is be interpreted as the 2-dimensional 

independence copula (McNeil et al. (2005)). 

 

Frank copula 

The Frank copula is a symmetric Archimedean copula. The generator function is given by

( ) ( )
( ) 









−−
−−−
1exp

1exp
ln
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θϕ u

u , hence ( ) ( ) ( )( )( )1expexp1ln
11 −−−+=− θ
θ

ϕ ut , it is completely 

monotonic if ( )∞= ,0θ . The bivariate Frank copula is the function:  
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where ( ) ( )∞+∪∞−∈ ,00,θ , both the upper tail and lower tail dependencies are equal to zero, i.e., 

0== LU λλ . The independence copula is attained when 0=θ whereas as ∞→θ   maximal 

dependence is achieved. 

 

Gumbel copula 

The Gumbel copula also known as Gumbel-Hougaard copula family introduced in Hougaard 

(1986) is both an asymmetric Archimedean copula and an extreme value copula that exhibits 

stronger dependence in the upper tail than in the lower tail. The Gumbel copula generator function 

is given by ( ) ( )( )θϕ uu ln−= , hence ( ) ( )θϕ /11 exp uu −=− , it is completely monotonic if 1>θ . The 

bivariate Gumbel copula is the function: 

  ( ) ( ) ( )( )( )θθθ /1

2121 loglogexp, uuuuC −+−−=        (8) 

 

where ),1[ ∞∈θ . When 1=θ  the variables ( )21,uu  are independent and when ∞→θ we obtain 

perfect positive dependence between the variables. For 1>θ  the Gumbel copula exhibits upper 

tail dependence.   

 

Joe copula 

The Joe copula is a member of the Archimedean copula and has the generator function 

( ) ( )( )θϕ uu −−−= 11log , hence ( ) ( )( ) θϕ /11 exp11 uu −−−=− . The bivariate Joe copula is the 

function: 
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/1
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θθθθθ
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The concept of tail dependence measures the joint probability of extreme events that can occur in 

the upper-right tail or lower-left tail, or both tails of a bivariate distribution.  Let X and Y be 

continuous random variables with distribution functions F and G respectively. The upper tail 

dependence coefficient Uλ is the limit (if it exists) of the conditional probability that Y is greater 

than the q-th quantile of G given that X is greater than the q-th quantile of F as q approaches 1, 

i.e.,    
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and the lower tail dependence coefficient Lλ   

   ( ) ( )( ) ( )
α
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,
limlim

0

11

0

C
FXGYP XYL ++ →

−−

→
=≤≤=

   (11)
 

The tail dependence measures dependence between extreme values and only depends upon the 

underlying copula, and not the marginal distributions. 

 

The parametric estimation of copulas is usually implemented using the two steps IFM (inference 

function for margins) approach by Joe and Xu (1996). The IFM approach estimates the parameters 

of the marginal distributions separately from the copula parameters. In the first step, the marginal 

distributions parameters are estimated via maximum likelihood estimation (MLE): 

    

( )1,

1

2
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1 ;logmaxargˆ
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θθ
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t i
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= =
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The parameter estimates for the marginal distributions 1θ̂  obtained from step 1, are used to estimate 

the copula parameters 2θ̂  in the second step using maximum likelihood: 

    

( ) ( )( )
=

=
T

t

tt xFxFc
1

22,22,112
ˆ,;,logmaxargˆ

2

θθθ
θ    (13)

 

The resulting IFM estimator is ( )21
ˆ,ˆˆ θθθ = . Under certain regulatory conditions, Patton (2006b) 

demonstrates that the IFM estimator is reliable and verifies the property of asymptotically 

normality.  

 

The goodness of fit may be accessed through some goodness of fit (GOF) tests, usually based on 

some selection criteria. The selection of the most appropriate copula is based on the following 

information criterion, specifically the Akaike’s Information Criterion (AIC), and the Bayesian 

Information Criterion (BIC) that compare the values of the optimized likelihood function are 

utilized: 

•  The Akaike information criterion (AIC) by Akaike (1974) is defined as: 

    ( )Θ−=
)

LkAIC ln22          (14) 

where k denote the number of unknown parameters, ( )Θ
)

Lln  is the log-likelihood function and Θ
)
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the set of unknown copula parameters to be estimated for the fitted copula function. However, the 

more parameters in the copula function tend to result in a higher value of the likelihood function. 

