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ABSTRACT 

 
This study concerns the theoretical determination of a mathematical model of delayed pulse 
vaccination of infectious diseases that affects children. In this study, a delayed SEIR epidemic 
model with impulsive effect and the global dynamic behaviors of the model will be analyzed. Using 
the discrete dynamical systems determined, it’s shown that there exists an ’infection-free’ periodic 
solution which is globally attractive when the period of impulsive effect is less than some critical 
value. The sufficient condition for the permanence of the epidemic model with pulse vaccination 
is given, which means the epidemic disease is to spread around. The study has concluded that time 
delay and pulse vaccination brings great effects of shortening ‘infection period’ on the dynamics 
of the model. The results indicate that a large vaccination rate or a short period of pulsing leads 
to the eradication of the disease. Numerical simulation has been used together with the analytical 
results. The results shall be presented in tabular and graphical form. 
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INTRODUCTION 

 
Infectious diseases are disorders caused by pathogenic microorganisms. Many organisms live in 
and on our bodies. Most infectious diseases could be driven towards eradication, if adequate and 
timely steps (e.g. vaccination, treatment, etc.) are taken in the course of an epidemic. However, 
many of these diseases eventually become endemic in many societies due to lack of adequate 
policies and timely interventions to mitigate the spread of the diseases. Consequently, there is the 
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need for proactive steps towards controlling the spread of infectious diseases, particularly those 
ones for which both vaccine and cure are available.  
 
The ultimate goal of an epidemic model would be to closely follow and predict real-life disease 
outbreaks, with the aim of informing public policy and related government agencies. It will focus 
on looking at control methods, i.e. ways to keep the infective population low or to eradicate the 
infection altogether. One such control method is vaccination. Some vaccination campaigns are run 
continuously, for example with people of a certain age receiving their vaccine. Another way is to 
organize large campaigns in which a large proportion of the population is vaccinated over a short 
time; this technique is known as pulse vaccination. 
 
In modeling of delayed pulse vaccination of infectious diseases, the study focuses on deterministic 
models and dynamical systems used to model epidemics, using deterministic compartmental 
models, in which a given population is divided into compartments based on the disease status 
(susceptible, exposed etc.). The transfers between compartments, as well as the entrance to the 
population of new individuals and the exit of others are modeled as terms in a differential equation 
governing the time-evolution of each compartmental value. After the infectious individuals lived 
through an infection period, they recover completely and transfer to the ‘removed’ class, R, so, the 
number of the death of the infectious should be considered during convalescence, which is called 
the phenomena of ‘time delay’. 
 
Pulse vaccination is gaining prominence as a strategy for the elimination of childhood viral 
infectious diseases such as measles, hepatitis, parotitis, smallpox and phthisis, and was considered 
in many literatures in D’Onofrio (2002, 2004) and Gao (2008). Known theoretical results showed 
that the pulse vaccination strategy can be distinguished from the conventional strategies in leading 
to disease eradication at relatively low value of vaccination. 
 
Therefore, this study will consider an epidemic model with impulsive vaccination and time delay 
and study their dynamic behaviors (the ‘infection-free’ periodic solution, the permanence and the 
global attractive behavior) under pulse vaccination. The main aim of this study is to introduce time 
delay, pulse vaccination in an epidemic model and to obtain some important qualitative properties 
and valid pulse vaccination strategy. 
 
LITERATURE SURVEY 

 

Wencai et al (2015) researched on dynamical analysis of SIR epidemic model with non-linear 
pulse vaccination and lifelong immunity. In this study, due to the limited medical resources, 
vaccine immunization rate is considered as a nonlinear saturation function and their findings were 
enriching medical resources the disease will be in extinction, otherwise the disease will be 
permanent. 
 
