

DATE: 26/2/2021

TIME: 9.00-12.00 PM

INSTRUCTIONS;

Answer **QUESTION ONE and TWO other** questions. <u>Clearly show</u> all your workings. Statistical tables have been provided.

QUESTION ONE (20 MARKS)

a)	A project activity has most likely, pessimistic and optimistic time estimates of 17, 25 and 15
	days, respectively. Compute the activity's

- i. Mean duration (1 mark)
- ii. Standard deviation of the duration (1 mark)
- b) The average number of customers arriving at a supermarket in a 60-minute period of time is 152. What is the probability of exactly 135 arrivals in 60 minutes? (2 marks)
- A sample of 34 packets of rice returned a mean of 23.5 Kg and standard deviation of 0.45Kg.
 Does the sample mean support claims that the population mean is 25.0Kg, at the 98 percent confidence interval?
 (3 marks)
- A company uses 2,600 packets of a certain pesticide per year, which costs KSh 625 each. The ordering and handling costs are KSh 3750 per order and carrying costs are 7.5% of purchase price per annum. Compute the economic order quantity (3 marks)
- e) Using the data below:
 - i. find the correlation coefficient (3 marks)
 - ii. Interpret the results (1 mark)

Labour costs (Ksh Million)	21	23	24	25	26	27
Profit (KSh Million)	182	171	156	144	123	110

f) Below is data on number of employees from surveyed companies. Find the:

- i. Mean number of employees
- ii. Median number of employees

No. of employees	100-500	500-9,000	9,000-1,300	1,300-1,700	1,700-2,100
Frequency (f)	19	37	58	31	12

QUESTION TWO (20 MARKS)

a) A cereal trader intends to distribute rice from his four warehouses to four towns at the lowest possible cost. Quantities available at the warehouses are 100, 80, 150 and 80 tons respectively, while wheat demand is 120, 90, 60, and 140 tons in the four towns, respectively. It will cost the trader KSh 5500, 4000, 1000 and 2500 to ship a ton of wheat from the first warehouse to towns 1,2,3 and 4; KSh 3000, 5000, 4500 and 2,000 to ship a ton of wheat from the second warehouse to towns 1,2,3 and 4; KSh 4000, 4700, 1500 and 2,000 to ship a ton of wheat from the third warehouse to towns 1,2,3 and 4, respectively, and KSh 3500, 1250, 6500 and 1,800 to ship a ton of wheat from the fourth warehouse to towns 1,2,3 and 4, respectively. Advise the trader on the best transport routes using:

i	The Intuitive Lowest-Cost Method	(4 marks)
1.	The intuitive Lowest-Cost Method	(4 marks)

- ii. The north West Corner Rule
- b) Suppose a firm is producing two types of products whose profits per Kg are KSh 15 and Ksh 20 respectively. The two products require three types of inputs: land, labor and capital, as shown in the table below.
 - i. Formulate the problem as a linear programming model (3 marks)
 - ii. Using the simplex method, advise the firm (6 marks)
 - iii. Comment on resource use

Profit/Kg	P1 (KSh 30)	P2 (KSh 40)	Total available
Land (acres)	3	2	1200
Labor (man days)	30	50	1600
Capital (KSh '000)	5	6	2200

(3 marks)

(3 marks)

(4 marks)

(3 marks)

QUESTION THREE (20 MARKS)

- a) An employee claims that monthly total earnings per worker from two of your farm's branches are not the same. The human resource manager samples 23 workers from one branch and 17 workers from the second branch, and obtains mean earnings of KSh 15630 and KSh 18310 respectively. The sample standard deviation of branch1 earnings is KSh 1230 while that of branch2 earnings is KSh 1290. Will the human resource manager find the employee's claim statistically justified? (8 marks)
- b) The following table gives data at normal time and cost-crashed time and project cost.
 - i. Draw the project network using the activity-on-arrow approach (4 marks)
 - ii. Determine a crashing scheme for the project so that the total project time is reduced by 12 weeks (4 marks)
 - iii. What is the overall project duration after crashing? (2 marks)
 - iv. What is the optimal project cost after crashing? (2 marks)

Activity	Predecessor	Time (wks)		Cost (KSh)	
	Activity	Normal	Crash	Normal	Crash
А		4	3	8000	9000
В	А	5	3	16000	20000
С	А	4	3	12000	13000
D	В	6	5	34000	35000
Е	C,D	6	4	42000	44000
F	B,E	5	4	16000	16500

QUESTION FOUR (20 MARKS)

a) The table below shows the number of agribusiness firms accessing credit. Test whether credit access differs among men, women and the youth (8 marks)

Purchase Decision	Women	Men	Youth
Number of traders accessing credit	18	32	4
Number of traders not accessing credit	54	50	34

b) The data below was extracted from records of Kuku Ltd.