Consequently to compensate for parsimony in the copula specification the BIC criteria is utilized.  

• the Bayesian information criterion (BIC) by Schwarz (1978) is defined as 

    ( ) ( )Θ−=
)

LnkBIC ln2ln       (15) 

where ( )Θ
)

L  is the optimized value of the log likelihood (LL) function, n is the number of 

observations in the sample and k is the number of unknown parameters to be estimated. For either 

AIC or BIC, one would select the copula model that yields the smallest values of the criterion.  

 

3. Modelling of marginal distributions 

In this paper, the two-step estimation approach is adopted in modelling the marginal distribution 

of the return series. In the first step the ARMA-GJR-GARCH models are fitted to all the currency 

exchange returns series to model the marginal distributions of each return series to capture the 

stylized characteristics exhibited by financial time series data. The ARMA model filters the serial 

autocorrelation while the GJR-GARCH (Glosten et al. (1993)) model compensates for the 

asymmetric volatility clustering in the data through the leverage term. The specification of the 

ARMA (m, n)-GJR-GARCH (p, q) model can be expressed as 
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where 0,0,0,0,1
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i i γβαωϕ , and itI − is the indicator function that takes values 

1 when 0≤−itε  and zero otherwise. The persistence functions of the model is given as
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, where κ  denotes the expected value of the standardized residuals. The 

equations (16) and (18) are the mean equation and variance equations respectively; equation (17) 

illustrates the residuals tε that consists of standard variance tσ  and standardized residuals tz ; the 

leverage coefficient iγ  is normally applied to negative residuals resulting in additional weight for 

negative changes. In addition, the standardized residuals follow the Student’s t distribution that 

captures the fat-tailed distribution usually associated with financial time series data. 

In the second step of marginal distribution estimation, the standardized residuals are fitted with a 

semi-parametric CDF, using a kernel density estimation method (with a Gaussian density as kernel 

function) for the interior part of the distribution and a generalized Pareto distribution (GPD) for 

both tails.  

 

The distribution function of the generalized Pareto distribution (GPD) is given by 
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where σ  is the scale parameter and the parameterξ is associated to the shape of the distribution. 

When 0>ξ , we obtain the Fréchet distributions, when 0=ξ , the Weibull distributions and finally 

when 0<ξ  the Gumbel distributions respectively. Financial returns frequently follow heavy-tailed 

distributions and therefore only the Fréchet distributions are suitable for modeling financial returns 

data.  

 

The selection of the threshold value u is an important step in estimating the parameters of the GPD 

using POT. McNeil and Frey (2000) suggest that the threshold value should be high enough to 

approximate the conditional excess distribution by the GPD. However, with a higher threshold 

level there are fewer observations that remain for estimating the parameters. Consequently, the 

variance of the parameter estimates increases. In the empirical analysis the McNeil and Frey (2000) 

approach is adopted to choose the exceedances. Carol (2008) suggest that, provided that the sample 

data is sufficiently large (at least 2000 observations) there will always be enough log returns in the 

10% tail to obtain a reasonably accurate estimate of the GPD scale and tail parameters. Thus, the 

GPD is used to estimate the marginal distributions in the lower and upper tails by setting the 

threshold levels to be approximately 10% of the data points for both the lower and upper tails and 

the Gaussian kernel density estimator in the interior part of the innovations distribution. The 

cumulative distribution function for the tail of the distribution is given by 
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where R

i

L

i uu ,  are the lower and upper threshold values respectively, ( )izϕ is the empirical 

distribution on the interval ],[ R

i

L

i uu , is the number of iz  and L
iu

N is the number of innovations 

whose value is smaller than L

iu  and L
iu

N is the number of innovations whose value is bigger than 

R

iu .  