Onyejekwe and Kebede (2015), studied  the epidemiological modeling of measles infection with 
optimal control of vaccination and supportive treatment, in which they concluded that the optimal 
combination of the strategies required to achieve the set objective depend on the relative cost of 



Proceeding of  the 1st Annual  International Conference held on 17th-19th April 2018, Machakos 

University, Kenya 

 

 

 

each of the control measures and the resulting optimality system. The use of both vaccination and 
supportive treatment gives the highest possible rate to the control of epidemics. 
Tongqian et al (2014), in their study SVEIRS a new epidemic disease model with time delays and 
impulsive effects realized that global dynamical behavior of the model with pulse vaccination and 
impulsive population inputs effects at two different periodic moments, existence and global 
attractivity of the infection free periodic solution and also permanence of the model. Their results 
shows that time delay, pulse vaccination and pulse population input can exert a significant 
influence on the dynamics of the systems which confirms the availability of pulse vaccination 
strategy for the practical epidemic prevention.  
Shulgin et al (2014) considered a simple SIR model with pulse vaccination and have shown that 
if certain conditions regarding the magnitude of vaccination proportion and on the period of pulses 
are satisfied then the pulse vaccination leads to epidemic eradication. 
 
Yanke and Rui (2010), investigated a delayed SIR epidemic model with nonlinear incidence rate 
and pulse vaccination, they noted that the global attractiveness of infection free periodic solution 
was analyzed and sufficient conditions are obtained for permanence of the system. Their results 
indicated that a large vaccination rate or a short period of pulsing leads to the eradication of the 
disease.   
 
An epidemic HIV/AIDS model with treatment has been investigated in the study by Cai et al 
(2009). The model allows some infected individuals to move from symptomatic phase to the 
asymptomatic phase by all kinds of treatments. The authors introduced the time delay to the model 
in order to investigate the effect of the time delay on the stability of the endemically infected 
equilibrium. This discrete time delay has also been used to the model to describe the time from the 
start of the treatment in the symptomatic stage until the treatment effects becomes clear. It was 
found that treatment can be used to make the disease free equilibrium (E0) stable when it would be 
unstable in the absence of treatment. On the other hand using the time delay can induce oscillation 
in the system. Biologically, this means that there is a critical value for the treatment-induced delay 
which determines the stability of the infected equilibrium E∗. That is, the infected equilibrium E∗ 
is asymptotically stable when antiretroviral drugs on average show positive effects in patients 
within less than time delay. 
 
D’Onofrio et al (2007) presented simple epidemiological models with information dependent 
vaccination functions which can generate sustained oscillations via Hopf bifurcation of the 
endemic state. The onset of these oscillations depends on the shape of the vaccination function. 
They used “global” approach to characterize the instability condition and identify classes of 
functions that always lead to stability/instability. The analysis allows the identification of an 
analytically determined “threshold vaccination function” having a simple interpretation: coverage 
functions lying always above the threshold always lead to oscillations, whereas coverage functions 
always below never lead to instability. 
 
Meng et al (2008) and Jin et al (2008) studied an SIR model with some people failing to obtain 
immunity after first dose but gained immunity after later doses. As it’s known immunity to 
infectious diseases after being vaccinated against them might not be life long, so in this study it’s 
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assumed that the latent and immunity (not permanent) period are constants.  
 
The control of epidemics by vaccination, by Verriest et al (2011), they used recently developed 
results on optimal impulsive control for time delay systems in the problem of control of an 
epidemic through pulse vaccination. For added realism, delays are explicitly incorporated in the 
epidemiological model. It was shown that the conditions for optimality are easily amenable by an 
iterative gradient type numerical algorithm. They recommended future work to include multipulse 
strategies. They expected that current policies of periodic vaccination pulses can be improved 
upon. This will then provide a ’proof of principle’ with which more realistic models for disease 
may be attacked. 
The combination of pulse vaccination in an epidemic model with time delay is the main objective 
of this study, focusing on pulse vaccination. The study of the pulse vaccination model with delay 
as given by Gao (2009) will be the basis of this research. 
 