- i. Develop a linear regression equation for estimating egg production (10 marks)
- ii. Predict egg production if the firm spends KSh 40,000 on feeds (2 marks)

Feed costs (Ksh '000)	6	11	17	27	32
Egg production (x10 trays)	3	5	8	12	15

QUESTION FIVE (20 MARKS)

a) Below is data showing milk production by dairy farmers in three counties. Does the milk production per farmer differ across the counties? (12 marks)

Milk production per farmer (Litres)									
County A	County B	County C	County D						
5	17	3	17						
7	15	21	16						
10	36	13	8						
6	25	9	5						

- b) A farmer must decide on the enterprise to invest in, to maximize returns in her 30 acres farm. The farmer can produce maize, kales, sorghum or tomatoes. Crop output is dependent on weather. When rains are average, the farmer can produce 0.7, 1.2, 1.5 and 0.9 tons per acre of maize, kales, sorghum and tomatoes, respectively. Yields under high rainfall are 1.9, 1.6, 1.7 and 2.8 tons per acre, respectively, while under poor rains, the yields are 0.3, 0.5, 1.2 and 0.5 tons per acre, respectively. The table below shows rainfall probabilities and associated grain prices. Advise the farmer based on:
 - i. The pessimistic approach
 - ii. The expected value approach

Enterprise	High Rainfall	Low Rainfall	Medium Rainfall
	(probability = 0.2	(probability=0.3	Probability = 0.5)
	Price (Ksh/kg)	Price (Ksh/kg)	Price (KSh/kg)
Maize	21	35	25
Kales	15	45	30
Sorghum	35	60	45
Tomatoes	50	120	75

(2 marks)

(8 marks)

B.1 Areas under the Normal Curve

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0.0359
0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517
0.4	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736	0.1772	0.1808	0.1844	0.1879
0.5	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224
0.6	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549
0.7	0.2580	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852
0.8	0.2881	0.2910	0.2939	0.2967	0.2995	0.3023	0.3051	0.3078	0.3106	0.3133
0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389
1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.3531	0.3554	0.3577	0.3599	0.3621
1.1	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0.4441
1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633
1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.4706
1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4756	0.4761	0.4767
2.0	0.4772	0.4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4808	0.4812	0.4817
2.1	0.4821	0.4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4854	0.4857
2.2	0.4861	0.4864	0.4868	0.4871	0.4875	0.4878	0.4881	0.4884	0.4887	0.4890
2.3	0.4893	0.4896	0.4898	0.4901	0.4904	0.4906	0.4909	0.4911	0.4913	0.4916
2.4	0.4918	0.4920	0.4922	0.4925	0.4927	0.4929	0.4931	0.4932	0.4934	0.4936
2.5	0.4938	0.4940	0.4941	0.4943	0.4945	0.4946	0.4948	0.4949	0.4951	0.4952
2.6	0.4953	0.4955	0.4956	0.4957	0.4959	0.4960	0.4961	0.4962	0.4963	0.4964
2.7	0.4965	0.4966	0.4967	0.4968	0.4969	0.4970	0.4971	0.4972	0.4973	0.4974
2.8	0.4974	0.4975	0.4976	0.4977	0.4977	0.4978	0.4979	0.4979	0.4980	0.4981
2.9	0.4981	0.4982	0.4982	0.4983	0.4984	0.4984	0.4985	0.4985	0.4986	0.4986
3.0	0.4987	0.4987	0.4987	0.4988	0.4988	0.4989	0.4989	0.4989	0.4990	0.4990