 

4. Forecasting VaR and Backtesting 

4.1.  Value-at-Risk (VaR) 

Value-at-Risk (VaR) is the commonly used risk measure by both the regulators and practitioners 

to estimate risk especially in financial risk management. It is defined as a quantile of the profit or 



Proceeding of  the 1st Annual  International Conference held on 17th-19th April 2018, Machakos 

University, Kenya 

 

 

 

loss (P&L) distribution of the asset or portfolio of financial assets. It is also defined as the 

maximum loss due to change in asset or portfolio value at a given confidence level and a specific 

time duration (typically a day or 10 days) under the assumption of normal market conditions and 

no transactions in the assets.  

 

Given the confidence level denoted as ( )1,0∈q , and the loss of the asset portfolio denoted as L, the 

VaR of a given portfolio is the smallest number 1 such that the probability of the portfolio loss L 

exceeds 1 is no larger than 1 − q. Mathematically, the VaR of a given portfolio of assets at time t 

with level q-quantile is defined as 

 

  ( ) ( ){ } ( ){ },:inf1:inf qlFlqlLPlLVaR Lq ≥ℜ∈=−≤>ℜ∈=
  (21)

 

where ( )lFL is the cumulative distribution function of the return distribution.  

 

In this paper the Monte Carlo simulation approach is used to forecast the one-day-ahead portfolio 

VaR based on the fitted copula model to the currency exchange rates. The estimation procedure 

applied to forecast the one-day-ahead VaR of the equally weighted portfolio using GARCH-EVT-

Copula model is as follows: 

 

Step 1: Fit the univariate ARMA-GJR-GARCH model with appropriate error distribution for the 

marginal time series to each currency exchange return series to obtain standardized residuals 

computed as: 
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Step 2: Fit the generalized Pareto distribution (GPD) to all the standardized residual series by 

setting the threshold value u to be approximately 10% of the data points for both the upper and 

lower tails and Gaussian kernel method for the interior of the distribution. The generated 

standardized residuals are then transformed into standard uniform (0, 1) variates using the 

probability-integral transformation (PIT) and are assumed to be i.i.d observations. 

 

Step 3: Fit the most appropriate copula for each pair of transformed data series, and estimate the 

parameter(s) using the Inference Function for Margins (IFM) estimation method.  

 

Step 4: Use the estimated copula parameters to simulate N (N = 5000 in our case) times to generate 

N random numbers and transform them to the original scales of the log returns using the inverse 

quantile function of the marginal distributions. 

 

Step 5: Finally, compute the VaR of the equally weighted portfolio by taking the sample quantile 

at the given significance level of the portfolio return forecasts. 

 

The number of simulations N select is significant in terms of determining the accuracy of the VaR 

forecasts when applying the above procedure. The larger the number of simulations, the more 

accurate the estimated VaR forecasts are. This procedure can be repeated on a daily basis using 
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rolling windows. This means that the copula and the ARMA-GJR-GARCH margins are re-

estimated for each window.  

 

4.2.  Backtesting  

Backtesting is a statistical method that is used to systematically compare the accuracy of the 

forecast portfolio VaR with the actual profit (loss) of the particular portfolio at a given significance 

level and specified time interval. In this paper, three backtesting procedures are implemented to 

evaluate the performance of the GARCH-EVT-copula model in forecasting portfolio VaR. The 

backtesting procedures include the percentage of VaR exceptions, the Kupiec’s unconditional 

coverage test and Christoffersen’s conditional coverage test.   

 

The indicator function sometimes referred to as the “hit function” is adopted to determine whether 

the observed portfolio loss exceeds the estimated portfolio VaR. Let 
1+tI  be the hit function of VaR 

exceptions that is denoted as: 
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where  =
= T

t tIN
1

 denotes the number of exceedences over a given time period when the actual 

loss exceeds the VaR forecast.  

 

Kupiec (1995) proposed the unconditional coverage test for assessing the reliability of VaR 

forecast models based on the effectiveness of the VaR forecasts to test the difference between 

observed and forecasted VaR of the equally weighted portfolio profit and loss. Given that q is the 

quantile, the theory behind this method is to test whether q̂  is statistically different from q. The 

number of exceptions N is a sum of Bernoulli variable 1+tI  it follows a binomial probability 

distribution: 
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where 
T
Nq =ˆ . The null hypothesis of the test is  

     
T

N
qqH == ˆ:0

     (25)
 

Given the q-th quantile, the likelihood ratio (LR) statistic for the test of null hypothesis is defined 

as: 
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This statistic is asymptotically distributed as a chi-square distribution with one degree of freedom. 