Purpose of the study 

 
Infectious diseases have been a major concern in health sector, as it affects children and young 
borns adversely. Constant vaccination have been used mostly as a method of controlling infectious 
diseases e.g. measles, polio, etc. Pulse vaccination is the latest advancement in health sectors hence 
its study.  
 
Objectives of the study 

 
The main objective of this study is to model the infectious diseases, come up with the control 
measures to enable their eradication and determine the effect of the various population parameters 
on the delayed pulse vaccination using delayed differential equations, also to: 
To determine and analyze contact rate parameters which are piecewise constant or time-varying of 
epidemiological modeling for the disease eradication or become incurable. 
To determine the effects of delay and non-delay pulse vaccination models in the control of an 
epidemic outbreak. 
To obtain the model for simulating delayed pulse vaccination of infectious diseases. 
To obtain the threshold values for which an outbreak will die or persist in the population. 
To discuss the implications of the model for the management of the infectious diseases. 
 
METHODS/DISCUSSION 

 

In this study we analyse the deterministic compartmental model of the infectious disease on the 
population. A deterministic compartmental model is one in which the individuals in a population 
are classified into compartments depending on their status with regard to the infection, the 
compartments are; Susceptible – S (t), Exposed/latent but not yet infectious – E (t), Infected – I (t) 
and the Removed – R (t) for SEIR model. There are many different compartmental epidemic 
models for example we have SEIR, SIR, SI model and others. The differential equations (DE) will 
be assigned initial conditions (IC) and boundary conditions (BC) which will help to solve them. 
The time-varying or constant parameters will be determined for the dynamical system. The partial 
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differential equations governing the deterministic models have been used. In mid-19th century, the 
Xinzhi L and Peter S (2009) discussed different theorems of aiding in solving partial differential 
equations.  
 
The existence and uniqueness theorem, 
The stability theorems, and 
The Comparison theorems. 
 
After presenting theorems applicable to very general systems of differential equations, then apply 
them to the following systems based on the equations of D’Onofrio et al (2005).   
Non-delay SIR Model ���� = �����) − ���)) − � ���)���) ���)���� = � ���)���) ���) − �
 + �)���)���� = ����) − 
���)                            ⎭⎪⎪

⎬⎪
⎪⎫ … … … … … … … … … … … … . … … … … … … … … 2.1 

 
Delay SEIR Model: ���� = �����) − ���)) − � ���)���) ���)                                 ���� = � ���)���) ���) − ����� ��� − �)��� − �) ��� − �) − 
���)���� = ����� ��� − �)��� − �) ��� − �) − �
 + �)���)                 ���� = ����) − 
���)                                                                ⎭⎪⎪

⎪⎬
⎪⎪⎪
⎫

 … … … … … … … … … … 2.2 

The DELAY SEIR model with Pulse vaccination  �� ��⁄ = ����) − 
���) − � ���)���) ���)                                       
�� ��⁄ = � ���)���) ���) − ����� ��� − �)��� − �) ��� − �) − 
���)
�� ��⁄ = ����� ��� − �)��� − �) ��� − �) − �
 + �)�                      �� ��⁄ = �� − 
�                                                                          ⎠

⎟⎟⎟
⎟⎞ � ≠ %&

���) = �1 − ')����)���) = ����)���) = ����)���) = ����) + '����)( � = %& ⎭⎪⎪
⎪⎪⎪
⎬
⎪⎪⎪
⎪⎪⎫

… … … … … … … … … . .3.1 

 
Ordinary Differential Equations 
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An ordinary differential equation (ODE) is an equation that involves some ordinary derivative of 
a function which can be solved by integration. *+(t) = f (t, x) ……………….………………………………………………………2.3  
 
