• Login
    View Item 
    •   MKSU Digital Repository Home
    • Research and Publications
    • School of Pure and Applied Sciences
    • School of Pure and Applied Sciences
    • School of Pure and Applied Sciences
    • View Item
    •   MKSU Digital Repository Home
    • Research and Publications
    • School of Pure and Applied Sciences
    • School of Pure and Applied Sciences
    • School of Pure and Applied Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Smoothed Conditional Scale Function Estimation in AR(1)-ARCH(1) Processes

    Thumbnail
    View/Open
    Full text (1.831Mb)
    Date
    2018-03-12
    Author
    Seknewna, Lema L.
    Mwita, Peter N.
    Muema, B.
    Metadata
    Show full item record
    Abstract
    The estimation of the Smoothed Conditional Scale Function for time series was taken out under the conditional heteroscedastic innovations by imitating the kernel smoothing in nonparametric QAR-QARCH scheme. The estimation was taken out based on the quantile regression methodology proposed by Koenker and Bassett. And the proof of the asymptotic properties of the Conditional Scale Function estimator for this type of process was given and its consistency was shown.
    URI
    http://ir.mksu.ac.ke/handle/123456780/1895
    Collections
    • School of Pure and Applied Sciences [259]

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of Digital RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy Submit DateThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Submit Date

    My Account

    LoginRegister

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    @mire NV