However, Christoffersen (1998) demonstrated that the unconditional coverage test only gives the 

essential condition to categorize a VaR model as satisfactory but it does not account for the 

possibility of clustering of violations, which can be as a result of volatility in the return series. 
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Christoffersen (1998) introduced the conditional coverage test, which jointly combines the 

independence test to recognize the presence of cluster in the series and the independence of 

exceedances to defeat the insufficiencies of Kupiec’s unconditional coverage test. The conditional 

coverage test is a complete test that addresses both the unconditional coverage property and 

independence property. The unconditional coverage property puts a restriction on the frequency of 

VaR violations. The independence property or exception clustering places a restriction on the ways 

in which these violations may occur. The null hypothesis of LR independence test is asymptotically 

distributed as a chi-square distribution with one degree of freedom. Under the null hypothesis that 

the violations (exceptions) on any given day are independent and the average number of observed 

violations at any two diverse days have to be independently distributed. The appropriate likelihood 

ratio test statistic is defined as: 
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where nij represent the number of days that i occured at time t followed by j, where i, j = 0, 1. 

Moreover, iπ denote the probability that the exception occurs at time t+1 conditional on state i at 

time t with 
0100

01
0

nn

n

+
=π and 

1110

11
1

nn

n

+
=π . The test statistic is asymptotically distributed as a 

chi-square distribution with two degrees of freedom.  

 

5. Data and Empirical Results 

5.1.  Data description 

The data set consists of four daily currency exchange rates of the US dollar (USD), UK Sterling 

pound (GBP), European Union euro (EUR) and South Africa rand (SAR) against the Kenyan 

shilling from November 2, 2004, to February 26, 2018. The total observations are 3476 daily 

exchange rates for each currency exchange rate, excluding public holidays and weekends obtained 

from the website of the CBK. Each data set represents the daily average closing price of analyzed 

currencies. The daily currency exchange rates are converted into continuously compounded returns 

using the formula ( )ititit PPr ,1,, /log −=
 
where itP , is the price at time t of i-th currency exchange rate 

series.  
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Figure 1 Daily currency prices and daily returns (period from November 02, 2004 to February 26, 2018) 

 

Figure 1 present the plot of the returns series of all currency exchange rates and the plots illustrate 

the stylized feature of leptokurtosis that arises from a pattern of time-varying volatility clustering 

in the currency exchange market where periods of high (low) volatility are followed by periods of 

high (low) volatility. The time-varying behaviour of currency exchange returns suggest the 

presence of stylized characteristics exhibited by financial time series data.  

 

The summary statistics of the daily currency exchange return series are presented in Table 1. For 

all exchange rates the values of the mean are close to zero and all the values of standard deviations 

are positive and considerably large confirming the high volatility illustrated by the return plots. 

The results for skewness indicate that the return series for the US dollar and EU euro are positively 

skewed while the return series for the GB pound and SA rand are negatively skewed. The results 

for kurtosis indicate that all the return series exhibit excess kurtosis implying the return 

distributions have fat tails and exhibit leptokurtosis. The Jarque-Bera (JB) test statistic values are 

significantly large compared to their critical values confirming that the return series are non-

normal. The Augmented Dickey Fuller (ADF) unit root test is used to determine whether the return 

series are stationary. The ADF test results confirm that all the return series can be assumed to be 

stationary, since the unit root null hypothesis is rejected at all levels of signifiance. The Ljung-Box 

test is used to test the presence serial autocorrelation in the squared returns data; the Ljung-Box 

Q-statistics reported for all currencies are significantly high rejecting the null hypothesis of no 

serial autocorrelation through 20-lags at the 5% level of significance. Finally the ARCH-LM test 

rejects the null hypothesis of no ARCH effect, thus confirming the strong presence conditional 
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heteroscedasticity is the data. This supports the need to apply an appropriate conditional 

heteroscedastic model to filter the heteroscedasticity in the currency exchange returns series. The 

correlations report Pearson’s linear unconditional sample correlations between the daily returns 

over the full sample period. The correlation coefficient figures are all positive for each pair of the 

currency exchange return series. The EUR-GBP has the highest correlation and the USD-ZAR has 

the lowest.  