Here theorems for a general ordinary differential equation (ODE) are discussed, which will be 
relevant to later analysis. This equation is non-autonomous since it depends explicitly on the time 
variable t in addition to the state variable x (t). It’s assumed that the ODE is subject to the initial 
condition (IC)   
                              x (t0) = 
x0. …………………………….………………………………………..…2.4 
These theorems are: 
 
The Existence and uniqueness theorem 
 
Local existence theorem 
 
Peano’s existence theorem gives conditions for when a solution to equation 2.3 exists: 
Theorem 1:Peano’s Existence Theorem: Let f ∈ C(F, �-), that is, f is a continuous function from 
F to �- where 
F = {(t, x) ∈ R ×�- :|� − �/| ≤ a, ‖* − */‖ ≤ c, a, c > 0} …………………........……2.5  
and let, ‖1��, *)‖ ≤ M on F for some M >0. Then the IVP (2.3-2.4) has at least one solution x (t) 

defined on [t0 −5, t0 +5] where 5 = min (a,
67). 

Equal Birth and Death Rates 
If μ = b and the population is normalized to N(t) = S(t) + I(t)+ R(t) ≡ 1, equation (2.1) becomes:  �� ��⁄ = 
�1 − ���)) − ����)���)�� ��⁄ = ����)���) − �
 + �)���)�� ��⁄ = ����) − 
���)                     8……….......................……2.6 

Defining x = [S, I, R]T and f(t, x) := [x1, x2, x3]T . Then (2.1) is equivalent to * ,(t) = f (t, x). 
In this normalized case, the physical region is x ∈ Ω1:= {(S, I, R) ∈ [0, 1]3: S + I + R = 1}since S, 
I, and R, are fractions of the population. This region is positively invariant. 
Since S(t), I(t), R(t)  ≥ 0 and S(t) + I(t) + R(t) = 1. Thus ||f (t, x)|| ≤ M1 for all x ∈ Ω1. If we choose 
any compact region F = {(t, x) ∈ R+ × Ω1: |t − t0| ≤ a, ||x − x0|| ≤ c}, then we have f ∈ C(F,Ω1) and 
||f(t, x)|| ≤M1 on F. Therefore by Peano’s Existence Theorem, Equation (2.3) has at least one 

solution on [t0− α, t0 + α], where α = min (a,
67 ). Notice that if we choose c ≥ 3 then {x: ||x − x0|| 

≤ c} ⊇ Ω1 
 
Allowance for Population Growth 
 
If the birth and death rates are unequal, b ≠ 
, then the boundedness of the model is slightly more 
difficult to prove, since the population sizes may grow. The physical region of interest is now 
(potentially) unbounded; thus we define ΩN: = �:;  (where R+ = [0,∞)). The region ΩN is positively 
invariant with respect to the DE 2.3: 
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S(t) = 0 ⇒ S’ = 
> 0                I(t) = 0 ⇒ I’ = 0:                   R(t) = 0 ⇒ R’ = �I(t) ≥ 0                                               
so with these initial conditions in ΩN, the trajectory of the solution will never leave ΩN.This 
analysis assumes the total population will undergo exponential growth or decay depending on the 
relative values of b and μ.  
 
Seir Model Without Vaccination  

The differential equations for this model are; >?>@  = bN(t)-βS(t)
AB – µS(t)                                                                                                  (1) >C>@  = βS�t) AB – (E+
)E(t)                                                                                                    (2) >A>@ = EE(t)- (� + 
 + F)I (t)                                                                                                (3) >G>@  = �I(t) –
� (t)                                                                                                               (4) >B>@ = 0, and N = S+E+I+R is thus constant. 

                                                                    Properties of the SEIR Model Equations 
The basic properties of the of the model equations 1-4 are feasible solutions and positivity of 
solutions.  
                                                                                 Feasible solution 
The feasible solution set which is positively invariant set of the model is given by, 

Ø =H�S, E, I, R) ∈ R: S + E + I + R = N ≤ O�P    R+
4 

        Positivity of solutions 
 
A first-order linear differential equation of the form, 
 >B>@  = �� − 
)N .  Thus N (t) = C��O��)@ at t = 0    N(0) = C 

Hence the solution of the linear differential equation then becomes 
N(t) = N(0)e(b-µ)t   Therefore, Ø is positively invariant. 
 