B.2 Student's t Distribution

			Confidence	e Intervals,	C				Co	onfidence In	tervals, c		
	80%	90%	95%	98%	99%	99.9%		80%	90%	95%	98%	99%	99.9%
		Level of	Significanc	e for One-Ta	ailed Test, α				Level of	Significanc	e for One-T	ailed Test, α	
df	0.10	0.05	0.025	0.01	0.005	0.0005	df	0.10	0.05	0.025	0.01	0.005	0.0005
		Level of	Significanc	e for Two-T	<mark>ailed Test,</mark> α	L			Level of	Significanc	e for Two-T	<mark>ailed Test,</mark> α	
	0.20	0.10	0.05	0.02	0.01	0.001		0.20	0.10	0.05	0.02	0.01	0.001
1	3.078	6.314	12.706	31.821	63.657	636.619	36	1.306	1.688	2.028	2.434	2.719	3.582
2	1.886	2.920	4.303	6.965	9.925	31.599	37	1.305	1.687	2.026	2.431	2.715	3.574
3	1.638	2.353	3.182	4.541	5.841	12.924	38	1.304	1.686	2.024	2.429	2.712	3.566
4	1.533	2.132	2.776	3.747	4.604	8.610	39	1.304	1.685	2.023	2.426	2.708	3.558
5	1.476	2.015	2.571	3.365	4.032	6.869	40	1.303	1.684	2.021	2.423	2.704	3.551
6	1 //0	1 0/3	2 117	3 1/3	3 707	5 959	/1	1 303	1 683	2 020	2 / 21	2 701	3 5//
7	1 /15	1 905	2.447	2 008	3,100	5.409	12	1 202	1.692	2.020	2.421	2.608	2 5 2 9
0	1.415	1.090	2.303	2,990	2 255	5.400	42	1.302	1.002	2.010	2.410	2.090	3.000
0	1.097	1.000	2.300	2.090	2 250	4 791	43	1.302	1.001	2.017	2.410	2.090	3.532
10	1.303	1.000	2.202	2.021	2 160	4.701	44	1.301	1.000	2.015	2.414	2.092	3.520
10	1.372	1.012	2.220	2.704	3.109	4.307	40	1.301	1.079	2.014	2.412	2.090	3.520
11	1.363	1.796	2.201	2.718	3.106	4.437	46	1.300	1.679	2.013	2.410	2.687	3.515
12	1.356	1.782	2.179	2.681	3.055	4.318	47	1.300	1.678	2.012	2.408	2.685	3.510
13	1.350	1.771	2.160	2.650	3.012	4.221	48	1.299	1.677	2.011	2.407	2.682	3.505
14	1.345	1.761	2.145	2.624	2.977	4.140	49	1.299	1.677	2.010	2.405	2.680	3.500
15	1.341	1.753	2.131	2.602	2.947	4.073	50	1.299	1.676	2.009	2.403	2.678	3.496
16	1 227	1 746	2 1 2 0	2 592	2 021	4.015	51	1 209	1.675	2 008	2 402	2.676	2 /02
17	1 222	1 740	2.120	2.505	2.921	2.065	52	1.250	1.675	2.000	2.402	2.070	2 / 92
19	1 220	1.740	2.110	2.507	2.050	3.903	52	1.250	1.674	2.007	2.400	2.074	2 4 9 4
10	1 2 2 9	1 720	2.101	2.532	2.070	3.922	54	1.250	1.674	2.000	2.335	2.072	2 499
20	1 325	1.725	2.035	2.535	2.001	3,850	55	1.297	1.673	2.003	2.397	2.668	3.400
20	1.525	1.725	2.000	2.520	2.045	3.030	55	1.237	1.075	2.004	2.350	2.000	3.470
21	1.323	1.721	2.080	2.518	2.831	3.819	56	1.297	1.673	2.003	2.395	2.667	3.473
22	1.321	1.717	2.074	2.508	2.819	3.792	57	1.297	1.672	2.002	2.394	2.665	3.470
23	1.319	1.714	2.069	2.500	2.807	3.768	58	1.296	1.672	2.002	2.392	2.663	3.466
24	1.318	1.711	2.064	2.492	2.797	3.745	59	1.296	1.671	2.001	2.391	2.662	3.463
25	1.316	1.708	2.060	2.485	2.787	3.725	60	1.296	1.671	2.000	2.390	2.660	3.460
26	1.315	1.706	2.056	2.479	2.779	3.707	61	1.296	1.670	2.000	2.389	2.659	3.457
27	1.314	1,703	2.052	2.473	2.771	3.690	62	1.295	1.670	1.999	2.388	2.657	3.454
28	1.313	1.701	2.048	2.467	2.763	3.674	63	1.295	1.669	1.998	2.387	2.656	3.452
29	1.311	1.699	2.045	2.462	2.756	3.659	64	1.295	1.669	1.998	2.386	2.655	3,449
30	1.310	1.697	2.042	2.457	2.750	3.646	65	1.295	1.669	1.997	2.385	2.654	3.447
31	1.309	1.696	2.040	2.453	2.744	3.633	66	1.295	1.668	1.997	2.384	2.652	3.444
32	1.309	1.694	2.037	2.449	2.738	3.622	67	1.294	1.668	1.996	2.383	2.651	3.442
33	1.308	1.692	2.035	2.445	2.733	3.611	68	1.294	1.668	1.995	2.382	2.650	3.439
34	1.307	1.691	2.032	2.441	2.728	3.601	69	1.294	1.667	1.995	2.382	2.649	3.437
35	1.306	1.690	2.030	2.438	2.724	3.591	70	1.294	1.667	1.994	2.381	2.648	3.435
						_							

B.3 Critical Values of Chi-Square

This table contains the values of χ^2 that correspond to a specific right-tail area and specific number of degrees of freedom.