 

Table 1: Summary descriptive statistics of Currency Exchange Returns 

 USD/KES GBP/KES EUR/KES SAR/KES 

No. of obs. 3475 3475 3475 3475 

Minimum -4.087857 -8.302552 -3.649587 -16.301456 

Maximum 5.489183 5.239101 6.396774 8.547573 

Mean 0.006479 -0.001462 0.005523 -0.011984 

Std.dev 0.476499 0.749164 0.753984 1.180185 

Skewness 0.514128 -0.272172 0.490784 -0.745638 

Kurtosis 18.927728 7.818734 5.147376 13.688960 

JB-test 

(p-value) 

52095.3486 

(0.0000) 

8908.5418 

(0.0000) 

3982.9444 

(0.0000) 

27492.5519 

(0.0000) 

ADF-test 

(p-value) 

-13.344 

(0.0000) 

-15.719 

(0.0000) 

-14.648 

(0.0000) 

-16.744 

(0.0000) 

LBQ (10) 1605.70 430.08 827.23 834.48 

LBQ (20) 2787.70 743.80 1498.50 956.46 

LM (10) 2304.55 393.80 450.10 240.55 

LM (20) 3982.24 815.78 802.78 444.28 

Correlations     

USD  0.5848 0.5907 0.3679 

GBP   0.7466 0.5248 

EUR    0.5545 
The table presents the summary statistics of the daily returns over the full sample period from November 2, 2004, to February 26, 2018 for the 

USD, GBP, EUR and ZAR. JB is the test statistic of the Jarque-Bera test form normality of the unconditional distribution of returns. ADF (k) is the 

statistic of the augmented Dickey-Fuller (1979) test for a unit root against a trend stationary alternative augmented with k lagged difference terms. 

LBQ (k) is the statistic of the Ljung-Box (1978) portmanteau Q-test assessing the null hypothesis of no autocorrelations in the squared returns at k 

lags. LM (k) is Engle’s (1982) Lagrange multiplier statistics for testing the presence of ARCH effects on k lags. The critical values of Ljung-Box 

test and LM test are 18.307 (lag 10), 31.410 (lag 20) and, 67.5048 (lag 50) at 5%. The correlations report Pearson’s linear unconditional sample 

correlation between the daily returns over the full sample period. 

 

5.2.  Results for the Marginal Distributions 

The two-step estimation approach is adopted. In the first step the ARMA (1, 1)-GJR-GARCH (1, 

1) model introduced in Section 3 is fitted to each returns series assuming that the innovations are 

conditionally distributed as Student’s t to account for heavy tailed distribution. Parameter estimates 

for the fitted models are obtained by the method of quasi-maximum likelihood. The parameter 

values for the fitted models (standard errors enclosed in parenthesis) together with the results of 

diagnostic tests for the standardized squared residuals are presented in Table 2. All constant 

parameters are positively significant from zero except for ZAR, so all currency exchange rates 

increase over time. The AR (1) and MA (1) terms for all the currency exchange rates are not 

significantly different from zero. In all four series the sum of 1α  and 1β parameters is less than 
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one, suggesting that the fitted model is stationary. The Ljung-Box test statistic and the Engle’s 

ARCH tests confirm that all the standardized squared residuals fails to detect any serial correlation 

and presence of ARCH effects. The null hypothesis of no serial autocorrelation remain is not 

rejected at 5% level, indicating that neither long memory dependence nor non-linear dependence 

is found in the residual series. We conclude that the ARMA (1,  1)-GJR(1, 1)- model sufficiently 

explains the autocorrelation and heteroscedasticity effects in each log return series and leads to 

standardized residuals which represent the underlying zero mean and unit variance independently 

and identically distributed series upon which the EVT estimation of the sample CDF tails is based.  