                                                            Existence of steady states of the system 
The equilibrium points of the system can be obtained by equating the rate of changes to zero. ���� + ���� + ���� + ���� = 0 

Global asymptotic stability of the model 
In proving the global stability of the SEIR Model, there is need to find the equilibrium points of 
the system 5-8. 
 
Assuming that the birth rate, b is equal to death rate, µ i.e. b=µ. 
 
1.  The Analysis of the SEIR Model without pulse vaccination 
This section gives an illustration of the analytical results of the SEIR model without pulse 
vaccination by carrying out stability analysis and numerical simulations of the model using the 
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parameter values pertinent to Kenya given in Table 4.1 below. These parameters were obtained 
from different sources in the literature 
 
Table 4.1: Parameter symbol, values and their sources 
 

Parameter symbol Parameter value Literature source � 0.02755 per year Gao et al(2009) 
 0.00875 per year Gao et al(2009) � 0.09091 per day D’onofrio (2004 E 0.125 per day Gao et al(2009) 5 0.14286 per day Momoh et al(2013 

 
 

Stability analysis of the Model 

 

From model 3.1 when no time delay then the equations becomes  ���� = �����) − ���)) − � ���)���) ���)���� = � ���)���) ���) − �
 + �)���)���� = ����) − 
���)                           
 

Endemic Model >R>@ = µ -(µ+βi)s >S>@ = βsi-(µ+E)e >T>@ = E� -(µ+� + F)i >�>@ = �� + F)U -µr 

Linearising the system of the differential equations, the Jacobian matrix is given as 
 

J(s,e,i,r) = Vµ + βi µ�U µ + E       0               µ� µ         �0        �0        0 µ + � + F 00 � + FZ 

For the infection free equilibrium (s,e,i) = (1,0,0), the Jacobian matrix then becomes 

J(1,0,0) =[−µ 0 −�0 −�µ − F) �0 F −�
 − E)\ = ]−0.0875 0 −0.090910 −0.2125 0.090910 0.125 −0.230336c 

 
The important sub-matrix is the second 2x2 matrix. From this, the trace (T) < 0, but if �/ < 1, then 
the determinant (D) > 0 and if �/ > 1 then (D) < 0 for all parameters 
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Routh-Hurwitz stability condition for T and D is given as follows: 
 
T = - (2
 + E + 5) = - 0.44286 and D = (
 + 5) (
 + E)(1-�/) = 0.02488 
Hence the disease free study state when �/ < 0, and unstable when �/> 0. The eigenvalues at the 
disease free equilibrium are given byd−
, −�
 + E),−�
 + 5), e. All the eigenvalues are negative 
meaning the disease free equilibrium (1, 0, 0, 0) is asymptotically stable. The endemic equilibrium 

(s*
,e*,i*) = f gGh , ��Gh�g)Gh���i) , ��Gh�g)j k 

The Jacobian matrix for the endemic equilibrium is given as 

Jendemic = l −
�/ 0 −�
 + 5)�
 + E)
��/ − 1) −�
 + E) �
 + 5)�
 + E)0 E −�
 + 5) m 

Whose Characteristic equation is given as X3+a1X2+a2X+a3 = 0 
 Routh-Hurwitz criteria for stability, all the roots of the Characteristic equation have negative real 
part which means stable equilibrium is attained. 
 

Optimal Vaccination Strategies 

 
Herd immunity 
Herd immunity is the level of immunity in a population which prevents epidemics, even if some 
transmission may still occur. It is well-known that the higher R0 is for a disease, the higher the 
proportion of the population will have to be vaccinated to achieve herd immunity as seen by 
Hethcote (1989). Although, this statement could seem theoretical, it was almost the perspective 
followed by WHO’s Technical Working Group(2000), when devising strategies to control a full 
range of diseases; for instance, this procedure has succeeded during the worldwide campaign for 

measles and smallpox eradication in the 1960s. 
 