Example: With 17 df and a .02 area in the upper tail, $\chi^2 = 30.995$

Degrees of	Right-Tail Area										
Freedom, df	0.10	0.05	0.02	0.01							
1	2.706	3.841	5.412	6.635							
2	4.605	5.991	7.824	9.210							
3	6.251	7.815	9.837	11.345							
4	7.779	9.488	11.668	13.277							
5	9.236	11.070	13.388	15.086							
6	10.645	12.592	15.033	16.812							
7	12.017	14.067	16.622	18.475							
8	13.362	15.507	18.168	20.090							
9	14.684	16.919	19.679	21.666							
10	15.987	18.307	21.161	23.209							
11	17.275	19.675	22.618	24.725							
12	18.549	21.026	24.054	26.217							
13	19.812	22.362	25.472	27.688							
14	21.064	23.685	26.873	29.141							
15	22.307	24.996	28.259	30.578							
16	23.542	26.296	29.633	32.000							
17	24.769	27.587	30.995	33.409							
18	25.989	28.869	32.346	34.805							
19	27.204	30.144	33.687	36.191							
20	28.412	31.410	35.020	37.566							
21	29.615	32.671	36.343	38.932							
22	30.813	33.924	37.659	40.289							
23	32.007	35.172	38.968	41.638							
24	33.196	36.415	40.270	42.980							
25	34.382	37.652	41.566	44.314							
26	35.563	38.885	42.856	45.642							
27	36.741	40.113	44.140	46.963							
28	37.916	41.337	45.419	48.278							
29	39.087	42.557	46.693	49.588							
30	40.256	43.773	47.962	50.892							

B.4 Critical Values of the *F* **Distribution** at a 5 Percent Level of Significance

		Degrees of Freedom for the Numerator															
		1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40
	1	161	200	216	225	230	234	237	239	241	242	244	246	248	249	250	251
	2	18.5	19.0	19.2	19.2	19.3	19.3	19.4	19.4	19.4	19.4	19.4	19.4	19.4	19.5	19.5	19.5
	3	10.1	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.74	8.70	8.66	8.64	8.62	8.59
	4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.91	5.86	5.80	5.77	5.75	5.72
	5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.68	4.62	4.56	4.53	4.50	4.46
om for the Denominator	6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	4.00	3.94	3.87	3.84	3.81	3.77
	7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.57	3.51	3.44	3.41	3.38	3.34
	8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.28	3.22	3.15	3.12	3.08	3.04
	9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.07	3.01	2.94	2.90	2.86	2.83
	10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.91	2.85	2.77	2.74	2.70	2.66
	11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85	2.79	2.72	2.65	2.61	2.57	2.53
	12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.69	2.62	2.54	2.51	2.47	2.43
	13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67	2.60	2.53	2.46	2.42	2.38	2.34
	14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.53	2.46	2.39	2.35	2.31	2.27
	15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.48	2.40	2.33	2.29	2.25	2.20
	16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.42	2.35	2.28	2.24	2.19	2.15
eed	17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45	2.38	2.31	2.23	2.19	2.15	2.10
Ē	18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41	2.34	2.27	2.19	2.15	2.11	2.06
s of	19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38	2.31	2.23	2.16	2.11	2.07	2.03
Degree	20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35	2.28	2.20	2.12	2.08	2.04	1.99
	21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.37	2.32	2.25	2.18	2.10	2.05	2.01	1.96
	22	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34	2.30	2.23	2.15	2.07	2.03	1.98	1.94
	23	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.32	2.27	2.20	2.13	2.05	2.01	1.96	1.91
	24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30	2.25	2.18	2.11	2.03	1.98	1.94	1.89
	25	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.28	2.24	2.16	2.09	2.01	1.96	1.92	1.87
	30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.16	2.09	2.01	1.93	1.89	1.84	1.79
	40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12	2.08	2.00	1.92	1.84	1.79	1.74	1.69
	60	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04	1.99	1.92	1.84	1.75	1.70	1.65	1.59
	120	3.92	3.07	2.68	2.45	2.29	2.18	2.09	2.02	1.96	1.91	1.83	1.75	1.66	1.61	1.55	1.50
	80	3.84	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1.88	1.83	1.75	1.67	1.57	1.52	1.46	1.39