 

Table 2 Parameter Estimates of the ARMA (1, 1)-GJR-GARCH (1, 1) Model with Student’s t 

innovations 

Parameters USD/KES UKP/KES EUR/KES SAR/KES 
µ  0.005312  

(0.002623) 

0.007336 

 (0.009107) 

0.000780 

 (0.008484) 

-0.000377  

(0.013242) 

AR(1) 0.364453  

(0.137367) 

0.365605  

(0.269765) 

0.461829  

(0.137387) 

0.844281  

(0.082061) 

MA(1) -0.421085  

(0.133266) 

-0.408384  

(0.264360) 

-0.525425 

 (0.131295) 

-0.873874 

 (0.074707) 

ω  0.000997  

(0.000265) 

0.004247 

 (0.001625) 

0.002077  

(0.000809) 

0.016105  

(0.005324) 

1α  0.142435 

 (0.017251) 

0.052033  

(0.010827) 

0.038267 

(0.005832) 

0.033645 

 (0.011252) 

1β  0.862056 

 (0.014952) 

0.938991  

(0.011378) 

0.952980 

(0.003726) 

0.935587 

 (0.012627) 

1γ  -0.010982 

 (0.019326) 

0.002378  

(0.011923) 

0.011861  

(0.009385) 

0.032791  

(0.012164) 

Shape 3.793270 

 (0.207187) 

7.413249 

 (0.863450) 

7.218313 

(0.839434) 

10.462478 

 (1.594020) 
The table contains results of maximum likelihood estimator for margin models with ARMA (1, 1)-GJR-GARCH (1, 1) Model with the standard 

errors in parentheses.  

 

Next, the standardized residuals are fitted with a semi-parametric CDF which consists of using a 

Gaussian kernel  density function for the interior part of the distribution and generalized Pareto 

distribution (GPD) for both tails. Specifically, 10% of the standardized residuals are reserved for 

the upper and lower thresholds to estimate the tail distribution. Table 3 presents the results of 

estimated parameters of the tails distribution based on the GPD fitted to the standardized 

innovations. Two threshold levels (upper and lower) are also indicated in Table 3, where 10% of 

total observations for these standardized residual series are used in the estimation. For all the 

returns series, the shape parameter is found to be positive (except for the upper tail of SAR and 

the lower tail of EUR) and significantly different from zero, indicating heavy-tailed distributions 

of the innovation process characterized by the Fréchet distribution. The Ljung-Box test and the 

Kolmogorov-Smirnov (KS) tests are used to test the transformed standardized residuals confirm 

that they are uniform [0, 1].  
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Figure 2 Scatter plots of standardized residuals for the pairs of USD-GBP and EUR-GBP 

currency exchange rates 

 

Table 4 Parameter estimates for ARMA-GJR-GARCH-EVT model 

Parameters USD/KES UKP/KES EUR/KES SAR/KES 

Upper Tail     

Number of Observations 1621 1695 1711 1769 

EVT threshold (u) 1.156 1.2385 1.23326 1.19643 

ξ  Shape parameter 0.16375 0.04022 0.07041 -0.08533 

β  Scale parameter 0.64138 0.54276 0.56561 0.51586 

Lower Tail     

Number of Observations 1854 1780 1764 1706 

EVT threshold (u) -1.13398 -1.18072 -1.18866 -1.29103 

ξ  Shape parameter 0.17137 0.05174 -0.00308 0.07403 

β  Scale parameter 0.60968 0.56075 0.53815 0.53738 
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Figure 3 Scatter plots of transformed standardized residuals for the pairs of USD-GBP and EUR-GBP currency 

exchange rates 

Figure 2 and Figure 3 presents the scatter plots of the bivariate standardized residual series for the 

ARMA-GJR-GARCH-EVT models before and after transformation into uniform [0, 1] variates 

respectively. We can observe positive dependence between the pairs of USD-GBP and EUR-GBP 

currency exchange rates. Such filtration still preserves the contemporaneous dependence among 

the returns as shown in Figure 3. The transformed data are used in analyzing the dependence 

structure using copula. 