The condition for control. 
Let p be the proportion immune after a vaccination campaign. To reach the so-called critical 
proportion '6, we need the control condition �/(1 – pc) <1 to be fulfilled.  For instance, in most 
sub-Saharan Africa countries, the basic reproductive number for measles R0 is approximately 
around 18 by Hethcote (1989) and Grais (2006), so pc= 0.94.Under the schedule of an unique dose, 
the minimal coverage to control infectious diseases is such that everyone does not need be immune 
through vaccination to control infectious diseases. 
 
Numerical simulations and Analysis of the Simulations of the SEIR model equations. 
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Figure 1: Simulation of the Exposed Population 

In Figure 1 it can be observed that as the rate increases, the population of exposed individuals 
shows some rapid decrease after the earlier intervals of rise. The decrease in the exposed 
population could be due to early detection and also possibly due to those who enter the infective 
class. This decrease could also be due to the education about the infectious diseases transmission, 
very few individuals are coming out as infected individuals. Also the dynamics of the exposed 
population depend on the contact number.  
 

Figure 2: Simulation of the Infected Population 
 
In Figure 2, it is realized that the population of infected individuals at the very beginning rise 
sharply as the rate increases and then fall uniformly as time increases. This rapid decline of the 
infected individuals may be due to early detection of the measles and partly due to those who revert 
to the Exposed class. This graph also demonstrates that the contact rate has large impact on the 
spread of the disease through population. If the contact rate is observed to be high then the rate of 
infection of the disease will also be high as would be expected logically. However, there exists 
another parameter to consider as more individuals are infected with the disease and I(t) grows, as 
some individuals are leaving the infected class by being cured and joining the recovered class. 
 
Conditions for control of infectious diseases  
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Herd immunity 
 
Herd immunity is defined as the level of immunity in a population which can prevents epidemics  
of a disease, even if some transmission of that particular disease may still occur in a population.  
If the percentage or proportion of the population that is immune exceeds the herd immunity level 
for the disease, then the disease can no longer persist in that particular population. Thus, if this 
level of immunity can be exceeded by means of mass vaccination, then the disease can indeed be 
eliminated.  
 
Assuming that, the herd immunity level is denoted by v. Recall that, for a stable state: �/×S = 1 
so that, S will be (1-v), since v is the proportion of the population that are immune and v + S  must 
be equal to one (since in the simplified model everyone one susceptible or immune ). Then: �/X (1-v) =1, 1-v = 

gGh, v = 1- 
gGh          and therefore, v = (1- 0.0625) x 100 = 93.75% 

Now let me assume that, in a given population if the average age at which a disease is contracted 
is A and the average life expectancy in that same population is given as L.  
And it is assumed that everyone in the population lives to age L and then dies. If the average age 
of infection is A, then on average, individuals younger than A are susceptible and those older than 
A are immune. Thus the proportion of the population that is susceptible is given by  

S= 
no. 

But mathematical definition of the endemic steady state can be arranged to give; 

S = 
gGh, therefore,  

gGh = 
no and this implies that �/ = 

on. 

By using the available data,�/ can be estimated. 
 