 

5.3.  Results for the Dependence Models 

The dependence structure between the transformed standardized residuals of the currency 

exchange rates are modeled using copulas. The results for the estimated copula parameter are given 

in Table 4. The results include the copula parameter estimates with the standard errors in 

parentheses, the coefficients of lower tail dependence (LTD) and upper tail dependence (UTD) and 

selection criteria; AIC, BIC and log-likelihood values of each fitted copula. The degrees freedom 

of the Student-t copula are relatively low (less than or equal to 10), suggesting that the inter-

dependence and tail dependence of the currency exchange pairs are non-normal. Comparing AIC, 

BIC, the Student’s t copula performs best for all pairs according to the AIC, BIC criteria. Therefore, 

we conclude that the Student’s-t copula is dominant as the best-fitting copula function for the 

currency exchange rates.  

 

5.4. Forecasting Value at Risk 

In this section, an equally weighted portfolio of the four currency exchange rates is constructed to 

exploit the GARCH-EVT-copula framework in forecasting portfolio VaR. In order to compute 

portfolio VaR forecasts, a rolling window is set at 1000 observations to generate portfolio VaR 

forecasts per currency exchange series for all the data sets. The Monte Carlo simulation approach 

is used to compute the one-day-ahead VaR of the portfolio at the 90%, 95% and 99% levels of 
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significance.   

 

 

Table 4 Parameter Estimates for the fitted copulas 
 USD/GBP USD/EUR USD/SAR GBP/EUR GBP/SAR EURO/SAR 

Gaussian Copula 

Rho (Std. error) 0.48 (0.00) 0.42 (0.01) 0.29 (0.01) 0.72 (0.00) 0.45 (0.00) 0.48 (0.00) 

Copula Loglik 640.41 466.76 211.31 1830.77 554.48 638.77 

AIC -1278.82 -931.52 -420.62 -3659.54 -1106.96 1275.53 

BIC -1272.32 -925.02 -414.11 -3653.03 -1100.46 -1269.03 

Student-t Copula 

Rho (Std. error) 0.47 (0.01) 0.41 (0.01) 0.28 (0.01) 0.73 (0.01) 0.46 (0.01) 0.49 (0.01) 

DoF (Std. error) 6.12 (0.69) 6.65 (0.82) 10.21 (1.85) 6.37 (0.70) 7.12 (0.83) 6.02 (0.59) 

Copula Loglik 691.70 509.42 229.26 1898.13 605.54 719.71 

AIC -1379.41 -1014.83 -454.52 -3792.27 -1207.08 -1435.42 

BIC -1366.40 -1001.82 -441.52 -3779.26 -1194.08 -1422.42 

Clayton Copula 
Parameter  (Std. error) 0.68(0.03) 0.55 (0.02) 0.33 (0.01) 1.52(0.06) 0.62(0.02) 0.71(0.03) 

Copula Likelihood 532.17 393.86 173.99 1562.24 460.46 551.69 

AIC -1062.35 -785.72 -345.98 -3122.48 -918.92 -1101.38 

BIC -1055.85 -779.21 -339.48 -3115.98 -912.42 -1094.88 

Gumbel Copula 
Parameter  (Std. error) 1.42(0.01) 1.34(0.01) 1.20(0.01) 1.96(0.03) 1.39(0.01) 1.44(0.02) 

Copula Loglik 618.90 446.04 200.77 1699.80 528.58 614.75 

AIC -1235.81 -890.08 -399.54 -3397.59 -1055.16 -1227.49 

BIC -1229.30 -883.58 -393.04 -3391.09 -1048.66 -1220.99 

Frank Copula 

Parameter  (Std. error) 3.09 (0.14) 2.55(0.12) 1.69 (0.10) 6.19(0.40) 2.99(0.14) 3.35(0.15) 

Copula Loglik 555.65 391.82 181.20 1687.55 528.55 639.95 

AIC -1109.30 -781.64 -360.40 -3373.11 -1055.11 -1277.89 

BIC -1102.80 -775.13 -353.89 -3366.61 -1048.61 -1271.39 

Joe Copula 

Parameter  (Std. error) 1.53(0.02) 1.42(0.02) 1.25(0.01) 2.19(0.03) 1.49(0.02) 1.54(0.02) 

Upper Tail 0.43 0.37 0.26 0.63 0.41 0.43 

Copula Loglik 472.40 336.92 149.66 1286.41 393.68 450.12 

AIC -942.81 -671.84 -297.32 -2570.83 -785.37 -898.24 

BIC -936.31 -665.34 -290.82 -2564.32 -778.86 -891.74 
 

This table presents estimated parameters of copulas via two-stage maximum likelihood estimator. Standard errors are shown in parentheses. Loglik 

represents log likelihood function. Figures in bold indicate significant at 5% level. 

 

 

To assess the accuracy of portfolio VaR forecasts, the Kupiec’s unconditional coverage test and 

the independence and Christoffersen’s conditional coverage tests are used to perform backtesting. 

For the testing period of 2475 observations and confidence levels of 10%, 5%, and 1%, we expect 

248, 124 and 25 exceedances, respectively. As expected, VaR forecasts of the Gaussian-copula 

model, which we include for comparison, are the least accurate. However, we would like to 

evaluate them using the above tests in order to compare them directly to the forecasting accuracy 

of the Student’s t copula as well as the GARCH-EVT-t copula model. For our testing period, the 
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benchmark Gaussian and the Student's t copula produce almost the same hit sequences and hence 

are considered together. When comparing these expected hits with the actual hits then it looks like 

the 99% VaR is fairly accurate, but the 95% and 90% VaR slightly overestimate the risk.  

 

 

 

 

 

 

 

 

 

Table 5 Tests of independence, unconditional and conditional coverage 
Model alpha: Percentage of 

exceedances 

POF-Kupiec 

(Unconditional 

Coverage) 

Joint-Christoffersen 

(Conditional 

Coverage) 

Gaussian copula 90% 9.50% 0.362 0.580 

 95% 4.40% 0.138 0.313 

 99% 0.90% 0.721  

Student-t copula 90% 9.20% 0.186 0.318 

 95% 4.50% 0.271 0.478 

 99% 0.92% 0.721  

GARCH-EVT-t copula 90% 9.70% 0.768 0.763 

 95% 4.80% 0.474 0.635 

 99% 0.96% 0.865  
Table 5: Results for the one-day-ahead portfolio VaR for the currency exchange portfolio data. P-values for the Kupiec and Christoffersen VaR 

backtests are also given. 

 

The p-values of the VaR backtests are shown in Table 5. According to the tests, the forecasts of the 

copula models show a weak lack of coverage at the 90% and 95% levels, but this is not the case at 

the important 99% level, which is frequently used in practice. The backtesting results indicate that 

all p-values of the unconditional coverage and conditional coverage tests are greater than 0.05 and 

the calculated exceedances percentages of all portfolio VaR tests are close to the theoretical 

probability level of 10%, 5% and 1%.  For the 99% VaR none of the combined tests is rejected, so 

this means the amount of hits are not significantly different from the expected hits. This implies 

that all the null hypotheses are not rejected and the calculated exceedances based on the best-fitting 

GARCH-EVT-t copula model are correct. That is, they are correct and independent (conditional 

coverage test).  

 

6. Conclusion 

This paper implements the application of the GARCH-EVT-Copula model to evaluate the portfolio 

risk of an equally weighted portfolio of currency exchange rates. First, the ARMA-GJR-GARCH 

(1, 1) model is used to filter the log-returns for the presence of autocorrelation and conditional 

heteroscedasticity. Consequently the Generalized Pareto distribution is applied to model the tail 

distribution of the innovation of each currency return. Bivariate Elliptical and Archimedean 
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copulas are fitted to the paired independently and identically distributed transformed standardized 

series to model the dependence structure between the return series. The portfolio VaR for an 

equally weighted portfolio of four currency exchange returns is also computed using the 

benchmark models and the GARCH-EVT-copula model. The empirical results demonstrate that 

the Student’s-t copula is the most appropriate copula in modeling dependence structure between 

all pairs of currency exchange rates. The GARCH-EVT-Copula model captures the portfolio VaR 

forecast successfully on the basis of the coverage backtesting tests. Further research should 

consider time-varying dependence modeling and high dimensional multivariate copula modelling 

approach such as vine copulas in financial risk management applications.  
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