When mass vaccination cannot exceed the herd immunity 
 
If the mass vaccination due to the outbreak of a disease is insufficiently effective or the required 
coverage cannot be reached due to some reasons, for example in some community where the 
people have agree not to permit their children to be vaccinated due to some personal reasons, the 
programme may not be able to exceed p6.  
Suppose that a proportion of the population v (where v <qc) is immunised at birth against an 
infection with R0>1. The vaccination programme changes R0 to Rq where Rq = R0 (1- v), this 
change is as a result of now fewer susceptible will be in the population who can be infected. Rq is 
simply R0 minus those that would normally be infected but that cannot be now since they are 
immune. As a consequence of this lower basic reproduction number, the average age of infection 
A will also change to some new value Aq in those who have been left unvaccinated. Assuming that 
life expectancy has not changed, now 

RQ = 
onq , AQ = 

oGq,  AQ = 
oGh�g�r) 

But R = 
on  So AQ =

ost�g�r) ,AQ = 
noo�g�r) ,  AQ = 

ng�r , AQ = 
n?. 

The vaccination programme caused the lowering of basic reproductive number, and this will also 
produce an increase in the average age of infection. Unvaccinated individuals now experience a 
reduced force of infection due to the presence of the vaccinated group. 
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When mass vaccination exceeds the herd immunity 
If a vaccination programme causes the proportion of immune individuals in a population to exceed 
the critical threshold for a significant length of time, transmission of the infectious disease in that 
population will gradually come to a halt.  
 
Discussion 

The main objective of this study is to model delayed pulse vaccination of infectious diseases and 
also establish a possible way of reducing the disease transmission.  
The basic reproductive number has been computed to determine the stability of the disease because 
theoretical determination of threshold conditions for R0 is of important public heath interest. It was 
established qualitatively that the model has the disease- free equilibrium and endemic equilibrium 
points. It was realized that whenever R0< 1, the disease- free equilibrium point is locally 
asymptotically stable and unstable whenever R0> 1.  
It was also realized that, in the absence of mass vaccination programme as well as early detection 
and supervised treatment, the transmission of the disease cannot be eradicated from the population. 
The introduction of proper treatment and education about the disease transmission as well as early 
detection of the disease can help reduce the disease in a population. The results has also shown 
that effective contact with the infectious individual cause a major increase of the disease 
transmission, hence individuals with active infectious disease must be detected as early as possible 
to reduce high rate of transmission in a population. Education about infectious disease can help 
many appear for diagnosis and get detected early. 
 
1. The SIS Model 
 
This model is for diseases which the infection does not confer immunity. It is called an SIS Model 
since individuals return to the susceptible class when they recover from the infection. Naturally 
occurring births and deaths (vital dynamics) are included, but the behavior of solutions is similar 
when vital dynamics are not included. 
 
2. The SIR Model without vital dynamics 
 
In this model, the diseases considered for which the infection confers permanent immunity. When 
such an SIR disease goes through a population in a relatively short time (less than one year) then 
this disease outbreak is called an epidemic. Since an epidemic occurs relatively quickly, the model 
does not include births and deaths (vital dynamics). Epidemics are common for diseases such as 
influenza, measles, rubella and chickenpox. 
 
3.  The SIR Model with vital dynamics 
In this section an SIR epidemiological Model is considered, but here a model of the disease 
behavior in the population over a long time period. A disease is called endemic if it is present in a 
population for more than 10 or 20 years. Because of the long period involved, a model for an 
endemic disease must include births as a source of new susceptible and natural deaths in each class.         
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By Theorem 2 and above discussions, we know that the set Ω0 is a global attractor in Ω, and of 

course, every solution of system (3.11) with initial conditions (3.12) will eventually enter and 

remain in region Ω0. Therefore, system (3.11) is permanent. The proof of Theorem 3 is complete. �∗ = 
�i:u:�)�v:�:w)uj      ,x∗ = 

�i:u:�)�v:�:w)uj�y:�) ,  �∗ = 
ujz�y:�):y{�i:u:�)�v:�:w)j�y:�)�i:u:�)�v:�:w) − �{:�j ) �∗ = 

ujz�y:�):y{�i:u:�)�v:�:w)j�y:�)�i:u:�) − �{:��v:�:w)uj ) �∗ = 
iuj��i:u:�)�v:�:w) + {iy�v:�:w)�j�y:�) − �| + 
) �v:�:w)uj� + uvj��i:u:�)                                            �� ��⁄ = ����)���) − �E + 5 + 
� ��)       �� ��⁄ = ����)� ��) − �
 + � + 5)�                               

We have analyzed the SIR epidemic model with pulse vaccination and distributed time delay. Two 

thresholds have been established, one for global stability of the infectious-free solution and one 

for persistence of the endemic solution.  
 

 
Figure 3 The bifurcation diagram the unique endemic equilibrium (the component I of infectious 

individuals regarding β as the bifurcation parameter, all other parameters are same as in model 

(5.1)). 
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Figure 4. The bifurcation diagram the unique endemic equilibrium (the component I of infectious 

individuals regarding θ as the bifurcation parameter, all other parameters are same as in model 

(5.1) except for β = 0.214 ). 
From Figures 1 and 2, we can observe the following: 
 (i) R∗ and R∗ are inversely proportional to θ value and directly proportional to τ value and R0value, 

which implies that pulse vaccination measures the inhibition effect from the behavioral change of 

the susceptible when they transfer to the infectious class (I). 
(ii) R∗ is a directly proportional to μ value, which implies that the natural birth or death rate 

measures the inhibition effect from the behavioral change of the susceptible class (with S) when it 

moves into the infectious class (I). 
(iii) R∗ is inversely proportional to h value, which implies that the maximum infectious period of 

the disease measures the inhibition effect from the behavioral change of the susceptible class (with 

S) when it moves into the infectious class I(t). 
(iv) There is a value μ∗ such that R∗ is directly proportional to μ when μ < μ∗ and is inversely 

proportional to μ when μ > μ∗. Therefore the larger death rate is sufficient for the global attractivity 

of infection free periodic solution (�}e(t), 0). It is easy to verify. In fact, we can calculate the 

derivative of R∗ with respect to μ >G∗>�  = 
�g�~)S���Gh�g��g�~)S����� ��
),  …………………………………………………………………3.52 

Where g(
) = �&����- h(1 - ����)(1 – (1 – �)����). Obviously, g’(
) < 0 and g(0) > 0, lim
 →+∞ g(
) < 0. Hence, there exists a 
* such that dR*/d 
> 0 for 
 ∈ (0, 
 ∗), whereas dR*/d 
< 0 

for  
 ∈ (
*, +∞). 
Epidemic models with time delays have received much attention since delays can often cause some 

complicated dynamical behaviors. Delays in many models can destabilize equilibrium and thus 

lead to periodic solutions by Hopf bifurcation Hethcote et al (1981), Cooke L. and Busenberg S. 

(1993). It is well known that periodic forcing can drive SIR and SEIR models into a behavior 

which looks chaotic, Smith L. and Schwartz B.(1983). 
The impulsive model with distributed time delay (3.11) will be analyzed, in particular paying 

attention to the following points: 
(i) The global asymptotic stability for SIR model with pulse vaccination and distributed time delay; 
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(ii) The behavior of the model when an insufficient level of people undergoes the vaccination: 

bifurcation and chaotic solutions; 
(iii) Whether periodic or pulse vaccination does a better job than constant vaccination at the same 

average value. 
 

 
 
Figure 5: Time series of system (2.1) * θ = 0.214, R =1.0529  
 
Figure 5The tendency of the infected individuals I with different values of β 
 
Therefore, an interesting open problem is proposed whether we can prove that the positive periodic 

solution of model (2.1) is globally attractive as * R >1. 
 
Finally, the numerical simulations of the stroboscopic map of model on the number of infected 

individuals with different values of β are shown in Figure 5. It shows that the number of infected 

individuals will increase steadily in next few days, then reach the peak and begin a slow decline, 

and finally become stable. The greater the value β , the bigger the peak value and the earlier the 

peak appears. Our result implies that decreasing infection rate can put off the disease outbreak and 

reduce the number of infected individuals. 
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